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Abstract
Analysing hierarchical design processes is difficult due to the technical and organizational
dependencies spanning overmultiple levels. TheV-Model of Systems Engineering considers
multiple levels. It is, however, not quantitative. We propose a model for simulating
hierarchical product design processes based on the V-Model. It includes, first, a product
model which structures physical product properties in a hierarchical dependency graph;
second, an organizational model which formalizes the assignment of stakeholder respon-
sibility; third, a process model which describes the top-down and bottom-up flow of design
information; fourth, an actor model which simulates the combination of product, organ-
ization and process by using computational agents. The quantitative model is applied to a
simple design problem with three stakeholders and three separate areas of responsibility.
The results show the following phenomena observed in real-world product design: design
iterations occur naturally as a consequence of the designers’ individual behaviour; incon-
sistencies in designs emerge and are resolved. The simple design problem is used to compare
point-based and interval-based requirement decomposition quantitatively. It is shown that
development time can be reduced significantly by using interval-based requirements if
requirements are always broken down immediately.

Keywords: Distributed design, Process simulation, Agent-based modelling

Introduction
The product development process of a company is critical for its business success
and ability to compete (Ulrich & Eppinger 2016). Reducing development time and
cost while increasing product quality enhances the economic efficiency of an
organization. Unfortunately, it is difficult to quantitatively predict the influence
of organizational or procedural changes on the development time or product
quality in large companies. In vehicle development, for example, thousands of
designers simultaneously work on new products. This makes it very challenging to
predict the effects of new team structures or task sequences. Knowing the conse-
quences of such procedural or organisational changes in advance, however, is
essential for the mitigation of economic risk.

Predicting design process performance is difficult because of the complexity of
product development. Products and design processes are complex due to many
design variables that are present, many design goals that need to be satisfied, and
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many stakeholders that are involved (Summers & Shah 2010; Lindemann et al.
2009). In addition to that, the hierarchical structure of products and organizations
present in traditional product design (Panchal 2009) can affect the complexity as
well. This can make the analysis of product design even more difficult. A process
model that puts special attention on the hierarchical decomposition of products
and the flow of design information is the V(ee)-Model (of Systems Engineering)
(SE) (Haskins 2006; VDI 2206 2004; Blanchard 2004). As a procedural process
model, however, it does not allow any quantitative analysis. In general, it can be
observed that quantitative approaches for the analysis of design processes under
explicit consideration of product-related and organizational hierarchy are rare. A
holistic approach in this regard would, for example, allow for testing frameworks
that are focused on improving hierarchical product design. One such framework,
for example, is Solution Space Engineering (SSE) (Zimmermann et al. 2017; Rötzer
et al. 2020, 2022b).

The overall objective of this paper is to develop a quantitative approach for the
analysis of design processes under explicit consideration of product-related, and
organizational hierarchy. Clarkson and Eckert (2005) confirm that hierarchically
decomposed products and processes are a potential area for future research.

Using the actual development process as a test bed is one way to examine and
study design processes. This, however, might disturb regular design activities and
cause an increase in development time and/or cost. There are two other ways to
quantitatively assess the performance and efficiency of product design processes:
first, experimental studies under laboratory conditions where human subjects are
asked to solve parameter design problems (Hirschi & Frey 2002; Grogan & de
Weck 2016). This way most boundary conditions can be controlled while human
behaviour is represented quite realistically. A limiting factor is often the required
sample size leading to a high number of test repetitions and human subjects that
must participate. This is also the reason why such studies are usually performed at
scientific institutes rather than at companies, even though some companies have
adopted the use of laboratory experiments lately to learn more about and optimize
their product design processes (Wöhr et al. 2023). A second option is the use of
quantitative models (Smith & Eppinger 1997a; Clarkson&Hamilton 2000; Yassine
et al. 2003; Levardy & Browning 2009; Maier et al. 2015; Rebentisch et al. 2018).
Model-based approaches allow an analysis of many different factors in a relatively
short timewithout having to rely on human subjects. Furthermore, models provide
great flexibility in terms of abstraction and modelling depth. Thus, compared to
field studies or laboratory experiments analytical process models are a powerful
and convenient tool to study design processes, in particular, regarding hierarchy.

Some quantitative approaches such as Game Theory (GT) (Lewis & Mistree
1997; Gurnani & Lewis 2008; Devendorf & Lewis 2011), or,Agent-BasedModelling
(ABM) (Jin & Levitt 1996; McComb et al. 2015; Hulse et al. 2018; Soria et al. 2017;
Lapp et al. 2019a) can be used to investigate design processes in great detail as
stakeholders are modelled as computational entities that interact at some point in
time. Research in this field deals with cognition, human decision-making, and
communication patterns within teams, for example. A significant advantage, in
particular of ABM, is the ability to define features, such as product-related or
organizational hierarchy on amicroscopic level. This is essential for our objective as
we assume that the dependencies between product properties and interactions
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between stakeholders on different hierarchical levels need to be modelled in detail
in order to examine the associated mechanisms and effects properly.

None of the existing agent-based models, however, considers product-
related and organizational hierarchy in a generic way (this will be shown in
the literature review section). Generic, in this context, means that hierarchies
can be modelled on an arbitrary number of vertical levels. This is key as the
V-Model, according to which we are simulating design processes, is not limited
to shallow hierarchies. Products and organisations may be decomposed onto
multiple levels. Further, it can be assumed that the ability to model deep
hierarchical structures provides an advantage when analysing the actual dynam-
ics of product design processes.

To address this issue, we propose a model to simulate hierarchical design
processes. This includes product properties organized in a hierarchically structured
dependency graph and computational agents (the stakeholders in an organization)
that are responsible for certain areas of that graph. The model allows the exam-
ination of different factors, such as the top-down specification of requirements
(point-based versus interval-based design targets). It can be seen as a test bed for
the quantitative analysis of hierarchical product design processes. Simulation
results could foster the understanding of key mechanisms and improve the
performance of product design processes in industrial practice.

This study begins with a Literature review that explores the current state of
the art in ABM. Specific focus is put on models that consider some form of
product-related and/or organizational hierarchy. Thereafter, we state the
Research goal pursued in this paper. Then, theMethodology (research approach)
of this work is presented. In the following, the Proposed model is introduced by
providing a detailed explanation of its four core elements: the product model,
the organizational model, the process model and the actor model. Next, we apply
the model to an Example problem to observe and learn about its general
behaviour. A study on the influence of point-based and interval-based require-
ment formulation is performed afterwards. Finally, a Discussion reflects the
simulation results and the research approach before a Conclusion is drawn and
an Outlook is given.

Literature review

Agent-based modelling

This review examines existing agent-based models that consider product-related
and/or organizational hierarchy. In general, hierarchy refers to systems in which
“members of an organization or society are ranked according to relative status or
authority” (Simpson & Weiner 1989). With respect to products, hierarchical
structure is usually considered as the arrangement of parts, modules, functions,
or product properties according to their dependency. With respect to organiza-
tions, hierarchical structure is usually considered as the arrangement of people,
teams, or departments according to their managerial authority. It can be assumed
that if organizations are set up hierarchically, the information flows adapt
accordingly. This implies that the overall transfer of design knowledge is separ-
ated into local sequences of information flow between the stakeholders on the
various levels.
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In order to assess the existing agent-based models we categorize their ability to
model product-related and organizational hierarchy as follows: if the product- or
organizational entities are modelled on three or less vertical levels it is considered a
shallow hierarchy. If product- or organizational entities aremodelled onmore than
three vertical levels it is considered a deep hierarchy. Deep hierarchies imply that
some kind of generic formalism (to handle vertical interactions) is used.

Agent-based models used in engineering design can generally be divided into
two groups: some models attempt to mimic product design processes as realistic-
ally as possible. Their goal is to study the mechanisms and dynamics of actual
product design processes in which humans perform most of the development
work. A list of selected models of this type is given in Table 1. Other agent-based
models are (rather) focused on design support, design optimization and process
automation. Popular examples of this type are A-Design (Campbell et al. 1999,
2003; Cagan et al. 2005), the Palo Alto Collaborative Testbed (PACT) (Cutkosky
et al. 1993), the Shared Dependency Engineering project (SHADE) (McGuire et al.
1993), SHADE (Toye et al. 1994), and, the Team Knowledge-based Structuring
model (TEAKS) (Martinez-Miranda et al. 2006, 2012). In most of those models’
agent behaviour, decision-making and general problem-solving are modelled in
such a way that designers are supported in the best way possible or that design
processes are optimized to the maximum. This kind of modelling does not
necessarily reflect how design processes actually work. As a consequence, we
exclude these agent-based models from our further analysis even though some
of them consider deep hierarchical structures (Ambrosio et al. 1996; Danesh and
Jin et al. 2001; Liu et al. 2004; Nahm & Ishikawa 2004; Wang et al. 2012).

An established and well-known agent-based model for the analysis of design
processes is the so-calledVirtual Design Team (VDT) (Jin&Levitt 1996; Kunz et al.
1998; Levitt et al. 1999, 2012). The VDT models design work to be done as a
precedence network of design tasks where each task requires a certain amount of
time (that is effort) from an agent to be completed. The agents that are part of a
hierarchical organization in which they send and receive messages along formal
lines of authority are assigned to specific sets of tasks. Hence, the VDT includes a
rich representation of organizational hierarchy whereas we cannot identify any
product-related hierarchy. The tasks do not include technical dependencies.

The approach from Olsen et al. (2009) is similar to the VDT. However, in this
case, agents are also responsible for domain-specific design variables that are
intended to represent distinct product properties on which agents need to find a
trade-off if shared among multiple agents. Since those variables affect system-level
variables there appears to be a shallow product-related hierarchy. In comparison to
the deep hierarchical network of agents in the VDT, however, this model seems to
include only two roles (vertical levels): system designers (top) and subsystem
designers (bottom). Hence, we suspect a shallow organisational structure.

An agent-based model that focuses on human cognition and individual search
behaviour is the Cognitively-Inspired Simulated Annealing Teamsmodel (CISAT)
(McComb et al. 2015, 2017; Raina et al. 2019). This approach considers agents that
are solving design tasks by using simulated annealing. Themeta-parameters of this
algorithm correlate with human search behaviour. The design tasks solved by the
agents, who share their design solutions within a team without a hierarchical
structure, reflect realistic design tasks. In McComb et al. (2015), for example, the
agents design a truss by manipulating a set of beams and joints so that a specific
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Table 1. Agent-based models used to simulate (hierarchical) product design processes

Hierarchical modelling of

Framework/theme Reference Product Organisation

The Virtual Design Team (VDT) Jin and Levitt (1996); Kunz et al.
(1998); Levitt et al. (1999, 2012)

— (D)

NASA’s JPL/Team X Olsen et al. (2009) (S) (S)

Cognitively Inspired Simulated
Annealing Teams (CISAT)

McComb et al. (2015, 2017);
Raina et al. (2019)

(S) —

Complex System Integrated Utilities
Model (CAESIUM)

Meluso et al. (2019) (S) —

Principal-Agent Theory Vermillion et al. (2020);
Safarkhani et al. (2020)

(S) (S)

Negotiation/Argumentation Conflict
Resolution

Sycara et al. (1991); Jin et al.
(2004)

(D) —

Single Function Agents (SiFA) Berker and Brown (1996) (S) (S)

Game Theory (GT) Lewis and Mistree (1997);
Gurnani and Lewis (2008);
Devendorf and Lewis (2011)

(S) —

Knowledge Perspective Zhang and Thomson (2019) (D) (S)

Coevolutionary Algorithm Soria et al. (2017) (S) —

Communication/Social Learning Singh et al. (2013) — (S)

Reinforcement Learning of Agents Hulse et al. (2018) (S) —

Mass-Collaborative Product
Development (MCPD)

Panchal (2009); Le and Panchal
(2011)

(D) —

Teamwork/Team Dynamics Singh et al. (2019, 2021, 2022) (S) (S)

Kirton Adaption-Innovation-Inventory
agent-based organizational
optimization model (KABOOM)

Lapp et al. (2019a, 2019b) (D) —

Integrated Product Teams (IPT) Crowder et al. (2008, 2009, 2012) — (S)

Management Science/NK models Loch et al. (2003); Rivkin and
Siggelkow (2003); Mihm et al.
(2003, 2010)

(S) (D)

Agent Model for Planning and Research
of Early Design (AMPERE)

Fernandes et al. (2017) — (D)

Actor-based Signposting (ABS) Hassannezhad et al. (2015, 2019) (D) —

Design Information Flow Simulation
(DiFS)

Christian (1995) Christian and
Seering (1995)

— (S)

New Product Development (NPD) Cardinal et al. (2011) — (S)

Prior versions of our model Wöhr et al. (2020a, 2020b) (S) (S)

Abbreviations: (S) shallow hierarchy = entities on three or less vertical levels; (D) deep hierarchy = entities on more than three vertical levels.
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strength-to-weight ratio is reached. This indicates that a shallow product-related
hierarchy is considered.

Meluso et al. (2019) propose a model to study miscommunication in complex
system design. Their approach called Complex System Integrated Utilities Model
(CAESIUM) includes a network of interdependent artifacts (that is design vari-
ables) each of which is connected to a separate objective function. Each agent
controls an individual artifact and optimizes the associated objective function
while sharing estimates of the latest variable value with others. The resulting
network of agents has no formal hierarchy whereas the differentiation into
variables and objective quantities can be considered as a shallow product-related
hierarchy.

The Principal-Agent Theory is another approach used to develop agent-based
models. In Vermillion et al. (2020) and Safarkhani et al. (2020), for example, the
theory is applied to study the interactions between system designers (principals)
and subsystem designers (agents). Both are collaborating hierarchically. System
designers usually provide objectives or requirements to subsystem designers who
then try to optimize or fulfil them. The design problems solved by the agents are
context-free utility functions that depend on some (abstract) variables. Themodels
therefore include shallow product-related and organizational hierarchies.

Negotiation, argumentation and conflict resolution are the main themes of the
models presented by Sycara et al. (1991) and Jin et al. (2004). Agents in this case
solve design problems resulting from technical interdependencies by suggesting,
evaluating, accepting or rejecting design proposals to/from other agents on the
same hierarchical level. In order to rate design proposals or resolve discrepancies
agents possess quantitative belief structures (dependency graphs including design
parameters) (Sycara et al. 1991) and engage in multi-level negotiation processes
with design issues on various levels influencing each other (Jin et al. 2004). This can
be seen as a deep hierarchical product structure.

In Berker and Brown (1996) the concept of Single Function Agents (SiFAs) is
established. SiFAs have specific functions, designated design targets and distinct
perspectives fromwhich they operate when debating about design parameters with
other agents. While some select or estimate parameter values others criticize or
praise them from their individual point of view. Thus, the model involves some
level of managerial authority (as some agents only propose values and some only
criticize values) and some level of product-related hierarchy as design targets and
points of view could also be called design variables and objective quantities.

Other models utilizeGame Theory (GT) which is quite similar to ABM. Players
in GT typically represent individual and autonomous decision-making entities
(much like typical agents). In Lewis andMistree (1997), Gurnani and Lewis (2008)
and Devendorf and Lewis (2011), for example, players control separate subsystems
bymanipulating the corresponding design variables. Simple equations are used for
describing the dependency between subsystem- and system level. Depending on
the given process architecture (sequential or parallel) players communicate infor-
mation about their latest designs to other players on the same hierarchical level.
Hence, we assume no organizational hierarchy while the design problems indicate
a shallow hierarchical structure.

Zhang and Thomson (2019) suggest a model with a particular focus on design
knowledge. Their approach considers a multi-level network of product functions
where each function requires certain knowledge from designers to be completed.
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Besides working on functions designers may consult experts or managers to solve
design problems and interface issues. This shows that the model includes a deep
hierarchical product structure and a shallow organizational hierarchy (designers,
experts and managers).

Amodel in which teams of individual agents solve complex design problems by
applying a coevolutionary algorithm can be found in Soria et al. (2017). Here,
agents responsible for different subsystems optimize local utility functions based
on specific design variables. Complete vehicle designs are created by assembling
the individual design solutions from the agents without a central design authority
managing design conflicts. Thus, it can be assumed that themodel only considers a
shallow product-related hierarchy.

The agent-based model introduced by Singh et al. (2013) is used to study the
effect of communication within design teams. In this case, projects are considered
as a hierarchical network of design tasks each of which requires a certain amount of
time (effort of agents) to be completed (similar to the VDT). Communication
within design teams, which consist of agents and a team leader, depends on a team’s
structure (flat, distributed, functional). Hence, the organisation considered by the
model is characterized by a shallow hierarchy whereas a product-related hierarchy
cannot be observed since the tasks are abstract units of work.

Design agents in the model proposed by Hulse et al. (2018) are equipped with a
reinforcement learning algorithm. In order to solve a complex real-world design
problem composed of a variety of design variables and objective quantities agents
possess distributed authority (that is control) over design variables. Therefore,
there appears to be no formal hierarchy between the agents whereas the product
model (the design variables and the objective quantities) involves a shallow
hierarchical structure.

Whilemost agent-basedmodels used in engineering design focus on traditional
(top-down based) product development Panchal (2009) and Le and Panchal (2011)
suggest an approach for simulating Mass-Collaborative Product Development
(MCPD). In this case, products are modelled as modules that are organized in a
directed (hierarchically structured) graph. The completion percentage of each
module is increased if agents spend time working on it. The agents decide
themselves (without authority or hierarchy) on what modules to work (next). This
is typical for the self-determination of participants in MCPD.

Singh et al. (2019, 2021, 2022) introduce a model for the analysis of design
teams. In this model, design teams are represented by agents who are searching for
the best solution of an analytical two-dimensional function. After each session in
which the agents optimize their individual solutions by varying the different design
variables of the objective function, some propose their results to the team. If the
proposed solution is accepted by the group it is given to a controller agent who
evaluates its general acceptability and decides on further steps, e.g., if further design
sessions are required. Thus, the model includes a shallow organizational structure
and a shallow product-related structure.

A model similar to the CISAT framework is proposed by Lapp et al. (2019a,
2019b). The so-called Kirton Adaption-Innovation Inventory agent-based organ-
izational optimization model (KABOOM) suggested by the authors can be used to
examine design teams in which team members possess different cognitive behav-
iours. The agents in this model use a simulated annealing algorithm to optimize a
given cost function by varying design variables they are assigned to. In each
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iteration, agents may engage in a pairwise interaction with others and share their
current position in the design space. This approach does not consider any organ-
izational hierarchy whereas the product model includes a shallow hierarchical
structure.

The agent-based model developed by Crowder et al. (2008, 2009, 2012)
helps studying Integrated Product Teams (IPT). For this purpose, the approach
includes designer agents who are working on abstract design tasks and manager
agents who are assigning tasks to designer agents. The individual tasks belong
to larger units of work. They do not relate to product features such as compo-
nents, functions or physical product properties. Therefore, we assume that
product-related hierarchy is neglected. The consideration of agents with the
authority to assign design tasks (managers) indicates a shallow hierarchical
structure.

Using agent-based models to study product design processes is also common
practice in Management Science. Approaches in this field often include so-called
NK models (“rugged landscapes”). Those are formal search problems for which
agents are asked to find the best possible solution (Loch et al. 2003; Mihm et al.
2003). NK models usually include local decision variables and local performance
functions. Those are assigned to individual agents. Global performance functions
are used to integrate individual solutions. In some cases, the shallow product-
related hierarchies are coupled with shallow (and deep) organizational hierarchies
to examine the dynamics of multi-level search and decision processes (Rivkin &
Siggelkow 2003; Mihm et al. 2010).

Fernandes et al. (2017) present an approach called the Agent Model for
Planning and Research of Early Design (AMPERE). In this particular model agents
with different roles (customer, lead agent, senior designer, junior designer) and
design authority develop products by collaborating hierarchically. While top-level
development work consists of requesting design solutions, evaluating risks, and
directing resources, lower-level development work is modelled as time spent on
technical design tasks. For this reason, we assume that this model includes a rich
representation of organizational hierarchy while the design tasks processed by the
different agents include dependencies between product artifacts only in an indirect
manner.

Actor-based Signposting (ABS) developed by Hassannezhad et al. (2015) and
Hassannezhad et al. (2019) is an extension of the original Signposting framework
introduced by Clarkson and Hamilton (2000). This model contains agents that are
working on parameter-driven design tasks. These tasks consider the dependencies
between design variables via so-called confidence levels. The agents processing the
tasks do not seem to be subject to a formal hierarchy. Thus, it can be assumed that
ABS only involves a deep hierarchical decomposition of the product.

The Design Information Flow Simulation (DiFS) is an approach suggested by
Christian (1995) and Christian and Seering (1995). In DiFS agents with different
roles (responsible and assists) work on design projects that are broken down into
subprojects. Subprojects are high-level design tasks (Design, Review, etc.) that do
not consider any detailed product information. Responsible and assisting agents
handle subprojects to increase their completion while also engaging in review
meetings where discussions are held. Thus, we suspect that DiFS only considers a
shallow organisational hierarchy.
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An agent-basedmodel for the analysis ofNew Product Development (NPD) is
described by Cardinal et al. (2011). As in other approaches, development
projects in this case consist of abstract design tasks that require a certain amount
of effort from agents to be completed. Agents are either project managers, or,
employees. Their role defines which tasks they are supposed to work on. In
general, it can be assumed that this model only incorporates a shallow organ-
izational hierarchy.

Prior versions of the model presented in this paper can be found inWöhr et al.
(2020a) and (2020b). Those earlier modelling attempts already include design
variables and agents on a few vertical levels in order to study hierarchical design
processes (in a rudimentary way). InWöhr et al. (2020b), for example, we simulate
a hierarchical design process consisting of system-level and component-level
designers. Both need to collaborate to solve a multi-level design task. As in other
studies the earlier versions of our model do not involve a deep hierarchical
structure of the product or the organisation.

Summary and conclusion

The previous survey of agent-based models provides three insights: first, many of
the existing models consider some (shallow) level of hierarchy with respect to the
organisation or product that is studied. Most of the time those shallow hierarchies
are associated with simplified design problems or basic organisational structures
on two vertical levels required to study some specific research questions. Second,
some models consider deep product-related, or, deep organisational hierarchies to
account for design problems or managerial structures that spread over multiple
levels of dependency or authority. And third, there seems to be no approach that
involves a deep hierarchy of both, the product and the organisation. This indicates
that there also exists no concept of how to handle hierarchies (product-related and
organizational) in a generic way.

Note that other modelling approaches such as Petri nets (Peterson 1981; Belhe
& Kusiak 1993) are already set up to account for hierarchical processes (van der
Aalst & van Hee 2004). The explicit consideration of product-related, and, organ-
izational hierarchy, however, is not possible yet.

Some methods from multidisciplinary design optimization, such as Analytical
Target Cascading (ATC) (Kim et al. 2003a, 2023b), for example, already possess the
capability to model hierarchical product structures and organizations. ATC is also
used in industrial design practice, as described by Papalambros and Wilde (2017)
and Kang et al. (2014). While ABM uses software agents to solve hierarchical
design problems ATC decomposes design problems into hierarchical subproblems
that are solved individually and coordinated in a specific way.

Research goal
The goal of this paper is to develop and apply a quantitative model for simulating
product design processes with deep hierarchical structures. Thismeans it should be
possible to model the physical properties of a product and stakeholders within an
organization on an arbitrary number of vertical levels.

Based on the developed model the objective is to evaluate the influence of SSE
on the performance of design processes quantitatively. This has, to the best of our
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knowledge, not been done before and could help companies decide whether to
implement SSE.

Methodology

Research approach

The model that we present in this paper is developed according to the V-Model of
Systems Engineering (Blanchard 2004; Haskins 2006). The V-Model is also part of
the design methodology for mechatronic systems (VDI 2206 2004). Thus, our
modelling approach is mainly theory-driven. Many assumptions are confirmed by
Fernandes et al. (2017). They describe an industrial case study in which top-down
and bottom-up design according to the V-Model also occurs in actual practice.

Guidance for the transfer of information from the V-Model into a quantitative
simulation model is taken from Zimmermann et al. (2017) andMaier et al. (2022).
This is supported by the evidence found in Vermillion et al. (2020) and Safarkhani
et al. (2020). The product model builds on the fundamentals developed by Rötzer
et al. (2022a).

For exploratory purposes, our model is applied to an example problem where
we simulate four different design scenarios (variation of requirement formulation
and agent behaviour). We track the required and realized designs identified by the
agents while the product structure and the overall design goals are held constant.

Model classification

The (sequential) product development process described by Ulrich and Eppinger
(2016), see Figure 1, allows us to illustrate the temporal scope of our model. In this
generic process, our approach addresses System-Level Design, Detail Design, and
Testing and Refinement. Another reference model can be found in Albers and
Mebolt (2007) and Albers et al. (2016). According to the framework they suggest
called the integrated Product engineeringModel (iPeM) ourmodel is also applicable
to products that are developed over generations. Finally, we want to integrate our
model into the frame of reference provided by Pahl et al. (2007). With respect to
their concept, our model corresponds to original design, that is, the realisation of
problems by incorporating new solution principles.

Proposed model

Model overview

The quantitative model we propose in this paper consists of four key components:
first, a product model, which establishes a relationship between physical product

Planning Concept 
Development

System-Level 
Design Detail Design Testing and 

Refinement
Production 

and Ramp-Up

Focus of the proposed model

Figure 1. The product development process according to Ulrich and Eppinger (2016).
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properties on various hierarchical levels. Second, an organizational model which
formalizes the assignment of stakeholder responsibility within the product model.
Third, a process model which describes the top-down and bottom-up information
flow between stakeholders. And, fourth, an actor model which utilizes an agent-
based approach to simulate the combination of product, organization and process.
The actor model itself includes two elements: first, a Simulation Algorithm which
schedules the agents during each iteration and which defines the individual design
behaviour of agents. Second, aCode Architecture provides the general blueprint for
the implementation of the model.

Figure 2 shows an overview of the model presented in this paper, including its
four key components. While the product model, the organizational model, and the
process model may be seen as the fundamental building blocks, the actor model
may be seen as the processing unit.

When simulating a use case the product model, the organizational model, the
initial conditions (top-level requirements), and the boundary conditions (limits of
the design space) need to be given as inputs. This allows us to study different design
problems, and, different responsibility distributions. Further, our model allows
us to choose from two different algorithms for agent behaviour. The process model
and the remainder of the actor model are fixed.

Product model

Directed graphs consisting of vertices (nodes) and edges (arrows) are commonly
used to capture the causal relationships between different elements of a system. In
social sciences, for instance, Directed Acyclic Graphs (DAG) are used to illustrate

Actor Model

Simulation Algorithm Code Architecture

Product Model Organizational Model Process Model
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Figure 2. Components of the proposed model.
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the dependencies between parameters of field experiments (Elwert 2013). In our
case, vertices represent the physical properties of a technical system, like the
stiffness of a beam, the displacement volume of an engine, or the acceleration of
a vehicle. All of them can either be measured or determined by analysis and, thus,
assume a numeric value or the value true or false. Technical dependencies between
those product properties, derived through analytical formulae or by approxima-
tion, are depicted as edges. Their direction illustrates what property influences
what other property. In a particular sense, the general idea is that whatever can be
measured first will determine what is generated by combining the associated
elements. For example, the mass of a single object and the stiffness of a spring
can be measured before they are combined into a harmonic oscillator with an
eigenfrequency. The mass and the stiffness therefore determine the eigenfre-
quency, and the eigenfrequency depends on the mass and the stiffness. This type
of hierarchical product model is called an Attribute Dependency Graph (ADG)
(Rötzer et al. 2022a). By definition, ADGs do not include circular dependencies
also known as feedback loops. This prevents scenarios in which cause and effect
cannot be distinguished. Basic rules for modelling ADGs according to Rötzer et al.
(2022a) are depicted in Figure 3. A similar approach for capturing dependencies
among design variables and design constraints without including feedback loops is
presented by Kusiak (1999). The Functional Dependence Table (FDT) described by
Wagner (1993), Papalambros and Wilde (2017), Krishnamachari and Papalam-
bros (1997a, 1997b), and Allison et al. (2009) is another method for modelling
dependencies between product properties. In comparison to ADGs, FDTs do not
provide information about directionality.

Identifying design variables and cascading dependencies can be difficult in
actual design practice. Hence, the following paragraphs provide a gradual intro-
duction to elementary (real-world) design settings modelled with ADGs:

One-to-one relationship
The simplest ADG possible represents a one-to-one relationship between one
design variable and one quantity of interest. Assume, for example, that the
displacement volume of an engine (x) has an effect on the power of the engine
(y). This system is illustrated in Figure 4(a). A change in the displacement volume
of the engine causes a higher or lower power of the engine because it can be
measured first, i.e., the displacement volume of the engine can be determined
independently whereas the power of the engine is determined based on the engine’s
displacement volume.

X and Y 
influence Z

Indirect and 
direct impact

No circular 
dependencies

Grouping of 
dependencies

Design variables and 
design parameters

Figure 3. Rules for modelling ADGs (taken with permission from Rötzer et al. (2022a)).
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One-to-two relationship
Building on the example from before, now assume that the displacement volume of
the engine (x) has an influence on the power of the engine (y1) and on the mass of
the engine (y2). For this case, the ADG is shown in Figure 4(b). This scenario
represents a conflict of goals as multiple quantities of interest depend on a smaller
number of design variables.

Two-to-one relationship
Two design variables can also influence the same quantity of interest. Assume the
total mass of a vehicle (y) depends on themass of the engine (x1) and themass of all
other subsystems (x2), which includes the chassis, the gearbox and the body, for
example. Hence,multiple degrees of freedom exist. This system representing a two-
to-one relationship is shown in Figure 4(c).

Two-to-two relationship
Assume a technical system where not only the displacement volume of the engine
(x1) but also some material property of the shaft (x2), for example, has an effect
on the power of the engine (y1) and the mass of the engine (y2). This two-to-two
correspondence is depicted in Figure 4(d). Design problems represented by fully
coupled ADGs like this are often difficult to solve for single designers and design
teams (Hirschi & Frey 2002; Grogan & de Weck 2016).

L-to-M-to-N relationship
Designing complex systems usually involves a wide variety of product properties
that are located on multiple hierarchical levels. ADGs are capable of representing
such systems by incorporating a sufficient level of detail. In order to demonstrate
that assume that the power of the engine (y1) also influences the acceleration of the
vehicle (z1) and the height of the cylinders (t1) has an impact on the displacement
volume of the engine (x1). This ADG is illustrated in Figure 4(e) where further
product properties on each hierarchical level are shown as well. In general, there is
no limit on how many properties another property can influence, or how large an
ADG can be. This only depends on the scope of the investigation.

Bottom-up mappings
Identifying the current state of a specific product property based on the state of all
influencing product properties below is called bottom-up mapping (Zimmermann
et al. 2017). This can be done by using physical models, mathematical surrogate
models, hardware experiments, or expert assessments, for example.

(a) (b) (c) (d)

…

…

…

…

(e)

Figure 4. Elementary design settings modelled with ADGs.
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Examples of application
Using ADGs to model products can result in complex dependency graphs that
illustrate the technical design challenge at hand. Figure 5, for example, shows an
ADG from an automotive development project (Rötzer et al. 2022a). In this case,
subjective vehicle properties (e.g. cornering behaviour) depend on objective vehicle
properties (e.g. yaw dynamics) which, in turn, depend on subsystem-level prop-
erties (e.g. toe angles), and so on. The coloured areas indicate the association
between properties and disciplines or components. Note that this ADG represents
the vehicle design at a specific moment in time. Conceptual changes would mean
that properties are being added or removed. This transient aspect of design is not
considered by the model we propose.

Others have applied ADGs to control systems (Zare et al. 2017; Korus et al.
2018), crash structures (Zimmermann et al. 2017), engine mounts (Zimmermann
et al. 2017; Wöhr et al. 2020a) and robots (Krischer & Zimmermann 2021).

Organizational model

The coloured areas shown in Figure 5 also represent areas of responsibility. Those
reveal which stakeholder is responsible for which set of product properties. Being
responsible, in this context, means that a stakeholder manages and controls those
properties to drive a product towards its desired design objectives. Figure 6 shows a
generic (formalized) ADGwith five different areas of responsibility that we will use
to explain the further model (Maier et al. 2022),

Allocation of responsibility
The product properties at the bottom of an area of responsibility are called design
variables (x1 and x2 for X), and the ones at the top are called quantities of interest
(y1 and y2 for X). A design variable may be a quantity of interest in another area of
responsibility below. Due to simplicity, we do not consider intermediate product
properties.

Chassis

Tires

Spring & 
Dampers

Vehicle
(objective)

Subsubsystem ̅

Vehicle
(subjective)

Subsystem

Component ̅

ehicle
bjb ective) ̅

hicle
bjb ective)

Note: grey boxes are „Hubs“. Hubs represent sets of physical properties.

Steering
Performance

Lateral
Dynamics Vertical

Dynamics

y

Figure 5. An ADG from an automotive development project representing a design scenario that could be
simulated with our model. Reproduced (with permission) from Rötzer et al. (2022a).
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Aproduct property must always be a design variable in an area of responsibility
where it influences another property. Observe y1, for example, which has to be a
design variable within the area of responsibility that belongs to S2 as it influences
z2. This might lead to situations where product properties are design variables in
multiple (overlapping) areas of responsibility. Each of those properties, however,
can only be a quantity of interest in exactly one area of responsibility. This makes
sure that the fulfilment of all requirements assigned to a certain quantity of interest
is handled by a single stakeholder.

It is assumed that each stakeholder is only informed about the properties and
dependencies in their own area of responsibility. The entire structure of an ADG
and the distribution of responsibility is unknown to the individual stakeholders.
Each stakeholder is only aware of in how many areas of responsibility above the
own quantities of interest are a design variable. This information is required as it
defines the number of stakeholders for each quantity of interest a stakeholder has to
exchange design information with.

Process model

We assume that the socio-technical system shown in Figure 6 exhibits an iterative
top-down and bottom-up flow of design information as described by Maier et al.
(2022). For this process, we will present a quantitative model in the following.

Types of design information
Two primary types of design information can be linked to every product property
of an ADG: requirements and realizations. They are used to describe desired and
realized states of properties that are located at the organizational interfaces (the
overlapping areas) between multiple areas of responsibility. Our definition is:

• A requirement (REQ) describes the desired state of a product property. It can be
evaluated as true (satisfied) or as false (not satisfied). Even though, there are
many different kinds of requirements, like functional, interface or constraint
(Kapurch 2007; Maier et al. 2022) we assume that all of them can be described

S1

X

S3

S2

S4

X receiving
requirements

X providing
requirements

X receiving
realization

X providing
realization

Figure 6. A (generic) ADG with top-down decomposition of requirements and
bottom-up feedback of realizations (Maier et al. 2022).
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quantitatively based on a lower and upper limit (xi,lb, xi,ub). Requirements can be
formulated as interval-based (xi,lb < xi,ub) or point-based (xi,lb = xi,ub). One-sided
requirements (xi,lb =∞∨xi,ub =∞) are considered a special case of interval-
based. In particular interval-based requirements as used in SSE are gaining
attention lately (Zimmermann et al. 2017) as they allowmore design information
to be shared between stakeholders and, therefore, increase design freedom. Note
that SSE is similar to Set-Based Concurrent Engineering (SBCE) (Sobek et al.
1999). In SBCE, also called Set-Based Design (SBD) (Toche et al. 2020), however,
alternative designs are continuously removed until the final design is selected
whereas in SSE sets of good designs aremaximized (Zimmermann& vonHoessle
2013). A comparison between SSE and SBD can be found in Fender et al. (2014).

• A realization (REAL) describes a realized state of a product property that can be
described quantitatively as well. Every component design (tr) is a set of realiza-
tions (t1,r , t2,r) linked to the associated product properties on the bottom level.
Realizations of product properties above can be quantified through bottom-up
mappings, e.g. xi,r = f t1,r , t2,rð Þ. In this paper, we consider point-based
realizations only.

A requirement is assumed to be satisfied if the associated realization lies
between the lower and upper limit. This means the following condition has to
be satisfied

xi,lb ≤ xi,r ≤ xi,ub: (1)

A set of requirements assigned to some product properties on the same
hierarchical level is called a required design. A set of realizations linked to some
product properties on the same hierarchical level is called a realized design.

Flow of design information
While requirements are usually decomposed top-down (in Figure 6: from z to t),
realizations normally propagate bottom-up (in Figure 6: t to z). In the following,
both processes, top-down and bottom-up, will be explained separately. In design
practice, they often happen simultaneously.

Top-down: In the proposed model, a stakeholder formulates requirements on
those properties that serve as design variables in his or her area of responsibility.
They need to be formulated in such a way that, if satisfied, the requirements on the
stakeholder’s own quantities of interest are satisfied. Stakeholder X, for example,
receives requirements on y1 and y2 from stakeholder S1 and S2 as both of them try
to reach their design goals, i.e., requirements, which are formulated with respect to
z1 and z2. Those requirements on y1 and y2 may be point- or interval-based. As y1 is
a design variable for S1 and S2, it has two requirements linked to it. Hence, X has to
harmonize the requirements on y1 first meaning that based on all lower and upper
bounds a harmonized requirement has to be determined. In our model, this is
always done for properties which are design variables in multiple areas of respon-
sibility. Thereafter, X derives requirements on x1 and x2 which, if realized, support
the fulfillment of the harmonized requirements on y1 and y2. Here, X may choose
point- or interval-based requirements for x1 and x2. Those requirements on x1 and
x2 are then forwarded to S3 and S4 to serve as their design goals.

This top-down flow of design information (requirements) is a generic process,
which is applicable on all hierarchical levels of anADG. Thus, S3 and S4 execute the
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same process as described above. This time, however, the requirements they derive
on their own design variables are not passed on to the next lower level but turned
into realizations of t1 and t2 as both of those properties are located on the bottom
level of the ADG.Hence, deriving requirements on properties located on the lowest
level of an ADG is the same as selecting a specific design.

Bottom-up: Based on the realizations linked to t1 and t2, S3 and S4 determine
the realizations of x1 and x2 through bottom-up mappings. We refer to this design
activity as quantifying. In this study, realizations are always defined as point-based.
After quantifying and submitting the realizations to X, S3 and S4 assess whether the
requirements on their own quantities of interest are satisfied or not based on the
realizations of x1 and x2. We refer to this design activity as evaluating. Note that
this sequence of activities is a strong modelling assumption. The stakeholders S3
and S4 could, for example, also evaluate before submitting the results to X.

This bottom-up flow of design information (realizations) is, like the top-down
flow of requirements, a generic process that takes place on multiple hierarchical
levels of an ADG. X, for example, uses the realizations assigned to x1 and x2 to
determine the realizations of his or her own quantities of interest. Afterwards, X
evaluates, whether the requirements assigned to y1 and y2 are satisfied. If they are
not fulfilled X reformulates the requirements on his or her own design variables
considering the realizations of x1 and x2 in order to facilitate the design work of S3
and S4. This adaptive requirement redefinition under consideration of bottom-up
information (realizations of the own design variables) is also performed by S1, S2,
S3 and S4 as they receive feedback for their design variables that, in turn, do not
satisfy the requirements assigned to their own quantities of interest.

Summary: Especially in the case of large ADGs, which are typical for industrial
development projects, the simultaneous top-down decomposition of requirements
and bottom-up feedback of realizations (on multiple hierarchical levels) leads to
complex system behaviour. As in many other systems, such as the stock market or
the traffic system, this behaviour is usually not controlled by a centralized agent,
but rather a result of the individual entities that follow a (most of the time simple)
set of rules and interact in a certain way. Hence, our model of hierarchical design
processes is well suited to be modelled with an agent-based approach.

Actor model

Using simulation models to investigate product design processes has some major
advantages over conducting field studies or laboratory tests with human subjects:
first, simulated design processes are repeatable, second, many simulations can be
performed thanks to less limited resources, third, there is no interference with an
ongoing real-world development process that participants of a field study may be
involved in. The model we propose is based on computational entities (or agents)
who need to collaborate in order to identify a good product design. The following
chapter provides a technical and detailed description of this model.

Fundamentals of agent-based modeling
Many systems which are composed of a large number of autonomous, interacting
entities exhibit a dynamic behaviour that is characterized by self-organization,
pattern formation, and emergence (Macal & North 2008). Typical examples are
supply chains, financial markets or the spread of epidemics. Modelling them on a
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global scale based on a set of state variables for the complete system is often not
sufficient when mechanisms on a very detailed level want to be studied.

Agent-based models provide a natural way of describing such systems based on
a set of computational entities, so-called agents, that usually follow a (simple) set of
rules. Their interaction can lead to complex patterns (structural phenomena that
repeat themselves over space and time) which, in general, are unforeseeable by just
analysing the agents’ rules alone. Even though there exists no universal definition
of what constitutes an agent-based model or even an agent, it can be assumed that
the following elements are usually included (Macal & North 2010): agents,
i.e., computational entities which have attributes and executable methods. In our
case, agents can be individual designers, design teams or departments. Each agent
has a role, which is linked to a certain area of responsibility. In that way, the model
is generic and allows stakeholder heterogeneity. And relationships, i.e., ties among
the agents. In our case, agents are tied if the areas of responsibility their roles are
assigned to overlap.

Agent-based models in general are suitable if real-world systems which cannot
be described conventionally need to be analysed on a computational basis. They are
especially useful in the case of complex processes with many interacting entities.

System boundaries and simplifications
Aswe focus on the development phases of System-Level Design, Detail Design, and
Testing and Refinement, we assume that a first technical concept has been derived
(selection of subsystems and components) but no final subsystem and component
designs have been chosen yet. This has the following three implications: first, we
assume the structure of an ADG (which often evolves during early design phases)
to be given and to be static. Static means that there is no time-dependent change in
the number of subsystems or components (no new properties or dependencies).
Second, we assume that the requirements assigned to the product properties at the
top level of anADG are given. Those are usually defined directly at the beginning of
development processes. Third, we assume that the realizations linked to the
product properties at the bottom level of an ADG can always be manipulated. In
industrial practice, they are usually fixed at some point in time (late in product
development) to start the production of the manufacturing systems.

Software design and code architecture
The software implementation of the proposed model is object-oriented. An object
is an instance of a class. A class is a generic blueprint that includes all attributes and
methods necessary to describe an object and its behaviour (Weilkins 2007).

Figure 7 shows the Unified Modelling Language (UML) class diagram of the
quantitative model presented in this paper. It is the extension of an earlier model
version presented by Wöhr et al. (2020b). Other UML class diagrams which have
been used to describe agent-based models in engineering design include similar
classes but differ in the way how they describe product information or individual
agent behaviour (Fernandes et al. 2017). Below all classes are written in italics.

In the proposed model every Process Simulation includes Agents, a Scheduler
which coordinates the order in which the agents are activated each time step, and a
Design Process. The latter has a Public Database in which the complete ADG of the
current product design is stored. This might be thought of as a central repository
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for design information that needs to be documented and shared. All properties of
anADG areAttributes. Each of them has a repository to store the realization of that
product property, denoted as xi,r . The minimum and maximum (permissible)
value of each realization is defined by the corresponding design space which is also
stored directly within each attribute. The quantitative relationships between
properties, formally expressed by yi = f xð Þ, are Bottom-up Mappings. Executing
a bottom-up mapping means evaluating the given function. The Dependencies of
an ADG are not instantiated when running a simulation, as there is no explicit
usage. Design targets on product properties areRequirements.They include a lower
and an upper limit, denoted as xi,lb and xi,ub, which are used to express the desired
state of that product property. Both are possible, point-based and interval-based
requirement formulation.

Every agent that is part of the process simulation, whether it is an individual
designer, a design team or a department has the Role of a Designer. Each designer
has a status indicating his or her current occupation (busy or not busy), a decision
vector that governs the behaviour, and, an area of responsibility that he or she is
assigned to. A copy of all attributes and dependencies located within this area of
responsibility is stored in the Private Workspace every designer has. This can be
thought of as a local Information Storage where each designer tests and optimizes
the performance of its assigned component or subsystem without interfering with
others. The private workspace covers the entire area of responsibility.

During a process simulation, each designer performs Design Activities. Those
can have three major goals: first, compare the private workspace with the public
database in order to check for any new design information (requirements and/or
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Figure 7. UML (Unified Modelling Language) class diagram (data model) of the quantitative model.
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realizations) related to the own attributes (Compare Public Database and Private
Workspace). Second, transfer design information from the public database into the
private workspace (Pull Realizations of Design Variables, Pull Requirements on
Quantities of Interest), or, the other way, from the private workspace into the public
database (Push Realizations of Quantities of Interest, Push Requirements on Design
Variables). Third, work on the attributes in the private workspace, which includes
harmonizing the requirements that are linked to the quantities of interest
(Harmonize Requirements on Quantities of Interest), to decompose those harmon-
ized requirements into new requirements on the design variables (Derive Require-
ments on Design Variables), to quantify the realizations of the quantities of interest
based on the realizations of the design variables received from below (Quantify
Realizations of Quantities of Interest), or, to compare the harmonized requirements
on the quantities of interest with the achieved realizations (Evaluate Requirements
on Quantities of Interest). The decomposition of requirements has two different
Methods for point- and interval-based requirement formulation.

In each iteration of a simulation, a designer decides which design activities to
perform based on the design information in the private workspace and the public
database as well as its current occupation. The decision-making of a designer is
governed by his or her Activity Diagram. It is a deterministic model to describe
behaviour in a rational way. We provide two Modes of the activity diagram to
account for two different types of design behaviour.

Output information and process metrics
After each simulation run, the requirements and realizations linked to all product
properties in each iteration can be analysed. This allows us to study the evolution of
designs on different hierarchical levels in a very detailed way. In addition, typical
performance metrics, or characteristics, to determine the success of development
processes (Ulrich & Eppinger 2016) can be assessed based on the requirements and
realizations assigned to the product properties on the top level. This includes, for
example, the product quality, that is, a metric of how good a product currently is. In
our case, this is defined as the normalized distance between all requirements on the
system level and the achieved realizations. Also, the development time, that is, a
measure of how fast a product is developed. In our case, this is defined as the
number of iterations needed to identify good component designs, i.e., realizations
assigned to the properties on the bottom level that, if propagated to the top, satisfy
all system-level requirements.

Formal description of design information
We describe design information in an area of responsibility with design variables
denoted as xi with index i∈ 1,…,hf g and quantities of interest denoted as yj with
index j∈ 1,…,kf g as follows: for each quantity of interest yj the requirements are
denoted as yj,lb (all lower bounds) and yj,ub (all upper bounds), the harmonized
requirement is denoted as yj,lb,H (lower bound) and yj,ub,H (upper bound), and, the
realization is denoted as yj,r . For each design variable xi the requirement is denoted
as xi,lb (lower bound) and xi,ub (upper bound) and the realization is denoted as xi,r .
Moreover, the public database is denoted as PD, and the private workspace is
denoted as PW.
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Agent scheduling and decision-making
The process simulation consists of two nested algorithms: a time-discrete routine
in which all agents in their role as designers are activated once per iteration, and, a
UML activity diagram, depicted on the right side of Figure 8, which determines the
behaviour of designers when they are activated. The activity diagram connects the
decision vector every designer has shown in Table 2, with the design activities every
designer can perform, explained in Table 3.

On the left side of Figure 8, all design activities are represented graphically in
order to visualize the working principle of the activity diagram. Here, the private
workspace represents the area of responsibility of stakeholder X (see Figure 6).
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Table 2. Decision vector

Abbreviation Description Var.

REQ AVAI All requirements on the own quantities of interest are available in the public
database.

α1

REQ NEW At least one requirement on the own quantities of interest in the public database is
new.

α2

REAL AVAI All realizations of the own design variables are available in the public database. α3

REAL NEW At least one realization of the own design variables in the public database is new. α4

REQ SATIS All harmonized requirements on the own quantities of interest in the private
workspace are satisfied.

α5
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Table 3. Design activities

Abbreviation Description Pseudocode

COMP Compare requirements on
quantities of interest and
realizations of design
variables in private
workspace with
requirements on quantities
of interest and realization
of design variables in public
database.

PULL REQ ON QOI Transfer requirements on
quantities of interest from
public database into private
workspace.

HARM REQ ON QOI Harmonize requirements on
quantities of interest in
private workspace.

PULL REAL OF DV Transfer realizations of design
variables from public
database into private
workspace.

for all i∈ 1,…,hf g do
|xPWi,r  xPDi,r
end

QUANT REAL OF QOI Quantify realizations of
quantities of interest in
private workspace based on
realizations of design
variables in private
workspace.

for all j∈ 1,…,kf g do
|yPWj,r  f xPW1,r ,xPW2,r ,…,xPWh,r

� �
end

PUSH REAL OF QOI Transfer realizations of
quantities of interest from
private workspace into
public database.

for all j∈ 1,…,kf g do
|yPDj,r  yPWj,r
end

EVAL REQ ON QOI Evaluate fulfillment of
harmonized requirements
on quantities of interest in
private workspace based on
realizations of quantities of

Continued
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Each designer’s overall objective is to satisfy the requirements received on
the own quantities of interest by specifying requirements on the own design
variables as the realizations of both of them cannot be manipulated directly but
do result from what is returned from below. Formally (in terms of the given
notation), this means specifying all xPWi,lb and xPWi,ub such that all xPWi,r returned from
below satisfy

yPWj,lb,H ≤ yPWj,r ≤ yPWj,ub,H ∀j ∈ 1,…,kf g, (2)

whenever

xPWi,lb ≤ xPWi,r ≤ xPWi,ub ∀i∈ 1,…,hf g: (3)

Performing design activities, like deriving requirements, quantifying realiza-
tions, transferring design information, or, evaluating requirements, helps a
designer to assess and achieve that overall design goal. Decision-making in terms
of selecting and executing certain design activities is formalized in theUML activity
diagram which we propose in this paper. Its working principle can be explained as
follows: by default, a designer performs WAIT which means that nothing is done
until the next activation takes place. Only to initialize the model right at the
beginning of a simulation the START position is used. If activated a designer
transitions fromWAIT to COMP and then, depending on the current status of its
decision vector, advances further through the activity diagram until the WAIT

Table 3. Continued

Abbreviation Description Pseudocode

interest in private
workspace.

DERIVE REQ ON DV Derive requirements on
design variables in private
workspace based on
harmonized requirements
on quantities of interest in
private workspace.

min
ξ

f ξð Þ subject to:
h ξð Þ= 0
g ξð Þ≤ 0
ξ l ≤ ξ ≤ ξu

PUSH REQ ON DV Transfer requirements on
design variables from
private workspace into
public database.

WAIT Wait (no action).
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position is reached again. Designers can performmultiple design activities during a
single activation or a single design activity for a period of multiple activations.

To account for different types of behaviour the activity diagram has twomodes:
Mode A and Mode B. In Mode A new requirements are only broken down into
requirements on the next lower level if the existing realizations of the quantities of
interest do not satisfy them. In Mode B, however, new requirements are always
broken down independent of whether they are satisfied by the current realizations
or not. This is important to model as the individual decision-making of stake-
holders may affect the dynamics of design processes.

To prevent the order of designers from impacting the simulation results, the
time-discrete routine is defined as a two-stage process in each iteration: first, all
designers perform their design activities which do not include any transfer of
design information from the private workspace into the public database. Then, in
the second phase, all designers perform their remaining design activities.

After the second phase, a subroutine transforms all the requirements assigned
to the attributes at the bottom of the ADG in the public database into realizations.
This is done by first determining the average between all lower and upper bounds
that are linked to an attribute and then selecting the centre of those two limits.

Top-down requirement decomposition
Deriving requirements on design variables during DERIVE REQ ON DV is done
by solving an optimization problem with the design variables ξ and the objective
function f ξð Þ subject to specific constraints. The individual formulae depend on
two criteria: first, whether requirements on design variables shall be specified as
points or intervals, and, second, whether realizations of design variables returned
from below, so-called bottom-up information, are available and shall be taken into
account. After an optimization, the final results (ξ f ) are turned into requirements
on the design variables in the private workspace.

Figure 9 shows point-based (a) and interval-based (b) requirement decompos-
ition with and without bottom-up information in a design scenario stakeholder X
could be in. The green areas represent good designs (combinations of x1 and x2
which satisfy the requirements on y1 and y2). The red areas represent bad designs
(combinations of x1 and x2 which do not satisfy the requirements on y1 and y2). A
set of good designs is denoted as solution space.The set of all good designs is called a
complete solution space (Zimmermann & von Hoessle 2013).

Point-based (ξ = ~x1,~x2,…,~xh�1,xh): When formulating point-based require-
ments on design variables without bottom-up information available the objective is
to minimize f ξð Þ= max

j
φTDj

with

φTDj
= max

j

~yj ξð Þ� yPWj,ub,H
yPWj,ub,H

,
yPWj,lb,H�~yj ξð Þ

yPWj,lb,H

( )
: (4)

In Figure 9(a), this is shown as point A. This approach also leads to require-
ments on design variables if there is no solution space, i.e., no design at all that
would fulfil the requirements on y1 and y2.

In the following, assume that for some realizations of x1 and x2, see point B in
Figure 9(a), the realizations of y1 and y2 do not satisfy the given requirements. This
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could be due to some constraints on the component level (on t1 and t2), like
material or manufacturing restrictions, that stakeholder X is unaware of.

In situations like that, we assume that designers redefine the requirements of
their design variables considering the realizations of the design variables returned
from below. This could be done in two ways: either by moving the new required
design as close as possible to the realized design while still making sure that the new
required design is good. In Figure 9(a), this is depicted as point C or by using the
realization of one design variable as a new requirement and then adjusting the
requirements on all other design variables such that the distance to the realized
design is minimized while still ensuring that the new required design is good. In
Figure 9(a) this is shown as points D and E (one is chosen). We will call the
approach leading to point C Strategy 1 and to point D or E Strategy 2.

When formulating point-based requirements on design variables with bottom-
up information according to Strategy 1 or Strategy 2 the objective is to minimize
f ξð Þ= max

i
φBUi

with

φBUi
= γi

∣~xi�xPWi,r ∣
xPWi,r

, (5)

subject to f ξð Þ= max
j

φTDj
≤ 0 (The new required design shall be a good design).

The values assigned to γi (weighting factor for each design variable) determine
which strategy is applied. In the case of Strategy 1, γi is 1, if the associated design
variable is a quantity of interest in an area of responsibility below, or, a design
variable in an area of responsibility on the same hierarchical level. Otherwise γi is
0, i.e., for design variables (on the bottom level) where no other stakeholder is
assigned to the realizations do not have to be considered in Eq. (5). In the case of
Strategy 2, we propose a metric that compares the old required design with the
given realized design in each dimension to evaluate which realization is closest to

Option C

Option E

Option D

A
,

, = , ,

,

required design (initial) 
realized design
required design (adjusted)

B

,

=

(a)

required designs (initial) 
realized design
required designs (adjusted)

,

,

,

,

, ,

Option C

Option E

Option D

A

B

(b)

Figure 9. Point-based requirement decomposition (a) and interval-based requirement decomposition
(b) with and without bottom-up information. The green areas represent all good designs. The red areas
represent all bad designs.
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the specified requirement (∣xPWi,r � 1
2 xPWi,lb þxPWi,ub

� �
∣=xPWi,r ). The realization of that

design variable (where the metric is lowest) is then accepted as a new requirement.
Numerically this means using the same assignment rule for γi as in the case of
Strategy 1 and then scaling the weighting factor γi of the selected design variable
disproportionately high.

Interval-based (ξ = ~x1,lb,~x2,lb,…,~x h�1ð Þ,ub,~xh,ub): When formulating interval-
based requirements on design variables without bottom-up information available
the objective is to minimize f ξð Þ= �μ Ωð Þ whereΩ is a solution box, a subspace of
the complete solution space that is only allowed to include good designs

Ω= ~x1,lb,~x1,ub½ �×…× ~xh,lb,~xh,ub½ �, (6)

and μ Ωð Þ is a size measure that is used to determine the suitability of a solution box
(Zimmermann & von Hoessle 2013; Zimmermann et al. 2017). A typical measure,
for example, is the volume of a solution box (used in this study)

μ Ωð Þ= ~x1,ub�~x1,lbð Þ ~x2,ub�~x2,lbð Þ… ~xh,ub�~xh,lbð Þ: (7)

In Figure 9(b), the initial solution box is denoted as A. The projection of its
edges onto the coordinate axis shows the lower and upper boundary of the
requirement assigned to each design variable.

Now, assume that for some realizations of x1 and x2, see point B in Figure 9(b),
the realizations of y1 and y2 do not satisfy the requirements. In this situation,
designers may react similarly as before, i.e., by redefining the requirements on their
design variables using the bottom-up information according to Strategy 1 or 2 in
order to make it easier for the recipients of the requirements to satisfy them. This
time, however, the centre of the box is used as a point of reference. With respect to
Strategy 1, this causes a conflict of goals between moving the centre of the box as
close as possible to the realized design andmaximizing the size of the box, as shown
by box C in Figure 9(b). Thus, Strategy 1 is not considered further. In the case of
Strategy 2 designers rearrange the requirements on their design variables such that
the centre of the new box is in line with the realization which is closest to the centre
of the old box while still maximizing the size of the new box. In Figure 9(b) this is
shown by boxes D and E.

When deriving interval-based requirements on design variables with bottom-
up information according to Strategy 2, the objective is tominimize f ξð Þ= �μ Ωð Þ
subject to

∣xPWi,r �
1
2
~xi,lbþ~xi,ubð Þ∣= 0 (8)

for the design variable with the highest value of ∣xPWi,r � 1
2 xPWi,lb þxPWi,ub

� �
∣=xPWi,r . In

Figure 9(b) this results in one of the solution boxes, D or E.
If an optimization fails to identify point- or interval-based requirements under

consideration of bottom-up information (e.g. because there is no solution space), a
second optimization step is carried out in order to find point-based requirements
without bottom-up information (which always yields a solution).

Note that all approaches for requirement (re)formulation that we suggest also
work in high dimensions and for arbitrary solution spaces.
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Example problem
In the following section, our model is applied to a simple design problem from the
field of vehicle development. This allows us to illustrate themodel behaviour and to
examine the effect of point-based and interval-based requirement decomposition
under consideration of different types of design behaviour. While understanding
the model behaviour is essential for the validation of the model, the evaluation of
interval-based requirement decomposition helps to assess SSE.

Simplified vehicle development problem

The example problem at hand is a simplified vehicle design task with six product
properties and three designers which are called Accelerator (ACC), Mass Master
(MM) and Engineer (ENG). Figure 10 shows the corresponding ADG and Table 4
lists the responsibilities and boundaries of the design space.

Table 4. Product properties of the example problem, the limits of the design space and the assignment
to designers as quantities of interest (QoI) and design variable (DV)

Property Description Min. Max. ACC MM ENG

aveh m
s2
� �

Acceleration of the vehicle 0 7 QoI - -

Pveh kW½ � Power of the vehicle 0 150 DV - QoI

mveh kg½ � Total mass of the vehicle 0 2250 DV QoI -

mrem kg½ � Remaining mass of the vehicle 1500 1500 - DV -

meng kg½ � Mass of the engine 0 750 - DV QoI

V eng L½ � Displacement vol. of the engine 0 3 - - DV

MM

ACC

ENG

Figure 10. ADG of the example problem.
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Overall, the objective is to fulfil a requirement assigned to the acceleration of the
vehicle (aveh) by identifying an appropriate engine design (realization of the
displacement volume of the engine, V eng). It is assumed that the remaining mass
of the vehicle (mrem) is fixed at 1500:0kg.

The acceleration of the vehicle wasmeasured at a speed of v0 = 10m
s is defined as

aveh =
Pveh

v0mveh
, (9)

with the power of the vehicle denoted as Pveh and the (total) mass of the vehicle
denoted as mveh. The total mass of the vehicle depends on the mass of the engine
(meng) and the remaining mass of the vehicle (mrem)

mveh =mengþmrem: (10)

It is assumed that both, the mass of the engine and the power of the vehicle are
functions of the displacement volume of the engine

meng = ηVeng with η= 250
kg
L
, (11)

and

Pveh = κVeng with κ = 50
kW
L

: (12)

Step-by-step analysis of model behaviour

Figure 11 illustrates the first ten iterations of a simulation. An ADG visualizes the
flow of design information (left) and a representation of the input or output space
on the associated level depicts the evolution of all requirements and realizations
(right). The green line consists of all feasible designs. Here, feasible means that the
associated designs could be realized by choosing an appropriate realization of the
displacement volume of the engine. Feasibility is limited - each combination of
vehicle mass and vehicle power requires a unique displacement volume of the
engine.

We assume that designers operate according to Mode A (see activity diagram).
Further, it is assumed that designers formulate point-based requirements accord-
ing to Strategy 2. The design task is to satisfy the following requirement

3
m
s2

≤ aveh ≤ 4
m
s2
: (13)

No further requirements or realizations are specified. It is assumed that only the
decomposition of requirements and the quantification of realizations require one
iteration to complete. All other design activities happen instantaneously.

At the beginning of the simulated design process, during iterations one, two and
three, design information propagates top-down as the requirement assigned to the
acceleration of the vehicle, specified in Eq. (13), is repeatedly decomposed into
requirements on lower levels until the bottom of the ADG (Veng) is reached. This
includes the Accelerator which breaks down the desired acceleration of the vehicle
into a new requirement on the total mass of the vehicle (2209:8kg) and the power
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of the vehicle (75:8kW), the Mass Master who then uses the requirement on the
total mass of the vehicle to formulate a requirement on the remaining mass of the
vehicle (1500:0kg) and the mass of the engine (709:8kg), and, the Engineer who
derives a requirement on the displacement volume of the engine (1:98L) based on

MM

ACC

ENG

(a) Iteration 1

MM

ACC

ENG

(b) Iteration 2

MM

ACC

ENG

(c) Iteration 3

MM

ACC

ENG

(d) Iteration 4

MM

ACC

ENG

(e) Iteration 5

MM

ACC

ENG

(f) Iteration 6

MM

ACC

ENG

(g) Iteration 7

MM

ACC

ENG

(h) Iteration 8

MM

ACC

ENG

(i) Iteration 9

MM

ACC

ENG

(j) Iteration 10

Figure 11. Flow of design information during the first ten iterations of a simulation (Mode A, Strategy 2).
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the requirement on the mass of the engine and the power of the vehicle. Note that
due to the limitations on feasibility mentioned before the Engineer has to resolve a
conflict of goals. He or she can either choose a large engine which would yield a
proper mass but also too much power, or, a small engine with appropriate power
but too little mass.

After the requirements on the remaining mass of the vehicle and the displace-
ment volume of the engine are turned into realizations (1.98 L; 1500.0 kg) design
information propagates back up during iterations four, five and six as each designer
quantifies the realizations of its quantity of interest based on the feedback from
below. This includes the Engineer who determines the realization of themass of the
engine (494.0 kg) and the power of the vehicle (98:8kW) based on the realization
linked to the displacement volume of the engine, the Mass Master who then
quantifies the realization of the total mass of the vehicle (1994:0kg) by using the
realization linked to the mass of the engine and the remaining mass of the vehicle,
and finally, the Accelerator determines the realization of the acceleration of the
vehicle (4:9m

s2) based on the realization of the total mass and the power of the
vehicle. Afterwards, the Accelerator realizes that the requirement assigned to the
acceleration of the vehicle is not satisfied by the current realization (aPWH,ub < a

PW
r ).

During iteration seven the Accelerator then redefines the requirements on the
total mass of the vehicle (1994:0kg) and the power of the vehicle (79:8kW) such
that the new requirement on the total mass matches the corresponding realization.
This forces the Engineer to redefine its requirement on the displacement volume of
the engine (2.04 L) during iteration eight while the Mass Master stays inactive
(as the requirement on the total mass of the vehicle is satisfied by the realization he
or she currently provides). Note that, in this situation, the Engineer formulates a
requirement on its design variable based on a requirement assigned to the power of
the vehicle (specified by the Accelerator in iteration seven), and, a requirement
assigned to the mass of the engine (specified by the Mass Master in iteration two).
Thus, the requirements linked to the quantity of interest of the Engineer
(in iteration eight) originate from two different sets of requirements defined by
the Accelerator (iterations one and seven). We call this an inconsistent design.

In the following, after the new requirement on the displacement volume of the
engine is turned into a realization (2.04 L), design information propagates back up
once again. This includes the Engineer who, during iteration nine, quantifies the
realization linked to the mass of the engine (510:7kg) and the power of the vehicle
(102:1kW) based on the realization of the displacement volume of the engine, and,
the Mass Master and the Accelerator who, during iteration ten, use the realization
linked to the mass of the engine and the power of the vehicle in order to determine
the realization of the total mass of the vehicle (2010:7kg) and the acceleration of
the vehicle (5:1m

s2). In this situation, the Accelerator quantifies a realization of its
quantity of interest based on a realization of the power of the vehicle (defined by the
Engineer in iteration nine), and, a realization of the total mass of the vehicle
(defined by the Mass Master in iteration five). Thus, the realizations linked to the
design variables of the Accelerator (in iteration ten) originate from two different
realizations the Engineer has assigned to the displacement volume of the engine
(iterations nine and four). We call this an inconsistent design as well.

In summary, the first ten iterations of the simulation reveal three results: first,
local design iterations, i.e., repetitions of design activities, arise naturally without
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being predefined (designers are not instructed to repeat design activities). Second,
the flow of design information alternates between the top and bottom of the ADG.
Third, inconsistent designs occur. The requirements and realizations available to
designers at some point in time are inconsistent if they originate from at least two
different sets of requirements or realizations another designer above or below has
assigned to its properties.

Study of point- vs. interval-based design

In order to systematically evaluate point- and interval-based requirement decom-
position under consideration of different types of design behaviour four different
simulations are carried out. Each consists of 100 iterations. The setup of the study is
shown in Table 5.We assume that only the decomposition of requirements and the
quantification of realizations require one iteration to complete.

Figure 12 shows the results of the study including the evolution of all required
and realized designs on the subsystem level (left side), and, the evolution of the
requirement and realization assigned to the acceleration of the vehicle (right side).

Note that the required design on the far right side of Figure 12(a), (c), (e) and
(g) shows the first required design provided by the Accelerator.

Point-based design
First, consider Mode A. When evaluating Figure 12(a) note that the required
and realized designs (gradually) converge towards the area where all feasible
engines satisfy the system-level requirement on the acceleration of the vehicle.
It seems as if it takes a couple of iterations to identify an engine design that is
both: feasible and good. Figure 12(b) confirms this observation from a system-
level viewpoint. Sometimes the distance between the requirement and the
realization linked to the acceleration of the vehicle also increases as the
Accelerator uses an inconsistent (realized) design to determine the realization
of the acceleration of the vehicle.

Now, observe Mode B. Here, the evolution of all required and realized designs
on the subsystem level shown in Figure 12(c) is similar. This time, however, less
iterations are needed to find a suitable realization of the displacement volume of
the engine. Figure 12(d) confirms this.

Interval-based design
First, consider Mode A. Figure 12(e) shows that the required and realized designs
alsomove towards the area where all feasible engines satisfy the design target on the
acceleration of the vehicle. The requirements on the totalmass and the power of the

Table 5. Setup of the simulation study. Requirements are always reformulated according to Strategy 2

Simulation #1 Simulation #2 Simulation #3 Simulation #4

Requirements Point-based Point-based Interval-based Interval-based

Activity diagram Mode A Mode B Mode A Mode B

Figure 12 (a), (b) (c), (d) (e), (f) (g), (h)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure12.Point-based (a, b, c, d) and interval-based (e, f, g, h) requirement decomposition forModeA (a, b, e, f)
and Mode B (c, d, g, h) according to Strategy 2.
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vehicle are constantly redefined so that the centre of the solution box (blue) is in
line with the realization returned for the mass of the vehicle according to Eq. (8).
This happens because the realization returned for the total mass of the vehicle is
closer to the associated requirement than the realization returned for the power of
the vehicle. Yet even thoughmultiple iterations take place no suitable engine design
can be found. The realization linked to the acceleration of the vehicle does not fall
below the upper limit of the specified requirement, see Figure 12(f). ThisDeadlock
is caused by theMassMaster who (at some point) does not update its requirements
and, thus, blocks the flow of design information from the top to the bottom of the
ADG. The underlying mechanism is explained below.

Deadlock: first, the Mass Master receives a requirement on the total mass of the
vehicle (1952:0kg≤mveh ≤ 2250kg) and breaks this down into a requirement on
the remaining mass of the vehicle (1500:0kg≤mrem ≤ 1500:0kg) and the mass of
the engine (444:1kg≤meng ≤ 750:0kg). After the requirement on the remaining
mass is turned into a realization (1500:0kg), and, a realization linked to themass of
the engine is reported back (421:5kg), the resulting realization of the total mass of
the vehicle (1921:5kg) is transferred upwards. Then, the Mass Master receives a
new requirement on the total mass of the vehicle (1175:9kg≤mveh ≤ 2092:8kg),
which, however, is already satisfied by the current realization. As a consequence, he
or she does not propagate the new design information down, even though, the
Engineer depends on it. Note that a minor change of the requirement assigned to
the total mass of the vehicle or of the realization linked to the mass of the engine
does not force the Mass Master to reformulate its requirements since the interval-
based requirement on its quantity of interest providesmuch room to be satisfied. In
case the requirement on the total mass of the vehicle is formulated as a point,
however, the Mass Master reformulates its requirements if the received require-
ment, or, the received realizations change slightly as point-based requirements on
quantity of interest only provide little room to be satisfied.

Now, consider Mode B. Figure 12(g) reveals that the evolution of all required
and realized designs on the subsystem level is similar to Mode A. Here, however, a
suitable engine design is found after ten iterations. The realized design quickly
reaches the area where feasibility is given and all design goals are fulfilled. Figure 12
(h) confirms this observation as the realization linked to the acceleration of the
vehicle instantly jumps below the upper limit of the associated requirement.

Note that in both cases of interval-based requirement formulation inconsistent
designs occur as well.

Discussion
The simulation model developed in this work and the results of the computational
study are discussed in five ways: first, the simulation results are interpreted and
relevant mechanisms are identified. Then, the strengths of the model are outlined
and information about the validation is provided. In the end, the limitations of this
study are stated and the implications for science and industry are described.

Interpretation of results

Our results show that development processes with agent behaviour as specified in
our model are characterized by iterations if requirements are formulated as target
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points. Iterations create knowledge and provide progress. Yet, they also increase
cycle time and cost (Wynn & Eckert 2017). Our results reveal one major cause for
iterations: conflict of goals that emerge when stakeholders on lower levels try to
satisfy several requirements (which are contradictory) with a limited number of
design variables. This is especially noticeable for requirements that are defined as
target points as they only provide little design freedom and represent a challenge to
be satisfied. The subsequent design trade-offs then force the stakeholders above to
adjust the associated requirements. This interplay between seeking design trade-
offs and reformulating requirements only allows a slow and gradual improvement
of the realized design on the system level. As an example, for this consider
simulation #1 and #2. Here, the Engineer continuously receives two conflicting
requirements that he or she cannot fulfill simultaneously. The point-based design
targets simultaneously demand a high weight and a low power of the engine which
is not feasible. The trade-offs made by the Engineer then force theMassMaster and
the Accelerator above to reformulate their requirements. Those, however, neces-
sitate further trade-offs from the Engineer during subsequent design iterations
since the new target points can, once again, not be reached simultaneously due to
the feasibility constraints on the engine design.

One way to reduce the number of iterations is to directly decompose any new
requirements received from stakeholders above instead of first evaluating whether
they might already be fulfilled (by the current realizations) or not. The reason for
this is that each subsystem quantification and evaluation require additional time
while most often (especially during point-based design) the new requirements are
broken down afterward anyway (because during point-based design it is unlikely
that the current realizations exactly satisfy the current requirements). To witness
this, compare simulation #1 and #2. Here, the realization linked to the acceleration
of the vehicle approaches the requirement faster if the designers are instructed to
decompose any new design goals immediately, see Figure 12(b) and (d). This is
mainly due to the Mass Master who saves time by not quantifying and evaluating
the own subsystem each time new requirements and new realizations are present.
Instead, he or she instantly decomposes the new requirement on the total mass of
the vehicle (as defined in Mode B) and therefore accelerates the transfer of design
information from the Accelerator to the Engineer.

A second way to reduce iterations and therefore cut cycle time is to formulate
requirements on design variables as target intervals instead of as target points,
i.e., interval-based instead of point-based. According to our results, this signifi-
cantly decreases the time necessary to find an appropriate design in the case of
Mode B, i.e., when new requirements are directly broken down. To observe this
effect compare simulation #2 and #4. The significant drop in development time, see
Figure 12(d) and (h), is due to the large amount of design information that
propagates top-down from the Accelerator to the Engineer who then has a better
chance to find a suitable component design as there are no conflicting require-
ments. Formulating design targets as ranges instead of as points can resolve
conflicts of goals (Königs & Zimmermann 2016) and therefore accelerate devel-
opment processes.

The existing results, however, also show that if updates of design goals are not
directly broken down but first evaluated with respect to whether they are already
satisfied or not (see Mode A) an interval-based formulation of design targets can
also make development processes stall. This means that no satisfying component
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design is identified at all. This effect can, for example, be observed in simulation #3.
Here, the design process enters what we call a deadlock caused by the actions of the
Mass Master. At some point, he or she does not update the requirements on the
remaining mass of the vehicle and the mass of the engine because the current
realizations assigned to those properties already fulfill the design goal on the total
mass of the vehicle (specified by theAccelerator as target range). As a result, critical
design information does not propagate top-down and the Engineer on the bottom
level is unaware of what component performance is required to satisfy the design
goal on the top level. This mechanism is driven by the definition of design goals as
ranges instead of as points as those provide much room to be satisfied and thus can
remove the incentive for subsystem designers to reformulate their own design
goals. If design goals are formulated as target points even smallmodifications of the
requirements and realizations received from above and below force subsystem
designers to update their own requirements. This can, for example, be witnessed in
simulations #1 and #2.

The results of our work also shed light on how inconsistent design information
emerges andwhat it causes. An example of this is shown in simulation #1. Here, the
Engineer and the Accelerator sometimes formulate requirements and quantify
realizations based on design information available to them which originates from
two different required and realized designs a stakeholder above or below has
specified, see iterations eight and ten. Two factors drive the emergence of incon-
sistent design information: the structure of an ADG and the distribution of
responsibility. The combination of both determines how long design information
needs to travel up and down an ADG. If, for example, ADGs are horizontally
asymmetrical, like in Figure 10, and stakeholders are located on side paths, like the
MassMaster, the requirements and realizations on those side paths needmore time
to be transferred up and down than elsewhere. This can, for example, be observed
during iteration ten of simulation #1. Here, the Mass Master still quantifies the
realization of themass of the engine defined by the Engineer in iteration nine, while
the Accelerator already quantifies the realization linked to the power of the engine
defined by the Engineer in iteration nine combined with the realization assigned to
the total mass of the vehicle specified by the Mass Master in iteration five, see
Figure 11. Thus, the most recent realization of the total mass of the vehicle has not
yet reached the top as the Mass Master is still processing it.

It needs to be mentioned that inconsistent design information as defined by us
can also emerge in the case of horizontally symmetrical ADGs. If, for example,
some designers take more time to derive requirements or quantify realizations the
flow of design information is delayed as well. This, however, cannot be witnessed in
our simulations as all of the designers in our study need the same amount of time to
complete the given design activities. Note that we observe inconsistent design
information independent of whether requirements are formulated as points, or, as
intervals. This can be seen when comparing simulations #1 and #3. Moreover, the
agent behaviour does not seem to influence the emergence of inconsistent design
information. To observe this, compare #1 and #2.

The emergence and propagation of inconsistent design information have some
serious consequences. Our results highlight two issues: first, realized designs on the
system level are quantified based on essentially wrong design information on the
subsystem level. This provides a false impression of the current performance of a
product. As an example of this, consider iteration ten in simulation #1. Here, the
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Accelerator quantifies a realization of the acceleration of the vehicle based on a
realization of the total mass and the power of the vehicle which in combination
represent an unfeasible design. A second issue is that components on the bottom
level are developed based on misleading requirements. If those faulty designs are
propagated up again the stakeholders on the top receive designs that are different
from what they have requested. Furthermore, it causes unnecessary development
work. This phenomenon can, for example, be seen in iteration eight of simulation
#1. Here, the Engineer specifies a requirement on the displacement volume of the
engine based on a requirement assigned to the power of the vehicle and themass of
the engine which in combination represent a design that has not been requested as
such by the Accelerator. Note that designers are unaware of whether the design
information available to them is inconsistent due to their limited scope.

Strengths of the model

The results of the computational study reveal that the model we propose has three
strengths (besides the originally intended strength to simulate product-related and
organizational hierarchy in a generic way): convergence behaviour, the occurrence
of design iterations and the emergence of inconsistent design information.

Convergence: The designers in our model manage to identify acceptable and
feasible product designs within the given period of time when assuming that they
act according to Mode B and Strategy 2. This means they converge to a solution.
Evidence for this can, for example, be found in simulations #1, #2 and #4. Note that
convergence is not guaranteed. Multi-level optimization techniques, such as
Analytical Target Cascading, for example, usually suffer from convergence issues
(Michelena et al. 2003). To solve this issue, they usually incorporate sophisticated
subroutines (Michalek & Papalambros 2004). We do not claim that our model
always converges.

Design iterations: The designers in our model often repeat design activities
multiple times in order to fulfill their design targets. Compared to other popular
simulation models (Smith & Eppinger 1997a, 1997b) those design iterations
emerge naturally meaning without being explicitly prescribed. This can, for
example, be observed in simulations #1 and #2. The natural emergence of design
iterations has two significant advantages: first, we can investigate their root causes,
and second, we may test strategies to avoid or facilitate them.

Inconsistencies: The requirements and realizations available to the designers
in our model can be inconsistent at one point, i.e., they originate from two or more
different (sets of) requirements or realizations another designer (above or below)
has assigned to its design variables or quantity of interest. To observe this effect,
consider simulation #1 and #2 illustrated in Figures 11 and 12. Inconsistent design
information is critical in real-world development processes where up to thousands
of designers simultaneously exchange design information. Here, inconsistencies
can occur on many hierarchical levels at the same time. This may cause confusion
and ambiguity on what design is actually required and realized.

Validation of the model

We argue that the convergence behaviour, the emergence of design iterations, and
the occurrence of inconsistent design information are important indicators for the
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validity of our model as actual product design processes exhibit these phenomena
as well. This type of validation technique is called face validation (Sargent 1992;
Klügl 2008). It is often used for agent-based models that are difficult to validate in
general due to the lack of empirical data.

Furthermore, the findings of our study on the influence of point- and interval-
based requirement decomposition are similar to the conclusions drawn by Panchal
et al. (2005) and (2007). In their work, the authors analyse the so-called Interval-
based Constraint Satisfaction (IBCS) method by using a game-theoretic approach
and non-cooperative agents. The IBCS method, which is based on SBD, assumes
that stakeholders forward feasible ranges of values for design variables to other
stakeholders instead of communicating single points in the design space. The
authors state that this preserves design freedom and addresses the problem of
unanticipated design iterations. Similar benefits can be witnessed in our study.

Limitations of this work

The results of this work are subject to limitations. In the following, we distinguish
between constraints on the validity and applicability of our model and constraints
on the generalizability of our findings.

Validity:Many factors could limit the ability of our model to represent actual
design processes. One factor is the assumption that stakeholders only perform the
given design activities while reality provides an incomplete number of activities
that are executed in order to drive a product towards its desired design objectives.
We, for example, do not consider any direct communication between stakeholders
(e.g. conversation, message, meeting) or elicitation of system-level requirements in
early design phases. Modelling requirement elicitation explicitly (via customer
surveys, prototyping, benchmarking) could lead to different design goals assigned
to the top-level product properties. Further, it is questionable whether the activity
diagram that we introduce accurately describes the decision-making of individual
stakeholders. Human design behaviour can also be irrational, random and biased.
Important factors related to this could also be learning, skill, motivation, expertise
and prior knowledge. All of them are neglected in our model. Compared to other
studies we also ignore team dynamics and any benefits or drawbacks that occur if
stakeholders derive design decisions in groups (instead of alone). Moreover, we
assume that ADGs are static.Thismeans that they do not change over the course of
a development process. In reality, however, they evolve (they grow and become
smaller) as components are added and removed. Some components might also be
reused in other ADGs as companies sometimes develop multiple products in
parallel that share cost-intensive parts. With respect to our model, this would
mean that realizations assigned to certain product properties in one ADGmust be
identical to realizations assigned to product properties in other ADGs if those sets
of properties represent the same component. A further limitation of our approach
is the assumption that requirements are part of the process model. While this is in
line with the V-model other process descriptions such as the one from Ulrich and
Eppinger (2016), for example, do not explicitly regard requirements as a dynamic
component of product development processes. Finally, we might make a mistake
by modelling product-related and organizational hierarchy with the same general
type of interface on each level of decomposition. In actual product development
processes the individual interfaces and the way they are handled may vary from
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level to level. The interactions between stakeholders within an organization, for
example, may be different from the interactions between stakeholders that are part
of two different organizations. This casemay occur if components are developed by
suppliers who then receive requirements from a company.

Applicability: The application of our model may be limited for the following
reasons: first, it might be impossible to construct an ADG if, for example, distinct
design variables and quantity of interest cannot be named. Second, quantitative
models may not be available. Third, the distribution of responsibility may not be
specified with respect to product properties but rather with respect to components
and functions.

Generalizability: We do not claim that our findings are generally valid as we
only study a single design problem under specific (selected) boundary conditions.
It is questionable whether the conclusions we draw also apply to practical design
problems. Those are typically larger andmore complex as shown by the example in
Figure 5. The present study is not intended tomake accurate predictions about this
kind of application. It is, however, worth noting that even the small, simple and less
realistic example problem we study reproduces some phenomena known from
design practice. This is somewhat counterintuitive as one could assume that those
phenomena only occur if large and complex design problems are examined.
Therefore, we cautiously suspect that the effects we observe can also be witnessed
if the ADG and the number of participating designers are scaled up.

Implication and relevance

Theory
The theoretical contribution of our research may be twofold: on the one hand, we
provide a powerful tool to analyse hierarchical product design processes in great
detail as we model product properties and responsibilities on a micro-level. And,
on the other hand, we foster the understanding of key mechanisms in distributed
design as we analyse the root causes of design iterations and inconsistent design
information. Further, we demonstrate the benefits and shortcomings of point- and
interval-based requirement formulation.

Practice
Efforts to optimize product design processes in the real world are usually focused
on accelerating design tasks, reordering design tasks, or reorganizing design teams.
However, we are aware of only one case where stakeholders are supposed to
formulate requirements as intervals (instead of as points) in order to improve a
development process. Our results may provide quantitative decision support for
others who are interested in implementing this approach (SSE) as well. Especially
the strengths and weaknesses of SSE revealed by our simulations can help com-
panies make a better decision on when and where to apply the approach.

Conclusion
In this study, we introduce a quantitative model for the simulation of hierarchical
product design processes. It combines a directed, hierarchical graph as a product
model with agents that are responsible for certain areas of that graph. Top-down
and bottom-up flow of design information emerges as autonomous agents (in their
role as designers) assign requirements and realizations to product properties that
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are located at the interfaces of technical responsibility. The software architecture
(code structure) of the model is defined by a UML class diagram. The decision-
making of the individual designers is described by a UML activity diagram. To
account for point-based and interval-based requirement formulation we provide
mathematical problem statements for each case. Available bottom-up information
(returned realizations) is considered by using an adaptive mechanism.

Our model has five key strengths: first, it generates design iterations naturally
(without being prescribed). This allows studies on their root causes and about the
consequences. Second, it captures inconsistent design information - an important
factor in real-world development processes. Third, it can be used to analyse how
responsibility should be allocated in order to enhance distributed design. Fourth, it
can be used to evaluate how the specification of requirements (point- or interval-
based) affects the development process. Fifth, it allows us to study how the product
itself (size, coupling, complexity) may influence the design process.

The application of our model to a simple design problem leads to three major
results: first, point-based requirement decomposition usually causes many design
iterations, leading to long development times. Second, formulating design targets
as ranges instead of as single values can reduce iterations and lower cycle time
considerably if updates of requirements are always directly broken down. If not,
interval-based requirement decomposition can also cause development processes
to stall. Third, decomposing updates of design goals directly instead of evaluating
them first concerning whether they are already satisfied or not is always beneficial
in terms of development time.

Outlook
Future research could have three goals: first, applying our model to other design
problems in order to examine product-related issues (e.g. how does the structure of
ADGs affect the development time?), organization-related issues (e.g. how does the
distribution of responsibility affect the development time?), or, process-related issues
(e.g. how does the duration of activities affect the development time?). In this
context, it would also be interesting to compare our model to mathematically
motivated approaches for decomposing and solving hierarchical design problems.
Those could, for example, be taken from Wagner (1993) or Allison et al. (2009).
Second, validating our model based on experimental data obtained in multi-actor
studies or industrial case studies. Third, extend our model to account for alterna-
tive modelling assumptions (e.g. skill of agents) or more realistic boundary
conditions (e.g. modular products). Here, it would also be interesting to consider
coordinated integration processes (Wöhr et al. 2023) or different behaviours used
to facilitate system-level coordination. Collopy (2019) andCollopy et al. (2020), for
example, differentiate between authority-based and emphatic leadership.
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List Of variables
xi Generic design variable i
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xi,lb Lower bound of design variable i
xi,ub Upper bound of generic design variable i
xi,r Realization of generic design variable i
yj Generic quantity of interest j
yj,lb Lower bound of generic quantity of interest j
yj,ub Upper bound of generic quantity of interest j
yj,ub,H Harmonized upper bound of generic quantity of interest j
yj,r Realization of generic quantity of interest j
zi System-level quantity of interest i
ti Component-level design variable i
αi Decision variable i
SX Stakeholder X
Pveh Power of the vehicle
mveh Total mass of the vehicle
mrem Remaining mass of the vehicle
meng Mass of the engine
V eng Displacement volume of the engine
ξ Design variable vector
ξ lb Lower bounds of design variable vector
ξub Lower bounds of design variable vector
f ξð Þ Objective function
h ξð Þ Equality constraint
g ξð Þ Inequality constraint
ξ f Vector of final optimization result
φTDj

Objective meta-function (top-down)
φBUi

Objective meta-function (bottom-up)
~yj Design variable i for optimization
~xi Quantity of interest j for optimization
γi Weighting factor i
Ω Solution box
μ Size measure

List of abbreviations
ABM Agent-based modelling
ABS Actor-based signposting
ACC Accelerator
ADG Attribute dependency graph
AMPERE Agent model for planning and research of early design
ATC Analytical target cascading
AVAI Available
BU Bottom-up
CASIUM Complex system integrated utilities model
CISAT Cognitively inspired simulated annealing teams
COMP Compare
D Deep
DAG Directed acyclic graph
DiFS Design information flow simulation
DV Design variable
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ENG Engineer
EVAL Evaluate
FDT Functional dependence table
GT Game theory
H Harmonized
IBCS Interval-based constraint satisfaction
IPT Integrated product teams
KABOOM An agent-based organizational optimization model
LB Lower bound
MCPD Mass-collaborative product development
MM Mass master
NPD New product development
PD Public database
PW Private workspace
QOI Quantity of interest
QUANT Quantify
REAL Realization
REQ Requirement
S Shallow
SATIS Satisfied
SBCE Set-based concurrent engineering
SBD Set-based design
SE Systems engineering
SiFA Single function agents
SSE Solution space engineering
TD Top-down
UB Upper bound
UML Unified modelling language
VDT Virtual design team
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