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Abstract. This paper deals with the question of which periods can occur as periods
of periodic points of zero entropy surface homeomorphisms in a given isotopy class.
We give new examples of isotopy classes for which there are non-trivial restrictions
and describe how the possible periods can be computed. Certain phenomena occur
only for surfaces of large genus. These results have applications to the periodic
data question for Morse—-Smale maps. ’

0. Introduction

Recent results in the field of dynamical systems establish interesting relationships
between the periods of-periodic points and the dynamical complexity in low
dimensional dynamical systems. An important measure of complexity is the topo-
logical entropy. The entropy of a map f is a global measure of the stretching caused
by f. In [2] it is shown that there are restrictions on the periods of periodic points
for self maps of the interval with zero entropy. In [1] and [6] it is shown that similar
restrictions apply for orientation reversing homeomorphisms of surfaces.

In this paper we discuss arbitrary homeomorphisms of surfaces. Our main
proposition implies that a set of periods of periodic points of some homeomorphism
f with zero entropy can be realized by an f isotopic to f where ' has a very simple
form described in § 2. We use this result to show that for almost all surfaces there
are isotopy classes of homeomorphisms which do not contain, for example, zero
entropy maps with fixed points. In theorem 3.1 we give an explicit algorithm for
computing possible periods of periodic points of zero entropy homeomorphisms
isotopic to isometries.

Another line of investigation in dynamical systems for which this paper has
relevance is the study of structurally stable diffeomorphisms. The structurally stable
diffeomorphisms of surfaces with zero entropy are exactly the Morse-Smale
diffeomorphisms. A basic invariant of such a diffeomorphism is the periodic data
set which describes the period and type of perodic points. The conditions on periods
described in this paper give conditions on periodic data sets that must be satisfied
in order that they be periodic data sets of Morse~-Smale maps in a given isotopy
class. These conditions are not implied by the Morse inequalities or homology zeta
function condition. In particular we get additional conditions in the case of orienta-
tion preserving maps of oriented surfaces and maps isotopic to the identity on
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non-orientable surfaces (compare with [9]). The existence of such conditions was
not previously known. In a forthcoming joint paper with Steve Batterson we will
describe necessary and sufficient conditions on periodic data sets that they be
realizable by Morse-Smale diffeomorphism in a given isotopy class in these two
cases.

The case of orientation preserving homeomorphisms of oriented manifolds is
particularly interesting. We give here two propositions which illustrate fairly subtle
behaviour in this case.

PROPOSITION 3.2. Let M be the oriented surface of genus 145. There exists an
orientation preserving homeomorphism f:M > M with zero entropy so that for any
homeomorphism f' isotopic to f with zero entropy either

(1) the periods of all periodic points under f' are multiples of 3, 5 or 14,
or (2) the periods of all periodic points under f' are multiples of 3, 7 or 10.
Furthermore, there exist f, and f, isotopic to f with zero entropy for which any
multiple of 3, 5 or 14 is a period of some periodic point under f, and any multiple
of 3,7 and 10 is a period of some periodic point under f,.

Remark According to this proposition there are different zero entropy homeo-
morphisms isotopic to f with points of period 5 or 7 but any single f* isotopic to f
with points of period 5 and 7 has positive entropy.

PROPOSITION 3.3. Let M be an oriented surface of genus less than 145. Let f, and
f2 be isotopic orientation-preserving homeomorphisms of zero entropy. We can construct
an f5 with zero entropy so that any n which is a period of a periodic point of f1 or f>
is also a period of a periodic point of f.

Remark. This proposition shows that the phenomenon exhibited in proposition 3.2
cannot occur on a surface of lower genus.

1. In this section we collect facts about simple closed curves and describe Thurston’s
canonical form for surface homeomorphisms. A general reference is [5].

Let M be a compact, not necessarily oriented, surface with a hyperbolic metric.
If M has a boundary we assume that the geodesic curvature of the boundary is zero.
Definition. Let ¥* be the set of unoriented homotopy classes of simple closed
curves in M which do not bound disks or Moebius bands. Let & consist of those
curves in &° which are not homotopic to boundary components. (Note: This
definition differs from the definition in [10].)

LEMMA 1.1. Every class in ¥ is represented by a unique simple closed geodesic and
every simple closed geodesic represents a class in .

LEMMA 1.2. Let v, and vy, be geodesics representing distinct elements [v,], [v2] in
" and let ¢, and c; be arbitrary curves representing these elements. Then

card {y1 N y2} =card {c1 " ca}.

Definition. Let i([y1], [y2]) = card {y1 nv2}.
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Lemma 1.1 implies that this is a well defined function on ¥* x #".

LeEMMA 1.3. If ¢ is an oriented curve which does not bound a disk or Moebius band,
then c is represented by a unique oriented geodesic.

All of these assertions can be proved by considering the geometry of the universal
covering space of M.

LEMMA 1.4, Let c represent an element of ¥ which has an annular neighbourhood
U. If fis a homeomorphism with f(c)=c and f is isotopic to the identity then f
preserves the local orientation on U.

Proof. We can assume that ¢ is a geodesic. Let M be the orientation cover of M.
¢ lifts to two geodesics ¢; and ¢, in M. f lifts to a homeomorphism fM->M
isotopic to the identity. If f reverses the orientation of ¢ then f(&,) = &,. But this
would imply that ¢, is homotopic to ¢, which contradicts lemma 1.1. O

COROLLARY. f as above preserves the normal direction.

Proof. It follows from lemma 1.3 that f preserves the S' direction on U. Since f
preserves the total orientation on U it must preserve the normal direction. O

Definition. A curve ¢ representing an element of " is normally flipped by a
homeomorphism g if ¢ has an oriented normal bundle, g preserves the $' direction
and g reverses the normal direction.

Thurston’s canonical form. Thurston’s theory of surface homeomorphisms allows
us to isotope an arbitrary homeomorphism f to a homeomorphism f which can
be decomposed by an invariant family of curves I into isometry pieces and pseudo-
Anosov pieces. In each pseudo-Anosov piece there is a curve ¢ so that the length
of the shortest geodesic representing fle (or flc) grows exponentially with /. Thus
the existence of a pseudo-Anosov piece implies that the entropy of f is positive.

Now let f be a homeomorphism with zero entropy on a surface of negative Euler

characteristic. Let U be a disjoint union of e-neighbourhoods of the curves in I'.

We may assume that f is an isometry on the complement of U and that T’ is

minimal in the sense that given an orbit of geodesics ¢ and an e-neighbourhood

of these geodesics Uy < U, f | Uy is not homotopic to an isometry relative to M — U.
The following corollary gives a canonical form for f |U.

LeEMMA 1.5. Let A be an annulus (respectively, Moebius band). Let f:A > A be a
homeomorphism which preserves length on 0A. Let A be the universal cover of
A. A=[-1,1]1XR where the covering translations are generated by T(x,y)=
(x,y +1) (respectively, T(x,y)=(—x,y +1)). Then f is homotopic rel 3 to a map
f1 0n A covered by f1 where

filx, y) = (£x, £y + Ax +¢).
If B is a Moebius band then A =0.

Proof. Let f be a lift of f. Given that f preserves length on each component of the
boundary and either preserves direction on both components or reverses direction
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on both components we can find a map of the form
L(x,y)=(£x, xy +Ax +c)
which induces the same map on 3A. The linear homotopy
Hi(x,y) = 1f(x, y)+(1=DL(x, y)
on A, induces on A a homotopy rel A from f to the map on A induced by L. If
A is a Moebius band then the fact that L either commutes or anti-commutes with

T gives A = 0. If we choose a lift which preserves boundary components we can
take the coefficient of x to be 1. O

COROLLARY. If f: A > A is a homeomorphism with finite order on A which is not
homotopic rel dA to a homeomorphism of finite order then A is an annulus and f
preserves orientation.

Proof. If A is an annulus and the orientation is reversed, then the eigenvalues of
the linear part of fi are +1 and —1. The linear part of f2 is the identity. Thus f?
is a translation and the corollary follows. If A is a Moebius band, then it is immediate
that /3 is a translation. O

It is possible to assume (using equivariant Teichmuller theory) that the metrics on
different components of M —U match up along the boundary curves to give a
metric defined on all of M so that the curves in I' are geodesics and U is an
e-neighbourhood of these curves in this metric. This assumption is convenient for
technical reasons but it is not essential to our proofs.

Let X be a finite f invariant subset of M. It is shown in [6] that one can construct
a Thurston canonical form for f relative to . We now describe this construction.
We can add boundary circles to the ends of the manifold M — 2. Denote the new
manifold by M —X. By isotoping f]M — X in e-disk neighbourhoods of the points
in ¥ we may assume that f|M — 3 extends to a homeomorphism f; on M —X. We
can put f in Thurston canonical form which we denote fl.

According to [6] there are no pseudo-Anosov pieces in this decomposition. (It
is shown that modifying f in a neighbourhood of X cannot.introduce pseudo-Anosov
pieces.)

Now add disks to the boundary components of M —X. fl extends to these
disks and we can identify the centres of these disks with the points in 2. We denote
this canonical form for f by fs. Let I's denote the set of twist curves in this
decomposition.

The following lemma concerning Thurston canonical form will be used in § 2,

LEMMA 1.6. Let a be a geodesic representing [a]e &. If [a] has a finite order under
f then either a €I or « is disjoint from all geodesics y € T.

Proof. Let t, denote the twist along y. We have

)
f=tlotl2e otk where n; =1,

If @ does not satisfy the conclusion of the lemma then i({y;], [a]) is not zero for
some j. Since the different twist maps t,, have disjoint support they commute. Thus
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the order of the vy; is immaterial and we may assume that i([y], [a]) # 0. Write
fl=tioh.
There exists a curve 8, so that i([y;],[8:1]) #0 and i([y;],[B:1]) =0 for j # 1.

If v and B are represented by disjoint curves, then for any curve a, t,[a] is
represented by a curve which intersects 8 the same number of times as a. Thus

i(t5[a]), [Bh=i([a], [BD.
If we consider this formula with [a] replaced by tJ[a] and n replaced by —n we
get the opposite inequality. We conclude that

(1) i(t"la], [B) =i(a),[B)].
We have the following formula from [§]:
(2) li(tylal, (B —ni((ad, [yD-i(B), [yDI=i(al [B).

Replacing [a] by A™[a], [8] by [81], [y] by [y:], and n by mn, gives

(3) |i(fm.1[a ]1 [Bl])_m *hypc i(hm[a], [yl]) * l([ﬁl]’ [71])| = i(hm[a], [Bl])
Using (1) repeatedly we have i(h"[a], [v1]) =i(a], [y1]) and
ith™[a], [B1) =i([a], [B1)). Substituting in (3) gives

@ i el [B:)—m - ny - i(ad, [y1D - i(B1] [y Dl =i((a], [B1D).

By assumption n - i([a], [v1]) - i([B1], [y1]) is not zero. (4) implies that as m varies
i(f™"'[a], [B1]) must assume infinitely many distinct values, therefore the orbit of
[a] under the action of f is infinite. O

We end this section with a discussion of flipped periodic points and their relation
to Thurston canonical form.

Definition. Let h be a homeomorphism. An h-periodic point x of period p is flipped
if h” reverses the local orientation at x.

If 4 is an orientation preserving homeomorphism of an oriented manifold then
no periodic points are flipped. If & is an orientation reversing homeomorphism of
an oriented manifold then a periodic point is flipped if and only if its period is odd.
If the manifold is not oriented there are no a priori restrictions on the existence
or periods of flipped or unflipped periodic points.

Let fs be a homeomorphism in relative Thurston canonical form. Note that
f-flipped periodic points in £ correspond to fs-flipped periodic points.

Let My<= M be the region where fs is an isometry. M — M, is a disjoint union
of annular neighbourhoods of curves in I's. Let x € M, be a flipped periodic point
of period p. The fixed point set of an isometry of a Riemannian manifold is a closed
submanifold Y < M,. The tangent space to Y at x is the set of tangent vectors
fixed by the derivative of the isometry at x. In the case at hand, Df% is an isometry
of R? which reverses orientation. The fixed point set of Df% must therefore be a
one-dimensional subspace. Let X be the component of Y containing x. By the
above reasoning, X is a circle or interval with its endpoints contained in the
boundary of M. If z is an endpoint then Df% reverses the local orientation at z.
On the other hand, f§ preserves an orientation on a neighbourhood of each curve
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in I's. We conclude that X is a circle contained in M,. Let G, denote the set of
circles of flipped periodic points of arbitrary period. Clearly, distinct circles in G,
are disjoint.

2. We will construct examples of smooth diffeomorphisms with zero entropy and
many periodic points. To construct these examples we modify Thurston canonical
form by putting rotational shear in neighbourhoods of simple closed curves. Assume
we are given an f with zero entropy and a family I" of curves homotopy invariant
under f, containing the twist curves of f and such that i(y;, y2) =0 for yi, y.€l
and i(y;, @) =0 when a is a reflective curve not contained in I. We can put f in
Thurston canonical form and choose a hyperbolic metric on M which is preserved
by f outside neighbourhoods of the twist curves. We can represent all the curves
in T’ by geodesics. Because of the condition i(yi, y2) =0 these geodesics will be
disjoint. We can choose an ¢ so that ¢-neighbourhoods of these curves are disjoint
and do not meet reflective curves. We can assume that f is an isometry outside
e-neighbourhoods of the twist curves.

Let y be a geodesic in I of setwise period n. Let A be the e-neighbourhood of
y. f/(A)=A. If we use the map f"~' to identify " "'(A) with A we can think of
flf"1(A) as a map from A toitself. Let fo: A > A denote this map. We will construct
an f;:A > A and then modify f by replacing fo by f1 on f*"(A). A point of period
p under f; will correspond to a point of period np under f.

Case 1. A is an annulus. We can choose coordinates so that A =[—1, 1]xR and

the covering translations are generated by a map T such that T(x,y)=(x,y +1).
Let f, be a lift of f, to A. We may also assume that fo acts on dA by translation.

Subcase 1a. f, preserves orientation and boundary components. fo is homotopic
rel 3A to a map of the form

folx, y) = (x, y +po(x))
where pg is linear. Define

file, y) = (x, y +p1(x))

where p; is a C* function satisfying:

(a) forxe[~1,-1+8], pilx)=po(-1);

forxef[1-6,1], pi(x)=po(l).

(b) p([—1, 1)) =R has length at least 1.
Let f1 be the function induced on A. The first condition guarantees that fp; will
have a smooth extension to all of M and that f; is homotopic to f; rel 8. The second
condition guarantees that f; will have points of all periods: let c,, be the circle of
points in A with first coordinate xo; f, induces a rotation on c,, with rotation
number p;(x¢) mod 1. Condition (b) guarantees that all rotation numbers will be
represented and thus all periods.

Subcase 1b. f, preserves orientation but interchanges boundary components. We
may assume that

fo(x, y) = (—x, =y +po(x))
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with pg linear. Let

filx, y) = (=x, =y +p1(x))
where p; is a C™ function satisfying condition (a) above and p; =0 for x in a
neighbourhood of zero. Since

fit, y)= (6 y—px)+p(—x)),
f1 has (0, 0) as a fixed point and has order 2 in a neighbourhood of (0, 0). We can

add a twist in a small neighbourhood of the image of (0, 0) (as in subcase 1a) to
get points of all periods.

Subcase 1c. f, reverses orientation and interchanges the boundary components.
We may assume that

folx, ) =(=x, y +po(x))
where po(x) is linear. Let

-~

filx, y)=(=x,y +p:(x)),
where p,; satisfies condition (a) and f; takes ¢, to c¢_,, thus points not on ¢, must
have even period. Now

fit, y) =y +o(x)+p(—x)).
If the set {p(x)+p(—x):x €[—1, 1]} has length greater than one we get points of
every even period. We can get points of a single odd period n by requiring that
p(0)=1/n. These points will be flipped.
Note. The case in which f, preserves boundaries and reverses orientation need not
be considered. In this case dA would cross a reflective curve.

Case 2. A is a Moebius band. We can choose coordinates so that A =7 xR and
the covering translations are generated by a map T where T(x,y)=(—x,y +1).

Subcase 2a. f, takes a generator of 7{(A) to itself. We may assume that

folx, y) = (x, y +po(x))
where pg is constant. Let

filx, y)=(x, y +p1(x))
where p, satisfies condition (a) and p,(x ) = p1(—x). This second condition is necessary
for fl to commute with T. For x,€[0, 1], let ¢,, be the circle in A corresponding
to points with x coordinate *x,. f(c,,) = ¢4, and the induced map is a rotation with
rotation number 3p (xo). Assume that the image of p contains an interval of length
2 and that p(0)=1/n. This gives a flipped point of period n and unflipped points
of all periods.

Note. The case in which f, takes a generator of 7; to its inverse need not be
considered because again 0A would cross a reflective curve.

Choose a finite set of unflipped points in the complement of the e-neighbourhoods
of ¥ which represent all periods for f restricted to this set. In a neighbourhood of
these points we can twist around annuli as in subcase 1a to get periodic points of
all periods.
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The purpose of the main proposition which follows is to show that if a finite set
of periods can be realized by an f with zero entropy then it can in fact be realized
by an f'~f, where f’ is one of the diffeomorphisms we have just constructed. Let
2 be a finite f-invariant set. Let fs denote the relative canonical form for f. Let I'y
be the set of twist curves for fs.

Definition. Let @ denote the set of 2-dimensional submanifolds Y =M such that
(1) each boundary component of Y is an element of I's;
(2) the Euler characteristic, x(Y), is greater than or equal to zero.

Definition. Let 2 4 consist of those points in £ which are either flipped or contained
in some maximal annulus or Moebius band in &.

PROPOSITION 2.1. (MAIN PROPOSITION.) Let M be a surface with y(M)<0. Let
f:M - M be a homeomorphism with zero entropy. Let f be the Thurston canonical
form for f. Then there is a function o : 4> & such that

(1) the image of o is represented by a set of disjoint curves;

(2) o is f-equivariant, thus the f-period of an element in X 4 is a multiple of the
period of its image in & ;

(3) all flipped periodic points are assigned to geodesics which are either normally
flipped or have Moebius band neighbourhoods and all flipped periodic points assigned to
the same f-orbit in ¥ have the same period,

(4) if o(x) is represented by a normally flipped geodesic, but x is not a flipped
periodic point, then x has even order;

(S) the f-periods of points in . —3 4 are multiples of f-periods of points in M.

COROLLARY 2.2. The tmage of T4 in & is represented by a set of geodesics, each
of which is disjoint from the f twist curves or equal to an f-twist curve.

Proof. By assertion (2), the image of £, in & consists of f-periodic elements and
these are represented by f-periodic geodesics. Lemma 1.3 yields the corollary. O

If M is oriented and f preserves orientation then (3) and (4) are vacuous. If f
reverses orientation then (4) is true automatically and in assertion (3) the term
‘flipped periodic point’ may be replaced by the term ‘periodic point of odd period’.

Proof of main proposition. Recall that G, is the set of components of flipped periodic
points of fs.

LEMMA 2.3. If an element of G, bounds a disk, then M =S*. If an element of G,
bounds a Moebius band, then M = K>, If two elements of G, bound an annulus then
M =T? or K>. If some element ¢ of G, is homotopic to a curve in T's then c is
contained in an element of ®.

Proof. Let ¢ € G, consist of flipped points of period p. Assume ¢ bounds a manifold

X, then X Uf5X is a closed submanifold of M. It is therefore equal to M. If X is
a disk or Moebius band then M is respectively a sphere or Klein bottle.
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Let co, ¢1 € G, consist of flipped points of period p, and p;. Assume that ¢, and
c¢1 together form the boundary of an annulus A. If f&¢;=c, then AUfA is a
torus or Klein bottle and we are done. If f§°c; # ¢, then the two curves are disjoint
and A Uf%°A is an annulus, the boundary components of which consist of flipped
points of period p;. We can apply the previous argument to these curves and this
annulus.

Assume that ¢ is homotopic to a y € I's. Thus ¢ and y form the boundary of an
annulus A. A Uf§A is an annulus with boundary equal to y U f%y. Thus

CCAUfiAeD.

This completes the proof of the lemma. d

Since x(M)<0, the lemma implies that each element of G, represents a distinct
element of &.

Definition. Let x be a flipped periodic point in X, then o(x) is the class in &
represented by the element of G, containing x.

There is a partial ordering on & given by inclusion. We are interested in elements
of @ which are maximal with respect to this ordering.

LEMMA 2.4, Two maximal elements of ® are either equal or disjoint.

Proof. Let X and Y be elements of ® which intersect. We will show that X uY
is again an element of ®. The boundary components of X and Y are either disjoint
or coincident. If they coincide we may perturb them without changing X U 'Y so
that they are disjoint. After this perturbation X n Y is a manifold with boundary.
We have the formula

x(X0Y)=xX)+x(Y)-x(XnY).

If x(X nY) is non-positive then x (X U Y) is non-negative and we are done. If
x(X nY)is positive then X n Y has a disk component. Let D be a disk component
of X nY. D is a component of the boundary of X or Y. Without loss of generality,
assume dD < 4X. Since D = X as well, D must be open and closed in X, so D = X.
Now X uY <Y and Y € d so we are done. O

Let Y be a maximal element of ®. Since x(M)<0, Y is a proper submanifold of
M. There are three cases: Y can be a disk, annulus, or Moebius band. Let &
denote the set of maximal annuli and Moebius bands.

LeMMA 2.5. There can be at most one component of G, in each maximal annulus
or Moebius band.

Proof. In each annulus there is a unique unoriented non-trivial homotopy class
represented by a simple closed curve. In a Moebius band there are two such
classes but only one of these can be represented by a curve not bounding a
Moebius band. ' O
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In each maximal annulus or maximal Moebius band not containing a curve in G,
choose a core curve. We may assume that fs permutes these curves. Let G, be the
set of these curves.

LEMMA 2.6. No curve in G, bounds a disk or a Moebius band. No two curves in
G.u G, bound an annulus.

Proof. Let ¢, be a curve in G.. ¢; is contained in some A which is maximal in .
If ¢, bounds a manifold X = D? or X =Moebius band, then A UX e . By the
maximality of A, X < A so that ¢; bounds X in A. This is not possible.

If two curves in G, c; <A and ¢»; <A, bound an annulus A, then A, UA UA;
isin®soA;cA,and A, A,. Thus c; =c,. Now assume ¢, € G. and ¢, € G, \G,,
bound an annulus A. Say ¢; = 4;. If A, is a Moebius band then ¢, represents an
element of H;(M, Z,) with non-trivial algebraic self-intersection. But the disjoint
curve ¢, represents the same homology class. This is impossible. Thus A; is an
annulus. A, = I's. Thus ¢; is homotopic to an element of I's, hence ¢, is homotopic
to an element of I's. This contradicts lemma 2.3. O

The lemma implies that each element of G, represents an element of &.

Definition. Let x be an element of X contained in some maximal annulus or Moebius
band in ®. Then o (x) is the class in & represented by the core curve of the maximal
element of ® that contains x.

Assertion (1) of proposition 2.1 follows from lemma 1.2 and the fact that the
curves in G, U G, are disjoint.

We now prove assertion (2). fx acts on the set of maximal annuli and Moebius
bands. Clearly the function which assigns to each x € = the homotopy class of the
maximal annulus or Moebius band that contains it is fx-equivariant. The actions
of f and fs on X are the same by construction. The actions of f and fs on & are
the same because fs and f are isotopic. Thus o is f-equivariant.

We prove assertion (3). Let Q = X4 consist of flipped points mapped by ¢ to a
single f-orbit in &. The orbit in & is represented by curves ¢y, ..., ¢, in G,. These
curves cannot have oriented neighbourhoods whose orientations are preserved by
fs and they cannot be longitudinally flipped hence they either have Moebius band
neighbourhoods or have normal orientations reversed by fx. Both of these properties
are homotopy invariant hence they hold for the corresponding curves under f. This
proves the first statement. The points in Q lie on the curves c¢4,. .., c, and these
curves are cyclically permuted by fs. It follows that all points in Q have the same
period under fs hence under f.

We prove assertion (4). If x is not a flipped periodic point it does not lie on a
curve in G,. If o(x) is represented by a normally flipped geodesic it must be the
homotopy class of the core curve in a maximal annulus A containing x. If the core
curve y of A is homotopic to a normally flipped curve under f then y must be
normally flipped by fs. This follows from the corollary to lemma 1.4, A—y has two
components. If y has order p these components are reversed by f§. Since x € A~y,
the order of x must be an even multiple of p.

https://doi.org/10.1017/5014338570000198X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000198X

Periodic points of surface homeomorphisms with zero entropy 325

In order to prove assertion (5) we need the following extension of Epstein’s
result on isotopies.

LEMMA 2.7. Let G be a family of disjoint simple closed curves representing distinct
elements of &. Then there is a homeomorphism h of M isotopic to the identity so that
h(G) is a disjoint union of geodesics.

Proof. Let ¢y - - - ¢, be the curves in G. If there is an h; which takes ¢1---¢; to
geodesics, we will construct an ;.. isotopic to #; that takes ¢; - - - ¢; to geodesics.
Let

M, =M - U hi(c;).
i=1

Let M; be the metric closure of M, M, is a compact manifold with geodesic
boundary. Variational arguments show A;(c;.1) is homotopic to a geodesic v;.1
inside M. Since c;.; is not homotopic to any h(c;), for j=1---14, v;.; is not a
boundary component of M;, so v;.1 <M.

According to [4] there is a homeomorphism A’ which takes A;(c;+1) to y;.1 which
is isotopic to the identity via a compactly supported isotopy. A’ extends trivially to
a homeomorphism 4 of M isotopic to the identity. Let ;. =k o h.. O

The remainder of this section is devoted to proving assertion (5).

Definition. For X <M, a two-dimensional submanifold, let X 9 denote the union
of X and all disk components of M —X.

Definition. A submanifold Y =M is said to be substantial if Y =X ® where X is
a component of M —I's not contained in an element of .

If D is any maximal disk then 8D = X where X is a component of M —I's and
D = X°. Thus every element of £ —3 4 is contained in a substantial Y. The intersec-
tion of two distinct substantial pieces consists of boundary components.

Let G, be the set of curves which are components of the intersection of two
distinct substantial pieces. The curves in G, do not bound disks or Moebius
bands. Recall that G consists of core curves of maximal annuli and Moebius bands.
No two curves in the set G, UG, are homotopic. All these assertions are easily
proved.

The components of M —{{_J G,ul_J&f} correspond to substantial pieces. fs acts
on this set of components. We wish to describe this action in terms of f

Let I'. and I'; be sets of geodesics representing curves in the sets G. and G,. By
the previous lemma there is a homeomorphism % : M > M isotopic to the identity
which takes the curves in G. U G, to curves in I'. UT',. The action of fs on G, U G
must correspond under A to the action of f on I uT: both are determined by
the action on the corresponding classes in %. Furthermore, the action of fs on
M —{{G. UG} must correspond under A to the action of f on M —{{_JI". u|T}.
Let B be a boundary component of C. Letg =f5'h ™" fh By the previous argument,
g(B)= B. We must show that g(C) = C. If not then g reverses the normal orientation
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of B, but according to the corollary of lemma 1.4 g, being homotopic to the identity,
must preserve the normal orientation of B.

Now let C be a substantial piece with fs setwise period p. Then h(C) has f
setwise period p. h © f§ and f” o h both take C to h(C). These maps are homotopic
as maps into M. C is incompressible because its complement contains no disk
components. According to a lemma of [7], & % and f? o h are homotopic as maps
into A(C).

We modify f2|C so that it has finite order. C is equal to X° for some X and f2
has finite order on X. We can extend f%|X to the maximal disks by extending
radially the isometry induced by f% on the boundaries of the maximal disks. This
modification of f§ changes the periods of points in = contained in maximal disks.
If x is such a point contained in D and y is the centre of D then the f% period of
x is a multiple of the f5 setwise period of D which is equal to the modified f5
period of y. Thus is suffices to prove that the periods of points under the modified
map are multiples of the periods of points under .

The following lemma completes the proof of the main proposition.

LEMMA 2.8. Let Y be a 2-manifold with negative Euler characteristic. Letg;: Y » Y
(i =1, 2) be homotopic homeomorphisms of finite order. Then the order of g, is equal
to the order of g, and the periods of unflipped periodic points in Y are the same under
g1 and g.

Proof. Let g be either g, or g,. Let x,, be the Euler characteristic of the set of
points of period m under g. The set of unflipped points of period m is discrete if
m is less than the order of g. The set of flipped periodic points has Euler characteristic
zero. So x,, is the number of unflipped points of period m. If m is the order of g
then the set of points of period m is the complement of the set of periodic points
of lower period, so y.. is negative. The lemma will be proved if we show that the
xm are invariants of the homotopy class of g. According to [3],

me0= I (=em)m,

where 7, is the homology zeta function. By considering the orders of the poles of
1, at primitive roots of unity we see that n, determines the x,.. n, is a homology
invariant hence a fortiori a homotopy invariant. O

A more detailed analysis shows that homotopic maps of finite order are conjugate.

3. In this section we use the previous propositions to construct examples of isotopy
classes in which the dynamic behaviour of zero entropy maps is restricted. -

(1) We construct an orientation preserving homeomorphism f of the surface
of genus 3 with the following property: if f' is a zero entropy- homeomorphism
isotopic to f then all periods of periodic points of f* are even. f is constructed by
first rotating the pictured surface 180° around the axis-A and then putting in a
non-trivial twist in one of the pictured annuli. The period of each f-periodic point
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is two and any geodesic contained in the isometry region has period 2. The asserted
properties of zero entropy maps isotopic to f follow from the main propositon.

FIGURE 1

We can construct a similar example on any oriented surface of greater genus:

FIGURE 2

If g is the genus then the isometry region of M will have g —1 components which
are cyclically permuted by /. If f' has zero entropy and f’ is isotopic to f then all
periods of periodic points of f' are divisible by g —1.

(2) We can construct a similar example on a non-oriented surface of genus
greater than or equal to four by replacing the handles in figure 2 by cross caps.

(3) We construct a similar example which reverses orientation on an oriented
surface. Let f be the composition of the following maps: a translation to the right,
a reflection with the broken lines as fixed point set and a twist around one of the
pictured annuli in each orbit. If n is the number of components of M- ({twist
curves} u {reflective curves}) then n divides the period of any f'-periodic point.
When n is even we get an example of an isotopy class in which no odd periods
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can occur (cf. [6]). When n is odd there is at most one odd period which will be
of the form np.

FIGURE 3. g = number of components+ 1

These three families of examples prove:

PROPOSITION 3.1. Let M be a surface, not necessarily oriented, with Euler characteris -
tic less than —4. There exists a zero entropy homeomorphism f:M - M with the
property that every ' homotopic to f with a fixed point has positive entropy. If M is
oriented we may choose f to be either orientation preserving or orientation reversing.

(4) We consider maps isotopic to the identity on non-orientable surfaces.
There is an assignment of locally flipped periods to geodesics. There are no normally
flipped geodesics. Flipped periods must be assigned to geodesics with Moebius
band neighbourhoods. The maximal number of disjoint Moebius bands in a surface
is its (non-oriented) genus. Thus the number of distinct periods of locally flipped
periodic points is less than or equal to the genus.

{5) We construct an f: N - N where N is non-orientable and no zero entropy
map isotopic to f can have any flipped periodic points. Let N =K 2# M, where M
is oriented and M #S>. Let y be a two-sided curve in K°. Let f be the identity
outside a neighbourhood of y and a non-trivial twist inside this neighbourhood.
Since N —+ is oriented and f preserves this orientation, there can be no Moebius
bands or flipped geodesics of finite order.

The main proposition relates the dynamics of zero entropy homeomorphisms to
the dynamics of maps in Thurston canonical form. If f is an isometry it is in Thurston
canonical form.

In this section we discuss orientation-preserving finite order isometries f and the
f-periods of points and geodesics. Let M be the oriented manifold on which f acts.
Let n be the order of f. Let B <M be the set of points with periods less than n.
Let M; be quotient of M by the action of f. Let P: M - M; be the projection. The
space M; is a manifold and P is a branched covering map. The branching locus is
By, the image of B under P. Let

P:M—-B->M;—B
be the restriction of P. P’ is an (unbranched) n-fold cyclic covering. Such a covering
gives a surjective homomorphism from z(M;—Bf) to Z, or equivalently a
surjective homomorphism ¢y from H(M;—~ By, Z) to Z,..
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Conversely, given a manifold N, a finite set C €N and homomorphism p from

H;(N - C) onto Z,, one can construct an isometry f on M of order n so that
Mf:-N, Bf=C and ¢f=p.

Let y <M —B be a simple closed curve disjoint from its images under f. P(y)
will be a simple closed curve in M;— By. Since we are concerned with the set of
periods of geodesics and points we can ignore geodesics passing through points in
B. The setwise period of such a geodesic is the period of the point in B that it

contains. Choose an orientation on P(y) and let ¢ be the corresponding element
of H,(M;— By). The setwise period of v is then

n/(order ¢¢(c)).

Let ¢ be an f-orbit. P(e¢) is a point x € M}. Let ¢ be the element of H;(M;—By)
represented by a small curve circling x once counterclockwise. Then the period of
n/(order ¢¢(e)).

According to [8], if the genus of M; is not zero there exists an f-invariant simple
closed curve. When such a curve exists there are no restrictions on possible subsets
of the set of periods. We therefore restrict our attention to the case M; ~§2.

H(Ss? — By) is generated by elements e; corresponding to points x; in By with the
sole relation Xe; = 0.

The genus of M is given by the Riemann Hurwitz formula

gM)=1-n+2 i (l—i)
251 O;
where O; is the order of ¢ (e;) in Z,..

We will give a combinatorial description of the possible periods of disjoint sets
of simple closed curves and points under f. By the main proposition these sets of
periods determine possible periods of periodic points of zero entropy homeo-
morphisms. We require the following definitions: a tree is a contractible graph; the
terminal vertices are those vertices meeting only one edge. Let € be a disjoint set
of simple closed curves not homotopically trivial in M;— B;. We may assume that
% contains one small curve around each x; € By since such curves can be added in
the complement of the curves in €. The setwise period of such a curve around x;
is the period of x;.

For each c € € choose a disjoint regular neighbourhood U, and a product
structure. Let

)\c : Uc *(_1’ 1)

be the projection. Let G be the space obtained from M; by collapsing each
component of M;—{_J U. to a point and"collapsing each circle A 'Mtoa point. G
is a graph. Each point on an edge of G corresponds to a circle in M;. Removing
a circle from M; (=$?) disconnects M;. Thus removing a point from an edge of G
disconnects G. G is therefore a tree. G has the additional property that each vertex
meets at least three edges.
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A terminal vertex in G corresponds to a disk component of M; —|_J U, with a
single boundary curve 6. b = U, for some c. Since b is not trivial in M — By this disk
must contain an element x; of B; and ¢ must be the small curve around x;. In this
way we label each terminal vertex with a unique element of By. Let ¢ € €. Removing
¢ divides G into two components. Let a € H(M; — By) be the class which is the sum
of classes associated to terminal vertices in one of these components. [c] is
homologous to xa. If ¢ is the image of ¢’ in M we can therefore compute the
setwise period of ¢’ from the labelled graph G. It is n/(order a). We refer to this
number as the period of the edge containing ¢'.

If we are given a labelled graph G we can construct a family of curves correspond-
ing to the edges of the graph. We leave this construction to the reader.

Combining our main proposition with the preceding analysis proves the following:

THEOREM 3.1. Let f be an isometry of order n so that My is a sphere. Let €1, . . ., &
be the associated elements of Z,. If f' has zero entropy and f' is isotopic to f then
there is a tree T with k vertices labelled by ¢.,...,¢&x so that the f'-period of
every f'-periodic point is a multiple of the period of some edge of T. Conversely,
given any tree T with terminal vertices labelled ¢, . . ., e, we can construct a zero
entropy diffeomorphism f' isotopic to f so that every multiple of a period of an
edge is the period of some f'-periodic point.

We now give the proofs of the propositions stated in the introduction.

Proof of Proposition 3.2. We will construct an isometry f of order 210 having the
required properties. We write Z;¢ as

Z2:®Z:DLsDZ,

and we specify elements of Z,,, by giving their coordinates. B will consist of four
elements. Let ¢;, i =1, 2, 3, 4, be the corresponding elements of Z,,.

TABLE 1
Z, 25 Zs Z, Period = n/order ¢;
1= (1, 0, 0, 0) 105
e,= (1, O, 1, 1) 3
es= (0, 1, -1, 0) 14
ea= (0, —1, 0, -1) 10

Possible trees with four terminal vertices can have at most one edge not connected
to a terminal vertex. The possible elements of Z,, that can be associated to this
edge are (up to sign):

Period
e1+e,=(0,0,1,1) 6
e1+e3=(1,1,-1,0) 7
e1+e4=(1,2,0,6) 5

The periods that can be obtained with a tree with an £, +£3 edge are {3, 7, 10} and
their multiples. The periods that can be obtained with a tree with an £, +£4 edge
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are {3, 5, 14} and their multiples. The periods obtained with an £, +¢, edge are
multiples of periods of points in B. Thus an £ + ¢, edge contributes no new periods.
From the Riemann Hurwitz formula we calculate that the genus of M is 145. [

Proof of Proposition 3.3. We begin by showing that if f : M - M is a map in Thurston
canonical form which is a counterexample to proposition 3.3 then there is an
f':M'-> M' which is also a counterexample where genus(M') < genus(M), f' is an
isometry, My = $? and By consists of four points.

We will use the following ad hoc terminology. A natural number p is realized
(by f) if p is a multiple of the setwise f-period of some simple curve ¥ in M whose
orbit consists of disjoint curves. A set of natural numbers p; is simultaneously
realizable if there is a set of curves y; where v, realizes p; and the curves y; have
disjoint orbits.

Assume that not all periods that can be realized by f can be realized simul-
taneously. We can choose a set of periods qy, . . ., q; so that each ¢; can be realized,
no ¢q; is a multiple of any other and every realizable p is a muitiple of some g,.
There is a least number j such that {q., ..., q;} is not simultaneously realizable.
We can choose curves vy, ...,y; which realize q,...,q; so that the orbits of
Y1, ..., v;-1 are disjoint. There exists a v, 1 <k <j—1, that intersects vy; so that no
curve representing g disjoint from vyi,. .., v;-; is disjoint from y,. v; and y, are in
the same component, Ny, of M-{twist curves}. Let / be the setwise period of No.
By passing to the [’th iterate of f and dividing the g;’s by [ we may assume that
f (No) = No.

According to the previously quoted result of Meeks, the existence of some period
which is not realizable implies that the genus of M} is 0. Let y; and ¥, be the images
of v; and v, in M;. Let By < M; be the set of branch points. Let M; be M; with a
small open disk around each point in By removed. ¥, and ¥, each partition the
boundary components of M} into two sets. The partition determines the homology
class. We can find curves ¥; and ¥, homologous to ¥; and ¥, so that M; —¥] U ¥
has four components. Let b,, r=1---4, be boundary components of a regular
neighbourhood N; of ¥; U .. The periods represented by the curves b, cannot
divide the periods q; and g« : the period represented by b, is a multiple of q, for
some | =s <[ If ¢, divides g; then g, =q; = period of b, But b, is disjoint from ¥,
contradicting the assumption that g; and g are not simultaneously realizable.

Let N be a component of the inverse image of Ny in M ° By passing to the
appropriate power of f we may assume that it is connected. Add a disk to each
boundary component of N. Replacing a submanifold of M with a disk cannot result
in a manifold with lower Euler characteristic. f extends to these disks. The setwise
periods of these disks are the periods represented by the curves b,. With the resulting
map and surface the periods of ¥; and ¥, can be realized but not simultaneously.

Now assume that the counterexample f is an isometry, M; =S 2 B; consists of
four points and genus (M) = 145. Let n be the order of f and let

e=dsle), lsi=4.
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We write

n :p’l‘lp‘z‘z - .p?:
where the exponents are not zero. Let ¢/ be the Z,¢' coordinate of ¢,. ¢ is determined
by the 4 X[ matrix E =¢'.

According to [8] if [ were less than 3 there would be a curve in M invariant
under f and all periods could be realized. Now consider the case / =4, We need
some elementary observations about the matrix E which hold for any [.

Each column contains at least two generators: consider the column corresponding
to Z,::. The elements ¢; generate Z,s: so at least one of them is a generator. If
exactly one of these elements were a generator then the sum of the ¢;’s would be
a generator, since the sum of a generator and non-generators is a generator. Their
sum is zero however, so at least two of them are generators.

No row consists entirely of generators: if every coordinate of £, were a generator
then g, would generate Z,. The point corresponding to £; would be fixed under f
and every period could be realized by a map homotopic to f. Similarly no ¢; +¢;
can be a generator.

We cannot have two elements of order p;. Say £; and e, have generators only
in the first coordinate; then e3 and ¢4 must have generators in all coordinates but
the first. But this would mean that ¢, +¢3 generates Z,..

Now if [ =4 some p; =7 so there must be two elements of order at least 7. The
remaining elements cannot both have order 2 so one must have order greater than
or equal to 3. If we arrange the orders of the ¢; in order of increasing magnitude
we have O, =2,0,=3, 0, =7 and O, =7. Applying the Riemann Hurwitz forn{ula:

nd 1

=l-n+z-) 1-—
g(M) n 221 o

gM)=1-n+2(1-3+1-1+1-5+1-9),

gM)=1+3n.

If we combine this with the restriction g(M) =145 we get n <328. The only »
which is a product of at least four primes and is less than 328 is 210. This is the
value of n in our example. We leave to the reader the verification that when n =210
the lowest value for the genus of M is 145.

Assume that exactly three distinct primes divide #.

Case 1. Assume that some g, say &4, does not contain a generator in any coordinate.
Since for each of the 3 coordinates there are two indices i such that ¢; has a
generator in that coordinate there are at least six generators. No ¢; has generators
in 3 coordinates so each ¢; i =1, 2, 3, must contain generators in two coordinates.
We may assume that the situation is described by table 2, where a ‘*’ in the i, j’th
place implies that &; contains a generator in the i’th coordinate.

If £, has a zero in the i’th place then the order of e4+¢; is the same as the order
of ¢;. For at least two values of / the order of ¢; + £, must be distinct in order to
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TABLE 2

pt' p?* py

€4 * *
€5 * *
€3 * *

€4

get non-simultaneously realizable periods. Thus the order of ¢4 is divisible by at
least two primes and at least two exponents are greater than one. Assuming that
pi', p32, p3* are in increasing order we have pi' =2, p3> =3, p3* =5 and hence
0,=15, 0,=10, O3=6 and O,=6. Arguing as before gives n =192, There is
only one solution p3'p32p3> =192 with at least two exponents greater than one;
this is n =27 - 3 - 5=180. With this n we get O; =36, 0,=20, 03=45, 0,=6.
Plugging into our formula gives n = 166, a contradiction.

Case 2. Assume that each g; contains a generator in at least one coordinate and
some €;, say £4, contains a generator in exactly one coordinate, say p;. There are
two indices i = 1, 2, 3 for which &; contains a generator in the second coordinate
and two indices i = 1, 2, 3 for which ¢; contains a generator in the third coordinate.
Some ¢,, cannot contain a generator in the first coordinate. ¢;,+ ¢4 contains a
generator in every coordinate, which is impossible.

Case 3. Assume that each ¢; contains a generator in two coordinates. There are
two subcases. First assume that some column has exactly 3 generators in it. The
sum of any two of these generators must be a generator otherwise a generator plus
two non-generators would be zero. We have the situation displayed in table 3.

TABLE 3

ay az as
P p2" P3

€1 ES * e
€ * . *
€3 * 2 2
€4 . 7 2

£1+¢€5 has a generator in every coordinate.

If no column has exactly 3 generators, we have the situation displayed in table 4.
The periods of curves corresponding to &£;+¢3 and £; + ¢4 are powers of p. Thus
the period of one is a multiple of the period of the other. In order to get periods
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TABLE 4

ay as a
pi' pa* p?

£ * *
o * %
£3 * *
E4 * *

which cannot be realized simultaneously, the curves corresponding to £1 + £, must
realize new periods. The period of this curve is a multiple of p; - ps. The period of
the point corresponding to £; is a multiple of p;. Since this does not divide the
period corresponding to £, +¢£,, a; must be at least 2. Making the same argument
with £; we see that a, must be at least 2, Arranging p;* in order of increasing size,
pit=2,p52=4,p3*=9. Thus 0, =8, 0,=8, 0;=18, and O, =18. Applying our
inequality gives n <175, which is impossible, since when at least two exponents
are greater than 2, n = 180. O
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