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We study the melting process of a solid under microgravity, driven solely by lateral
vibrations that are perpendicular to the applied temperature gradient due to the absence
of gravity-induced convection. Using direct numerical simulations with the phase-field
method, we examine two-dimensional vibration-induced melting in a square cavity over
four orders of magnitude of vibrational Rayleigh numbers, 105 ≤ Ravib ≤ 109. Our results
show that as melting progresses, the flow structure transitions from a periodic-circulation
regime with diffusion-dominated heat transfer to a columnar regime with vibroconvection.
The mean height of the liquid–solid interface follows a power-law dependency with
time, ξ̄ ∼ t̃1/(2−2α), where α = 0 in the periodic-circulation regime and α = 1/2 in the
columnar regime. We further observe that within the columnar regime, the morphological
evolution of the liquid–solid interface is influenced by the interaction of columnar thermal
plumes in the central regions and the peripheral flow near the sidewalls. Specifically, we
offer a comprehensive analysis of the plume merging behaviour, which is governed by the
aspect ratio (ξ̄ ) of the liquid layer and the intensity of vibration, quantified by the effective
vibrational Rayleigh number Raeff

vib. We identify the relationship between the number of
columnar plumes Km and Raeff

vib, finding that Km ∼ ξ̄−1(Raeff
vib)

γ with the fitting scaling
exponent γ = 0.150 ± 0.025. We subsequently quantify the characteristics of the interface
roughness amplitude evolution in microgravity vibroconvection. Our results indicate that
the roughness amplitude exhibits a power-law dependence on the mean height of the
liquid layer. Drawing from the Stefan boundary condition, we theoretically deduce this
dependence under the assumption of a non-uniform heat flux distribution at the interface,
where the theory is corroborated by our numerical simulations.
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1. Introduction

The liquid–solid phase transition process, characterized by the evolution of a moving
interface, is a common phenomenon in geophysics, astrophysics and various industrial
applications. Notable examples include glacier melting (Hock 2005), solidification of
magma chambers (Thomas, Cassoni & MacArthur 1996), aircraft de-icing (Thomas
et al. 1996), the dynamics of magma oceans (Ulvrová et al. 2012) and the melting of
phase-change materials (PCMs) (Raoux 2009). In all these examples, gravity plays a
pivotal role in influencing the liquid–solid phase transition (Li et al. 2017), primarily
because buoyancy significantly affects the heat transfer dynamics that is central to the
phase-change process.

In geophysical applications on Earth, where gravity is present, various numerical
methods have been employed to investigate the impact of factors such as buoyancy,
rotation, shear, turbulence and meltwater plumes on the morphological evolution of
the liquid–solid interface (Favier, Purseed & Duchemin 2019; Couston et al. 2021;
Ravichandran & Wettlaufer 2021; Wilson et al. 2023; Yang et al. 2023b). These studies
have also examined the effects of aspect ratio (Hester et al. 2021), solid shape (Yang
et al. 2024), density anomalies (Wang et al. 2021; Yang et al. 2022) and salinity on the
melting process (Du et al. 2023; Yang et al. 2023a) and the bistability property of melting
(Purseed et al. 2020). Additionally, experimental studies have been conducted to uncover
the underlying physics of these phenomena (Davis, Müller & Dietsche 1984; FitzMaurice,
Cenedese & Straneo 2017; Bushuk et al. 2019; Wang et al. 2021).

It is worth noting that liquid–solid phase transitions also have industrial significance,
particularly in latent heat energy storage devices utilizing PCMs. Previous studies have
examined how the roughness of the basic morphology of PCMs affects heat transfer
efficiency and thus the melting rate (Kamkari & Amlashi 2017). Most studies have
focused on the interplay between buoyancy-driven flow and the evolution of the melting
interface. However, there is an increasing demand for harnessing PCMs in microgravity
environments, such as in microscale devices (Glicksman, Lupulescu & Koss 2003; Chen
et al. 2019) or devices used in space missions. In microgravity, due to the minimal flow
occurring in the liquid zone, the melting process is predominantly driven by thermal
conduction, leading to a relatively slow melting rate. For the application of PCMs in
microgravity, several studies have been conducted, including enhancing effective thermal
diffusivity with nano-enhanced PCMs (Hosseinizadeh, Darzi & Tan 2012; Dhaidan et al.
2013), using thermocapillary-driven flow (Sánchez et al. 2020a, 2021; Šeta et al. 2023)
and adjusting the positions of heat sources and sinks (Mahmud & Ahmed 2022). In this
work, we demonstrate the potential of using vibration to achieve a superior melting rate in
microgravity through vibration-induced convective flow.

Vibroconvection has been shown to be a promising method for driving convective flow
and enhancing heat transfer (Gershuni & Lyubimov 1998; Mialdun et al. 2008; Shevtsova
et al. 2010; Guo et al. 2024b; Huang et al. 2024). Numerous studies have investigated
the interaction between vibroconvection and buoyancy-driven convection (Wang, Zhou &
Sun 2020; Guo et al. 2022; Wu et al. 2022a; Wu, Wang & Zhou 2022b), demonstrating the
potential of vibration to perturb boundary layers and modulate heat flux. One crucial factor
is the relative orientation of the vibrational axis and the temperature gradient (Demin,
Gershuni & Verkholantsev 1996; Cissé, Bardan & Mojtabi 2004). When the vibration
direction is perpendicular to the temperature gradient, dynamic destabilization of thermal
convection occurs, significantly enhancing heat transfer (Wang et al. 2020; Wu et al. 2021).
In contrast, when the vibration direction is parallel to the temperature gradient, dynamic
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stabilization of convective flows results in the suppression of convective heat transfer
(Carbo, Smith & Poese 2014; Wu et al. 2022a). Recently, works by Rahmanian et al.
(2023) and Guo et al. (2024a) applied vibration to the problem of PCMs, and their studies
demonstrated that the performance of PCM thermal energy storage units can be improved
by using a small oscillator plate. They validated the effectiveness and cost-efficiency of
this method through numerical analysis.

In microgravity environments, there has been growing interest in studying thermal
convection solely driven by vibrations. Vibrations in microgravity can be generated
by structural resonances, the operation of spacecraft mechanical systems and astronaut
activities. Experimental studies on vibroconvection date back to the Apollo spacecraft
missions (Bannister et al. 1973), where vibrations were found to significantly increase
heat transfer compared to pure conduction (Grodzka & Bannister 1975). Subsequent
experimental study has shown that external vibrations can significantly affect thermal
diffusion processes (Garrabos et al. 2007; Braibanti et al. 2019). Shevtsova et al. (2010)
conducted experiments on the flow structure and heat transfer of vibroconvection in a
low-gravity environment during parabolic flights, finding that increased vibration intensity
significantly enhanced heat transfer via streaming flow. More recently, Guo et al. (2023)
and Huang et al. (2024) revealed unified constitutive laws of heat transport and the
transition of flow structure in microgravity vibroconvection. In addition, Sánchez et al.
(2019, 2020b) extended the study by exploring instabilities in miscible and immiscible
fluids under microgravity, focusing on how external vibrational excitation can control
dynamic interface behaviour and pattern selection. This highlights the broader relevance
of vibrations not only for heat transfer but also for fluid interface management in space.
Porter et al. (2021) reviewed these developments, emphasizing the potential for controlling
fluid instabilities in microgravity.

The previous studies show that, in microgravity environments, vibroconvection is
an effective means of enhancing heat transfer efficiency. When vibroconvection is
applied to drive the melting process in microgravity, it raises a crucial question: how
does vibroconvection affect the morphological evolution of the melting interface? To
address this question, we conducted direct numerical simulations of a solid melting
in a two-dimensional square cavity subjected to an external temperature difference
and vibration, studying the morphology evolution of the melting process driven by
vibroconvection under microgravity conditions. The remainder of the article is structured
as follows. In § 2, we present the governing equations and numerical set-up. In § 3, we
examine the effect of vibroconvection on the evolution of the interface height. In § 4, we
investigate the influences of the merging of columnar plumes and peripheral flow near
sidewalls. In § 5, we analyse the evolution of the interface roughness amplitude. Finally,
we provide a brief conclusion and outlook in § 6.

2. Governing equations and problem set-up

We consider the evolution of a melting solid in a square heated from below as shown in
figure 1. The square is bounded by four impenetrable, no-slip walls with a size of H. We
adopt a constant temperature T = Th on the bottom plate and T = Tm on the top plate
with Tm being the melting temperature and Th < Tm. As gravity is absent in microgravity,
a horizontal harmonic vibration A cos(Ωt)ex is imposed to act as an artificial driving
(Beysens 2006), which generates vibroconvection (Gershuni & Lyubimov 1998; Shevtsova
et al. 2010; Huang et al. 2024) driving the melting process. Associated with the vibration,
an inertial acceleration of AΩ2 cos(Ωt)ex perpendicular to the temperature gradient is
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introduced into the system. Here, A is the vibration amplitude, Ω is the vibration frequency
and ex is the unit vector in the x direction. We employed the phase-field method (Hester
et al. 2020) to simulate the melting of the solid. In this approach, a phase-field value
of φ = 1 represents the solid phase, while φ = 0 represents the liquid phase. Therefore,
the melting system is governed by the incompressible Navier–Stokes equations under the
Oberbeck–Boussinesq approximation in addition to the dynamic equation of the phase
field φ. Non-dimensionalized by the cell size H, the characteristic velocity βΔAΩ and the
temperature difference Δ = Th − Tm, the non-dimensional governing equations for this
system read

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
− a−1 cos(a−1t)θδ1i +

√
Pr

2Ravib

∂2ui

∂xj∂xj
− φui

η
, (2.1)

∂θ

∂t
+ uj

∂θ

∂xj
= 1√

2RavibPr
∂2θ

∂xj∂xj
+ St

∂φ

∂t
, (2.2)

∂φ

∂t
= 6

5CSt
√

2RavibPr

[
∂2φ

∂xj∂xj
− 1

ε2 φ(1 − φ)(1 − 2φ + Cθ)

]
, (2.3)

with the incompressibility constraint ∂ui/∂xi = 0. Here, ui (≡ (u, w)) is the dimensionless
fluid velocity, p is the dimensionless pressure and θ = (T − Tm)/Δ is the dimensionless
temperature. In (2.1), η is the velocity penalty parameter and set equal to the time step
(Yang et al. 2023b). In (2.3), ε represents the dimensionless thickness of the diffusive
interface and is set equal to the grid spacing (Favier et al. 2019); C is a parameter that
controls the extent of curvature impact on the melting point at the interface and C = 1 is
adopted due to the relatively small local curvature (Couston et al. 2021; Yang et al. 2023b).
In this system, there are four control parameters, namely the vibrational Rayleigh number
Ravib, the Prandtl number Pr, the Stefan number St and the non-dimensional vibration
amplitude a:

Ravib = (βAΩΔH)2

2νκ
, Pr = ν

κ
, St = L

cpΔ
, a = βAΔ

H
, (2.4a–d)

where ν is the kinematic viscosity coefficient of the liquid, κ is the thermal diffusivity
coefficient (considered a constant and assumed to be equal in both phases), β is the thermal
expansion coefficient, L denotes the latent heat and cp is the specific heat capacity at
constant pressure.

We note that for the boundary conditions of the velocity field, all solid walls are
non-penetrable and non-slip, i.e. u = 0 and w = 0; for boundary conditions of the
temperature field, constant temperatures are set on the top and bottom plates, i.e. θ = 1
on bottom plates and θ = 0 on top plates, while the sidewalls are adiabatic, i.e. ∂nθ = 0.
At the liquid–solid interface, the heat flux balance theoretically follows the classical Stefan
condition, which is written in dimensionless form:

Stun = 1√
2RavibPr

(∂nθ
(S) − ∂nθ

(L)), (2.5)

where un is the normal velocity of the liquid–solid interface and the superscripts S and
L respectively represent the solid and liquid phases. This Stefan condition (2.5) at the
liquid–solid interface has been taken into account in the phase-field method (Favier et al.
2019; Hester et al. 2020). For the initial condition, we set a liquid layer with a small height
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Liquid

Acos(Ωt)

Solid

T = Tm

T = Th

x

z

H

Figure 1. Sketch of vibration-induced a solid melting under microgravity conditions in a square cell with the
coordinate systems. Lateral vibration is applied to generate convective flow driving the solid melting, and the
vibration is perpendicular to the applied temperature gradient.

of 0.01H and a solid layer for other regions. The initial temperature of the solid phase is
set equal to the temperature of the top plate (θ = 0), while a linear temperature profile is
assigned within the liquid phase. The initial velocity field is set to u = 0 and w = 0. With
this configuration, the solid undergoes melting from the bottom upwards until complete
liquefaction.

We carried out a series of direct numerical simulations to investigate the morphology
evolution of a solid melting in microgravity. The governing equations (2.1)–(2.3) of this
system are solved using a second-order finite-difference solver, which has been well
validated in our previous studies (Wang et al. 2020; Guo et al. 2023; Yang et al. 2023b,
2024). And our numerical code has been adopted in simulating several problems of
single-phase and multiphase turbulent flows (Zhao et al. 2022a,b; Huang et al. 2023;
Chong et al. 2024; Meng et al. 2024; Zhang & Zhou 2024; Zhao et al. 2024). In all runs,
we fix the Prandtl number at Pr = 10 for numerical convenience. Note that organic PCMs
have high Prandtl numbers, while metals have very low Prandtl numbers. For water, the
density anomaly at 4 ◦C should be considered (Wang et al. 2021; Yang et al. 2022). First,
St is fixed to 0.1, and we set a = 0.01 and vary Ravib from 105 to 109, corresponding to
the heat transport mechanism in the thermal-boundary-layer-dominant regime reported in
our previous work (Huang et al. 2024). The choice of St and a is made for computational
efficiency, and we will discuss the potential effects when considering other values of a and
St to apply to a broader range of PCMs and vibration sources. To accurately resolve the
vibration-induced Stokes layer, we refined the mesh in the near-wall region and ensured a
minimum of 16 grids within the Stokes layer under high-intensity vibration. The chosen
time step, �t, ensures at least 60 steps per a vibration period. More details of numerical
parameters for all runs are given in table 1.

3. The evolution of mean height of liquid–solid interface

First, we investigate the temporal evolution of the height of the liquid–solid interface for
vibration-induced melting in microgravity. Figure 2 depicts the spatio-temporal evolution
of the interface height ξ(x, t) for different Ravib. Here, the value of dimensionless height
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Ravib a St Nx × Nz �t

[105 : 109] 0.01 0.1 [512 × 512 : 1536 × 1536] 5 × 10−5

[3 × 105 : 3 × 108] 0.01 0.1 [512 × 512 : 1280 × 1280] 5 × 10−5

107 [0.001 : 0.3] 0.1 1024 × 1024 5 × 10−5

107 0.01 [0.02 : 2] 1024 × 1024 5 × 10−5

Table 1. List of the numerical simulations in this study.

Time

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

1.0

0.5

0
0.02

0.01

00

0.05
0.5t̃ t̃ t̃

0.10
0

0

0

0.50.5z

1.01.0

000 0.50.50.5
xxx

(b)(a) (c)

Figure 2. Temporal evolution of the liquid–solid interface for vibration-induced melting in microgravity for
different vibrational Rayleigh numbers (a) Ravib = 105, (b) Ravib = 107 and (c) Ravib = 109 at fixed Pr = 10.

ξ(x, t) is extracted at the interface location where the phase-field value is φ = 0.5.
It is observed that, initially, the interface is relatively uniform along the x direction,
indicating that heat transfer is dominated by conduction. As ξ(x, t) increases with time,
vibration-induced convection becomes the primary mode of heat transfer, leading to
increased roughness of the interface.

We then examine the evolution of the mean interface height ξ̄(t) = 〈ξ(x, t)〉x during
vibration-induced melting, where 〈·〉x denotes the average over a specific horizontal plane.
Figure 3(a) shows the measured mean height ξ̄(t) as a function of t̃ for different Ravib,
where t̃ = t

√
Pr/(2Ravib) denotes the time scaled by the viscous time scale. It is seen that

the trend of ξ̄(t) exhibits two distinct scaling laws with time t̃, i.e. ξ̄ ∼ t̃1/2 during the
early evolution and ξ̄ ∼ t̃ for the later time. We further plot the interface evolution rate
˙̄ξ = dξ̄/dt̃ as a function of ξ̄ . Two different scaling laws are identified. At lower vibration
Rayleigh numbers, ˙̄ξ ∼ ξ̄−1, while at higher vibration Rayleigh numbers, a flattening of

1001 A43-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1141


Vibration-induced melting in microgravity

˙

10−4 10−3 10−2 10−2 10−1 10010−1
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Ravib = 108

Ravib = 109
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– ∼ t̃ 1/2

100

100

101

t̃

(b)(a)

Figure 3. (a) The measured mean interface height ξ̄ as a function of t̃ for different Ravib. (b) The measured
interfacial evolution rate ˙̄ξ as a function of the mean interface height ξ̄ for different Ravib. In (a), t̃ is the
dimensionless time by a viscous time scale and the dashed lines represent ξ̄ ∼ t̃1/2 and ξ̄ ∼ t̃. In (b), the
dashed line represents ˙̄ξ ∼ ξ̄

−1.

scaling occurs, characterized by ˙̄ξ ∼ ξ̄0, implying that the melting rate of the interface
becomes constant, independent of the mean interface height and time.

As the melting is related to the heat transfer mechanism at the liquid–solid interface, we
then try to explain those scaling relations from the relation between melting rate and the
vertical heat flux. From the Stefan boundary condition (2.5), one obtains

ξ̄
dξ̄

dt
= 1

St
√

2RavibPr
Nueff , (3.1)

where the effective Nusselt number Nueff represents the ratio of the vertical heat flux at
the liquid–solid interface to the diffusive flux across the liquid layer of a mean height ξ̄ .
We calculate Nueff according to (3.1). Similar to the heat transport scaling relation in a
microgravity vibroconvection system, one can assume that the effective Nusselt number
has power-law dependencies on vibrational Rayleigh number (Huang et al. 2024), i.e.
Nueff ∼ Raeff

vib
α

with Raeff
vib = Ravibξ̄

2. Substituting the Nueff relation into (3.1) allows us
to obtain

ξ̄ ∼ Raα/(2−2α)
vib Pr−(1/(2−2α))St−(1/(2−2α)) t̃1/(2−2α). (3.2)

To quantify the value of the unknown α in ξ̄ -scaling relation (3.2), we plot in figure 4
the effective outgoing Nusselt number Nueff as a function of Raeff

vib for different Ravib. It
is seen that Nueff is nearly constant for small Ravib, indicating α = 0 in the conductive
regime, while a scaling relation Nueff ∼ (Raeff

vib)
1/2 is obviously found for large Ravib,

indicating α = 1/2 in the convective regime (Huang et al. 2024). Substituting α = 0 and
α = 1/2 into (3.2) gives two known scaling behaviours of melting rate which are identified
above: ξ̄ ∼ t̃1/2 and ξ̄ ∼ t̃. This well explains the transition from ξ̄ ∼ t̃1/2 in the conductive
regime to ξ̄ ∼ t̃ in the vibration-induced convection regime. It is worth noting that when a
larger amplitude a is used, the system’s heat transfer characteristics need to be described by
the oscillatory Rayleigh number Raos = (βAΩ2ΔH3)/vk (Huang et al. 2024). However,
this does not affect the scaling law between ξ̄ and t̃. This transition of melting rate from
diffusive to convective regimes is also found in solid melting driven by Rayleigh–Bénard
convection (Favier et al. 2019).
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vib

Figure 4. The measured interfacial effective Nusselt number Nueff as a function of effective vibrational

Rayleigh number Raeff
vib for different Ravib. The dashed line represents Nueff ∼ Raeff

vib
1/2

.

4. Fluid layer dynamics and its influence on interface shape

Upon establishing a fundamental comprehension of the evolution of mean interface height,
attention is redirected towards the underlying dynamics of vibroconvective flow in the
liquid layer, which catalyses the genesis of intricate interface morphology. Figure 5 shows
the instantaneous flow structure by visualizing the temperature field and velocity field
at different mean height ξ̄ for vibrational Rayleigh numbers Ravib = 105, 107, 109. For a
small vibrational Rayleigh number Ravib = 105 (see figure 5a) at ξ̄ = 0.2, corresponding
to Raeff

vib = 4 × 103, the flow structure in the liquid layer exhibits a periodic circulation with
a stable temperature distribution in the bulk region. With increasing ξ̄ (or the effective
vibrational Rayleigh number Raeff

vib), the periodic circulation intensifies to disturb the
temperature field, leading to a slight shift of heat transfer from the pure convection regime.
For high vibrational Rayleigh numbers, e.g. Ravib = 107 and Ravib = 109 as shown in
figure 5(b,c), since the vibration-induced shear effect becomes strong enough to destabilize
the thermal boundary layer, massive columnar thermal plumes erupt from the thermal
boundary layer and the flow structure transits into the columnar regime. We notice that as
melting proceeds with time, vertical columnar plumes merge into larger and wider plumes.
And due to adiabatic and no-slip boundary conditions at the sidewalls, the peripheral
flow is formed and leads to heat accumulation near the sidewalls. Both phenomena of
plume merging and heat accumulation in peripheral flow near the sidewall result in a more
complicated morphology evolution of the liquid–solid interface.

We start to focus on the effect of plume merging on the morphology evolution of the
liquid–solid interface. During the melting process, columnar plumes are generated due to
the vibroconvective instability, and they gradually grow under vibration-induced buoyancy
until reaching the saturation state. In presence of vertical stretching, new convective
instability occurs and causes adjacent plumes to merge, resulting in the formation of larger
and more stable columnar thermal structures. Figure 6 presents the temporal evolution of
the temperature profile at mid-height z = ξ̄/2 of the liquid domain and clearly shows the
merging behaviour of the thermal plumes during melting at Ravib = 107 and Ravib = 109,
where the flow structure is almost in the columnar regime. It is seen that after the transition
to the columnar regime, massive plumes begin to erupt abruptly, and gradually merge into
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Figure 5. Instantaneous snapshots of the temperature (colour) and velocity (vectors) fields for three different
ξ̄ , which are (a–c) ξ̄ = 0.2, (d–f ) ξ̄ = 0.5 and (g–i) ξ̄ = 0.8, and for three different Ravib, which are (a,d,g)
Ravib = 105, (b,e,h) Ravib = 107 and (c, f,i) Ravib = 109. The rectangles in (d–f ) show the region of peripheral
flow near the left sidewall.

larger and stable ones with ξ̄ (or Raeff
vib) further increasing. This phenomenon is similar

to the merging of convective rolls observed in the melting process in Rayleigh–Bénard
convection by Favier et al. (2019), where there is an alternation between stable solutions,
chaotic solutions and ultimately a transition to turbulent solutions.

To quantitatively investigate the merging behaviour of columnar plumes, we plot the
number of columnar thermal plumes Km as a function of the mean interface height ξ̄

in figure 7(a). Here, Km is obtained by counting the number of extreme points in the
temperature profile at mid-height z = ξ̄/2 of the liquid domain, which is filtered by using
T − Tm > cTrms to remove the small-scales noise with the tuning coefficient c = 0.8. In
fact, when 0.6 ≤ c ≤ 1.0, the obtained results are not sensitive to the choice of c. It is
observed that with increasing ξ̄ , the number of columnar plumes initially increases, which
corresponds to the transition of flow structure from the periodic-circulation regime to the
columnar regime, then reaches a maximum and gradually decreases due to the alternating

1001 A43-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1141


W.-P. Fang, J.-Z. Wu, Z.-L. Huang, B.-F. Wang, Q. Zhou and K.L. Chong

1.0

0.5

0

1.0

0.5

0

θ 
(x

, 
z =

 ξ–
/2

, 
t̃)

θ 
(x

, 
z =

 ξ–
/2

, 
t̃)

1.00.80.60.40.20

1.00.80.6

x
0.40.20

0.09

0.06

0.03

0.020

0.015

0.010

0.005

(b)

(a)

t̃

t̃

Figure 6. Spatio-temporal evolution of the temperature profile at the mid-height of the liquid domain for two
vibrational Rayleigh numbers (a) Ravib = 107 and (b) Ravib = 109.

occurrence of secondary bifurcation and nonlinear saturation (Favier et al. 2019). Due
to the oscillatory behaviour of vibroconvective flows, the profiles of Km exhibit some
oscillations. By fitting with these profiles in the columnar regime, we found that for the
plume merging behaviour, there exists a scaling relation between the columnar plume
number Km and the mean interface height ξ̄ , i.e. Km ∼ ξ̄−0.70±0.05.

How can we understand the obtained scaling relation of the columnar plume merging
behaviour? We find that the underlying mechanism of plume merging consists of two
aspects: one is the effect of the aspect ratio of the liquid layer quantified by the ratio
of height to width Γ , and the other is the effect of vibrational intensity quantified by
the parameter Ravib. For the effect of aspect ratio Γ , as the number of columnar plumes
linearly increases with increasing width of the liquid layer at fixed height, there exists
an inverse relationship between Km and aspect ratio Γ , i.e. Km ∼ Γ −1. For the Ravib
effect, we assume that the columnar plume number Km has a power-law dependency on
the vibrational Rayleigh number, i.e. Km ∼ Raγ

vib with γ the scaling exponent. During
the vibration-induced melting process, both effects contribute to the plume merging
behaviour, leading to the scaling relation of Km between the aspect ratio Γ = ξ̄ and the
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Figure 7. The number of columnar thermal plumes (a) Km and its rescaled quantity (b) KmRa−0.15
vib as functions

of the mean interface height ξ̄ for different Ravib, which are Ravib = 1 × 107, 3 × 107, 1 × 108, 3 × 108 and
1 × 109. Plots of Km as a function of ξ̄ for different (c) a and (d) St, with Ravib = 107. The dashed lines in
(a–d) represent the scaling relation of ξ̄−0.7. The symbols represent the results calculated based on the statistical
criteria for columnar thermal plumes.

effective Rayleigh number Raeff
vib of the instantaneous liquid layer, i.e. Km ∼ ξ̄−1(Raeff

vib)
γ .

Applying Raeff
vib = Ravibξ̄

2 allows one to rewrite the above relationship: Km ∼ Raγ

vibξ̄
2γ−1.

Using the obtained scaling relation Km ∼ ξ̄−0.70±0.05 in figure 7(a), one readily obtains
γ = 0.150 ± 0.025. The error mainly comes from the varying durations of nonlinear
saturation phases for different Ravib and minor inaccuracies in counting plume columns.
To further confirm the deduced relationship Km ∼ Raγ

vibξ̄
2γ−1 with γ = 0.150 ± 0.025,

we replot figure 7(a) by showing KmRa−0.15
vib as a function of ξ̄ in figure 7(b). It is found

that the curves in the stage of plume merging for all Ravib studied almost collapse showing
a remarkable scaling relation: ξ̄−0.7. Additionally, it is noteworthy that the value of Km is
influenced by factors such as St, a and initial perturbations. Particularly in figure 7(c), it can
be observed that when Ravib remains constant, the value of Km decreases significantly with
an increase of a. This change is related to the transition in the heat transport mechanism of
vibroconvective turbulence (Huang et al. 2024). However, as depicted in figure 7(c,d),
for various St and smaller values of a, the merging behaviour of columnar plumes is
invariant. Specifically, for a substantial value of a, such as a = 0.3, the number of plumes
is significantly reduced, rendering the merging pattern less discernible.

We then examine the effect of peripheral flow near sidewalls on the morphology
evolution of the liquid–solid interface. Figure 8 shows cumulative basal melting rates
(ξ̄ − 0.01)/t̃ξ̄ at different mean interface heights for different Ravib. It is seen that the
melting rate near sidewalls is obviously lower than that in the central region, indicating
that the melting mechanism by peripheral flow is different from that by the upward
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Figure 8. The cumulative basal melt rate at various mean interface heights ξ̄ for different vibrational
Rayleigh numbers (a) Ravib = 105, (b) Ravib = 107 and (c) Ravib = 109.

and downward columnar plumes. To illustrate the flow characteristics of the peripheral
flow region, we plot five snapshots of the instantaneous temperature and velocity fields
within one vibration period for Ravib = 107 in figure 9(a–e). We observe that during
the upper half of the vibration period, the outer flow region exhibits an upward flow
trend, while in the lower half of the period, the trend is reversed. Additionally, we plot
the time evolution of vertical velocity profiles over 0 ≤ x ≤ 0.1 and z = 0.1 over three
dimensionless time periods, normalized by the vibration period τw = 2πa, as shown in
figure 9( f ). It is evident that the vertical velocity exhibits periodic variations, with a
period matching the applied harmonic vibration period. We analyse the effect of peripheral
flow only in near-sidewall regions for 0 ≤ x < 1/3 and 2/3 < x ≤ 1, to minimize the
influence of columnar plumes in central regions. We define the mean interface height
shift ξs(t) = (ξs,left(t) + ξs,right(t))/2 from the sidewalls to the central regions, where the
height shifts for left and right sidewalls are given by

ξs,left(t) = max{ξ(x, t)} − min{ξ(x, t)} for 0 ≤ x < 1/3, (4.1)

ξs,right(t) = max{ξ(x, t)} − min{ξ(x, t)} for 2/3 < x ≤ 1. (4.2)

Figure 10 shows the temporal evolution of ξs(t) for different Ravib. One sees that the
interface height shift ξs(t) vanishes in the diffusive regime, whereas ξs(t) grows with
time due to the presence of peripheral flow in vibration-induced convection regime.
Additionally, with increasing Ravib, the maximum value of ξs(t) initially rises, indicating a
greater difference in local heat flux between the columnar thermal structure and peripheral
flow regions. At higher Ravib, the melting of the upper interface in the peripheral flow
region is likely to be disrupted by nearby thermal plumes, as more thermal plumes
are generated, reducing the size of the peripheral flow region. In this case, ξs(t) may
decrease. Finally, it should be emphasized that in a thermal vibrational convection system
bounded laterally by walls, heat tends to accumulate near the sidewalls (Guo et al.
2023). When phase change is involved, these wall patterns lead to a reduced melting
rate near the sidewalls. It is worth noting that in a rotating system bounded by lateral
walls, Ravichandran & Wettlaufer (2021) found that heat is primarily transferred through
peripheral flow, and the melting rate of the solid region near the wall is significantly
faster than that of the interior. This is different from our conclusions, suggesting that the
influence of peripheral flow may vary across different systems.
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Figure 9. Instantaneous temperature and velocity fields for Ravib = 107 at phases (a) 0, (b) π/2, (c) π,
(d) 3π/2 and (e) 2π. ( f ) Time evolution of the vertical velocity T|0≤x≤0.1,z=0.1. The black circles in the insets
of (a–e) indicate the corresponding instant of the phase.
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Figure 10. The measured mean interface height shift ξs during the process from the beginning to the
interface touching the top plate.

5. Interface roughness characteristics

As both the plume merging and the peripheral flow near sidewalls affect the evolution of
intricate interface patterns, it raises a question as to how the roughness of the interface
evolves with time. The characteristics of interface roughness are quantified by the root
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Figure 11. (a) The measured interface roughness amplitude ξrms as a function of t̃. The inset further shows ξrms
as a function of mean interface height ξ̄ . (b) Rescaled roughness amplitude ξ̃rms as a function of vibrational
Rayleigh number Raeff

vib. The dashed line in (a) represents ξrms ∼ t̃ and the dashed line in the inset of (a)

represents ξrms ∼ ξ̄ . The dashed line in (b) represents ξ̃rms ∼ Raeff
vib

1/2
.

mean square (r.m.s.) of the interface height fluctuation, ξrms =
√

ξ ′2 with ξ ′ = ξ − ξ̄ the
interface height fluctuation. Figure 11(a) plots the measured ξrms as a function of time for
different Ravib. It is shown that after the transition to the columnar regime, ξrms seems
to linearly grow with time, i.e. ξrms ∼ t̃. As the mean height obeys ξ̄ ∼ t̃ in the columnar
regime from (3.2), it allows one to obtain the relation between ξrms and ξ̄ , namely ξrms ∼ ξ̄ ,
indicating that the r.m.s. height is proportional to the mean height as shown in the inset
of figure 11(a). By rescaling ξrms as ξ̃rms = ξrmsRa1/2

vib , one can observe an approximate

scaling law of ξ̃rms ∼ Raeff
vib

1/2
as shown in figure 11(b). In addition, we investigate the

influence of the amplitude a and Stefan number St on the scaling relation ξ̃rms ∼ Raeff
vib

1/2
.

Figure 12 depicts ξ̃rms as a function of Raeff
vib for different amplitude a and Stefan number

St at fixed Ravib. It is observed that the scaling relationship ξ̃rms ∼ Raeff
vib

1/2
is quite robust,

showing an independency on both the vibration amplitude and Stefan number.

To gain insight into this robust scaling law ξ̃rms ∼ Raeff
vib

1/2
, we follow an approach used

in buoyancy-driven melting in Rayleigh–Bénard convection by Yang et al. (2023b), and
try to theoretically understand it. We start from the Stefan boundary condition (2.5), which
gives

ξ̄
dξ̃

dt
=

√
2

2
St−1Pr−1/2Nuloc, (5.1)

where ξ̃ = Ra1/2
vib ξ , and the local Nusselt number Nuloc represents the ratio of the vertical

local heat flux at the liquid–solid interface to the diffusive flux across the liquid layer of a
mean height ξ̄ . Subtracting (3.1) from (5.1), we obtain

ξ̄
dξ̃ ′

dt
=

√
2

2
St−1Pr−1/2Nu′

loc, (5.2)

where ξ̃ ′ = Ra1/2
vib ξ ′, and Nu′

loc = Nuloc − Nueff is the fluctuating vertical local heat flux.
By employing the chain rule, we can establish a connection between ξ̃ ′ and Raeff

vib, i.e.
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Figure 12. Rescaled interface roughness amplitude ξ̃rms as functions of vibrational Rayleigh number Raeff
vib

(a) for different dimensionless vibration amplitude a and (b) for different St. The dashed lines in (a,b) represent

ξ̃rms ∼ Raeff
vib

1/2
.

∂ξ̃ ′/∂Raeff
vib = (∂ξ̃ ′/∂t)(∂t/∂ξ̄ )(∂ξ̄/∂Raeff

vib). Substituting (3.1) and (5.2) into the above
equation of ∂ξ̃ ′/∂Raeff

vib, one obtains

∂ξ̃ ′

∂Raeff
vib

= Nu′
loc

2Nueff
Raeff

vib
−1/2

. (5.3)

Equation (5.3) shows the relation between ξ ′ and Raeff
vib with the unknown term

Nu′
loc/Nueff . Here, we measure the conditionally averaged heat fluxes for the hot and

cold regions and plot the normalized heat flux fluctuations as a function of Raeff
vib for

different control parameters Ravib, St and a in figure 13. It can be observed that within
a wide range from Raeff

vib = 105 to Raeff
vib = 109, the contributions to the heat flux from

the hot and cold regions remain nearly constant. Since Nu′
loc/Nueff can be estimated

from the difference in the averaged heat flux between the hot and cold regions, one can
approximate Nu′

loc/Nueff ∼ constant, namely Nu′
loc/Nueff ≈ RNu, and integrating (5.3)

over Raeff
vib allows one to obtain ξ̃ ′ ≈ RNuRaeff

vib
1/2

. Substituting ξ̃ ′ ≈ RNuRaeff
vib

1/2
into

ξ̃rms =
√

ξ̃ ′2 leads to an analytical relation between ξ̃rms and Raeff
vib:

ξ̃rms ∼ Raeff
vib

1/2
, (5.4)

which agrees well with the results in figures 11(b) and 12.

6. Concluding remarks and outlook

This study employs direct numerical simulation coupled with the phase-field method to
study the melting process of a solid phase under two-dimensional vibroconvective flow
in microgravity. It is shown that as melting progresses, the heat transfer mechanism
transitions from thermal conduction to a vibration-driven thermal convection regime.
Correspondingly, the flow structure evolves from a periodic-circulation regime to a
columnar regime. The subtle flow structure leads to hot and cold regions in the liquid
layer, resulting in non-uniform heat flux and causing the interface to become rough.
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Figure 13. The conditionally vertical averaged heat fluxes in the hot region Nu
h
loc and cold region Nu

c
loc,

normalized by the vertical interface-averaged heat flux Nueff , as a function of effective vibrational Rayleigh
number Raeff

vib for different Ravib and a at ξ̄ = 0.5 and ξ̄ = 0.8, and for different St at ξ̄ = 0.4 and ξ̄ = 0.7.
The data points are calculated by taking the average over five consecutive time steps for each ξ̄ , with error bars
indicating the range of values.

We characterize the evolution of the liquid–solid interface morphology and find that the
transition in the heat transfer mechanism leads to a power-law change in the dependency
of the mean interface height on time. We also derive these scaling relations from the
Stefan boundary condition based on the mean vertical heat flux at the interface, i.e.
ξ̄ ∼ t̃1/(2−2α), where the scaling exponent α = 0 in the conductive regime and α = 1/2
in the vibration-induced convective regime.

Furthermore, we find that the morphology evolution of the liquid–solid interface is
mainly affected by both the merging behaviour of columnar thermal plumes and the
peripheral flow near the sidewalls. This is controlled by the effects of the aspect ratio
and vibrational intensity of the liquid layer, i.e. Km ∼ ξ̄−1(Raeff

vib)
γ , where Km is the

number of columnar plumes. Exponent γ = 0.150 ± 0.025 is the fitting scaling exponent
from numerical data, which is insensitive to the choice of St and a. We then examined
the flow characteristics of the peripheral flow and conducted a statistical analysis of
the mean interface height shift. Finally, we quantify the evolution characteristics of
the interface roughness amplitude and find a power-law dependency of the normalized

roughness amplitude on the effective vibrational Rayleigh number, ξ̃rms ∼ Raeff
vib

1/2
. This

scaling relation is found to be robust, showing independence from both the vibration
amplitude and Stefan number. Starting from the Stefan boundary condition, we provide a
theoretical derivation and demonstrate that this robust power-law relationship holds under
the condition that the ratio of the fluctuating local heat flux to the total heat flux at the
interface remains nearly constant.

Our findings provide a comprehensive understanding of the morphological changes of
a melting solid under the influence of vibroconvection in microgravity. Vibration-induced
melting in microgravity opens up new possibilities for actively controlling the melting
processes of PCMs, with potential applications in microscale devices and devices for
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future space exploration. It is worth noting that the vibration source may result in
additional energy consumption, so it is important to focus on improving energy efficiency
and cost-effectiveness during application. Future studies may consider exploring higher
Ravib, where previous research on vibroconvection in single-phase systems reveals the
emergence of gyroscopic structures at higher Ravib (Guo et al. 2023). This transition to
large-scale flow structures is likely to significantly affect the melting process.
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