Statistical Evidence ‘and Belief Functions
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In his recent monograph [7]1, Professor Shafer has
offered us an alternative to Bayesian inference with his
novel theory of belief functions and, in his current paper
{8], has characterized his position by pointing to two
basic differences it shares with Bayesianism. First, be=~
lief functions are non-additive so that the degree of be-

lief assigned to the disjunction ‘Al or AZ' may be larger

than the sum of the degrees of belief assigned to the sep-
arate disjuncts. Second, the theory of belief functions

has its own rule for determining the commitments to changes
in degrees of belief when evidence is compounded. So, in-
stead of the Bayesian postulate of conditionalization, that
is, in place of using Bayes' theorem to identify the commit-
ments to changes in probability when evidence accumulates,
the theory advocated by Professor Shafer relies on a propos-
al he traces to A.P.Dempster, which he calls Dempster's rule
for combination of belief functions. In my comments here I
want to focus attention on the second of these proposals,
the replacement of conditionalization by the combination
rule, and I hope to argue that.there is a serious defect in
the theory of belief functions because of this replacement.

Before engaging in that criticism, however, I would like
to point out that much of Professor Shafer's attack against
the Bayesian position, an attack that serves as motivation
for his own program, is relevant to the first of the two
basic points at issue and is not relevant to the second.
That is, when I object to the rule of combination (and sug-
gest it is inferior to conditionalization) I am not thereby
constrained from echoing many of the very same worries about
Bayesianism that Professor Shafer raises in his contribution
to this symposium.
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Let me illustrate this. Suppose we are faced with a
strangely bent coin, about which we are relatively ignorant,
and are asked to determine our degree of belief in the prop-
osition that, when next flipped, the coin will land heads-
up. As proper Bayesians we are obligated to specify a pre-
cise probability function that assigns some value pr 0 < p
< 1, to this proposition and thereby we assign a value I- -p
to the contradictory proposition that the coin will not
land heads~up. Professor Shafer reminds us of the old, but
relevant, problem that if the magnitude of p signifies the
strength of our belief that the coin will land heads-up,
then we cannot use zero (for p) to represent our ignorance,
since that assignment leads to a maximally strong belief
that the coin won't land heads-up. But we profess ignorance
about the coin's tendency to land one way as opposed to some
other.

An all too familiar Bayesian response to this challenge
consists in conceding that point and solving. the problem by
adopting a version of the Laplacean principle of Insuffi-
cient Reason. Admitting that the magnitude of the probabil-
ity cannot be interpreted to reflect the weight of the evi-
dence supporting the proposition (that is, agreeing that we
cannot argue ignorance is equated with no evidence is equated
with no support), some Bayesians try to f£ind a way out in
terms of the symmetries of the precise probability fungtion
used to represent ignorance. Thus, just in case p = 1/2,
the probabilities are equal for the two possibilities: that
the bent coin lands heads-up and that it doesn't.

Equally familiar are the two objections that rebut this
answer., (1) The solution is aprioristic since it conflates
the case of ignorance with that of significant background
knowledge. For instance, if the only serious possibilities
for an outcome of the flip are landing heads-up or landing
tails-up, then the equal probability assignment fails to
distinguish ignorance from the assumption that the coin is
fair. (2) The solutions generated by symmetrxy considera-
tions ‘are inconsistent with the probability calculus. For
instance, i1f the serious possibilities for an outcome of the
flip include landing heads-up, landing tails-up, and landing
on edge, then a blind application of the equal probability
rule (to capture ignorance) results in a probability of 1/2
for each of the three alternatives when, separately, each is
compared to its contradictory, e.g., landing heads-up or not
landing heads-up. This second objection becomes very seri-
ous when the problem is of a conventional statistical sort.
with a continuum of basic alternatives. A uniform (egual
probability) distribution with respect to one parameteriza-
tion of the continuum is not uniform with respect to an
equivalent non-linearly transformed parameterization.
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I bother to rehearse this old problem with you only
because the inadequacies of fiducial inference are of a kind
with this Bayesian quandary over how to represent ignorance
in a precise probability function. The fiducial argument
was R.A.Fisher's recipe for solving the inverse inference
problem: inference from observed "sample" to unobserved
"population", without the use of Bayesian ingredients, such
as a Bayesian "prior" probability for representing ignorance.
Leonard Savage characterized Fisher's ploy as an attempt to
make the Bayesian omelette without breaking the Bayesian
eggs: an attempt to have a precise posterior probability
without admitting a precise prior probability. We can eas-
ily understand what goes wrong with Fisher's fiducial argu-
ment by noting that the serious paradoxes surrounding this
mode of inference (paradoxes involving simple one parameter
problems) stem from alternative, mutually incompatible rep-
resentations of ignorance.

It is for reasons like these that I welcome the first
break with Bayesian theory found in. Professor Shafer's be-
lief functions. By using non-additive measures we can as-
sign a probability of zero to each alternative: landing
heads-up, landing tails-up, etc.; yet we note that some one
outcome must eventuate by assigning the value 1 to the dis-
junction of alternatives. I welcome this break with Bayes-
ian theory for, relying on a reinterpretation of Professor
Shafer's theory in terms of Dempster's original position,
the non-additive property of belief functions translates in-
to the non-additive property of lower probability measures
when the agent's beliefs are represented by intervals of
probability. What is gained over the Bayesian position is
the use of sets of probability functions to represent a be-
lief state. Thus, ignorance is properly represented by the
[0,1] interval, whose lower -bound is O.

Unfortunately, Professor Shafer does not subscribe to
this reading of his position, and I am at a loss to fully
understand why. However, the challenge I want to raise a-
gainst Shafer's program in no way depends upon this inter-
pretation of the non-additive feature of his system; for it
is the adequacy of the combination rule (the substitute for
Bayesian conditionalization) which is the subject of ny
comments.

This symposium is titled Statistical Evidence and I

think it most appropriate that we consider the application
of the theory of belief functions to problems of statisti-
cal inference. In his contribution to this session [5],
Professor Levi has demonstrated for us the danger in trying
to tame Fisher's fiducial argument according to Dempster's
strategy. As I understand his analysis, we capture the
beast at the expense of losing simple direct inference; that
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is, we must forfeit Professor Ian Hacking's Frequency prin-
c1ple. No doubt, then, Professor Shafer shows wisdom when
he withdraws from Dempster's safari in search of the elusive
Fisher. Also, we see from Levi's presentation that even to-
accommodate direct inference about a “pivotal" variable,
Shafer's program would need alterations to handle unusual
frames of discernment, i.e., unusual partitions that include
the data-to-be-acquired in the frame. Thus, the target of
my criticism is the more mundane variety of statistical
problem discussed by Shafer in his book. ([7]1, chapter 11),
simple inverse inferénce.

Following his account, let us grant ourselves the liberty
of chances, or aleatory probability (as Shafer calls it).
That is, in addition to the epistemic measure of support;
belief functions, there is also aleatory probability. In
chapter 11 of A Mathematical’Theory'g£ Evidence, Shafer
fixes the connection between the two concepts in a "conven-
tion for assessing statistical evidence" ([7], p. 238).

Let me paraphrase his rule, Suppose we are faced with a
simple inverse statistical problem, we have flipped the bent
coin once and noted the outcome. The statistical hypotheses,
binomial hypotheses that the coin is biased with an aleatory
probability ©, 0 < ©® < 1, form the frame of discernment,
i.e., the ultimate partition of interest here. The statisti-
cal evidence is the report of the outcome of the trial. The
support for a (composite) hypothesis A, that a subset A of
these basic possibilities includes the true bias, is given
by the formula:

S (&) = 1-([max pg(x) ¥ max pg(x)) (L
8en ] _
where: 'x' stands for the statistical evidence; 'A' stands
for the complement of A (in the parameter space); and 'pe(x)'

stands for the aleatory probability (chance) of x if 0 is
the true statistical bias. In more familiar terms, the sup-
port for the disjunction A of simple statistical hypotheses
(each disjunct is called a "singleton" by Shafer) is a func-
tion of the maximum likelihood of the complement of A: one
minus the maximum likelihood of A. Hence, the support for
A, given data x, cannot be high unless A includes all those
singletons of high (relative) likelihood.

Wwhen the data are compound, as when the evidence consists
of several observed trials, there are two avenues open for
determining support. The repeated trials may be treated as
a single compound trial and the rule for support (1) may be
applied once (where the entire evidence determines the like-
lihood function). Alternatively, elementary support func-
tions may be calculated from each datum separately and an
overall support function determined by applying Dempster's
combination rule to put the simple support functions to-
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gether..

Dempster's rule is the rule in Shafer's theory for com-
bining distinct belief functions. Put very roughly, if Bl
and 82 are two belief functions based on distinct bodies
of ‘evidence and if the two families of hypotheses involved
in these functions are suitably related (Shafer describes
this as a common frame of discernment), then the orthogonal

sum-of Bl and B2 is' the new (combined) belief function:

3
written as Bl ] Bz.

As Professor Shafer notes, the alternative routes for
determining a supvort function (using compound statistical
evidence) do not result in . the same belief function (([7],
chapter 11, §3). "'Let me borrow Professor Shafer's own illus-
tration of this point. say, for simplicity, we know, that
the bent coin is either biased .9 for landing heads (and .1
for landing tails)--call this hypothesis 91--or it is biased

.3 for landing heads (and .7 for landing tails)--call this
hypothesisfez. Suppose we flip the coin twice and observe

a head on the first toss--xl--and a tail on,the'second--xz.

If the data are treated as an outcome of a compound trial,
flip twice, then the convention for determining support
yields the numbers: -

S 6, = 0
(xl,xz) 1 . (2)
s ) 4/7.
. (xl,xz) 2
If the data are decomposed into the two elementary events,

Xy and Xy the convention (1) used twice to generate two

simple support functions, Sx<and Sx , and then Demps;er's
. 1 2
rule used to combine these into a single, compound support
function, sx B Sx + the resulting numbers are:
2
[s, & s_ 168, = 2/9 :
X3 X, 1 . (3)

[Sx ® Sx ]62 = 6/9.

Shafer reacts. to this situation with two remarks. First,
he suggests that the solution which uses the combination
rule applied to the simple support functions has the advan-
tage of being sensitive to the "conflict among the observa-
tions™ ([7), p. 250), which the solution based on the com-
pound trial suppresses. (This “conflict" is a species of
Shafer's .notion of "dissonance".) Second, he points out
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the existence of another measure, called Elausibilitz, de~-
fined as: —

P1_(A) = max py(x) + max py(x) = 1 - s _(A), (4)

% Ben 0 9 0 X

preserves relative plausibility for singletons no matter
which method of solution is adopted ([7], p. 250). For
instance, in the foregoing example the relative plausibility
of 6, to 6, is 3:7 fox both methods.

I will respond tp each of these remarks with the assis-
tance of several examples. Let me begin with a statistical
problem that has achieved some notoriety in current liter-
ature.* Suppose we are faced with an inverse statistical
inference involving one parameter, the correlation p, in a
bivariate normal distribution with known means and variances.
For simplicity, we may think of the problem as one concerning
the correlation between the errors (xi,yi), where X is the

error in the i-th reading with unbiased instrument X (whose
errors are distributed normally with unit variance) and sim-
ilarly Y is the error in the i-th reading with unbiased

instrument Y (whose errors are also distributed normally
with unit variance). Put succinctly, (xi,yi) is a pair from
the bivariate normal distribution with ux = uy = 0, O; = O;
= 1, and unknown correlaticn p. Moreover, separate pairs .
are statistically independent.

Suppose the compound data are n pairs: (xl,yl), ...,(xn,yn).

We plead ignorance about p, at first, so our initial support
function is the vacuous one that assigns 0 to any non-tautol-
ogous hypothesis. Consider, next, the partition of the data
into two distinct parts:

' X = (xl,...,xn) and y = (yl,...,yn).

Since x has a distribution that is free of the unknown cor-
relation, we can quickly identify the support function sx(p).

In fact, it is the vacuous suppport function. That is, learn-
ing x tells us nothing about p. With perfect symmetry, y has
a probability distribution free of the unknown correlation,

so the support function Sy(p) is, again, wacuous with respect

to the parameter of concern, p. That is, learning y tells
us nothing about the correlation. The two support functions,
Sx(p) and Sy(p), are based on separate data (that collectively

exhaust all the data). Applying Dempster's combination rule
yields [Sx ] Sy]p, which is the vacuous support function (see

footnote 3). We begin in ignorance and, after using this
method to evaluate the new evidence available, we remain in
ignorance. [Note that further subdivision of the data, say
into’ 2n components: XKye¥qreeosX 0¥ 0 leads to the same result.]
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Alternatively, we may treat the entire data as a single
compound trial, i.e., n observations from the bivariate

normal distribution, and construct a support function S(x Y)p
14

by using the convention, formula (l). This procedure dupli-
cates the technique demonstrated in the example of the bent
coin for using a compound trial, which led to the support
function S(x However, the support function and plau-
1
sibility function generated this way for inference about the
correlation are non-vacuous. By taking the compound data as
a unit and applying (1), we produce the non-vacuous support
function S(x,y)p whose plausibility function is fixed by the

likelihood function:
-n/2 2
(1-p) sexpl-(U-2Vp) /(2[1-p 1)1, (4)
where U = Zi(xi + yi) and vV = Ei(xiyi). That is, from (4)

,xz)e.

we learn a lot about p. But the data are the same as in the
preceding analysis.

How can we explain these conflicting accounts? The data
are, by one procedure, irrelevant yet, by the other, they
are relevant to the inverse inference about p. The aspect
of the combination rule that accounts for this phenomenon is
that Dempster's rule relies on products of simple support
functions and, from a Bayesian point of view, that makes
sense as long as the bits of evidence used to determine the
sinple support functions (to be combined) are statistically
independent. The combination rule ignores all the condition-
al distributions of one datum given another. More formally,
the combination rule builds joint distributions from marginal
distributions and that is a dangerous technique.

With the partition of the bivariate data into the x and
y parts, all the relevant information about p is contained
in the conditional distribution of x given y, or y given x.
There is no relevant information about p contained in x or
in y taken separately. 1Individually, each is an ancillary
statistic, one whose probability distribution is free of the
parameter of interest for inverse inference. It is an ele-
mentary consequence of conditionalization (or even of the
Likelihood Principle) that ancillary data are, by themselves
irrelevant. Thus, from a Bayesian (or Likelihoodist) per-
spective, there is no fault to be found in convention (1)
as it applies in this example. It is correct to say that
x (or y) alone tells us nothing about p. What is deficient
is the combination rule used with arbitrary partitions of
composite data, even when the partitions generate perfectly
accurate simple belief functions (as in this illustration).

It is a mistake to think that the only risk we run in
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.

applying the combination rule to "unusual" partitions is a
potential loss of information. The example just discussed
has the feature that all the pertinent information is lost
when the individual likelihoods are combined by Dempster's
rule. However, we can fool ourselves into thinking there
is more in a given bedy of data just as easily by relying on
the combination rule, and this is my reason for rejecting
Professor Shafer's account of "conflict" (or "dissonance").
Suppose we flip the bent coin n times. Instead of consid-
ering just partitions into statistically independent com-
ponents, we may build up very long lists of complicated
summaries, such as: the percent of heads showing in sub-
sequences of every j-th flip; the percent of heads showing
in the first m trials, 1 < m < n, etc. Generally, each such
report will generate a different support function (by con-
vention (1)) and we can use Dempster's rule to combine the
lot of them. Since it might appear that each new summary
captures a new, relevant feature of the compound data (with
respect to inverse inference about the coin's bias), apply-
ing the combination rule to these many support functions
should expose ever new aspects of conflict within the &ata.
If there is an advantage to be found in methods that expose
conflict, then the more intricate the family of support
functions we can build from a given body of evidence, the
merrier the analysis we obtain by combining them according
to Dempster's rule.

One of Fisher's basic teachings is the lesson that there
are limited amounts of new information that can be extracted
from a given body of statistical evidence (with respect to
a given problem of inverse inference). Assuming either
conditionalization, or even a simple likelihood principle,
we see that in some cases the entire data may be summarized
in a single sufficient statistic.® Though two aspects of
the same data may lead to different support functions when
considered separately, one may be irrelevant given the other
if the latter is sufficient. For example, with inverse in-
ference about a binomial distribution (the statistical model
for the process of flipping a bent coin), the pair of numbers,
number of flips, percent of flips landing heads-up, are
jointly sufficient for inference about the binomial parameter,
in place of the whole data. (Note that, if the number of
flips is ancillary, the percent of flips landing heads-up is
conditionally sufficient, i.e., exhaustive, for the data.)
All other features of the composite sample, features reflected
in the "conflict" among the parts of the data, are irrelevant
given the sufficient statistics, if conditionalization is
valid.

In his book Professor Shafer qualifies his discussion of

statistical inference by limiting it to problems where the
data are partitioned into "physically independent observa-
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tions" ([7), p. 238). We see now that he means by that
restriction a division into statistically (or aleatorily)
independent observations. In common statistical parlance,
the rule of combination works with i.i.d. trials, identically
independently distributed trials, and it fails with statis-
tically dependent trials. In his book Professor Shafer
qualifies the application of the combination rule to belief
functions based on "distinct" bodies of evidence. The qual-
ification is repeated in sections 3 and 8 of [8]. I take it
that "distinct" means non-redundant in the way that all other
aspects of the evidence are redundant once a sufficient sta-
tistic is known.®

In section 8 of [8], Prafessor Shafer questions the
applicability of Bayes'! theorem, i.e., the practicality of
conditionalization, for fear that we might not be able to
find a formulation of our problem that permits us to deter-
mine the requisite probabilities for calculating according
to Bayes' rule. At one point he suggests that "it will not
be plausible to regard the Ei {the partition of the evidencel

as conditionally independent given A and A" ([8], p. 458), and
he uses this suggestion to question one's ability to obey
conditionalization. But if it is a practical difficulty for
Bayesians to work with conditionally dependent observations,
and I do not see those cases requiring new computational
skills, it is a theoretical prohibition that prevents Pro-
fessor Shafer from using them in his own program. At least
the Bayesian theory provides the machinery for deciding
whether the data are mutually independent. How does the
theory of belief functions resolve the general problem of
distinctness of the evidential bits? How am I to know
whether, in the example of section 4 in [8], the_evidence

E, (that the stubs in the attic suggest a roof over the con-

3
crete section) is independent of, i.e., non-redundant with,
E4 (that my neighbor's testimony as to the original use of

the house suggests a concrete floor)? If it can be argued
that dependence obtains between these two, how them do I
reformulate the evidence so that the combination rule applies?

I have tried to show that the novel theory of belief
functions is to be applauded where it departs from Bayesian
theory by using non-additive measures interpreted as lower
bounds on sets of probabilities, but it is to be reproached
where it departs from Bayesian theory by substituting the
combination rule for conditionalization. I have tried to
argue that the combination rule is unsatisfactory because
of its limitation to partitions of the data that are statis-
tically independent if the problem is aleatory, and because
of its limitation to partitions of the data that, in general,
are free of redundancy (in the sense of sufficiency). The
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principle of conditionalization is not subject to either of
these restrictions. Moreover, it provides the Bayesian with
criteria for judging the adequacy of particular applications
of Dempster's rule.

Lest we forget, two contemporary philosophers have been
hard at work, one for nearly two decades, developing alter-
natives to Bayesianism that, like Professor Shafer's program,
are free of the requirement that only precise probability
functions sexrve to represent a rational agent's belief state.
Henry Kyburg, as does Shafer, rejects conditionalization in
addition. His theory, epistemological probability (see (31},
comes closest among the competitors I am aware of to a re-
construction of Fisherian statistics. My concerns with his
position are over the extent to which conditionalization
fails epistemologically; specifically, sufficiency is invalid
epistemologically. (So Fisher is on the loose once again!)

More recently, Isaac Levi has constructed a theory of
indeterminate probability (see [4]) that preserves condition-
alization within convex sets of coherent probabilities.
_However, not much of the Fisherian project (nor contemporary

-8tatistics, for that matter) survives intact in Levi's theory.
That does not show his program is wrong, for it is not obvi-
ous to me that classical statistics is worth saving. It
does suggest that any inductive logic scphisticated enough
to treat ignorance respectably may be too mature to accept
the naive statistical view of what it means not to know any-
thing of relevance. Above all, we should agree that in
inverse inference ignorance is anything but bliss.

Notes

11 take it that this criticism is what Shafer reports at
the bottom of page 460 in [8].

2rhis conclusion follows from Levi's argument on page 469
of [5].

Srwo interesting properties of Dempster's rule (demonstrated
by Shafer in chapter 3 of [7]) are worth mentioning here.
First, if either belief function, say Bl' is the vacuous one

(that represents ignorance) then its combination with any

other belief function B2 leaves B2 unaltered, i.e.,we see

that B, & B, = B Second, the combination rule is invariant

1 2 2°

over the order in which the belief states are combined, i.e.,
B, ® B, = B, & B,,
i 3j 3j i

“*Barnard and Sprott attribute it to Basu [2] in their [1].

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192484 Published online by Cambridge University Press


https://doi.org/10.1086/psaprocbienmeetp.1978.2.192484

488
In fact, it can be traced to Savage ([6], p. 20).

A statistic s is ‘sufficient for data d, with respect to
a parameter of interest 6 ‘(for inverse inference) just in
case: p(d/6ss) = p(d/s).

$In inverse (statistical) inference a statistical model is
assumed. Where the gquestion arises whether the data are to
count as evidence (as in testing for "outliers") and where
the gquestion arises what statistical model is to be accepted
(as in sample "re-use" methods), convention (1) does not
apply since we lack a well defined "frame of discernment".

"Phus, I reject Shafer's claim ([8], pp. 459 and 464 ) that
conditioning is a special case of Dempster's rule. Also,
if his remarks {(page 459 of [8]) are intended as a response
to my questions about the adequacy of the combination rule
(left unaided by conditionalization for fixing the conditions
of "distinctness"), then those remarks appear to me to be
beside the point.
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