COUNTABLE COMPACTIFICATIONS
KENNETH D. MAGILL, Jr.

1. Introduction. It is assumed that all topological spaces discussed in
this paper are Hausdorff. By a compactification X of a space X we mean a
compact space containing X as a dense subspace. If, for some positive integer
n, aX — X consists of # points, we refer to «X as an #z-point compactification
of X, in which case we use the notation a, X. If «X — X is countable, we refer
to aX as a countable compactification of X. In this paper, the statement that
a set is countable means that its elements are in one-to-one correspondence
with the natural numbers. In particular, finite sets are not regarded as being
countable. Those spaces with #-point compactifications were characterized in
(3). From the results obtained there it followed that the only n-point com-
pactifications of the real line are the well-known 1- and 2-point compactifi-
cations and the only #n-point compactification of the Euclidean N-space, EV
(N > 1), is the 1-point compactification. In this paper, we characterize those
spaces that are locally compact and have countable compactifications. As a
consequence, we obtain the fact that no Euclidean N-space has a countable
compactification.

Let BX denote the Stone-Cech compactification of a completely regular
space X, let card (V) denote the cardinal number of a set ¥, and finally, let
¢ denote the cardinal number of the continuum. Since every compactification
of a completely regular space X is a continuous image of X, we conclude
that card (eX) < card (8X) for every compactification aX of X. Now it is
shown in (1; p. 131, 9.3) that card (8R — R) = 2° where R denotes the space
of real numbers. The same technique yields the result that card (BEY — EY)
= 2¢ for each Euclidean N-space EV. Thus, if one wishes to assume the Gen-
eralized Continuum Hypothesis, one may conclude that if R is any com-
pactification of R, then card (aR — R) is 1, 2, ¢, or 2¢ and if «E" is any
compactification of E¥ (N > 1), then card («EY — EV) is 1, ¢, or 2°.

We take this opportunity to acknowledge a considerable debt to the referee
for his helpful suggestions, which resulted in the final form of Theorem (2.1)
as well as a simpler proof of that theorem.

2. The Main Theorem and its corollaries.

THEOREM (2.1). The following statements concerning a space X are equivalent:
(2.1.1). X 4s locally compact and BX — X has an infinite number of compo-
nents (maximal connected sets).
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(2.1.2). X 1s locally compact and there exists a compactification aX of X such
that aX — X 1s infinite and totally disconnected.

(2.1.3). X is locally compact and has a countable compactification.

(2.1.4). X has an n-point compactification for each positive integer n.

Proof. (2.1.1) = (2.1.2). Let
BX — X =U{H,:a € A}

where {H, : @ € A} is the family of components of X — X. LetaX = X U A
and define a function % from BX onto aX by

i p € X,
h(p) ={§ : igHa_

Endow oX with the quotient topology induced by k4. Then oX, being the
continuous image of a compact space, is compact. In order to show that aX
is Hausdorff, there are three cases to consider for distinct points p and g¢:

(1) p and ¢ both belong to X,

2) pe Xandgq€ aX — X,

(3) p and ¢ both belong to aX — X.
The first case follows easily using the fact that X is locally compact and
therefore an open subset of any compactification. This implies that any open
subset of X is also an open subset of X and hence also of aX. For the second
case, we again use the local compactness condition of X to conclude that there
exists an open subset G of X and a compact subset K of X such that
p € G C K CX. It follows that G and aX — K are disjoint, open subsets of
aX containing p and g respectively. Now let us consider the third case. H, and
H, are distinct components (and hence closed subsets of) X — X, which is
compact. Therefore, H, and H, are disjoint, closed subsets of X and there are
disjoint, open subsets G, and G, of BX containing H, and H, respectively.
By (1, Theorem 16.15), the component of a point in a compact space is the
intersection of all open-and-closed sets containing it. This implies that H, is
the intersection of all open-and-closed sets (relative to X — X) containing it.
Since BX — X is compact and G, M [X — X] is an open subset of X — X
which contains H,, it follows that the intersection of a finite number of the
open-and-closed sets is contained in G, M [8X — X]. Denote this intersection
by V,. Then V, is an open-and-closed subset of BX — X and

H,CV,CG N[BX — X]

Because 1, is both open and closed, it is the union of all H, contained in it.
Moreover,

Vy = Vp* N [BX — X]
for some open subset V,* of BX where V,* C G,. It follows that
V=1,V [V,* N X].
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There exist sets V, and V,* related to H, in the same manner. Therefore 1,*
and V* are disjoint. Now let

Uy = [V,*NX]\Ula: H,C V), Uy, = VN XU {a: H, C V).

Then A 1[U,] = V,* and r~1[U,] = V,* Since the latter are open subsets of
BX and aX was given the quotient topology induced by #, it follows that U,
and U, are disjoint, open subsets of aX containing p and ¢ respectively. This
proves that aX is a Hausdorff space. It follows easily that X is dense in aX;
hence aX is indeed a compactification of X. In order to verify that aX — X is
totally disconnected, we note that U, N [eX — X] is open in aX — X.
Moreover,

U, NeX —X]] =V, *N[BX —X] =T,

which is a closed subset of BX. This implies that U, M [aX — X] is a closed
subset of aX and therefore also of X — X. Hence p and ¢ do not belong to
the same component. Since p and ¢ were any two distinct points of aX — X,
we conclude that the latter is totally disconnected.

(2.1.2) = (2.1.3). Since X is locally compact, aX — X is an infinite, compact
totally disconnected space and thus, by (1, Theorem 16.17), has a basis of
open-and-closed sets. Therefore, there exists a countable family {H,}®_; of
non-empty mutually disjoint subsets of aX — X which are both open and
closed in aX — X. Set

Hy = [oX — X] — U {H,}5-1.
Then H, # @ since aX — X is compact. Now define a function % from aX onto

X U {nfim =X
by

_Jn P € H,,
h(p) —{p forpEX.

Endow yX with the quotient topology induced by k. One can show as in the
previous discussion that ¥X is Hausdorff and that X is dense in vX. Thus yX
is a countable compactification of X.

(2.1.3) = (2.1.4). Now suppose that X is locally compact and that vX is a
countable compactification of X. Assume p and ¢ are distinct points belonging
to some connected subset H of yX — X. Because yX — X is completely
regular, there exists a continuous function f from yX — X into the closed unit
interval I such that f(p) = 0 and f(¢) = 1. Then f[H] is connected and must
be all of I since it contains both 0 and 1. This, of course, contradicts the
cardinality of vX — X; hence yX — X is totally disconnected. Again, since X
islocally compact, yX — X iscompactand we appeal once more to (1, Theorem
16.17) to conclude that yX — X has a basis of open-and-closed sets. Thus, for
any positive integer #, there are # non-empty mutually disjoint subsets of
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vyX — X that are both open and closed and whose union is all of yX — X.
Denote these sets by {H;}7-; and define a function % from yX onto

XUIL 2,3, ..., 5 =aX

by

b "peX.

Let @, X have the quotient topology induced by %. One shows as in previous
cases that a, X is indeed a (Hausdorff) compactification of X.

(2.1.4) = (2.1.1). Let any positive integer # be given and let a, X be an
n-point compactification of X. Then X — X must have at least » components
since there exists a continuous function mapping it onto a, X — X. Since this
is true for every positive integer, 3X — X must have infinitely many com-
ponents. Finally, any space with a finite compactification is locally compact
and the proof is complete.

(3, Theorem (2.6)) states that if every compact subset of X is contained in
a compact subset whose complement has at most V. components, then X has
no n-point compactification for n > N. This fact and Theorem (2.1) of this
paper result in

COROLLARY (2.2). Suppose X s locally compact and there exists a positive
integer N such that every compact subset of X is contained in a compact subset
whose complement has at most N components. Then X has no countable com-
pactification.

(3, Theorem (2.9)) states that if (X, d,) and (Y, d.) are two unbounded,
connected metric spaces such that for all points xy € X and y, € Y and every
positive number 7, the sets

{x € X :di(x,x0) <7} and {y € Y :d2(y,y0) <7}

are compact, then X X ¥V has no n-point compactification for » > 1. This
and Theorem (2.1) of this paper yield

CoroLLARY (2.3). Let (X,dy) and (Y,ds;) be two unbounded, connected,
locally compact metric spaces and suppose that for all points xo € X and yo € ¥V
and every positive number r, the sets

{x € X :di(x,x0) <7} and {y € Y :da(y, y0) <7}
are compact. Then X X Y has no countable compactification.

It follows from these corollaries that no Euclidean N-space has a countable
compactification. The space

X =1-[{0} U {1/n}2i]

(as before, I denotes the closed unit interval) is an example of a locally compact
subspace of R that has a countable compactification; namely, I itself. X, of
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course, is not connected. Indeed, Corollary (2.2) implies that no connected
subspace of R will have a countable compactification. There are, however,
locally compact, connected subspaces of the Euclidean plane E? that have
countable compactifications. For example, let

V,={(x,9) € E2:9y =x/n,x >0,and x* + y? < 1}.
Let

V= [U{Yea] U {(x,0) :0 < x < 1},
and finally, let

K= {10} U {7y :y=x/nand x’ + 3" = 17,

Then Y is a locally compact, connected subspace of E? and K U Y is a count-
able compactification of Y.

By (3, Theorem (2.1)), a space X has an #n-point compactification if and
only if it is locally compact and contains a compact subset K whose complement
consists of # mutually disjoint open subsets {G,}7—; such that K \U G, is not
compact for each 7. This, in conjunction with Theorem (2.1) of this paper,
results in

COROLLARY (2.4). A4 locally compact space X has a countable compactification
if and only if for each positive integer n it contains a compact subset K, whose
complement 1s the union of n mutually disjoint open subsets {G,,;}i—1 with the
property that K, \J G,,; is not compact for each .

We conclude with

COROLLARY (2.5). Suppose X is locally compact and is the union of an infinite
number of mutually disjoint open subsets. Then X has a countable compactification.
In particular, every infinite discrete space has a countable compactification.

Proof. We make use of the previous corollary. For any positive integer #,
let K, = @. Since X can be regarded as the union of # mutually disjoint open
noncompact subsets, the proof is complete.
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