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Abstract

We analyze the relationship between two compactifications of the moduli space of
maps from curves to a Grassmannian: the Kontsevich moduli space of stable maps
and the Marian–Oprea–Pandharipande moduli space of stable quotients. We construct a
moduli space which dominates both the moduli space of stable maps to a Grassmannian
and the moduli space of stable quotients, and equip our moduli space with a virtual
fundamental class. We relate the virtual fundamental classes of all three moduli spaces
using the virtual push-forward formula. This gives a new proof of a theorem of Marian–
Oprea–Pandharipande: that enumerative invariants defined as intersection numbers in
the stable quotient moduli space coincide with Gromov–Witten invariants.
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1. Introduction

The Kontsevich moduli space of stable maps to Grassmannians and the moduli space of
stable quotients of Marian–Oprea–Pandharipande are two compactifications of spaces of curves
on Grassmannians. These moduli spaces come equipped with virtual classes in the sense
of [BF97, LT96]. The purpose of this paper is to understand the relation between the two virtual
fundamental classes and thus provide a new proof of a theorem in [MOP11]: that enumerative
invariants defined as virtual intersection numbers in the two moduli spaces coincide. We do this
by constructing a new moduli space of map-quotients which dominates both the moduli space
of stable maps and the moduli space of stable quotients. We endow this space with a virtual
class and determine its relation to the virtual classes of the moduli of stable maps and stable
quotients using the virtual push-forward theorem [Man12b].

In the following we briefly review the main definitions and we outline the main constructions.

1.1 Stable maps and stable quotients
Stable maps to Grassmannians. Let G(k, r) be the Grassmannian of k-planes in the

r-dimensional affine space. Let (C, p1, . . . , pn) be a nodal curve of genus g with n distinct markings
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C. Manolache

which are different from the nodes. By the universal property of Grassmannians giving a degree
d map from C to G(k, r) is equivalent to giving an exact sequence

0 → S → O⊕r → Q → 0

where S is a rank k vector bundle of degree −d and Q is a vector bundle. A map is called stable
if its degree is positive on each unstable contracted component. It has been shown in [Tod11]
that this is equivalent to

ωC(p1 + · · ·+ pn)⊗ (∧kS∨)ε

being ample on C for every ε ∈ Q such that ε > 2. The moduli space of degree d stable genus g
maps with n marked points to G(k, r) will be denoted by Mg,n(G(k, r), d).

Stable quotients. Let (Ĉ, p1, . . . , pn) be a nodal curve of genus g with n distinct markings
which are different from the nodes. A quotient on Ĉ

0 → Ŝ → O⊕r
Ĉ

q
→ Q̂ → 0

is called quasi-stable if Q̂ is locally free at nodes and markings. Let k be the rank of Ŝ. A quotient
(Ĉ, p1, . . . , pn, q) is called stable if

ωĈ(p1 + · · ·+ pn)⊗ (∧kŜ∨)ε

is ample on Ĉ for every strictly positive ε ∈ Q. The moduli space of degree d stable genus g
quotients with n marked points will be denoted by Qg,n(G(k, r), d).

The space Qg,n(G(k, r), d) is another compactification of the space of genus g curves with n
markings in the Grassmannian G(k, r).

Morphisms between moduli spaces of stable maps and moduli spaces of stable quotients.
Marian–Oprea–Pandharipande showed in [MOP11] that if k = 1 then there exists a morphism
of stacks

c : Mg,n(G(k, r), d) → Qg,n(G(k, r), d).

On points, c is obtained in the following way. Let C0
i be the rational tails without marked points

of a stable map (C, p1, . . . , pn, f : C → G(k, r)).
Let us suppose that the degree of f restricted to C0

i is di. Let Ĉ be the closure of C\C0
i in

C and let xi be the intersection points of Ci with Ĉ. Let Ŝ = S|Ĉ(−
∑
dixi). Then c associates

to the stable map 0 → S → O⊕r → Q → 0 a stable quotient

0 → Ŝ → O⊕r
Ĉ

q
→ Q̂ → 0.

We show that for k > 1 there is no such morphism; see Example 3.7.

1.2 Stable map-quotients
The purpose of the paper is to define a proper Deligne–Mumford (DM) stack MQg,n(G(k, r), d)
with the following properties:

(i) MQg,n(G(k, r), d) admits natural morphisms

MQg,n(G(k, r), d)

c1

uu

c2

))
Mg,n(G(k, r), d) Qg,n(G(k, r), d)
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(ii) MQg,n(G(k, r), d) admits a dual relative obstruction theory E•
MQ

(relative to some pure

dimensional stack) which comes equipped with morphisms

E•
MQ

→ c∗1E
•
M
, (1)

E•
MQ

→ c∗2E
•
Q
. (2)

Having constructed such a stack allows us to relate virtual classes by means of the virtual
push-forward property [Man12b]. The idea behind the construction is explained in Remark 3.8.
In the following we outline the structure of this paper.

In § 2 we review moduli spaces Bung,n(k, d) of rank k, degree d vector bundles on genus

g nodal curves with n marked points and introduce an auxiliary moduli space B̃ung,n(k, d)

which comes equipped with birational morphisms π1 : B̃ung,n(k, d) → Bung,n(k, d) and π2 :

B̃ung,n(k, d) → Bung,n(k, d). In particular B̃ung,n(k, d) has pure dimension.
In § 3 we construct a proper DM stack MQg,n(G(k, r), d) which is a substack of Mg,n(G(k, r),

d)×Mrtf
g,n
Qg,n(G(k, r), d), where Mrtf

g,n is the stack of prestable curves which do not have rational

tails. This stack fits into the following commutative diagram.

MQg,n(G(k, r), d)

��

c1

uu

c2

))
Mg,n(G(k, r), d)

��

Qg,n(G(k, r), d)

��
B̃ung,n(k, d)

π1

uu

π2 // Bung,n(k, d)

Bung,n(k, d)

Moreover, the rectangle on the left is cartesian and thus it gives rise to a perfect obstruction
theory of MQg,n(G(k, r), d) relative to B̃ung,n(k, d). This gives rise to a virtual class on

MQg,n(G(k, r), d). In § 4 we use the virtual push-forward theorem to show that c1 and c2
satisfy the virtual push-forward property; see Theorem 4.3, which gives a new proof of the
Marian–Oprea–Pandharipande theorem mentioned above.

One of the main technical difficulties is to make the constructions of B̃ung,n(k, d) and
MQg,n(G(k, r), d) functorial. We will do slightly less, namely we will construct functorial spaces

P and P̄ which contain B̃ung,n(k, d) and MQg,n(G(k, r), d) respectively.

Relation to other works. In the past years there have been many birational models
of moduli spaces of stable maps constructed for particular targets. These include: moduli
spaces of weighted stable maps introduced by Bayer and Manin [BM09], the moduli spaces
defined by Mustaţă–Mustaţă [MAM07], moduli spaces of stable quotients of Marian, Oprea
and Pandharipande [MOP11] with a more general version introduced by Toda [Tod11],
moduli of stable toric quasi-maps [CK10] and finally, moduli spaces of stable quasi-maps to
GITquotients [CKM14] introduced by Ciocan-Fontanine, Kim and Maulik which generalize
[MOP11, Tod11] and [CK10]. These spaces are particularly interesting because they represent
some natural functors and because they lead to invariants which are closely related to Gromov–
Witten invariants. The stable quasi-map invariants (or variants of them) are also easier to
compute in some cases (see [Giv98]).
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It is therefore interesting to compare quasi-map invariants to Gromov–Witten invariants.
This has already been done for stable quotients in [MOP11] and [Tod11] by localization. Our
approach is completely different and the main hope is that it will shed light on similar questions.
More precisely, we first construct a (rather unnatural) auxiliary moduli space with a virtual class
and then relate this virtual class to the virtual classes of the original spaces. We emphasize that
this can be done with very little information on the auxiliary moduli space.

As regarding the birational geometry of moduli spaces of stable maps to GIT quotients little
is known: divisors on moduli spaces of stable maps were studied mostly in genus zero and for
homogeneous spaces (see, for example, [CHS09, CHS08, CS06]). The special feature in our case is
that there is a morphism from an open dense set of the moduli space of maps to Grassmannians
to the moduli space of stable quotients. This morphism does not extend in general. The proofs
of these facts are essentially the same as the ones in [PR03].

As a final remark, one could hope that the techniques in this paper easily extend to the case
of quasi-maps to GIT quotients. This is unfortunately not true as in general there is no map
from an open dense set of the moduli space of stable maps to the moduli space of quasi-maps.
This fact introduces extra challenges at the level of comparisons of virtual classes and it will be
treated elsewhere.

Notation and conventions. We take the ground field to be C.
Unless otherwise specified we will try to respect the following convention: we will denote

curves over C by C, Ĉ, etc., families of curves over some base scheme B by C, Ĉ, etc. (with
calligraphic fonts). We will apply the same convention to vector bundles: vector bundles over
curves over C will be denoted by S, Ŝ, etc. and families of vector bundles on curves over B will be
denoted S, Ŝ, etc. We will use normal fonts for DM stacks (e.g. Mg,n(G(k, r), d), Qg,n(G(k, r), d),
P̄ , etc.). Artin stacks for which we know that they are not DM stacks will be generally denoted
by gothic letters (e.g. Mg,n, Bung,n(k, d), P, etc.).

By a commutative diagram of stacks we mean a 2-commutative diagram of stacks and by a
cartesian diagram of stacks we mean a 2-cartesian diagram of stacks.

2. Moduli of bundles

2.1 Moduli of bundles over nodal curves
We review a few results concerning the existence and properties of stacks of vector bundles over
prestable curves.

Moduli of prestable curves. Let us first fix notation. Let g > 0 and n > 0 be integers. We
denote by Mg,n the Artin stack of prestable curves of genus g with n marked points. We denote
by Cg,n the universal curve.

Definition 2.1. Let C be a nodal curve with marked points. A connected rational component
(not necessarily irreducible) C0 with no marked points such that C0 intersects the rest of the
curve in exactly one point is called a rational tail.

Definition 2.2. In the following we denote by Mrt
g,n the divisor of Mg,n whose points are curves

which have rational tails and by Mrtf
g,n the open substack of Mg,n, whose points are rational tail

free curves.

Proposition 2.3. Let S ⊂ Mg,n be a substack of finite type of Mg,n. Then, there exists a

morphism of stacks p : S → Mrtf
g,n which contracts rational tails.

1460

https://doi.org/10.1112/S0010437X14007258 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007258


Stable maps and stable quotients

Proof. Let Srtf be the open substack of S, whose points are rational tail free curves. Let S′ be
the set of pairs (C, Ĉ) ∈ S×Srtf such that there exists p : C → Ĉ which contracts rational tails
of C and is an isomorphism on the complement of such curves. In order to show that S′ is a
substack of S×Srtf we show that we are under the hypothesis of Example 4.19 in [FGIKNV05].
It is clear that any cartesian diagram arrow whose target is in S′ is also in S′. Now let Bi be
a covering of B, let (C, Ĉ) be an object in S × Srtf(B) and (Ci, Ĉi) the pull-backs of (C, Ĉ) to
Bi. Suppose that (Ci, Ĉi) are objects in S′(Bi). Then we need to show that (C, Ĉ) is an object
in S′(B). By our assumption we have morphisms pi : Ci → Ĉi. As morphisms of schemes form a
sheaf, we can glue the morphisms pi to get a global p : C → Ĉ.

The algebraic stack S′ has a projection π1 : S′ → S. We next prove that

S′ ' S.

We claim that π1 : S′ → S is separated. As π1 is also one to one we have that π1 is an
isomorphism. Let us sketch the proof of the claim. Let ∆ be a nonsingular curve with a
closed point 0 ∈ ∆ and let ∆∗ = ∆\{0}. It is enough to show that given a family of curves
π : C → ∆ and a projection p : C → Ĉ over ∆∗, p extends uniquely over ∆. It is clear that any
irreducible component of C whose fibers are rational tails can be contracted so we may assume
that C is smooth. Let us add sections pn+1, . . . , ps of π such that each section intersects one
unstable component in the fibers of π and no two sections intersect the same irreducible unstable
component. Now take C′ = Projωπ(

∑s
i=1 pi). Replacing C with C′ and repeating the process until

there are no more chains of unstable rational tails in the fibers of π we obtain a contraction map
p : C → Ĉ. The morphism p can be easily seen to be unique. 2

Moduli of bundles over prestable curves. For fixed g, n, d > 0 let Bung,n(k, d)(B) be the
category whose objects are pairs (C,S), where

(i) C → B is a family of prestable curves of genus g with n sections

(ii) S is a vector bundle on C of rank k and degree −d.

Isomorphisms: An isomorphism

(φ, θ) : (C,S) → (C′,S ′)

is an automorphism of curves

φ : C → C′

together with isomorphisms θ : S∨ → φ∗S ′∨ such that φ(pi) = p′i, for all i.
Let CohCg,n/Mg,n

be the stack of coherent sheaves on Cg,n relative to Mg,n. By [Lie06] we
have that CohCg,n/Mg,n

is an Artin stack. It can be easily seen that Bung,n(k, d) is a substack
of CohCg,n/Mg,n

(see [CKM14] for more details and generalizations). Let S denote the universal
bundle on the universal curve on Bung,n(k, d). We will also consider moduli spaces of vector
bundles on curves with stability conditions as follows.

Construction 2.4. Let Bunεg,n(k, d) be the substack of Bung,n(k, d) such that the line bundle

(∧kS∨)⊗ε ⊗ ωC
(∑

pi

)
(3)

is ample. As ampleness is an open condition Bunεg,n(k, d) is an open substack of Bung,n(k, d).
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Remark 2.5. Let
ψ : Bung,n(k, d) → Mg,n

be the morphism which forgets the bundle. The morphism ψ is smooth as the relative obstruction
in a point (C, S) is

Ext2C(S, S) = 0.

This shows that Bung,n(k, d) is smooth of pure dimension Ext1(S, S)−Ext0(S, S)+3g−3+n =
k2(g − 1)− deg(S ⊗ S∨) + 3g − 3 + n = k2(g − 1) + 3g − 3 + n.

Construction 2.6. Consider the stack Bung,n(k, d)rt defined by the following cartesian
diagram.

Bung,n(k, d)rt //

��

Bung,n(k, d)

ψ

��
Mrt

g,n
i //Mg,n

Let Bung,n(k, d)rtf be the complement of Bung,n(k, d)rt in Bung,n(k, d).

Remark 2.7. We have that Mrt
g,n has codimension 1 in Mg,n. Remark 2.5 implies that

Bung,n(k, d)rt has codimension 1 in Bung,n(k, d).

Lemma 2.8. Let π : C→ Bunεg,n(k, d) be the universal curve over Bunεg,n(k, d). Then there exists

a rational tail free curve Ĉ and a projection p : C → Ĉ over Bunεg,n(k, d).

Proof. Let S be the tautological bundle on the tautological curve of Bunεg,n(k, d). Without loss
of generality we may assume that the divisor D on the tautological curve of Bunεg,n(k, d) which
consists of curves with rational tails is irreducible, otherwise we repeat the construction for each
component. Let a be the degree of ∧kS∨ restricted to the locus consisting of rational tails in the
fibers of π. We have that

L = (∧kS∨)⊗ε ⊗ ωπ
(∑

pi

)⊗εa
is trivial on the locus in Bunεg,n(k, d) consisting of curves with one irreducible rational tail. As

C is normal it follows that L is trivial on D. As (∧kS∨)⊗ε⊗ωπ(
∑
pi) is ample we have that L is

π relatively ample on the complement of this locus. This shows that L⊗m is base point free for
a sufficiently large m. Let

Ĉ = Proj⊕l L⊗ml.

As L⊗m is π-relatively base point free it determines a morphism p : C→ Ĉ. It can be easily seen
that Ĉ is a family of genus g curves and flat over Bunεg,n(k, d). 2

2.2 The most balanced locus
Construction 2.9. Let Bun0,n(k, d)bal be the substack of Bun0,n(k, d) such that on every
component of a rational curve C the bundle S is the most balanced one. More precisely, if Ci is
a rational component of C such that Si := S|Ci has degree di, then

Si = O(ai)
⊕k1 ⊕O(ai − 1)⊕k−k1 ,

where ai, k1 are the unique integers such that k1ai + (k − k1)(ai − 1) = di and 1 6 k1 < k. We
call (Ci, Si) as above balanced.

Lemma 2.10. Bun0,n(k, d)bal is an open substack of Bun0,n(k, d).
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Proof. We have that Bunrt0,n(k, d) is isomorphic to the union⋃
06di6d

Bun0,n+1(k, d− di)×Bun0,1(k, di).

Let Ci → Bun0,1(k, di) be the universal curve over Bun0,1(k, di), Si the universal bundle on Ci
and let πi : Ci ×Bun0,1(k,di) Bunrt0,n(k, d) → Bunrt0,n(k, d) be the pull-back of Ci to Bunrt0,n(k, d). If

i : Bunrt0,n(k, d) → Bun0,n(k, d) denotes the inclusion, then the non-balanced locus of Bun0,n(k, d)
is the support of the sheaf

⋃
i i∗πi∗Ext

1(π∗i S, π∗i S). 2

Definition 2.11. Let Bung,n(k, d)bal be the substack of Bung,n(k, d) whose points are bundles
on curves, which are balanced on the rational tails as explained above.

Proposition 2.12. We have that Bunεg,n(k, d)bal is an open substack of Bung,n(k, d) and the
complement has codimension at least 2.

Proof. This follows just as before. In the notation of the above lemma let Z be the support of
the sheaf

⋃
i i∗πi∗Ext

1(π∗i S, π∗i S). Then Bunεg,n(k, d)bal is the complement of Z in Bung,n(k, d)
and since Ext1(Si,Si) = 0 on the balanced locus we have that Z has codimension at least 2. 2

We recall here a cohomology and base change lemma from [PR03] (Lemma 7.1 in [PR03]).

Lemma 2.13. Let C → B be a family of curves over a base scheme B and p : C → Ĉ be a
morphism over B contracting rational tails. If S is a vector bundle such that R1p∗S = 0, then
p∗S is a flat family of coherent sheaves over B and formation of p∗S commutes with arbitrary
base change B′ → B.

Proposition 2.14. There exists a morphism

r : Bunεg,n(k, d)bal → Bunεg,n(k, d)rtf .

Proof. The proof follows essentially from [PR03]. Let D be the divisor on the tautological curve
on Bunεg,n(k, d) consisting of curves with rational tails. Let B be a scheme, f : B → Bunεg,n(k, d)
a morphism and C the flat family of curves over B obtained by pulling back along f the universal
curve over Bunεg,n(k, d). As Bunεg,n(k, d)rt has a finite number of irreducible components we have
that the intersection of the divisor Bunεg,n(k, d)rt with C has a finite number of components
D1, . . . , Ds. Suppose that on the generic rational tail in the fiber of Di → B we have that S
splits as

⊕k1O(ai)⊕k−k1 O(ai − 1). (4)

We have that the restriction of S(aif
∗D) to rational tails in the fiber of Di → B splits as

⊕k1O ⊕k−k1 O(−1). Then the restriction of S(aif
∗D) rational tails in the fiber of Di → B has

no higher cohomology and as in [PR03], Proposition 7.2 we obtain that R1p∗S(aif
∗D) = 0. This

implies that Ŝ = p∗
∑s

i=1 S(aif
∗D) is a vector bundle. The contraction of each rational tail on

which S splits as in (4) increases the degree of Ŝ∨ with −k1ai − (k − k1)(ai − 1). This implies
that Ŝ is ε-stable if S is ε-stable. 2

Example 2.15. Let C be a nodal curve consisting of a curve Ĉ glued in one point to a curve
C0 which is isomorphic to P1. Let p denote the node of C. Let S be a vector bundle on C and
suppose that S|C0 ' ⊕k1O(a) ⊕k−k1 O(a − 1) with a 6 0. We denote by S′ the restriction of
S to Ĉ. If {s1, . . . , sk} is a local basis of S′ at p compatible with the splitting of S|C0 and x a
local coordinate at p on Ĉ then Ŝ above is the subsheaf of S′ locally generated by {x−as1, . . . ,
x−ask1 , . . . , x

−a+1sk}. In particular, Proposition 2.14 shows that Ŝ does not depend on the choice
of the local basis.
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Remark 2.16. In general one would näıvely expect to define a morphism which extends r in
the following way. Given C as above and S such that S|C0 '

⊕k
i=1O(ai) with ai 6 0 we could

associate to S a vector bundle Ŝ which is the subsheaf of S′ locally generated by {x−a1s1, . . . ,
x−aksk}. However this will depend on the choice of a local basis (see [PR03] the remark after
Proposition 7.3).

2.3 Construction of B̃ung,n(k, r, d)

The goal of this section is to find a stack B̃ung,n(k, r, d) which surjects to Bung,n(k, d) and a

morphism B̃ung,n(k, r, d) → Bung,n(k, d)rtf which extends the morphism r.

Notation 2.17. Let C be a family of nodal curves over a scheme B. We denote by U the
complement of the locus of rational tails in C. By Proposition 2.3 there exists a family of rational
tail free curves Ĉ and a morphism p : C → Ĉ. Note that U is canonically identified via p with an
open subset of Ĉ. By abuse of notation we say that U is also an open subset of Ĉ.

Construction 2.18. Let P(B) be the category whose objects are

(C → B, p : C → Ĉ, p1, . . . , pn,S, Ŝ, p∗(S∨)
ρ

→ Ŝ∨)

with C, Ĉ flat families of prestable curves of genus g with sections p1, . . . , pn, S is a vector bundle
of rank k and degree d on C and Ŝ is a vector bundle of rank k and degree d on Ĉ, such that the
following conditions hold:

(i) p : C → Ĉ is the morphism of B-schemes from Lemma 2.8;

(ii) the restriction of ρ to U is an isomorphism;

(iii) ωC/B(
∑
pi)⊗ (∧kS∨)⊗ε is ample for ε ∈ Q such that ε > 2;

(iv) in every fiber, for every morphism

p∗(S
∨)

ρ
→ Ŝ∨ → τ → 0

and every xi ∈ Ĉ such that the fiber of p over xi is a one-dimensional rational curve C0
i we

have that

length(τxi) = deg(S∨|C0
i
),

where τxi denotes the subsheaf of τ supported at xi;

(v) the number of components of C is bounded by some N .

Isomorphisms. An isomorphism

ψ : (p : C → Ĉ,S, ρ : p∗(S∨) → Ŝ∨) → (p′ : C′ → Ĉ′,S ′, ρ′ : p∗(S ′∨) → Ŝ ′∨)

is an automorphism of curves

φ : C → C′

φ̂ : Ĉ → Ĉ′

together with isomorphisms θ : S∨ → φ∗S ′∨ and θ̂ : Ŝ∨ → φ∗Ŝ ′∨ such that:

(i) φ(pi) = p′i, for all i;

(ii) p′ ◦ φ = φ̂ ◦ p;
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(iii) the following diagram commutes

p∗(S∨)
ρ //

θ̂p
��

Ŝ∨

θ̂
��

φ̂∗p∗(S ′∨)
φ̂∗ρ′ // φ̂∗Ŝ ′∨

where θ̂p : p∗(S∨) → p∗(φ
∗S ′∨) is the isomorphism of sheaves induced by θ followed by the

isomorphism p∗(φ
∗S ′∨) ' φ̂∗p∗(S ′∨) from Lemma 2.13.

Remark 2.19. Although P and subsequently B̃ung,n(k, r, d) depends on N we will omit N from
the notation. In the next section N will be some large enough number (see Remark 3.2 for more
details).

Lemma 2.20. Let S and S ′ be locally free sheaves on a flat family of curves C→ B and f : S→ S ′
an injective morphism of sheaves. If f is injective at the general point of every fiber of C → B,
then the quotient

0 → S f
→ S ′ → Q→ 0 (5)

is flat over B.

Proof. This follows from [PR03]. Let I be an ideal sheaf of a subscheme of B. Tensoring (5) with
OB/I we obtain a sequence

0 → Tor1(OB/I,Q) → S ⊗OB/I → S ′ ⊗OB/I → Q⊗OB/I → 0.

From the hypothesis we have that the map S ⊗ OB/I → S ′ ⊗ OB/I is injective and therefore
Tor1(OB/I,Q) = 0. 2

Lemma 2.21. Let ϕ : B′ → B and let (C,S, Ŝ, p∗(S∨) → Ŝ∨) be an object of P(B). Let C′ :=
C ×B B′, Ĉ′ := Ĉ ×B′ B, U ′ = U ×B B′,S ′ := ϕ∗S and Ŝ ′ := ϕ̂∗Ŝ. Then the natural morphism

ρ′ : p′∗(S ′
∨) → Ŝ ′∨ is an isomorphism on U ′.

Proof. By the second condition in the definition of the stack P we have that

ϕ̂∗ρ : ϕ̂∗p∗(S∨) → ϕ̂∗Ŝ∨

is generically injective in every fiber of C → B. By Lemma 2.20 we have that the restriction of
ϕ̂∗ρ is injective on U . As ρ is surjective on U , we have that ϕ̂∗ρ is surjective on U . This shows
that ϕ̂∗ρ is an isomorphism on U . Let C0 be the rational tail of C. As H1(C0,S∨) = 0 for any
fiber C, we have by Lemma 2.13 that cohomology commutes with base change. This gives

ϕ̂∗p∗(S∨) ' p′∗ϕ∗(S∨).

Combining the two relations we obtain the conclusion. 2

Proposition 2.22. The functor P is an Artin stack.

Proof. Let S ⊂ Mg,n be the substack of finite type of curves with at most N components
and let π : C → S be the universal curve. Fix OC(1) a π-relatively ample line bundle. Let
P (m) = d + k(1 − g + m degOC(1)) denote the Hilbert polynomial of vector bundles of rank k
and degree d. Consider Xl = QuotP (OC(−l)P (l)) the π-relative Quot scheme and let G be the
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universal quotient. Similarly, let Ŝ ⊂Mrtf
g,n be the image of S via the morphism which contracts

rational tails and π̂ : Ĉ → Ŝ be the universal curve. Consider as before OĈ(1) a π̂-relatively

ample line bundle and X̂l = QuotP (OĈ(−l)
P (l)) the π̂-relative Quot scheme and let F̂ be the

universal quotient. Similarly, let F̂ ′ be the universal quotient on X̂m = QuotP (OĈ(−m)P (m)).

By [Lie06] we have that HomX̂l×ŜX̂m
(O(−l)P (l),O(−m)P (m)) is an Artin stack. Let H be the

locally closed locus in
HomX̂l×ŜX̂m

(O(−l)P (l),O(−m)P (m))

defined by the following:

(i) the universal quotient F̂ ′ on the second factor is locally free;

(ii) F̂(l) and F̂ ′(m) are generated by global sections and higher cohomology of F̂(l) and F̂ ′(m)
vanishes;

(iii) the morphism O(−l)P (l)
→ O(−m)P (m) induces a morphism

ρ : F̂ → F̂ ′.

Let us explain condition (iii) above. Denote by 0
j

→ K → O(−l)P (l)
→ F̂ → 0 and 0 → K →

O(−m)P (m) q
→ F̂ ′ → 0 the tautological sequences on X̂l, X̂m respectively and f : O(−l)P (l)

→

O(−m)P (m) the tautological morphism. Then condition (iii) translates into q ◦ f ◦ j = 0. This
is a closed condition. Then let Al,m = Xl ×Ŝ H where the morphism Xl → Ŝ is the composition

Xl → S
p

→ Ŝ. Let B be the locally closed locus in Al,m such that:

(i) the universal quotient G on Xl is locally free;

(ii) ωπ(
∑
pi)⊗ ∧kGε is ample for ε > 2;

(iii) the restriction of ρ to U is an isomorphism;

(iv) p∗G = F̂ ;

(v) if C denotes a fiber of the universal curve C → Xl and S∨ denotes the restriction of G to
C, then for every morphism

F̂ ρ
→ F̂ ′ → τ → 0

and every xi ∈ Ĉ such that the fiber of p over xi is a one dimensional rational curve C0
i we

have that
length(τxi) = deg(S∨|C0

i
).

We have that Gl,m = Gll ×Glm acts on A. We would now like to take
⋃
l,mAl,m/Gl,m but in

general such a quotient would only define a 2-stack. Let us further sketch how to describe P as
a quotient of a scheme by a group. The construction is rather standard. Take H′ as in [MOP11]
Section 6.1. More precisely H′ is a subscheme of Hilb(P(V ))× P(V )n, where Hilb(P(V )) is the
Hilbert scheme of genus g curves and degree F = 1 − g + k(d + 1)(2g − 2 + n) + kd for k > 5
in the projective space P(V ) with V ' CF . Then H′ comes equipped with a universal curve C′,
a contraction of rational tails C′ → Ĉ′ and a PGL(V ) action. If in the above construction we
replace C by C′ and Ĉ by Ĉ′ we get a scheme Al,m = Xl×Ĉ′ H with Xm = QuotP (OC′(−m)P (m)),

X̂m = QuotP (OĈ′(−m)P (m)) and H a subscheme of

HomX̂l×Ĉ′X̂m
(O(−l)P (l),O(−m)P (m)).

Then P is the stack quotient
⋃
l,m[Al,m/Gl,m ×PGL(V )]. This concludes the proof. 2
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Remark 2.23. The stability condition for stable maps implies that the restriction of S∨ to any
rational tail has positive degree. This together with condition (iv) in Construction 2.18 shows
that the restriction of Ŝ∨ to any unstable component of Ĉ has positive degree. This means that
ωĈ(

∑
pi)⊗ ∧kŜε is ample for any ε > 0.

Lemma 2.24. There exists a morphism

t : Bung,n(k, d)bal → P.

Proof. This is essentially Proposition 7.2 in [PR03]. We use the notation in Proposition 2.14.
Let

t(S∨) = (S∨, p∗(S∨)
ρ

→ p∗(S∨((−ai + 1)f∗D)))

where ρ is the map induced by S∨ f∗D−ai+1

→ S∨((−ai + 1)f∗D). The map is well defined since
p∗(S∨((−ai + 1)f∗D)) is a vector bundle by Lemma 7.1 in [PR03]. 2

Construction 2.25. Let B̃ung,n(k, d) be the irreducible component of P which contains the
image of t.

Remark 2.26. Note that as d becomes large P might not be irreducible.

Lemma 2.27. The stack B̃ung,n(k, d) has pure dimension equal to the dimension of Bung,n(k, d).

Proof. Let U be the product B̃ung,n(k, d)×Mg,n M
sm
g,n, where Msm

g,n is the locus in Mg,n of smooth

curves. Then U is an open substack of B̃ung,n(k, d). As B̃ung,n(k, d) is irreducible it is enough
to show that U has pure dimension equal to the dimension of Bung,n(k, d). For this we show

that U 'Bung,n(k, d)×Mg,n M
sm
g,n. Objects of U are pairs (S∨,S∨ ρ

→ S∨) with ρ an isomorphism

and any such object is isomorphic to (S∨,S∨ id
→ S∨) by composing ρ with ρ−1. It is clear that any

isomorphism of (S∨,S∨ id
→ S∨) induces an isomorphism of S. Vice versa for any automorphism θ

of S there exists a unique automorphism θ̂ = θ of S such that the following diagram commutes.

S id //

θ
��

S

θ̂
��

S id // S
This concludes the proof. 2

Remark 2.28. We have a diagram

B̃ung,n(k, d)

π1

ww

π2

''
Bung,n(k, d)

r // Bunrtfg,n(k, d)

such that r ◦ π1 = π2.

Proof. We have a morphism

P → Bung,n(k, d)×Mg,n Bung,n(k, d)

(p : C → Ĉ,S, p∗(S∨) → Ŝ∨) 7→ (S, Ŝ).

We define πi to be the composition of the natural projection of the product to the ith factor
composed with the above map. 2
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3. Stable map-quotients

3.1 Construction
In this section we construct a proper algebraic stack which surjects to both moduli spaces of
stable maps to G(k, r) and stable quotients. We explain the definition at the end of this section.

Definition 3.1. Let P̄ (B) be the category whose objects are

(C → B, p : C → Ĉ, p1, . . . , pn,O⊕rC
s

→ S∨, p∗(S∨)
ρ

→ Ŝ∨)

such that:

(i) p : C → Ĉ is the morphism of Lemma 2.8 and U is as in Notation 2.17;

(ii) O⊕rC
s

→ S∨, is a stable map of rank k and degree d;

(iii) Ŝ is a rank k degree −d locally free sheaf;

(iv) the morphism of sheaves ρ : p∗(S∨) → Ŝ∨ is an isomorphism on U ;

(v) ωĈ/B(
∑
pi)⊗ (∧kŜ∨)⊗ε is ample for any ε ∈ Q with ε > 0;

(vi) in every fiber, for every morphism

p∗(S
∨)

ρ
→ Ŝ∨ → τ → 0

and every xi ∈ Ĉ such that the fiber of p over xi is a one-dimensional rational curve C0
i we

have that
length(τxi) = deg(S∨|C0

i
),

where τxi denotes the subsheaf of τ supported at xi.

Isomorphisms. An isomorphism

ψ : (C p
→ Ĉ,O⊕rC

s
→ S∨, p∗(S∨)

ρ
→ Ŝ∨) → (C′ p

′
→ Ĉ′,O⊕rC′

s′
→ S ′∨, p′∗(S ′

∨
)
ρ′
→ Ŝ ′∨)

is an automorphism of curves
φ : C → C′

φ̂ : Ĉ → Ĉ′

together with isomorphisms θ : S∨ → φ∗S ′∨ and θ̂ : Ŝ∨ → φ∗Ŝ ′∨ such that:

(i) φ(pi) = p′i , for all i;

(ii) p′ ◦ φ = φ̂ ◦ p;
(iii) the following diagram commutes

O⊕rC

��

s // S∨

θ
��

φ∗O⊕rC′
φ∗s′ // φ∗S ′∨

(iv) the following diagram commutes
p∗(S∨)

ρ //

θ̂p
��

Ŝ∨

θ̂
��

φ̂∗p∗(S ′∨)
φ̂∗ρ′ // φ̂∗Ŝ ′∨

where θ̂p : p∗(S∨) → φ̂∗p∗(S ′∨) is the isomorphism of sheaves induced by θ followed by the

isomorphism p∗(φ
∗S ′∨) ' φ̂∗p∗(S ′∨) from Lemma 2.13.

We call a point in P̄ a map-quotient.
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Remark 3.2. Here we do not need to impose that the number of components of C is bounded as
for any stable map (C, p1, . . . , pn, f) there exists an N depending on g, n and d such that C has
at most N components.

Remark 3.3. Let us show that condition (ii) in Definition 3.1 is equivalent to the one in [MOP11].
Given a stable quotient Ŝ → O⊕r we get by dualizing a morphism O⊕r → Ŝ∨ which is generically
surjective in all fibers. Conversely, given a morphism O⊕r → Ŝ∨ which is generically surjective
in fibers we get an injective morphism Ŝ → O⊕r whose quotient is flat by Lemma 2.20.

Proposition 3.4. We have an isomorphism of stacks

P̄ 'Mg,n(G(k, r), d)×Bung,n(k,d) P

for some N in the definition of P as in Remark 3.2. In particular, P̄ is an Artin stack.

Proof. It follows easily from definitions. 2

Lemma 3.5. Let Mg,n(G(k, r), d)bal denote the fiber product

Mg,n(G(k, r), d)×Bung,n(k,d) Bung,n(k, d)bal.

Then we have a morphism of stacks

R : Mg,n(G(k, r), d)bal → P̄

over Bung,n(k, d).

Proof. Let (O⊕rC → S∨) ∈Mg,n(G(k, r), d)bal. We define

R(Or → S∨) = (O⊕rC → S∨, p∗(S∨)
ρ

→ (p∗S∨((−ai + 1)f∗Di))).

As before we have by Lemma 7.1 in [PR03] that p∗(S∨((−ai + 1)f∗Di)) is a vector bundle. The
quotient stability for Ŝ∨ = p∗(S∨((−ai + 1)f∗Di)) is immediate. 2

Proposition 3.6. There exists a morphism

c : Mg,n(G(k, r), d)bal → Qg,n(G(k, r), d).

Proof. Let (O⊕rC → S∨) ∈ Mg,n(G(k, r), d)bal and p : C → Ĉ be the contraction of rational
tails. Then we have a generically surjective morphism O⊕r

Ĉ
→ p∗(S∨). Composing this with the

morphism ρ above we obtain a stable quotient O⊕r
Ĉ

→ Ŝ∨ with Ŝ∨ = p∗(S∨((−ai+1)f∗Di)). 2

Example 3.7. Let us prove that in general R and c do not extend. The proof for the two
morphisms is the same. We repeat the argument in [PR03], Theorem 7.4. Let us consider a
one-dimensional constant family of stable genus zero maps f1 : C1B → G(k, r) with a constant
section s1 : B → C1, s1(b) = P , for any point b ∈ B. Let f0 : C0B → G(k, r) be a family of
genus zero maps, such that on the general fiber Cb → G(k, r) the pull-back of the tautological
subbundle is isomorphic to O(−1) ⊕ · · · ⊕ O(−1) and on the special fiber C0

0 → G(k, r) the
pull-back of the tautological subbundle is isomorphic to O⊕O(−2)⊕O(−1)⊕ · · · ⊕O(−1). Let
us consider a section s0 : B → C0 such that f1(s1(B)) = f0(s0(B)). By identifying f1(s1(B))
with f0(s0(B)) we obtain a family of stable maps f : C → G(k, n). Let f0 : C0 → G(k, r) be the
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special fiber and p the gluing point of C1
0 with C0

0 . Let {s1, . . . , sk} be a local basis for S|C1
0

at

p. If x is a local coordinate around p, then {xs1, . . . , xsk} is a basis of Ŝ.
Let us now consider a second family of stable maps. As M0,n(G(k, r), d) is irreducible we can

find a family of stable maps B′ whose special fiber is f0 : C0 → G(k, r) and general fiber with
smooth domain. By Proposition 7.3 in [PR03] the limiting stable quotient over B′ is Ŝ with Ŝ
around p generated by {s1, x2s2, xs3, . . . , xsk}. As the two quotients are different R and c do not
extend.

Remark 3.8. Let us explain the idea behind the definition of P̄ . For this let us understand better
why c does not extend. In the following it is a little easier to use the equivalent description of
stable maps to Grassmannians and stable quotients explained in Remark 3.3 and work with the
dual definition. In the spirit of Remark 2.16 we could try to extend c in the following way. Let
C be a curve with a rational tail C0 and a rational tail free part Ĉ as in Remark 2.16. Given a
stable map

0 → S → O⊕rC → Q → 0

such that S|C0 '
⊕k

i=1O(ai) with ai 6 0 we could associate to S a vector bundle Ŝ which is the
subsheaf of S′ = S|Ĉ locally generated by sections {x−a1s1, . . . , x−aksk}. Such a vector bundle
comes by construction with a morphism to O⊕r

Ĉ
and by Lemma 2.20 the quotient of the injective

morphism Ŝ → O⊕r
Ĉ

is flat. It can also be seen that the stability for stable quotients is satisfied.
However, as shown in Example 3.7 this association does not define a morphism. The reason why
c does not extend is that in general there is no one to one relation between the subsheaf S′ of
S and S|C0 (see Example 3.7 and Example 7.1 in [PR03]). Equivalently, there is no one to one
relation between the torsion subsheaf of Q̂ in the definition and the splitting of S|C0 . The idea
in the definition of P̄ is to take all possible pairs

(0 → S → O⊕rC → Q → 0, 0 → Ŝ → O⊕r
Ĉ

→ Q̂ → 0)

such that:

1. C has a rational tail free part isomorphic to Ĉ and rational tails C0
1 , . . . , C

0
p attached to Ĉ

in x1, . . . , xp;

2. S′ = S|Ĉ is the saturation of Ŝ in O⊕r
Ĉ

;

3. the restriction of S to the rational tails C0
i has degree equal to the degree of the torsion

part of Q̂ which is supported on xi, for all i ∈ {1, . . . , p}.

Let us rephrase the above in more geometric terms. A stable quotient gives a rational application
Ĉ 99K G(k, r) which extends to a morphism f̄ . Then condition 2 translates into:

2′. Ĉ 99K G(k, r) is not defined at x1, . . . , xp and the restriction of the stable map to Ĉ is f̄ .

Conditions 1 and 2 (or equivalently 2′) explain condition (iv) in Definition 3.1 while condition 3
explains condition (vi). Let us also note that if we have just one rational tail condition (vi)
follows from condition (iv), but not in general.

Construction 3.9. Let

MQg,n(G(k, r), d) = Mg,n(G(k, r), d)×Bung,n(k,d) B̃ung,n(k, d).

Then by construction MQg,n(G(k, r), d) is a substack of P̄ and it contains the image of R̄.
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3.2 Properties
We first show that P̄ is proper.

Separatedness

Proposition 3.10. We have a morphisms of stacks

i : P̄ → Mg,n(G(k, r), d)×Mrtf
g,n
Qg,n(G(k, r), d)

which is an immersion of DM stacks. In particular, we have morphisms of stacks

c1 : P̄ → Mg,n(G(k, r), d),

c2 : P̄ → Qg,n(G(k, r), d).

Proof. The exact sequence 0 → Q∨ → O⊕r → S∨ → 0 induces an exact sequence

0 → p∗(Q∨) → O⊕r → p∗(S∨) → R1p∗(Q∨).

Let us show that R1p∗(Q∨) is supported on the complement of U in Ĉ. We have that
R1p∗(Q∨)|U = R1p∗(Q∨|U ) and since p is the identity on U we obtain that R1p∗(Q∨)|U = 0.
Composing the generically surjective morphism O⊕r → p∗(S∨) with p∗(S∨) → Ŝ∨ we obtain an
element in Qg,n(G(k, r), d).

Let us now show that given a stable map m = (C,O⊕r s
→ S∨ → 0) and a stable quotient

q = (Ĉ,O⊕r ŝ
→ Ŝ∨) there exists at most one mq = (p : C → Ĉ,O⊕rC

s
→ S∨, p∗(S∨)

ρ
→ Ŝ∨) such

that i(mq) = (m, q). As the map p∗s : p∗O⊕r → p∗(S∨) induced by s is surjective away from
torsion and zero on torsion we obtain that a map ρ : p∗(S∨) → Ŝ∨ such that ρ ◦ p∗s = ŝ must
be unique. 2

Corollary 3.11. We have that P̄ is separated.

Properness

Lemma 3.12. Let B be a curve and let C → B be a flat family of curves over B. Let us assume
that B, C are smooth and let D be a (−1) curve on C. Then we have that

Tor1(OD(−a),OD) ' OD(−a+ 1)

for any a > 0.

Proof. We have an exact sequence

0 → O(−D) → O→ OD → 0.

Let a > 0. Tensoring it with O(aD) we obtain the following free resolution of OD(−a)

0 → O((a− 1)D) → O(aD) → OD(−a) → 0.

Tensoring the resolution with OD we obtain a sequence

0 → Tor1(OD(−a),OD) → OD((−a+ 1)D) → OD(−a) → OD(−a) → 0.

This shows that Tor1(OD(−a),OD) = OD(−a+ 1). 2
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Lemma 3.13. Let C → B be a family of curves as before, D be a (−1)-curve and

0 → S → O⊕rC
q

→ Q → 0

a flat quotient on C. Let p′ : C → C′ be the contraction of D. Then there exists a locally free
sheaf S ′ on C′ and morphism of sheaves S ′ → p′∗S on C′ which is an isomorphism on C\D.

Proof. Let S|D ' O(−a1)⊕ · · · ⊕O(−ak) with ai > 0 and let us assume that a1 6 · · · 6 ak. Let
us prove that there exists a vector bundle T on C such that the following conditions are fulfilled:

(i) we have a morphism T → S which is an isomorphism on C\D;

(ii) T |D ' O⊕k.

Let T1 be the kernel of the natural projection S → OD(−ak) so that we have an exact sequence

0 → T1 → S → OD(−ak) → 0.

Restricting the above sequence to D we have an exact sequence

0 → Tor1(OD(−ak),OD) → T1|D → S|D → OD(−ak) → 0. (6)

By Lemma 3.12 we have that Tor1(OD(−ak),OD) ' OD(−ak + 1) which shows that we have an
exact sequence

0 → OD(−ak + 1) → T1|D → O(−a1)⊕ · · · ⊕ O(−ak−1) → 0. (7)

Let us assume that T1|D ' O(−b1)⊕ · · · ⊕ O(−bk) with b1 6 · · · 6 bk. By sequence (7) we have

that bi > 0 and
∑k

i=1 bi =
∑k

i=1 ai−1 which means that
∑k

i=1 bi <
∑k

i=1 ai. Repeating the above
procedure for T1 instead of S we obtain T as in the above claim.

Let S ′ = p′∗T . We have that S ′ is a vector bundle over C′. By construction p′∗T → p′∗S is an
isomorphism on U . 2

Remark 3.14. Let
0 → S → O⊕nC

q
→ Q → 0

be a flat quotient on C. If S ′ is the vector bundle constructed in the above lemma, then we
obtain a flat family of quotients over C′. Indeed we have that the composition S ′ → p′∗S → O⊕r
in injective on all fibers of C′ → B. By Lemma 2.20 we have that S ′ → O⊕r → Q′ is a flat family
of quotients over C′.

Proof of properness. Let ∆ be a nonsingular curve with a closed point 0 ∈ ∆ and let
∆∗ = ∆\{0}. Let

(p : C∗ → Ĉ∗,S∗ j∗
→ O⊕rC∗ , p∗(S

∗∨)
ρ∗
→ (Ŝ∗)∨)

be a family of map-quotients over ∆∗. By normalizing and possibly restricting ∆ we may
assume that Ĉ∗ is smooth. By the properness of the moduli space of stable maps we can extend

0 → S∗ j∗
→ O⊕rC∗ → Q∗ → 0 to

0 → S j
→ O⊕rC → Q → 0

with Q flat over ∆. Let C0 be the (reducible) two-dimensional component of C contracted by p.
Let C′ be the closure of the complement of C0 in C, p′ : C → C′ be the projection to C′ and S ′
the restriction of S to C′. By the semistable reduction theorem and by possibly blowing up the
nodes of the central fiber we may assume that C′ is smooth. Without loss of generality we may
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assume that C′ does not have unstable fibers over ∆?. By the properness of the moduli space of
stable maps we have a family 0 → S → O⊕rC → Q→ 0 over ∆. Restricting to C′ we obtain a
family of stable maps

0 → S ′ → O⊕rC′ → Q′ → 0.

We have the exact sequence

0 → T
i

→ p′∗(S∨)
q

→ S ′∨ → 0 (8)

where T is the torsion subsheaf of p′∗(S∨). By our assumption p′ = p over ∆∗. This gives that
over ∆∗ we have a morphism

p′∗(S∨)
ρ

→ Ŝ∨.

As ρ ◦ i(T ) = 0, the universal property of quotients gives that ρ factors (uniquely) through S ′∨.
This gives a morphism of locally free sheaves

0 → S ′∨ ρ′
→ Ŝ∨ (9)

over ∆∗ which is an isomorphism on U∗. Dualizing (9) and applying Lemma 2.20 we have that
Ŝ → S ′ gives a flat family of quotients over ∆∗ and by the properness of the Quot scheme we
have

0 → Ŝ ′ → S ′ (10)

over C′. Dualizing again we have that

0 → S ′∨ ρ′
→ Ŝ ′∨ → τ → 0 (11)

is a flat family of quotients which extends (9). As C′ is smooth and Ŝ ′∨ reflexive we obtain that

Ŝ ′∨ is locally free. By (8) and (11) we have an exact sequence

p′∗S∨ → Ŝ ′∨ → τ → 0 (12)

over C′ which satisfies the conditions (i)–(iv) from Construction 3.1. Let us prove that it also
satisfies condition (v). Let τ1, . . . , τm be the irreducible components of τ and C0,1, . . . , C0,m be
the irreducible components of C0. As length(τi) = deg(S∨|C0,i) over ∆∗ for all i we obtain that
length(τi) = deg(S∨|C0,i) over ∆. This implies that condition (v) in Definition 3.1 is true for the
points x ∈ C′ ∩ C0.

We now contract the remaining unstable curves in the central fiber. Let p′′ : C′ → C′′ be the
contraction of one unstable rational tail C0, x the attachment point with the rest of the curve
and −d0 = deg(Ŝ ′|C0). Let us show that we can find a vector bundle S ′′ and a morphism of
sheaves

p′′∗(Ŝ ′
∨

)
ρ′′
→ S ′′∨ (13)

on C′ which satisfies the conditions (i)–(iv) from Definition 3.1 and such that if τ ′ denotes the
quotient of ρ′′ we have that length(τ ′x) = d0. By Lemma 3.13 we have a bundle T with a morphism
T → Ŝ ′ which is an isomorphism away from C0. Dualizing and pushing forward we obtain a
morphism

p′′∗(Ŝ ′
∨

) → p′′∗(T ∨)

which is an isomorphism away from x. By construction T |D is trivial which implies that p′′∗(T ∨)
is a vector bundle. Let us take S ′′ = p′′∗(T ∨). The fact that ρ′′ is an isomorphism away from x
and S ′′ is a vector bundle implies that length(τ ′x) = d0. Repeating this procedure for all unstable
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rational tails we may assume that (13) holds for p′′ : C′ → Ĉ, which is the contraction of all
unstable rational tails. This means that p = p′′ ◦ p′. Take Ŝ = S ′′ and by (12) we get a morphism

ρ : p∗(S∨) → Ŝ∨

on Ĉ as in construction (3.1). In the end we contract −2 curves on which S and Ŝ are trivial.

Corollary 3.15. The stack MQg,n(G(k, r), d) is a proper DM stack.

Proof. By definition MQg,n(G(k, r), d) is a closed substack of P̄ . As P̄ is proper, we obtain that

MQg,n(G(k, r), d) is proper. 2

Proposition 3.16. Let us consider

Qg,n(G(k, r), d) := Qg,n(G(k, r), d)×Bung,n(k,d) B̃ung,n(k, d).

Then we have the following commutative diagram.

MQg,n(G(k, r), d)

q

��

c1

uu

c2

))
Mg,n(G(k, r), d)

νM

��

Qg,n(G(k, r), d)

��

s // Qg,n(G(k, r), d)

νQ

��
B̃ung,n(k, d)

π1

uu

π2 // Bung,n(k, d)

Bung,n(k, d)

Proof. The definitions imply that the following diagram is commutative.

MQg,n(G(k, r), d) //

��

Qg,n(G(k, r), d)

��
B̃ung,n(k, d) // Bung,n(k, d)

By the universal property of cartesian products we obtain a map

q : MQg,n(G(k, r), d) → Qg,n(G(k, r), d). 2

Remark 3.17. Let C be nodal curve, C0 be its rational tail and Ĉ the rational tail free part of
C. For simplicity we assume that C0 is irreducible. Let moreover

0 → S → O⊕rC
be a stable map from C to G(k, r). Then the map q forgets the map

S|C0 → O⊕rC0
.

More precisely, we have that the fiber of q over the point

(p : C → Ĉ, S,O⊕r
Ĉ

→ p∗(S
∨)

ρ
→ Ŝ∨) ∈ Qg,n(G(k, r), d)

is included in the subspace of the space of sections of S|C0 which agree with the sections
O⊕r
Ĉ

→ (S′)∨ at the node. Here we denoted by S′ the vector bundle S|Ĉ . Note that (S′)∨ is

isomorphic to the torsion free part of p∗(S
∨).
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Let us finally remark that as we do not have a good description of B̃ung,n(k, d) we also do
not have a good description for Qg,n(G(k, r), d) or for the fibers of q.

3.3 Obstruction theories
Let us briefly recall a few basic facts about obstruction theories of moduli spaces of stable maps
to G(k, r) and stable quotients. Let

εM : Mg,n(G(k, r), d) → Mg,n

be the morphism that forgets the map (and does not stabilize the pointed curve) and

πM : CM → Mg,n(G(k, r), d)

the universal curve over Mg,n(G(k, r), d) and let ev denote the evaluation map ev : Mg,n+1

× (G(k, r), d) → G(k, r) (see [Beh97]). Let

0 → SM → O⊕rCM → QM → 0

be the universal sequence on CM . We have that ev∗TG(k,r) ' QM ⊗ S∨M . This shows that

E•
Mg,n(G(k,r),d)/Mg,n

= R•πM ∗QM ⊗ S∨M

is a dual obstruction theory for the morphism εM (see [BF97]). We call

[Mg,n(G(k, r), d)]virt = εM
![Mg,n]

the virtual class ofMg,n(G(k, r), d). Here εM
! is the virtual pull-back associated to the obstruction

theory E•
Mg,n(G(k,r),d)/Mg,n

defined in [Man12a].

As the moduli space of stable maps, the moduli space of stable quotients Q̄g,n(G(k, r), d)

has a morphism εQ : Q̄g,n(G(k, r), d) → Mg,nto the Artin stack of nodal curves. Let πQ : ĈQ →

Q̄g,n(G(k, r), d) be the universal curve over Q̄g,n(G(k, r), d) and let

0 → ŜQ → O⊕r
ĈQ

→ Q̂Q → 0

be the universal sequence on ĈQ. Then the complex

E•
Qg,n(G(k,r),d)/M

= RπQ∗RHom(ŜQ, Q̂Q)

is a dual obstruction theory relative to εQ. We call

[Qg,n(G(k, r), d)]virt = εQ
![Mg,n]

the virtual class of Qg,n(G(k, r), d).

Obstruction theories relative to moduli spaces of bundles. In the following we define obstruc-
tion theories relative to Bung,n(k, d). The map

νM : Mg,n(G(k, r), d) → Bung,n(k, d)

induces a morphism between cotangent complexes and thus we obtain a distinguished triangle

ν∗MLBung,n(k,d) → LMg,n(G(k,r),d) → LMg,n(G(k,r),d)/Bung,n(k,d)
. (14)
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Tensoring the tautological sequence on the universal curve over Mg,n(G(k, r), d) with S∨M we
obtain an exact sequence

0 → SM ⊗ S∨M → (S∨M )⊕r → QM ⊗ S∨M → 0

which induces a distinguished triangle

R•πM ∗(S∨M )⊕r → R•πM ∗QM ⊗ S∨M → R•πM ∗SM ⊗ S∨M [1].

If π : C → Bung,n(k, d) is the universal curve and S denotes the tautological bundle on C, then
the tangent complex TBung,n(k,d) is isomorphic to R•π∗S ⊗ S∨[1]. By the cohomology and base
change theorem we obtain that ν∗MTBung,n(k,d) = R•πM ∗SM ⊗ S∨M [1]. This shows that we have
the following commutative diagram with the first row the dual of the exact triangle (14).

TMg,n(G(k,r),d)/Bung,n(k,d)
//

��

TMg,n(G(k,r),d)
//

��

ν∗MTBung,n(k,d)

R•πM ∗(S∨M )⊕r // R•πM ∗QM ⊗ S∨M // R•πM ∗SM ⊗ S∨M [1]

This shows that R•πM ∗(S∨M )⊕r is a dual relative obstruction theory for νM .

In a completely analogous manner we obtain that R•πM ∗(Ŝ∨Q)⊕r is a dual relative obstruction
theory for νQ.

Construction 3.18. From the cartesian diagram in Proposition 3.16 we obtain that

E•
MQg,n(G(k,r),d)/B̃ung,n(k,d)

= c∗1R
•πM ∗(S∨M )⊕r

is a dual perfect obstruction for the map

νMQ : MQg,n(G(k, r), d) → B̃ung,n(k, d).

By Lemma 2.27 B̃ung,n(k, d) has pure dimension, which means that the obstruction theory
E•
MQg,n(G(k,r),d)/B̃ung,n(k,d)

gives rise to a virtual class

[MQg,n(G(k, r), d)]virt = (νMQ)![B̃ung,n(k, d)].

4. Comparison of virtual fundamental classes

Proposition 4.1. The tautological morphism

ρ : p∗(S∨MQ) → Ŝ∨MQ

on MQg,n(G(k, r), d) induces a morphism

c∗1R
•πM ∗(S∨M )⊕r → c∗2R

•πQ∗(Ŝ
∨
Q)⊕r.

Proof. By the construction of MQg,n(G(k, r), d) we see that we have the following commutative
diagram with the right-down square cartesian.

CMQ

p

''

c′′2

,,
πMQ

��

ĈMQ
c′2 //

t
��

ĈQ
πQ

��
MQg,n(G(k, r), d)

c2 // Qg,n(G(k, r), d)

(15)
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By cohomology and base change in the diagram

CMQ
//

πMQ

��

CM
πM
��

MQg,n(G(k, r), d)
c1 //Mg,n(G(k, r), d)

we have that c∗1R
•πM ∗S∨M ' R•πMQ∗c

∗
1S∨M and by construction we have that c∗1S∨M ' S∨MQ.

Combining the two relations we obtain a canonical isomorphism

c∗1R
•πM ∗S∨M ' R•πMQ∗S

∨
MQ. (16)

From the commutativity of diagram (15) we have that

R•πMQ∗S
∨
MQ ' R•(t ◦ p)∗S∨MQ (17)

and by the construction of MQg,n(G(k, r), d) we have Ŝ∨MQ ' c′2
∗Ŝ∨Q. Now using cohomology and

base change in diagram (15) we obtain that

c∗2R
•πQ∗Ŝ

∨
Q ' R•t∗c′2

∗Ŝ∨Q. (18)

By (16)–(18) we see that ρ : p∗(S∨MQ) → ŜMQ induces a morphism

c∗1R
•πM ∗(S∨M )⊕r → c∗2R

•πQ∗(Ŝ
∨
Q)⊕r. 2

Lemma 4.2. Let F be the cone of the morphism

c∗1R
•πM ∗(S∨M )⊕r → c∗2R

•πQ∗(Ŝ
∨
Q)⊕r.

Then, F is a perfect complex.

Proof. Let us consider

(C, p1, . . . , pn,O⊕rC → S∨)

a stable map, p : C → Ĉ the morphism contracting the rational tails and let x1, . . . , xp be the
gluing points of the rational tails C0

i with the rest of the curve. Then we need to show that the
morphism

H1(C, S∨) → H1(Ĉ, Ŝ∨)

is surjective. Since

H1(C, S∨) ' H1(Ĉ, p∗(S
∨))

we need to show that

H1(Ĉ, p∗(S
∨)) → H1(Ĉ, Ŝ∨)

is surjective. As the quotient of the morphism p∗(S
∨) → Ŝ∨ is supported on points, it has no

higher cohomology. This shows that the above morphism is surjective. 2

Theorem 4.3. Let γ1, . . . , γn ∈ A∗(G(k, r)). Then we have that

ev∗1γ1 · · · ev∗nγn · [Mg,n(G(k, r), d)]virt = ev∗1γ1 · · · ev∗nγn · [Qg,n(G(k, r), d)]virt.
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Proof. From Costello’s push-forward formula [Cos06] applied to the cartesian diagram

MQg,n(G(k, r), d)
c1 //

��

Mg,n(G(k, r), d)

��
B̃ung,n(k, d) // Bung,n(k, d)

we obtain that
c1∗[MQg,n(G(k, r), d)]virt = [Mg,n(G(k, r), d)]virt, (19)

where [MQg,n(G(k, r), d)]virt is the class from Construction 3.18.
Let us now show that c2 satisfies the virtual push-forward property. For this we analyze the

commutative diagram in which the lower rectangle is a cartesian diagram.

MQg,n(G(k, r), d)

c2

))
q

��
Qg,n(G(k, r), d)

νQ
��

s // Qg,n(G(k, r), d)

νQ

��
B̃ung,n(k, d)

π2 // Bung,n(k, d)

(20)

Let us moreover remark that we have a commutative diagram

MQg,n(G(k, r), d)

c2

))
q◦

��
Q◦g,n(G(k, r), d)

s◦ // Qg,n(G(k, r), d)

where Q◦g,n(G(k, r), d) is the image of q and q◦, s◦ are the maps induced by q and s. In the
following we show that s◦ is unobstructed. For this let us understand better the points of
Q◦g,n(G(k, r), d). Let us note that to give a point (Ĉ, p1, . . . , pn, Ŝ,O⊕rĈ → Ŝ∨) ∈ Qg,n(G(k, r), d)

means to give a rational map f : Ĉ 99K G(k, r) with base points x1, . . . , xp. As f is defined

around the nodes of C we see that f extends to a morphism f̄ : Ĉ → G(k, r). Then f̄ determines
a vector bundle S′ on Ĉ obtained by pulling back the tautological sequence on G(k, r) via f̄ .
Let us show that S′ is the saturation of Ŝ in O⊕r

Ĉ
. By definition, the saturation of Ŝ in O⊕r

Ĉ
is

defined by a commutative diagram with exact rows

τ

��
0 // Ŝ //

��

O⊕r
Ĉ

//

��

Q̂ //

��

0

0 // S′ //

��

O⊕r
Ĉ

// Q′ // 0

τ
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where τ is the torsion subsheaf of Q̂. As the morphisms Ŝ → O⊕r
Ĉ

and S′ → O⊕r
Ĉ

agree away

from x1, . . . , xp and Q′ is torsion free we have that S′ → O⊕r
Ĉ

determines the unique morphism

f̄ : Ĉ → G(k, r) which extends f : Ĉ 99K G(k, r). Summarizing, we have that any stable quotient
O⊕r
Ĉ

→ Ŝ∨ determines uniquely a vector bundle S′ on Ĉ together with a morphism Ŝ → S′ such
that the composition

O⊕r
Ĉ

→ S′
∨

→ Ŝ∨

gives the stable quotient we started with. This shows that to give a point in Q◦g,n(G(k, r), d)

means to give a stable quotient (Ĉ, p1, . . . , pn, Ŝ,O⊕rĈ → Ŝ∨), a curve C with rational tail free

part Ĉ and rational tails C0
1 , . . . , C

0
p and a vector bundle S on C such that the restriction of S

to Ĉ is isomorphic to S′. More precisely, a point of Q◦g,n(G(k, r), d) is a stable quotient on Ĉ
with additional markings x1, . . . , xp and p vector bundles S0

1 , . . . , S
0
p on the (possibly reducible)

rational 1-pointed curves C0
1 , . . . , C

0
p with markings y1, . . . , yp together with identifications S|xi '

S0
i |yi for all i ∈ {1, . . . , p}.

Now let L be the complex on Q◦g,n(G(k, r), d) whose fibers are

Ext•C(S, S) → Ext•
Ĉ

(S′, S′).

Let S ⊂ Mg,n be the image of the morphism Mg,n(G(k, r), d) → Mg,n. Let LS/Mrtf
g,n

be

the cotangent complex of the morphism p : S → Mrtf
g,n which contracts rational tails (see

Proposition 2.3), Ls◦ the relative cotangent complexes of s◦, and let ε : Q◦g,n(G(k, r), d) → S be

the forgetful morphism which sends a point (C, S,O⊕r
Ĉ

→ Ŝ∨) ∈ Q◦g,n(G(k, r), d) to C. The fiber

of s◦ over a point (Ĉ, p1, . . . , pn, Ŝ,O⊕rĈ → Ŝ∨) in Qg,n(G(k, r), d) is isomorphic to the fiber of

the morphism Bung,n(k, d) → Bung,n(k, d) which sends (C, S) to (Ĉ, S′). This shows that we
have a distinguished triangle

L → Ls◦ → ε∗LS/Mrtf
g,n
.

Tensoring the normalization sequence

0 → S → S′ ⊕
p⊕
i=1

S0
i → Cp → 0

with S∨ and taking cohomology we obtain

0 → H0(C, S ⊗ S∨) → H0(Ĉ, S′ ⊗ (S′)∨)⊕
p⊕
i=1

H0(C0
i , S

0
i ⊗ (S0

i )∨) → Cp ⊗ Ck

→ H1(C, S ⊗ S∨) → H1(Ĉ, S′ ⊗ (S′)∨)⊕
p⊕
i=1

H1(C0
i , S

0
i ⊗ (S0

i )∨) → 0.

This shows that L∨ has fibers

p⊕
i=1

H0(C0
i , S

0
i ⊗ (S0

i )∨) →

p⊕
i=1

Ck ⊕H1(C0
i , S

0
i ⊗ (S0

i )∨)

concentrated in [−1, 0]. In particular s◦ is unobstructed and the normal cone of s◦ is a vector
bundle stack of rank 0. In the notation of Lemma 4.2 let F be the cone of the morphism
c∗1R

•πM ∗(S∨M )⊕r → c∗2R
•πQ∗(Ŝ

∨
Q)⊕r. By Lemma 4.2 we have that F is a perfect complex. The
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fact that s◦ is unobstructed together with the fact that the moduli space of stable quotients
is connected ([KP01, Tod11]) shows that we are under the hypothesis of Proposition 3.14
in [Man12b] which implies that

c2∗[MQg,n(G(k, r), d)]virt = [Qg,n(G(k, r), d)]virt. (21)

The conclusion follows from (19), (21) and the projection formula. 2
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