
ORBITAL STABILITY IN THE ELLIPTIC RESTRICTED THREE BODY PROBLEM 

C.A. Williams and J.G. Watts 
Dept. of Astronomy, University of South Florida, Tampa, Fla. 
Fla. 33620 

ABSTRACT 

Based on the concept of orbital stability introduced by G. W. Hill, 
a method is presented to facilitate the determination of the orbital 
stability of solutions to the planar elliptic restricted problem of 
three bodies. The invariant relation introduced by Szebehely and 
Giacaglia (1964) contains an integral which is expanded here about a 
Keplerian solution to the problem. If the expansion converges, it 
can be used to determine the conditions for Hill stability. With it 
one can also define stability in a periodic sense. 

Szebehely and Giacaglia (1964) give the equations of motion of 
the elliptic restricted three body problem in a coordinate system 
rotating and pulsating with respect to an inertial system. The 
coordinate system is chosen in such a way that as a consequence of the 
rotation and pulsation the two primary masses are located at fixed 
points on the horizontal £ axis. In two dimensions, the equations of 
motion of this system are 

5"" w • U (i, 
n" + 25* = to 

n 

The independent variable is the true anomaly f of the primaries. 
A prime indicates differentiation with respect to f. The potential 
function is defined by 

u = (1 + e" cos fj"1 n, (2) 

where a = Js(l-y)pf + hw\ + — + — 
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with pf = U - y ) 2 + n 2 and p| = (? - y+1) 2 + n 2 . 

The eccentricity of the primary orbit is ~e, the mass of the primary at 
the point (y,0) is 1-u and the mass of the other primary is y. pj and 
P2 are the distances of the particle from the masses 1-y and y 
respectively. 

Since this system is nonconservative, the equations (1) do not 
furnish a Jacobi integral as do the equations of motion in the circular 
restricted problem. (The latter can be derived from Eqs. (1) and (2) 
by putting'e = 0, f = t.) However, the following invariant relation 
can be formally derived in the same manner as can the Jacobi integral 
in the circular problem: 

(C) 2 + (n1)2 = 2u, - c - i( ff df. (3) 

o 

Since in the circular case 9ai/9t = 0, Eq. (3) would in that case 
represent an integral. Szebehely (1967) remarks that Eq. (3) may be 
used to obtain time varying curves of zero velocity in the case that 
¥ t 0. 

In order to discuss orbital stability, we need to describe the 
time variation of the curves of zero velocity. If we can establish 
that a particular solution of Eq. (1) has closed curves of zero 
velocity for some domain f\ <_ f <_ f2, then we will have established 
orbital stability for the system in the same sense as that defined by 
G. W. Hill (1905) for the lunar theory. Hill stability excludes the 
possibility of escape from a primary (i.e., pi and p2 cannot approach 
infinity), although collisions may still occur. If we can establish 
Hill stability for f2 -*• °° , we will have established orbital stability 
in a non-trivial sense. 

In his above quoted book (p. 596), Szebehely suggests an expansion 
of the invariant relation Eq. (3) with respect to powers of e". The 
integral term is included in this expansion. To do this, we note that 

9to _ ft ~e sin f (4) 
3f (1 +•¥ cos f)2 

ft in Eq. (4) is to be evaluated along a solution of Eq. (1); the 
integral is therefore a function of f. 

Define 1(f) = C "(f> l l n f
 f.a df . (5) 

) f (1 + e cos f)^ 
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The curves of zero velocity, if they exist, can be obtained from the 
equation 

2$H5,n) = [c + 27 1(f)] (1 + ¥ cos f) =K(f). (6) 

As the particle follows its orbit, we can define a continuous set of 
zero velocity curves for the motion if the equation 2ft = K has a real 
locus. In order to evaluate I, it is assumed that the motion of the 
particle can be represented by perturbations of Keplerian motion. This 
will be true in three cases: Case I, pi is very small (C is large); 
Case II, P2 is very small (C is large); Case III, Pi and P2 are not 
small but C is very large. 

Cases I and II describe the motion of a particle moving close to 
one of the primaries and perturbed by the other. 

Case III applies to the system in which a negligibly small outer 
planet moves in the gravitational field of the Sun and one larger 
planet whose orbit is completely inside the small planet's orbit. 

The first step in the evaluation of I is to expand the various 
terms in Q into series in the mean anomaly of the particle's orbit. 
In this paper, only Case II was considered; however, Case I can be 
obtained from Case II by interchanging y and 1-y. 

P2 is related to the radius vector of the particle's orbit about 
mass y. To illustrate the method, consider the expansion of the term 
y/p2 in the function ft. The expansion of a/r, where r is the radius 
vector in elliptic motion, is well known. In this problem, the 
radius vector r must be transformed, since the coordinate system 
defined by the axes £ and n is rotating and pulsating. The rotation 
leaves r invariant, but because of the pulsation 

P2 = r(l + e~ cos f) /(l - ¥2) = r"a fx, where H = 1. (7) 

Therefore, we have the relation y/p2
 = (v/a) (a/r) ("r/1), where the 

expansion of a/r is a Poisson series in the particle's mean anomaly 
and eccentricity ~e. The form of the expansion of this term will be 

oo -J- oo 

jl=0 j2=-» 

where A. , is a function of e and ~e. A similar method is applied to 
J1J2 

the expansion of the other terms in ft. 

After the expansion is performed, it is necessary to include the 
expansion of sin f(l +_e cos f) - 2 before integrating Eq. (4). It will 
be necessary to adopt X as the independent variable instead of f, which 
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r equ i r e s one more s t ep in the expansion process . Fully expanded, the 
in tegrand in Eq. (4) has the form 

31=0 3 2 . 3 3 J i J 2 J d 

(8 ) 

where A is a function of y, a, e, and "i"; and w is the argument of 
pericenter of the particle's orbit. One may set w = 0 without any 
loss of generality. The integration of (8) is performed, assuming a, 
e, and w are constants. This will give a first order approximation to 
I. For a small perturbation this will give sufficient accuracy for the 
determination of the range of 1(f). 

For Case II, y/p2 - u/a. If a _< y, this will be the dominant 
term in the expansion. Another large term is (1-y) (p1/2+l/p1)

:=3(l-y)/2. 
Both of these lead to the largest term in I and have the frequency n~. 
(In dimensionless variables, "n = 1.) y/p2 contributes another large 
term with frequency 2n. The remaining terms are factored by powers of 
e", a2, e, or y and are considerably smaller. The frequency of a term 
in the expansion is given by pn + qii where p and q are integers. If 
a resonance condition exists, i.e., if n/TT = -q/p, the integral will 
not converge and this representation is not applicable. If we exclude 
a resonance condition and if the orbit is quasi-periodic, then the 
Poisson series representation of the integral should be a good one. 
Using Eq. (8), we can write 

t 
A. . . _ 

I = ^ _JJ1211 cos(J!^+ iz/+ j3w) (9) 
S 3 m + 3 2iT 

3 1>32>33 

If this series converges, then 

111 <. M, where 

A M " 2 Z 3 1 3 2 3 3 

3 l n
+ 3 2TT 

3 1 3 2 3 3 

(10) 

If Eq. (9) holds, then we can substitute these results into Eq. (6) to 
obtain (1 - e") (C - 2eM) <. K(f) <_ (1 + ~e) (C + 2eM) if C - 2eM _> 0. 
The lower limit will be (1 + "e) (C - 2eM) if C - ZeM < 0. Considering 
Eq. (2) for fi, we can derive the well known result that curves of zero 
velocity exist when 2fl _> 3. Whether or not these curves are closed 
depends on the value of y. In the notation of Szebehely and Williams 
(1964), the curves of zero velocity are closed when 2fi > C2, for Case II. 
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This implies that the motion of the particle is restricted to the 
vicinity of the mass y. We will have Hill stability for all time if 

(1 - "e) (C - ZeM) >. C2 

It is also possible to define a slightly different type of 
stability using this method. Assume that there exists at least one 
value of f, say f*, where the integral in Eq. (10) takes on a value 
I* such that 

(C + Zel*) (1 + ¥ cos f*) = K(f*) > C2 . 

Then, if the integral given by Eq. (10) is quasi-periodic, there will 
be another value of f, say f** > f*, where again (K(f**) > C2. This 
condition will occur periodically if Eq. (10) converges. One could 
say that regardless of the motion of the particle, the particle 
returns periodically to the vicinity of the mass y for all time. The 
existence of this type of stability depends entirely on the behavior 
of the integral given by Eqn. (10) and the initial conditions of the 
system. 

This theory can be applied to the motion of satellites of planets 
for which the solar perturbations are dominant. If the satellite is so 
close to the planet that the perturbations are very small, then these 
results are almost trivial. A more interesting problem would be to 
study the motion of satellites farther from the planet where the 
possibility exists that K(f) < C2 for some value of f. In this case, 
however, a representation of the motion different from a Keplerian 
one, may be necessary. 
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