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Abstract
Snake robots can move flexibly due to their special bodies and gaits. However, it is difficult to plan their motion in
multi-obstacle environments due to their complex models. To solve this problem, this work investigates a reinforce-
ment learning-based motion planning method. To plan feasible paths, together with a modified deep Q-learning
algorithm, a Floyd-moving average algorithm is proposed to ensure smoothness and adaptability of paths for snake
robots’ passing. An improved path integral algorithm is used to work out gait parameters to control snake robots to
move along the planned paths. To speed up the training of parameters, a strategy combining serial training, parallel
training, and experience replaying modules is designed. Moreover, we have designed a motion planning framework
consists of path planning, path smoothing, and motion planning. Various simulations are conducted to validate the
effectiveness of the proposed algorithms.

1. Introduction
Inspired by biological snakes, engineered snake robots have slim bodies and multiple degree of freedoms
(DOFs). They can move flexibly in narrow and complex environments [1]. Due to these features, they
have good potential to replace human in some special work such as disaster rescuing and monitoring [2].
They have received great attention since the first one was designed by Hirose in 1972 [3]. Compared
with wheeled robots, they are more difficult to control due to their complex mechanisms and special
gaits [4].

In the past years, most researchers focused attention on the design, modeling, and gait control of
snake robots. Path planning and path following are also necessary for snake robots to move in complex
environment automatically [5]. Mathematical models are considered as bases of their path planning and
following. In ref. [6], a unique mathematical model in which contact forces are mapped on the basis
of a viscous friction model is presented. It predicts behaviors of a robot in a cluttered environment
accurately. In ref. [7, 8], obstacle-aided locomotion strategies are researched for modular snake robots
in cluttered environments. In ref. [9], Li designs an anti-sideslip line-of-sight method-based adaptive
path following controller for snake robots. Later, he proposes a novel stable path-following method to
fulfill formation control for multi-snake robots [10]. An obstacle-aided locomotion method is proposed
by using piecewise helixes to improve the mobility of snake robots in messy environments in ref. [11].
In ref. [12], a trajectory planning method is proposed for dual robotic fingers to manipulate cartons in a
complex folding process. These studies have advanced the state of the art of multi-DOF robots despite
that their models are complex.

To simplify these models, a framework that can generate paths in low-dimensional work space and
select generated gaits in a snake robot’s shape space is proposed in ref. [13]. Typically, a trajectory opti-
mization method is developed by using Lp-norm-based representations to encode collision constraints
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of robots and obstacle bounding boxes [14]. The method fails to deal with complex or unstructured
environments. To stabilize constraint manifolds, an analytic smooth feedback control law is proposed in
ref. [15]. A simplified snake robot model is presented for motion control [16]. Snake robots can move
in multi-obstacle environments by using above methods based on accurate dynamic models. However,
it is difficult to derive such models due to their complex mechanisms. Motion planning of snake robots
includes two steps: path planning for their centers of mass (CMs) in workspace and the corresponding
path following. Many path following methods of snake robots were researched in the past years [17–21].
In ref. [17], a guidance-based path following law is designed for them. A dynamic model and a trajectory
tracking control law are proposed for them to track paths without singular configuration [18]. In ref. [19],
an adaptive path following controller of snake robots is designed based on an improved Serpenoid curve.
In ref. [20], an adaptive path following law is proposed and verified for snake robots. However, since
snake robots move forward by swinging their bodies, it is difficult to control them moving along desired
paths [21], as their trajectories are oscillation curves. It is required to calculate control parameters based
on path following laws timely. These methods are time-consuming and inefficient.

Different from those model-based methods, suitable control parameters can be obtained without any
prior experiences by using neural networks or reinforcement learning (RL) algorithms. In ref. [22], an
energy-efficient snake gait policy is found by using deep reinforcement learning (DRL) algorithm. A
deep deterministic policy gradient algorithm is used to tune a gait model and obtain optimal parameters
of central pattern generator [23]. A two multi-layered spiking neural network is designed to achieve 3D
gaits for snake robots to track certain moving objects in ref. [24]. Methods in ref. [22–24] are more effec-
tive than traditional empirical tuning process. However, they are not suitable for complex and changing
environments. To improve environmental adaptability of snake robots, a DRL-based framework with a
double deep Q-learning-based technique is proposed to learn the optimal policy for reaching goal points
in unknown environments in ref. [25]. However, main variables of different unknown environments are
frictions and stiffness but not obstacles. In ref. [26], RL is used to derive efficient and novel gaits for a
terrestrial and aquatic 3-link snake robot. The strategy is verified, but the robot mechanism is simpler
than typical multi-link snake robots.

In ref. [27], path following of snake robots is investigated by using approximate dynamic program-
ming and neural networks. A path integral (PI) algorithm is suitable for motion planning due to its
effective learning and stable numerical solution [28]. It is used in some learning tasks of different robots
[29–31]. An extension of a PI policy improvement algorithm is proposed to adjust critical parameters
automatically [29]. The algorithm is tested on three different types of simulated legged robots. In ref.
[30], a policy improvement with PI is used to generate goal-directed locomotion of a snake robot with
screw-drive units. In ref. [31], PI is used to compute gait parameters of a snake robot. However, some
factors, for example, the arrival time and distance are not considered in these studies.

To plan passable paths and follow them without depending on accurate models, this work designs a
motion planning framework for snake robots in multi-obstacle environments based on an RL algorithm.
In order to plan a short collision-free path, we use a multi-objective fusion adaptive reward mechanism
based on a DRL algorithm to design its loss function. Besides, weights of the neural network are updated
by an experience replay technology with a gradient back-propagation method. To control a snake robot to
follow the planned paths smoothly, we propose a path smooth algorithm by combining a Floyd algorithm
[32] and a moving average (MA) algorithm. Gait parameters of snake robots can be computed by a PI
algorithm. A parallel training strategy is designed to explore the control parameter space of global paths
lightly.

The remainder of this article is organized as follows. A model and symbols of snake robots are given
in Section 2. A DRL-based path planning algorithm and a path smoothing strategy are proposed in
Section 3. A goal-oriented motion planning method based on PI is proposed in Section 4. Simulations
are conducted in Section 5 to demonstrate successful path planning and moving through multi-obstacle
environments. Conclusions are drawn in Section 6.
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Table I. Mathematical symbols.

Symbol Description
l Half of the length of each link
m Mass of each link
n Number of links
g The gravitational acceleration constant
P Position of the CM of the snake robot, P = [px, py]T

pi Position of the CM of link i, pi = [xi, yi]T

X, Y X = [x1, x2, . . . , xn]T , Y = [y1, y2, . . . , yn]T

θi Angle between link i and the XOZ plane
φi Yaw angle of joint i, φi = θi+1 − θi

Cθ , Sθ Cθ = diag( cos θ ), Sθ = diag( sin θ )

Figure 1. Kinematic parameters of a n-link snake robot.

2. Mathematical model of snake robots
To accurately control snake robots, we derive a kinematic model of a 7-link snake robot. Its parameters
and mathematical symbols are shown in Fig. 1 and explained in Table I. The global frame position of
the robot’s CM is calculated as:

p =
[

px

py

]
=

⎡
⎢⎢⎣

1

nm

∑n
i=1 mxi

1

nm

∑n
i=1 myi

⎤
⎥⎥⎦= 1

n
E

[
X
Y

]
, (1)

where E is a transition matrix defined as:

E =
[

eT 01×n

01×n eT

]
, (2)

and e = [1, 1, . . . , 1]T ∈ Rn. Links must comply the following constraints:

xi+1 − xi = lcosθi + lcosθi+1, (3)

yi+1 − yi = lsinθi + lsinθi+1. (4)

Constraints of all links are as follows:

DX + lAcosθ = 0, (5)

DY + lAsinθ = 0, (6)
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where

A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0

0 1 1 · · · 0

...
...

...
. . .

...

0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎦ , (7)

D =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · 0

...
...

...
. . .

...

0 0 · · · 1 −1

⎤
⎥⎥⎥⎥⎥⎦ . (8)

Velocities of all links can be computed as:

Ẋ = lKTSθ θ̇ + eṗx, (9)

Ẏ = −lKTCθ θ̇ + eṗy, (10)

where K = AT(DDT)−1D and T =
[

DT ,
1

n
e
]T

∈ Rn×n.

3. Path planning of snake robots
Path planning is important for snake robots to move in multi-obstacle environments. Compared with
traditional path planning methods, deep Q network (DQN) is more adaptive for different environments.
An end-to-end mapping between passable path and environments can be established. Therefore, we use
a DQN-based path planning method to improve snake robots’ adaptability in complex environments.

3.1. Path planning based on DQN
It is well known that RL can be used for agents to maximize their cumulative rewards in unknown
environments by exploring and exploiting collected experiences. In RL, exploration is contradictory to
utilization. In the exploration, an agent experimenting with novel strategies may improve returns after
long exploring. In the utilization, an agent focuses on maximizing rewards through actions. It is difficult
to balance them, especially when an environment contains a huge state space or sparse rewards. An
excessively large exploration rate may lead to endless exploration activities in some unexplored areas
without any rewards. It thus sacrifices too much short-term benefits. An extremely large utilization rate
may converge to suboptimal behaviors while ignoring action spaces with huge benefits.

Exploitation and utilization can be balanced explicitly by utilizing an ε-greedy policy with a random
selected exploration rate ε ∈ (0, 1). The snake robot chooses an action corresponding to the maximum
Q value. For actions with same Q values, the robot randomly selects an action. With a probability of
1 − ε, the robot randomly selects an action in the action set.

The final strategy and convergence rate of the agent are determined by a reward function. In this
work, the reward function is defined as:

r =

⎧⎪⎪⎨
⎪⎪⎩

ra, collision

rb, collisionless

rc, others

, (11)

where ra is a negative constant, while rb and rc are positive constants.
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Algorithm 1: The DQN algorithm
Initialize a replay memory D to the capacity N ;
Initialize the action-value function Q with random weights θ;
Initialize the target action-value function Q̂ with weights θ− = θ;
for E = 1, 2, . . . ,M do

Initialize the sequence s1 = {x1} and preprocess the sequence φ1 = φ(s1);
for t = 1, 2, . . . , T do

Select a random action at with a probability ε;
Otherwise select at = arg maxa Q(φ(st), a; θ);
Execute an action at in an emulator and observe a reward rt and an image xt+1;
Set st+1 = st, at, rt, xt+1 and preprocess φt+1 = φ(st+1);
Store the transition (φt, at, xt+1) in D;
Sample random minibatch of transitions from D (φj , aj , rj , φj+1);

yj =
rj , episode terminates at step j + 1
rj + ν maxa Q̂(φj+1, a ; θ−), otherwise

Perform gradient descent on (yj − Q(φj , aj ; θ)) with respect to θ;
Reset Q̂ = Q every C steps;

end
end

The pseudocode of the proposed DQN algorithm is shown in Algorithm 1. The algorithm has two
key modules. The first one is a biology-inspired experience replay mechanism used to randomize the
data. Effected by the mechanism, correlations in the observation sequence are removed and changes in
the data distribution are smoothed. Updates of rewards and status obtained from each interaction are
saved to update Qθ .

With an empirical playback mechanism, the error between Qθ and Q̃ is used to update parameters
ω of the neural network by using a gradient back-propagation method. An approximate Q value and a
specific strategy can be obtained when w converges.

For the second module, an iterative strategy is used to update action values toward target values
periodically. Correlations between them are deduced by this strategy. A snake robot selects and executes
action at from the action set based on history experiences of a restore buffer and a specific strategy in
the current state st. After action at, the robot switches to a new state st+1 and obtains a reward rt+1.

The snake robot repeats a process of exploration-learning-decision-utilization and gains experiences
by interacting with environments. The experience replay technology is used to update its knowledge,
that is, as historical experience to select the next action. The flow diagram of the algorithm is shown in
Fig. 2. Its parameters are explained in Table II.

3.2. Path smoothing
Due to the simplification of action space, there are many redundant inflection points in the generated
paths. The planned path points are not smooth enough for snake robots. To solve this problem, we adopt
a Floyd-MA algorithm to smooth the planned paths.

The Floyd algorithm is used to select proper path points and MA used to smooth and interpolate the
path between two neighbor path points. Points on the quadratic curve are selected as filtered results.
New values of center points are computed by averaging their neighbor points, that is,

ys(i) = 1

2np + 1

(
y
(
i + np

)+ y
(
i + np − 1

)+ . . . + y
(
i − np

))
, (12)
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Table II. Parameters of the DQN-based path planning algorithm.

Symbol Description Value
α Learning rate 0.01
ε Exploration rate 0.9
nA State feature dimension 2
B Batch size 32
C Step size 300
N Capacity of restore buffer 500
E The number of iterations 100,000

Figure 2. The DQN-based path planning algorithm of snake robots.

where np is the number of selected path points. Pseudocode of the Floyd method is shown in Algorithm 2.
Its parameters are listed in Table III.

4. PI-based motion planning of snake robots
Motion planning of multiple DOFs snake robots can be defined as a stochastic optimal control problem.
Inspired by ref. [31], we use a goal-oriented PI-based motion planning method to control a robot to
move along the planned paths in complex environments. To plan goal-oriented motion according to the
generated path points, the relationship between the stochastic optimal control and PI is analyzed based
on a Bellman principle of optimality and a Hamilton–Jacobi–Bellman (HJB) equation. Different from
ref. [31], the control difficulty and accuracy of the planned paths are considered in this work. Besides,
a parallel training strategy is built to explore the control parameter space of the global path briskly.

4.1. Stochastic optimal control
Stochastic optimal control aims at maximized goal performance. To evaluate performances of the
trajectory τi between ti and tN), a reward function is defined as:

J(τi) = φ[x(tN), tN] +
∫ tN

ti

L[x(t), u(t), t]dt, (13)

where x(t) and u(t) are the state and control vector at time t, respectively. Parameters φ[ · ] and L[ · ]
are a terminal reward and an immediate reward at time t, respectively. The minimum cost function in
stochastic optimal control is as follows:

Vti = min
uti :tN

Eτi [J(τi)], (14)
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Algorithm 2: The Floyd algorithm

Input: The sequence of point P generated by a Q network

Output: The sequence of screened point Pn

1 Remove adjacent collinear path points;

2 for i = np − 3, . . . , 0 do
3 only if;

4 if pi−1pi and pipi+1 are collinear vectors then
5 Remove the connecting path point pi;

6 end
7 end
8 Remove excess turning points;

9 for i = np − 3, . . . , 0 do
10 for j = 0, . . . , i − 1 do
11 if There is no collision between path points pi and pj with obstacles then
12 for k = i − 1, . . . , j do
13 Remove path point pk;

14 end
15 end
16 end
17 end
18 Return Pn

Table III. Parameters of the path smoothing algorithm.

Weights y−3 y−2 y−1 y0 y1 y2 y3

ŷ−3 32/42 15/42 3/42 −4/42 −6/42 −3/42 5/42
ŷ−2 15/42 12/42 9/42 6/42 3/42 0/42 −3/42
ŷ−1 3/42 9/42 12/42 12/42 9/42 3/42 −6/42
ŷ0 −4/42 6/42 12/42 14/42 12/42 6/42 −4/42
ŷ1 −6/42 3/42 9/42 12/42 12/42 9/42 3/42
ŷ2 −3/42 0/42 3/42 6/42 9/42 12/42 15/42
ŷ3 5/42 −3/42 −6/42 −4/42 3/42 15/42 32/42

where Eτi [ · ] is expectations of all trajectories starting at state xti . The stochastic dynamic system is
considered as:

ẋt = f (xt, t) + G(xt)(ut + εt) = f t + Gt(ut + εt), (15)

where xt ∈ Rn×1 is a state vector of the system, Gt = G(xt) ∈ Rn×p is a control matrix, f t = f (xt, t) ∈ Rn×1

is a passive dynamics, ut ∈ Rp×1 is a control vector, and εt ∈ Rp×1 is a Gaussian noise with a zero mean
and a variance �ε. The immediate reward is defined as:

Lt = L[x(t), u(t), t] = qt + 1

2
uT

t Rut, (16)

where qt = q(xt, t) is an arbitrary state-dependent cost function, and R is a positive semi-definite weight
matrix of the quadratic control cost. The HJB equation of this stochastic optimal control problem is
defined as:

−∂tVt = min (Lt + (∇xVt)
TFt) + 1

2
trace

(
(∇xxVt) Gt�εGT

t

)
, (17)
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where ∇x and ∇xx are the Jacobian matrix and Hessian matrix, respectively. Substituting the optimal
control into (17), we can get a second-order nonlinear partial differential equation (PDE):

−∂tVt = qt + (∇xVt)
T ft − 1

2
(∇xVt)

TGT
t R−1GT

t (∇xVt)

+ 1

2
trace

(
(∇xxVt) Gt�εGT

t

)
. (18)

4.2. Transformation of HJB into a linear PDE
Due to the complexity of HJB equation, an exponential transformation of the value function is proposed
as Vt = −λ lg �t. A second-order linear PDE can be obtained as:

−∂t�t = −1

λ
qt�t + f T

t (∇x�t) + 1

2
trace

(
(∇xx�t) Gt�εGT

t

)
, (19)

where �tN = exp (− 1
λ
φtN) is the boundary condition, and the analytic solution can be obtained according

to the Feyman–Kac theorem:

�ti = E

(
�ti exp

(
−
∫ tN

ti

1

λ
qtdt

))
= E

(
�ti

(
exp

(
−1

λ
φtN − 1

λ

∫ tN

ti

qtdt

)))
. (20)

In this way, the stochastic optimal control problem is transformed into an approximate PI problem:

�ti = lim
dt→0

∫
p(τ i|xi) exp

[
−1

λ

(
φtN +

N−1∑
j=i

qtj dt

)]
dτ i, (21)

where τ i = [xti , xti+1 , . . . , xtN ]T is a sample path which starts from xti . The probability of τ i is as follows:

p(τ i|xi) = exp
(− 1

λ

)
∫

exp
(− 1

λ

)
dτ i

. (22)

The optimal controls can be simplified as:

uti =
∫

p(τ i|xi)uL(τ i)dτ i. (23)

However, the above analytic solutions depend on the system model f t. Using the PI algorithm, the prob-
ability of trajectory τi,k, that is, the k-th path generated randomly in the start state xti , is updated as:

P(τi,k) = exp
(− 1

λ
S(τi,k)

)
K∑

j=1

exp
(− 1

λ
S
(
τi,j

)) . (24)

The control vector can be iterated as:

u = u +
K∑

k=1

P(τi,k)
R−1Gti ,kG

T
ti ,k

GT
ti ,k

R−1Gti ,k

. (25)

The objective is to find ui that minimizes the cost function corresponding to the trajectory τi generated
by the control variable:

V = min
u

Eτi [R(τi)] = min
u

∫
R(τi)P(τi)dτi. (26)
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The probability of trajectory τi is computed as:

P(τi) = S(τi)
K∑

j=1

τi

, (27)

where K is the number of generated trajectories and S(τi) is computed as:

S(τi) = exp

(
− R(τi) − min (R)

max (R) − min (R)

)
, (28)

where R = [R(τ1), R(τ2), · · · , R(τK)]. The control vector u∗ of the next iteration is as follows:

u∗ =
K∑

i=1

P(τi)ui. (29)

4.3. Policy improvements with PI
A compound serpenoid curve templet is proposed based on research of biological snakes in ref. [33].
For the lateral undulation gait, snake robots move forward by swinging their yaw joints. Joint angles are
defined as:

φi,ref = αh sin (ωht + (i − 1)βh) + γh, (30)

where φi,ref is the reference yaw angle of joint i at time t, and αh, ωh, βh, and γh are amplitude, angular
frequency, phase difference, and phase offset, respectively. Gait parameters of the robot can be expressed
as a vector U = [αh, ωh, βh, γh]T . Values of initial and the ξ -th iteration of gait parameters are denoted
as U0 = [α0, ω0, β0, γ0]T and Uξ = [αξ , ωξ , βξ , γξ ]T , respectively. Each iteration of training generates K
paths randomly. Path τi is determined by ui = [εαhi

, εωhi
, εβhi

, εγhi
]T , where ε obeys normal distribution

with a zero mean. The corresponding loss function R(τi) is expressed as:

R(τ1) =√
(x0 − xg)2 + (y0 − yg)2. (31)

During the goal-oriented movement of multiple path points, the snake robot may fail to track
unsmooth paths. In order to make the robot complete the goal-oriented motion, we design a new loss
function that combines the deviation of trajectory and moving difficulty:

R(τ1) =√
(x0 − xg)2 + (y0 − yg)2 +

∣∣∣∣arctan θ − yg+1 − yg

xg+1 − xg

∣∣∣∣ , (32)

where θ̄ = 1
N

∑N
i=1 θi is a robot’s forward direction. Parameters of path i in the (ξ + 1)-th training are as

follows:

Ui
ξ+1 = Uξ + ui =

[
αξ + εαi , ωξ + εωi , βξ + εβi , γξ + εγi

]T
. (33)

Gait parameters after ξ + 1 iterations are updated as:

Uξ+1 = Uξ + u∗. (34)

The variance of ε is related to the loss function value produced by Uξ after ξ iterations, and the standard
deviation in the (ξ + 1)-th training is

σ = [
σα, σω, σβ , σγ

]T = [
fα(r), fω(r), fβ(r), fγ (r)

]T
. (35)

4.4. Closed-loop control framework
To realize the autonomous movement of snake robots in complex environments, this work designs a
closed-loop control framework. As shown in Fig. 3, it is composed of path planning, path smoothing,
and motion planning modules.
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Algorithm 3 The Goal-oriented Motion Planning Algorithm Based on PI Method

Initialize the controls of gait equation U0;
Initialize the variance of stochastic control increment σ2;
for ξ = 1, 2, · · · , M do

for i = 1, 2, · · · , K do
Generate the stochastic control increment ui according to σ2;

U i
ξ+1 = Uξ + ui

Generate trajectory τi and loss R(τi) according to U i
ξ+1;

end
Update the controls Uξ+1;
Generate trajectory τi and corresponding loss function r according to Uξ+1;
Update the variance σ = f(r);

end

Figure 3. Global framework for motion planning of snake robots.

In path planning, actions are selected by a neural network. The robot gains experiences by continu-
ous interacting with environments. Weights of the network are updated by a back-propagation algorithm
based on an experience replay technology. In path smoothing, path points generated by the trained
strategy are filtered and adjusted by the proposed Floyd-MA path smoothing algorithm.

In motion planning, obtained reliable path points are used to obtain gait parameters trained by PI
algorithm in parallel to achieve goal-oriented motion. Its pseudocode is shown in Algorithm 3.

5. Simulation
To test the proposed DQN-based path planning and PI-based motion planning algorithms, this work
conducts extensive simulations in CoppeliaSim and Pycharm.

5.1. Path planning of snake robots
A virtual snake robot prototype is built in CoppeliaSim. Same with our previous work [20], a robot
prototype is constructed. To generate anisotropic friction between a robot and the ground, a pair of
passive wheels are equipped at each link. Communication and control of snake robots in CoppeliaSim
are implemented through a remote API.

Obstacles are represented by rectangles with arbitrary poses. They are dilated on each side. The
dilated distance is the maximum gait amplitude set in the optimization problem. Parameters of the neural
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Table IV. Parameters of the PI motion planning algorithm.

Symbol Description Value
M Number of iterations 20
K Number of paths generated in each iteration 30
St Number of training 600
(x0, y0) Start position (-2.3, -0.5)
(xg, yg) Target position (3.1, -3.1)
U0 Initial values of gait parameters [0.6, 7, 0.7, 0]T

σ 0 Standard deviation of normal distribution [0.025, 0.5, 0.1, 0.0]T

Figure 4. Path planning of a snake robot. (a) Simulation environment; (b) path planning; (c) path point
filtering; and (d) path smoothing.

network and a path smoothing algorithm are set as Table I and Table II, respectively. Simulation results
are exhibited to show the process of motion planning.

As shown in Fig. 4(a), obstacles (red and yellow) are dilated by safety margins (green). The start
position of a snake robot is the lower right corner. The target position is the upper left corner. As shown
in Fig. 4(b), a passable path in a complex environment is generated by using DQN, but there exist
collinear path points and excessive curvature changes between neighboring points. As shown in Fig. 4(c),
redundant collinear path points and points with excessive curvature changes are deleted by the Floyd
algorithm. As shown in Fig. 4(d), MA improves the path smoothness and reduces the difficulty of path
following.
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Figure 5. Performances of PI in goal-oriented motion of the snake robot. (a) The first stage. (b) The
second stage. (c) The third stage.

Figure 6. Values of gait control parameters. (a) The first stage. (b) The second stage. (c) The third stage.

5.2. Motion planning of snake robots
In order to verify the feasibility of the proposed PI-based motion planning algorithm, we conduct exten-
sive simulation in CoppeliaSim. The PI method is used to train three path segments in parallel as prior
knowledge, and then the spaces of gait parameters on the global path are explored serially to realize
end-to-end mapping between the planned path points and gait parameters. Parameters used in motion
planning are listed in Table IV. The standard deviation is computed as:

σ = f (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ0, r ≥ 0.5

rσ0/2, 0.2 ≤ r < 0.5

rσ0/4, 0.05 ≤ r < 0.2

rσ0/8, 0.2 ≤ r < 0.05

. (36)

As shown in Fig. 5(a)-(c), loss functions of the first stage to the third stage converge to stable states.
As shown in Fig. 6(a)-(c), corresponding to the change curve of the parameters of the gait equation
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Figure 7. A snake robot moves in a multi-obstacle environment controlled by the PI-based motion
planning algorithm.

as the iteration count increases. These curves converge to stable states from initial states quickly.
After training, gait parameters in the first stage converge to U(1) = [0.6129, 7.2016, 0.7238, 0.0367]T

as shown in Fig. 6(a). Gait parameters in the second stage converge to U(2) = [0.5869, 6.5121,
0.7915, 0.0227]T as shown in Fig. 6(b). Gait parameters in the third stage converge to U(3) =
[0.5914, 6.5964, 0.8163, 0.0381]T as shown in Fig. 6(c).

Trajectory of the robot’s CM is shown in Fig. 7. It can be got that the snake robot can move toward to
a target smoothly in a multi-obstacle environment controlled by using the proposed path planning and
motion planning methods.

6. Conclusion
This work proposes an RL-based motion planning framework for snake robots. A DQN method is used to
plan a passable path in multi-obstacle environment. A multi-objective fusion adaptive reward mechanism
is designed for the method. For the mechanism, weights of DQN are updated based on an experience
replay technology. A Floyd-MA path smoothing algorithm is proposed to smooth the planned path. To
control snake robots to move along the planned paths, a PI algorithm is used to compute gait parameters.
Several local paths are in parallel trained to gather experiences based on a PI method to minimize the
global deviation from the designed path. Experimental results show that the proposed motion planning
algorithm can control snake robots to move autonomously in multi-obstacle environments.

Our future work intends to investigate their motion control methods by combining the path planning,
path following, and environmental perception [34, 35] in complex environments with dynamic obstacles.
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