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A fundamental construction of a category {((2) , Appendice)
is a triple (S, p, k), where S is a functor from % to itself and

where p:S2 - S and ki1 ~ S are natural transformations such
that

p(p*S) = p(S¥p)

p(k#S) = 1 = p(S¥K)

Given two fundamental constructions (S, p, k) and
(S',p', k') of ﬁ , a morphism from the first to the second is a
natural transformation m:S - S' such that
k' = mk
mp = p'(m*m)

The fundamental constructions of 7 with their morphisms,
multiplied as natural transformations, form a category.

Given two categories é and 7! , by an adjoint morphism
from 4' to { , we mean a quadruple (T, U, t,u), where T is
a functor from f' to f with left adjoint U defined by the
natural transformations t:ig - TU and u:UT — 1&' . This means

that the following conditions are satisfied:

(T*u)(t*T) = 1
(u*U)(U*t) = 1

T
8]

Every adjoint morphism (T, U, t, u):gf' - ﬁ defines a fundamental
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construction (S,p,k) of % (3), where
S=TU, p=T*u¥U and k=t

and conversely, it was shown by Kleisli [4] and Eilenberg-Moore
[1] that every fundamental construction of ¥ is defined in this
way by an adjoint morphism to Cj . Furthermore, the adjoint
morphism constructed in [1] was shown to be, let us say, the
""coarsest' possible. In this paper, we will broaden this charac-
terization of the Eilenberg-Moore adjoint morphism in such a

way that morphisms of fundamental constructions will be involved,
and similarly, we will characterize the Kleisli adjoint morphism
as the '"finest" one possible, here again, the characterization
involving morphisms of fundamental constructions.

For two objects A and B of a category g, Mg(A,B)

will denote the set of morphisms of f from A to B. All func-

tors are of course assumed to be covariant. A functor F:ﬁ-*;;'
is "faithful" if for any two morphisms f, ge Md(A, B), F(f) = F(g)
implies f = g, while F 1is "full" if for any morphism

f'eMgl(F(A),F(B)), there exists feMﬁ(A,B) such that f' = F(f).

THEOREM 1. Given a fundamental construction (S,p, k)
of j, there exists an adjoint morphism

(T, T ka): ¢~ ¢

defining (S, p, k), where ‘é— has the same objects as ﬁ and
U(A) = A for each object A, such that if

(T, U, k', u: ('~ ¢

is an adjoint morphism defining the fundamental construction
(S',p", k') and if m:(S,p, k) = (S',p', k'), then there exists a
unique pair (V,m), where V is a functor from 5 to ' and

M is a natural transformation from T to TV , such that U =VU

and m = m*U. Furthermore,
VEa = (wkV) (Uxm)

and if each mA is a monomorphism, then V is faithful, while

if each m, has a right inverse, then V is full. Finally, if

(k¥S')m = S¥k', then V has a right adjoint.
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those of Kleisli [4]. The objects of re those of ¢ . For

Proof. The constructions of ﬁ and (T, U, k,T) are
—_— Za
any two objects A and B, ﬁ(A B) = ﬁ(A’ S(B)). If

feM=(A, B) and geMg(B, C) their product in 5 is given by

5—(
g f = pCS(g)feMg(A, C)

The functors U and T are defined as follows: if feMﬁ(A,B),
]
then U(A) = A and U(f) = k f, while if feM=(A, B), then

B
T(A) = S(A) and T(f) = S(f) Finally, for each object A,
(S(A), A). We refer the reader to [4] for the

Up = 15a) Mz :
proof of the statement that Zf is a category and (T, U, k,q) is
an adjoint morphism defining (S, p, k).

Now, let (T,U,k',u) and m be as above. Assume first
of all that there is a pair (V,m) with the required properties.
Then, for each object A of Z, V(A)=VU(A) = U(A), and if
fe Mg(A, B), then

V(f) = V(fu- U(kA)) = V(@ ﬁT(f)ﬁ(kA))

T(A) T(B)

YU(T(H)k ) = V(G-

:V( A

)U(pB S(f)kA)

Yg(B) U(B)

= V(@ YU(f) = V(=

U(B)

= u =, UTV(i=

vT(B) F(B)

and of course, rTlA = ﬁﬁ(A) = mA. Thus, there is no choice;

if (V,m) exists, it is unique.
Now we show that if we define, for each fEMZ(A’ B),

V(A) = U(A), V() = u U(me) and r‘HA =m _, then V is a

U(B) A
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functor and T is a natural transformation, with the required

properties.
If feMg(A,B) and geMg(B,C), then
V(g- f) = uU(C)U(m S(
= uU(C)U(P'S'(m )mS(C)S(g)f)
= uU(C U(p' S'(m S‘(g)me)
= uU(C)UT(uU( c))UTU(ng)U(me)
= uU(C)uUTU(C)UTU(ng)U(me)
= uy gl m By g Ulmgd) = VIV (o)
while
V() = Vik ) =g Ulm k) =g 000) = 1y) = tyva:

Thus, V is a functor. If fer(A,B), VU(A) = V(A) = U(A) and

VU(f) = V(ka) = uU(B)U(mBka) U(B)U(kB (f) = U(f) so that

vi=U. If feMg(A,B), then

TV(f)r_nA= T(u Um_f))m, =p'S'(m_{f)m

u®) VB A PR B MA

pémS'(B)S(me) = meBS(f) = mBT(f)

so that T is a natural transformation from T to TV . Obvious-
ly, for each object A of ;,

V(ﬁ ) = VMS(A) U(A)U(mA) = uV(A)U(r'ﬁA)

so that V*T = (uw*V)(U*m).

Now, assume that for each A, mA is a2 monomorphism.

It feMg(A,B),

L m = T = f
TV(K), = TV(O@ &, = m T(0k, = m_p S(fk, =m

584

https://doi.org/10.4153/CMB-1 966-072-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-072-9

so that if geMg(A, B) is such that V(f) = V(g), then me=mBg

and therefore f =g. Thus V is faithful.
Then, assume that each mB has a right inverse ng - It

f'eMé'(V( ), V(B)), then nBT (A, B) and

g

€M

) = 0y g UTENU(KY)

V(nBT(f')kA) = uU(B)U(mBnBT(f')kA UB)
= flug 4 UGk = £
V is full.

Thus, in this case,

Finally, assume that (k¥S')m = S¥k' . We set W = UT.

For each object A of ¢,

so that it is a morphism Va in E from A to S'(A) = US'(A)

= UTU(A) = WV(A). Let us show that v = {VA}
(A, B), then

transformation from 1;’7 to Wv. If fEMﬁ

is a natural

S(UT(u U(m f))kS'(A)A

WVE)'v = Pgi(p) U(B)

= Psi(s ST(py 8" (my kg, (A aka

= pS'(B)S(kS'(B pgS'(mpf))S(m , )k s(a)*a

S(pé S' (me)mA)S(kA)kA

S(pB S'(m S(B S(f)kA)kA

= S(meBkS(B )f)k S(me A

kg (p)@pt = SO

=P5iB)Ssi(m) ¥ = VB !
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Now, w:UT =VUT=VW-— 1,5, For each object A of z,
€]

( S(ky )k ,)

uya) VAl = Uya)tus(a)t s a)>al s

U((s'(k!)m , k,)

= Yya)lusi(a) AT ASA

uU(A)uUS,(A)UTU(kA)U(kA)

= 9y U0 a) VA F tuga) T tvia
so that (@¥V)(V¥v) =1 . Then, for each object A' of g,
Wilay )V = UTWA D Vypian
= kpanTOAN Viga)
b pT(A‘)S(kT(A')T(uA'))S(K'I‘(A'))kW(A')
= Fwan
and of course, kp . is the identity of W(A') in € so that we

have shown that (Wku)(v¥W) =1 Thus, (W,V,v,u) is an ad-

W
joint morphism.

As an immediate corollary of this theorem, one can obtain
a result of F.E.J. Linton (Notices A.M.S., February 1966,
631-1), i.e. there is an equivalence between the category of
fundamental constructions of ¢ and their morphisms and the
category of adjoint morphisms

(T,U,t,u):¢&" = é

where #' has the same objects as 5 and U(A) = A for all A,
and their "morphisms"'.

PROPOSITION. For a fundamental construction (S, p, k)
of g, the following statements are equivalent:

(i) p is a natural equivalence,

(ii) k*S is a natural equivalence,
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(iii) S*k is a natural equivalence,
(iv) kxS = Skk,
(v) p*¥S = S¥p.

Proof. That (i), (ii) and (iii) are equivalent and that they
imply (iv) and (v) is obvious. If one assumes (iv), then

2
(S¥k)p = (p*S)(S *k) = (p*S)(S¥k*S) = 152
so that p is a natural equivalence, while if one assumes (v),
then

(Skk)p = (p¥S)(S7¥k) = (Stp)(S7*K) = '

so that p is a natural equivalence.

A fundamental construction satisfying the conditions of
this proposition will be called an idempotent construction.

As a special case of theorem 1, we have that if the adjoint
morphism

(T, U,k u): '~ ¢

defines the fundamen_t_al construction (S, p, k), then there exists
a unique functor V:g= £' suchthat U=VU and T = TV, 1)
and if (S,p,k) is an idempotent construction, then V has a
right adjoint.

By a regular construction of ¢, we mean a couple (S,k),
where S 1is a functor from t,j to itself and k:1_, = S 1is a natu-
~

ral transformation, such that if fe<eM ,(A, S(B)), then there exists
&
a unique geM »(S(A), S(B)) such that f = gk% . It was shown in
z y
[5] (§3, Proposition 1), that if (S,k) is a regular construction
of ‘d , then there exists a unique natural transformation

2 . .
p:S = S such that (S, p, k) is a fundamental construction, and
that p 1is then a natural equivalence. Regular constructions are
thus essentially idempotent constructions and there are of course

1) This is apparently known. See the review of [4] by P.J. Huber,

Math. Reviews, February, 1966.
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very many examples of regular constructions.

THEOREM 2. Given a fundamental construction (S, p, k)
of ¢7, there exists an adjoint morphism

(LU, k,u): ¢~ &
defining (S, p, k), where T is faithful, such that if
(T,U, k' u): g' ~ 19

is an adjoint morphism defining the fundamental construction
(S',p', k") and if m:(S,p,k) = (S',p', k'), then there exists a
unique functor Z: ¥'—~ £ suchthat T =TZ and

Txu*Z = (T*u)(m*T). Furthermore, there exists a unique
natural transformation m:U - ZU such that T#m = m and if
(S,p, k) is a regular construction, then Z has a left adjoint.

Proof. The constructions of ﬁ and (T, U,k,u) are those
of Eilenberg and Moore [1]. The objects of é are the couples
(A, 9), where A is an object of £ and <peM£(S(A), A) is such

that ngA = 1A and ¢S(e) = PP, - Given two such objects (A, ¢)

and (B,l), the morphisms from the first to the second in % are
the morphisms feMﬁa(A, B) such that S(f) = fp. Morphisms in

_‘E” are multiplied as in ¢. The functors U and T are defined

as follows: if feMg(A, B), then U(A) = (S(4), pA) and U(f) = S(f),

while if feMﬁ((A,q)), (B, y)), then T(A,9) = A and T(f) = f£.

For any object (A, ¢) of ¢, We refer the reader

u =9.
7 (A, 0)

to [1] for the proof of the statement that (T, U, k,u) is an adjoint
morphism defining (S, p, k).

Now, let (T,U,k',u) and m be as above. For each object

A' of ﬁ', Z(A') = (T(AY), T(uA')mT(A')) is an object of é since
T(uA')mT(A')kT(A') = Tl R an = Tpean
and
T(uA')mT(A')S(T(uA‘)mT(A')) = T(uA')S'T(uA')mS'T(A')s(mT(A'))
= T(uA,UT(uA'))(m*m)T(A,)
588
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T(u )(m*m)

AtuT(AY) T(A")

T(

P (an)i* )y = T8 Iy Py

If f':A'= B' in ¢', then

T(ug,) ST(£') = T(ug,)S' T(£)m

MY T(A')

= T(ug, UT(") = T(E)T(a,,)

Mr(arn) Mran
so that

T(E):(TIA), Tlu, Jmy ) = (T, Tlug Jmo g )

in Z and therefore, we may set Z(f') = T(f'). It is obvious that
we have defined a functor Z from ¢' to % and that T = TZ.
Also, for any object A' of #',

) = T(u )

=IEZ(AY) (T(A"), T(uA,) )

Bran

so that THkukZ = (T*u)(m*T).

Now, assume that Z' is a functor from %' to ¢ such that
T =TZ' and

Twu*Z' = (T*u)(m*T)
If A' is any object of ¢' and if we set Z'(A') = (A, ¢), then
A =T(A, 9) = TZ'(A') = T(A')

and

so that we see that Z'(A') = Z(A'). Thus, since TZ'=T =TZ
and since T is faithful, Z' = Z.

For each object A of %, rnA is amorpﬁism in g from
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U(A) = (S(A),pA) to ZU(A) = (S'(A) ) since

1
» PA™Ms(4a)
! = p! * =
Py Mgya)Slmy) = Py (M¥m) = m p

so that, T being faithful, if we set QA = mA for each A, m

is the only natural transformation from U to ZU such that
T*m =m.

Finally, let us assume that (S,p,k) is a regular construc-
tion. If (A, ) is anobject of ¢, then kA(PkA = kA so that
kAqo = 1S(A)’ i.e. kA is an isomorphism and ¢ is its inverse,.
I (A,¢) and (B,y) are objects of ﬁ and if feMﬁ(A, B), then

fo = Ykyfe = yS(i)k o = 4S(f)

so that f:(A, ¢) = (B,y) in ¢. Thus we see that in this case,

f is essert*ially the full subcategory of ¥ whose objects are
the injectives of the regular injective structure of % underlying
(S,p,k) ([5], §3). Now, if we set Y = UT, then

u:UTzUIZ.:YZ»ié

For each object (A, ¢) of £, we have
ZY(A, ¢) = ZUT(A, o) = ZU(A) = (TU(A), T(uU(A))mTU(A))
so that we may set

Y(a, o) " ijt(A, ) > ZY(A, ¢)

and y is obviously a natural transformation from 1(‘{ to ZY.

For each object A' of ﬁ',

z a’®ran = Tpan =

Sa¥ g = Tla 1z¢an

that (Z#* % =
so that (Z#u)(y*Z) 1Z. For each object (A, ¢) of é,

= U(kll\) =1

Uv(a, )TV (a, ¢) T Bua) ua) - va, o)
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so that (u*Y)(Y*y) = 1Y . Thus, (Z,Y,y,u) is an adjoint mor-

phism from é' to 7.
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