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Internal gravity waves in flow past a bluff body
under different levels of stratification
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The flow field of a bluff body, a circular disk, that moves horizontally in a stratified
environment is studied using large-eddy simulations. Five levels of stratification (body
Froude numbers of Fr = 0.5, 1, 1.5, 2 and 5) are simulated at Reynolds number of Re =
5000 and Prandtl number of Pr = 1. A higher Re = 50 000 database at Fr = 2, 10 and
Pr = 1 is also examined for comparison. The wavelengths and amplitudes of steady lee
waves are compared with a linear-theory analysis. Excellent agreement is found over
the entire range of Fr if an ‘equivalent body’ that includes the separation region is
employed for the linear theory. For asymptotically large distances, the velocity amplitude
varies theoretically as Fr−1 but a correction owing to the dependence of the separation
zone on Fr is needed. The wake waves propagate in a narrow band of angles with
the vertical, and have a wavelength that increases with increasing Fr. The envelope of
wake waves, demarcated using buoyancy variance, exhibits self-similar behaviour. The
higher Re results are consistent with the buoyancy effects exhibited at the lower Re.
The wake wave energy is larger at Re = 50 000. Nevertheless, independent of Fr and
Re, the ratio of the wake wave potential energy to the wake turbulent energy increases
to approximately 0.6–0.7 in the non-equilibrium stage showing their energetic importance
besides suggesting universality in this statistic. There is a crossover of energetic dominance
of lee waves at Fr < 2 to wake-wave dominance at Fr ≈ 5.

Key words: stratified flows, stratified turbulence, wakes

1. Introduction

1.1. Internal waves and their impact
Relative motion between a submerged body and its stratified environment gives rise to
different types of internal gravity waves. Observations of these waves in the ocean and the
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atmosphere prompted the first studies of these waves in the geophysical context. Flow
over mountains gives rise to lee waves that can lead to changes in properties of air,
sometimes visualised as wave clouds. In the ocean, substantial energy is transferred from
impinging mean currents and tides at bottom topography to internal waves, e.g. Garrett &
Kunze (2007), which, through nonlinear processes break down to turbulence, e.g. Sarkar &
Scotti (2017), and the associated turbulent mixing provides an important control on ocean
stratification and currents, e.g. Wunsch & Ferrari (2004). The motivating application –
bodies moving in a stratified environment – of the present work is different. Here, the
body generates lee waves, which are steady in the reference frame of the body, and the
unsteady motions in the wake also generate waves (unsteady in the frame of the body).
Characterisation of the space–time structure and energetics of these waves is of interest as
is quantification of their relationship with the wake and the body generator.

The internal or body Froude number, Fr = U/ND, is the important overall parameter
that governs internal gravity waves and buoyancy effects on wake dynamics. Here, the
density-stratified background is characterised by the buoyancy frequency N where N2 =
−(g/ρ0)∂ρb/∂z, the relative velocity between the body and the ambient by U and the size
of the body by D. In geophysical flows, Fr is generally less or much less than O(1), while
in engineering applications (underwater submersibles, aerial vehicles, wind farms, marine
turbines) Fr � O(1).

1.2. Lee wave studies in the laboratory and with simulations
Laboratory experiments of stratified flow past a model hill (Hunt & Snyder 1980) and
model ridges (Castro, Snyder & Marsh 1983) have characterised lee waves through
extensive flow visualisation. Chomaz, Bonneton & Hopfinger (1993) experimentally
studied and classified the change of near-wake structure of a sphere wake in uniform
stratification as Fr is decreased from greater-than to less-than O(1) values. In a
companion study, Bonneton, Chomaz & Hopfinger (1993) described wave characteristics
on horizontal planes above the wake using isopyncal displacement inferred from
fluorescent dye images. Non-uniform stratification was treated by Robey (1997) who,
using experiments and numerics, found the wave field of a sphere moving at the base
of a thermocline to be composed of discrete modes that give rise to horizontal-plane
patterns reminiscent of Kelvin wakes on the air–sea boundary. Recently, Meunier et al.
(2018) investigated the wave field of bodies of different shapes and determined how the
wavelength and velocity amplitude of lee waves varied with Fr. They also proposed a
model for lee wave amplitude that involves modelling the drag as a point force in the
Navier–Stokes equations.

Various numerical simulations have also described these lee waves and their effects on
the flow at the body and in the wake. For a sphere at Re = 200, Hanazaki (1988) found
that lee waves suppress separation on decreasing Fr when Fr > 1 but induce separation
on decreasing Fr when Fr < 1. Lee waves lead to oscillatory modulation of the wake
width and velocity (Pal et al. 2017) and also, near the body, lead to a local minimum of
the wake defect velocity at Nt = π corresponding to the half-wavelength of the lee wave
(Chongsiripinyo & Sarkar 2020). Here, Nt = Nx/U = x/(FrD) converts distance behind
the body to time in buoyancy units. Lee waves have a stronger effect on the wake of a
slender body, i.e. large value of aspect ratio (AR) given by L/D where L is the length
of the body. When the half-wavelength of the lee wave matches L, a condition that is
realised at a critical value of Frc = AR/π, the wave leads to maximal contraction of
the separated flow at the trailing edge. Thus, in a large-eddy simulations (LES) study
(Ortiz-Tarin, Chongsiripinyo & Sarkar 2019) of flow past a 4 : 1 spheroid at Re = 104,
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the wake which was turbulent at high Fr exhibited strong suppression of wake turbulence
at Fr = 1. The problem of a disk at Re = 5000 in nonlinear stratification with minimum
Fr = 1 was studied by Gola et al. (2023). Linear theory (Voisin 1991, 2003, 2007) was
used with an equivalent body comprising of the disk and its separation bubble and found
to predict the wave amplitude of a single test case (Fr = 1) with linear stratification but
not the nonlinearly stratified cases. In the present work, lee waves in linear stratification
will be characterised over a wide range of Fr and the applicability of linear theory will be
evaluated.

1.3. Evolution of stratified turbulent wakes
Turbulent stratified wakes exhibit a stark contrast in the evolution of their deficit velocity
and length scales relative to their unstratified counterpart. Although the present focus is
on internal waves, previous work in this area is briefly summarised for completeness.

Several experimental studies (Lin & Pao 1979; Lin, Boyer & Fernando 1992; Spedding,
Browand & Fincham 1996; Spedding 1997; Bonnier & Eiff 2002) have reported significant
buoyancy effects on the evolution of wake thickness and/or wake deficit in the flow behind
a horizontally moving sphere. Spedding (1997) found that the decay of the wake deficit
velocity is characterised by three stages: the near wake regime; the non-equilibrium (NEQ)
regime, where the wake decay rate is reduced as it adjusts to the surrounding stratification;
and the quasi-two-dimensional regime, where pancake vortices form and the wake decay
speeds up. The transition between stages occurred at nominally fixed values of Nt. In
another laboratory study, Spedding (2001) showed that stratification biases turbulence
towards a faster decay of the vertical fluctuations as compared with the horizontal
fluctuations.

Numerical investigations of the problem started with a temporal model (Gourlay et al.
2001) where the wake is simulated in a frame moving with the body, a streamwise periodic
domain is used and flow statistics evolve in time. The model does not include the wake
generator and is instead initialised with a flow field that approximates experimentally
observed mean velocity and turbulence intensities at some distance from the body. Since
the boundary layer on the body and the small scales in the near wake do not need to
be resolved, the temporal model has the advantage that the simulated flow can progress
into the late wake with reasonable computational cost. The limitations are that the
absence of the wake generator excludes lee waves and their influence on the wake as
well as vortex shedding from the body. Also, temporal models are sensitive to initial flow
conditions (Redford, Castro & Coleman 2012). The alternative approach of body-inclusive
simulations will be adopted here.

The multistage decay of the wake has been studied numerically using temporal models
(Gourlay et al. 2001; Dommermuth et al. 2002; Brucker & Sarkar 2010; Diamessis,
Spedding & Domaradzki 2011; de Stadler & Sarkar 2012; Zhou & Diamessis 2019). The
anisotropy created by stratification suppressing vertical fluctuations leads to decreased
turbulent production in the wake (Brucker & Sarkar 2010), leading to the longer lifespan
of the stratified wake, a result that is supported by Redford, Lund & Coleman (2015)
in their direct numerical simulations (DNS) of a weakly stratified turbulent wake. The
buoyancy-induced decrease in the correlation coefficient between vertical and horizontal
fluctuations is a generic feature of stratified shear flows and was identified by Jacobitz,
Sarkar & VanAtta (1997) in homogenous shear flow and also by others in following studies
of a variety of shear flows.

In recent times, body-inclusive simulations, e.g. Orr et al. (2015), Pal et al. (2017),
Ortiz-Tarin et al. (2019) and Chongsiripinyo & Sarkar (2020), have been conducted to

999 A23-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.717


D. Gola, S. Nidhan and S. Sarkar

increase the realism of simulations. Such an approach captures flow separation, vortex
shedding from the body and also the lee waves leading to more accurate representation
of the near and intermediate wake. Body inclusive simulations are akin to laboratory
experiments by virtue of including the body, while also alleviating the aforementioned
limitations of temporal-model simulations. Besides, body-inclusive simulations lead to
statistically steady data so that numerical techniques like spectral proper orthogonal
decomposition can be fruitfully used to extract wake structures that are statistically
space–time coherent, e.g. Nidhan et al. (2020) and Nidhan, Schmidt & Sarkar (2022).
Reaching beyond x/D = O(100) in body-inclusive simulations is computationally too
expensive but this issue can be overcome by a hybrid simulation technique that continues
the flow to larger x/D (equivalently Nt) in a follow-up simulation that uses a temporal
model (Pasquetti 2011) or a spatial model (VanDine, Chongsiripinyo & Sarkar 2018) with
a coarser grid that needs to resolve only the large length scales of the far wake.

1.4. Wake waves and their link to wake structures
Wake waves are internal waves forced by the unsteady fluctuations in the turbulent wake.
The first report of stratified wake waves was by Gilreath & Brandt (1985) who observed
‘short, random’ unsteady waves in their experiments with a streamlined body in towed and
self-propelled modes. Besides uniform stratification, they also considered a pycnocline to
find solitary internal wave propagation at low Fr. Bonneton et al. (1993) distinguished
wake waves from lee waves and, by spectral analysis of density-probe measurements,
linked these waves to coherent wake structures. Robey (1997) linked the wake waves to the
size of large-scale structures in the wake. Towed sphere experiments by Brandt & Rottier
(2015) showed that lee waves dominate in the Fr � 1 regime while wake waves dominate
in the Fr � 1 regime. They also provide a qualitative estimate of the total potential energy
that was found to scale as Fr2. The recent work of Meunier et al. (2018) considered wake
waves in addition to lee waves and quantified the dependence of their wavelength and
velocity amplitude on Fr.

Abdilghanie & Diamessis (2013) conducted a comprehensive study of the internal wave
field of a stratified turbulent wake using temporal simulations for a wide range of Re and
found that, at higher Re, there is a broader range of wave propagation angles (40◦–55◦), at
least at early Nt, relative to lower values of Re. Brucker & Sarkar (2010) studied towed and
self-propelled wakes using temporal simulations at Re = 5 × 104 and various Fr. They
concluded that internal wave flux dominated the turbulent dissipation in the wake kinetic
energy budget for 20 < Nt < 75. This was also supported by Rowe, Diamessis & Zhou
(2020) who, in their temporal-model simulations over a broad range of Re and Fr, found
that internal wave radiation is an important sink for wake kinetic energy after Nt = 10.
Indeed, the energetic importance of internal waves for turbulence in stratified shear flows
is a more general result in view of such demonstrations for a shear layer (Pham, Sarkar &
Brucker 2009; Watanabe et al. 2018) and a boundary layer (Taylor & Sarkar 2007).

1.5. Objectives of present study
Body-inclusive simulations capture lee waves as well as wake waves and present an
opportunity to characterise and contrast their properties. This motivates the present
waves-focussed study of a disk wake in linear stratification at Re = 5000.

Our results on scaling laws for Fr dependency of internal waves in turbulent flow past
a disk will be compared with previous laboratory experiments and, for wake waves, also
with body exclusive temporal model simulations. The skill of linear theory in predicting

999 A23-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.717


Internal gravity waves in flow past a bluff body

lee waves will be assessed. The internal wave field in cases from a recent study of disk
wakes at an order of magnitude larger Re = 50 000 that focussed on wake decay laws will
also be analysed.

The specific questions that we intend to answer as stratification is varied parametrically
for a turbulent wake are as follows. (i) How does linear theory applied to an equivalent
body, an approach which was shown to predict body-generated lee waves in a turbulent
disk wake at a single Fr = 1, work over the range of Fr considered here? For example,
how do linear theory results, w ∝ Fr−1 scaling of the amplitude and Λ = 2πFrD scaling
of wavelength, compare with the simulation results? (ii) How do internal wave structural
properties (phase angle, wavelength, spatial distribution) change as a function of Fr? Are
there scaling laws for the Fr dependence? (iii) There is fluctuation energy in the turbulent
wake and also outside it in the form of internal waves. How are kinetic and potential energy
partitioned between the wake and wave field? How does the energy in wake waves compare
with that in lee waves? (iv) Are results for the two cases at higher Re = 50 000 consistent
with trends exhibited in the parametric study at the lower value of Re = 5000?

A disk is used as the wake generator in body-inclusive LES, the numerics of which are
laid out in § 2. Lee waves and their dependence on Fr is described in § 3. Characteristics of
wake-generated internal gravity waves are described in § 4. Energy partition of the entire
flow field is done to calculate the energies associated with lee waves, wake waves, mean
wake and turbulent wake, and their variation with Fr is analysed in § 5. The influence of
Reynolds number is briefly assessed in § 6. To conclude, a summary and a discussion are
presented in § 7.

2. Methodology

2.1. Governing equations and numerical scheme
The wake of a disk is simulated for five different cases of stratification by solving the
three-dimensional, incompressible, unsteady form of the conservation equations for mass,
momentum and density. A high-resolution LES with the Boussinesq approximation for
density effects is used. The disk, with diameter D and thickness 0.01D, is immersed
perpendicular to a flow with velocity U∞. The equations are numerically solved in
cylindrical coordinates but both Cartesian (x, y, z) and cylindrical (r, θ, x) coordinates are
used as appropriate in the discussion. Here, x is streamwise, y is spanwise and positive
along θ = 0◦ and z is vertical and positive along θ = 90◦ (figure 1). The density field
(ρ(x, t)) is split into a constant reference density (ρ0), the variation of the background
(�ρb(z)) and the flow induced deviation, (ρd(x, t)) so that ρ(x, t) = ρ0 +�ρb(z)+
ρd(x, t). The Reynolds number of the flow, defined as Re = U∞D/ν is 5000. The different
levels of stratification are quantified by the Froude number, Fr = U∞/ND, which takes
values of 0.5, 1, 1.5, 2 and 5 for the five cases. Here, N is the buoyancy frequency given
by N = √

(−g/ρ0)(∂�ρb(z)/∂z).
The filtered non-dimensional equations, using D, U∞ and ρ0 as the characteristic length,

velocity and density scales, respectively, are as follows

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂

∂xj

[ (
1 + νsgs

ν

) ∂ui

∂xj

]
− ρd

Fr2 δi3, (2.2)
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Figure 1. (a) Schematic showing the simulation set-up and domain. (b) Radial and streamwise grids visualised
on the y = 0 plane. (c) Radial and azimuthal grids visualised on the x = 0 plane. (Every fifth gridline is shown,
with blue lines representing the sponge region. Disk (not to scale) is shown in yellow.)

∂ρ

∂t
+ uj

∂ρ

∂xj
= 1

RePr
∂

∂xj

[ (
1 + κsgs

κ

) ∂ρ
∂xj

]
, (2.3)

where ui refers to the filtered non-dimensional velocities in the cartesian coordinate system
for i = 1, 2 and 3, respectively. The Smagorinsky eddy viscosity model with dynamic
procedure (Germano et al. 1991) is employed to obtain νsgs wherein, the coefficient C
in the expression νsgs = CΔ̃2|S̃| (Δ̃3 being the cell volume and |̃S| being the strain rate
magnitude) is obtained dynamically using the least squares approach of Lilly (1992) and
the Lagrangian averaging method of Meneveau, Lund & Cabot (1996). The Lagrangian
averaging method takes the cumulative average of C as a function of time, with more
weight assigned to recent times in flow evolution. The Prandtl number (Pr = ν/κ) as
well as the subgrid Prandtl number (Pr = νsgs/κsgs) is set to unity. Second-order central
finite difference is used in space. A low storage third-order Runge–Kutta scheme for the
advective terms and a Crank–Nicolson term for the viscous terms are used to advance the
solution in time. The disk is represented using the immersed boundary method of Balaras
(2004) and Yang & Balaras (2006).

2.2. Domain and statistics
The domain extends from x/D = −L−

x = −30 to x/D = L+
x = 102 in the streamwise

direction and from r/D = 0 to r/D = Lr = 60 in the radial direction (figure 1b,c). The
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number of grid points in the streamwise, azimuthal and radial directions are Nx = 2176,
Nθ = 256 and Nr = 479. The disk surface is resolved into 47 312 triangles to identify the
fluid–solid interface. The streamwise and radial grids in the flow solver are structured and
employ uniform stretching as distance from the disk increases. There are 73 points along
the disk in the radial direction. Maximum values of�x/η and�r/η, where η = (ν3/ε)1/4

is the Kolmogorov length scale, are used to ascertain adequate grid resolution. The
chosen grid has (�x/η)max = 4.84 and (�r/η)max = 5.43 across all cases. The grid in
the azimuthal direction is homogenous. Owing to the high grid resolution, the subgrid
viscosity (νsgs) is not large. The instantaneous maximum value of subgrid viscosity
fluctuates between νsgs/ν = 2.5 and νsgs/ν = 5 after statistical stationarity is achieved.
The location of this maximum value is 0.5 < r/D < 1.5 and 0 < x/D < 2. Beyond x/D =
10, νsgs/ν < 1. Statistics are collected by temporal averaging after the initial transient has
subsided and statistical steady state has been reached. The time interval for averaging is
140D/U∞. For any dependent variable in the simulation, 〈.〉 represents the time average
and superscript ′ represents the fluctuation about that average. From this section onwards,
all the variables will appear in their dimensional form and any non-dimensionalisation will
be explicitly shown, e.g. x/D or w/U∞.

2.3. Boundary conditions
For boundary conditions, the inlet (x/D = −30) has a uniform free stream of magnitude
U∞ in the positive x direction, the outlet (x/D = 102) has an Orlanski-type convective
boundary condition (Orlanski 1976), and the radial boundary (r/D = 60) has a Neumann
boundary condition for density as well as velocity. The centreline boundary (r = 0) is
handled by taking the average of the two symmetrically located ghost cells over the
centreline to define the radial and azimuthal velocity components at the centreline. To
prevent spurious reflection of waves back into the domain, sponge layers are used at the
three boundaries of the computational domain. The radial sponge starts at r/D = 45 and
goes up to the radial boundary r/D = 60, the inlet sponge is from x/D = −30 to x/D =
−20 and the outlet sponge is from x/D = 90 to x/D = 102. Each of the sponge layers use a
quadratic damping function of the form fdamp = C((x − xspng)/(Lx − xspng))

2(φ0 − φ(x)),
where the variable φ(x) is relaxed to the target value φ0 in the sponge layer given by
xspng < x < Lb. For example, in the radial sponge, where x in fdamp(x) is equivalent to r,
the sponge begins at rspng/D = 45 and extends up to Lr/D = 60, and the strength of the
damping function is C = 5.

3. Body-generated lee waves

In stratified environments, the wave component of the flow field consists of body-generated
lee waves and wake-generated internal waves. The former is steady in time with respect to
the body while the latter is unsteady. Figure 2 illustrates these two types of waves for the
five values of Froude number by plotting the vertical velocity at the top half of the vertical
centreplane. The steady lee waves are seen as the large band of waves spanning most of
the domain while the unsteady waves are seen as a radially thinner band of irregular waves
superposed on the lee waves. Gola et al. (2023) studied the steady lee waves generated by
a disk at Re = 5000 focussing on how nonlinear stratification (pycnocline) as well as the
relative position of the pycnocline with respect to the disk modifies the flow. The minimum
background Froude number for the pycnocline cases was Fr = 1 as was the constant value
of Fr in the linearly stratified baseline case.
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Figure 2. Instantaneous contours of vertical velocity showing body-generated lee waves (steady in the
simulation frame) on the θ = 90◦, vertical centreplane for the five cases.

For the steady lee waves, Gola et al. (2023) found that the wavelength in all cases and
the amplitude in the linearly stratified Fr = 1 case could be deduced from the linear theory
(with the value of N in the far field where waves propagate) given by Voisin (1991, 2003,
2007) and by modelling the disk plus its separation bubble as one body, specifically a
Rankine ovoid. The potential flow past an ovoid is given by the superposition of a doublet
(source/sink of strength ±m separated by distance of 2a) and the uniform incident flow.
The expression for the vertical velocity deduced by Ortiz-Tarin et al. (2019) after adapting
the linear theory to an ovoid-shaped body is

w(x, y, z) ∼ − mN
πU∞rxyz

sin θ cosψ(1 + cot2 ψ cos2 θ)1/2 sin
(

Na
U∞

cosψ | sin θ |
)

× sin
(

N
U∞

rxyz| sin θ |
)
, (3.1)

999 A23-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.717


Internal gravity waves in flow past a bluff body

30

20

10

0 1 2 3 4

Fr

Λ/D

5

Simulation data

Λ/D = 6.69Fr

Figure 3. Wavelength of body-generated lee waves.

where rxyz =
√

x2 + y2 + z2, ψ = arctan(
√

y2 + z2/x) and θ = arctan (z/y) is the
azimuthal angle in figure 1. Specialisation to the y = 0 plane leads to

w(x, y = 0, z) ∼ − mN
πU∞rxz

cosψ sin
( Na

U∞
cosψ

)
sin

( N
U∞

rxz

)
, (3.2)

where rxz = √
x2 + z2 and ψ = arctan(z/x). The theoretical result, (3.2), will be

subsequently compared with the simulation results.
As in the Fr = 1 case tested by Gola et al. (2023), m and a are calculated here from the

potential-flow solution for a Rankine ovoid of length Lro and cross-sectional diameter Dro
fitted using the streamline 〈u〉 = 0.95U∞:

(L2
ro − 4a2)2 =

(
8ma
πU∞

)
Lro, D2

ro =
(

8ma
πU∞

)
1√

4a2 + D2
ro
. (3.3a,b)

It can be deduced from the argument of the last sine term in (3.2) that the wavelength of
the steady lee waves is Λ/D = 2πFr. The wavelength of the lee waves obtained from the
simulations along the line x = z, y = 0 is shown in figure 3, wherein it follows the trend
Λ = 6.7Fr, which is close to the asymptotic result of Λ/D = 2πFr.

Note that (3.1) does not apply to Fr < O(0.1) when the flow is mostly around the disk
and the region involved in wave generation shrinks from the crest to the dividing streamline
at a depth of approximately U∞/N from the crest. Thus, the singular limit Fr → 0 of (3.1)
is inadmissible.

Figure 4 shows the vertical velocity w for the five cases on the line z = x, y = 0 as
a function of distance from the disk centre, s = √

x2 + z2. Excellent agreement of the
simulation results with linear theory, (3.2), is seen. Also plotted alongside in figure 4(b)
are the defect velocity (Ud = U∞ − 〈u〉) contours. There is a case-dependent difference
in the separation bubble. The length of the separation bubble increases with increasing Fr
leading to a different set of values for m and a in (3.1) for each case. Figure 5 shows the
comparison of the vertical velocity contours on the r–θ plane obtained from the simulation
and linear theory (3.1) for Fr = 1 at x/D = 10 and 30. The contours are seen to span a
larger area in the r–θ plane as distance from the body is increased. Again, good agreement
between the simulation and theory is found. The amplitude of the lee wave (maximum
or minimum at x/D = 20, r/D > 10), which is plotted in figure 6(a), reveals excellent
agreement between theory and simulation. The w-amplitude of the lee wave in (3.1) is
proportional to the product of m and N so that the change in the size of the separation
region behind the disk also plays a part in the resulting wave amplitude as is reflected by
the dependence of m in (3.1) on Fr (figure 6b). This results in a scaling that is different
from w/U∞ ∼ Fr−1, which would be the case if m were assumed constant across Fr.
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Figure 4. Body-generated lee waves. (a,c,e,g,i) Vertical mean velocity plotted along the line z = x, y = 0
on the top half of the vertical plane (s = √

x2 + z2). (b,d, f,h, j) Defect velocity (Ud) contours showing the
increasing size of the fitted Rankine ovoid (yellow dashed line) with increasing Fr.

Meunier et al. (2018) obtained the mean horizontal divergence magnitude (|∂〈w〉/∂z|)
of the internal wave field in an experimental study of waves emitted by towing a sphere,
6 : 1 cylinder and 6 : 1 spheroid in a stratified fluid. Measurements of u(x, y) and v(x, y)
on a horizontal plane were used to infer |∂〈w〉/∂z|. For comparison, the mean horizontal
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Figure 5. Body-generated lee waves shown at two downstream locations for Fr = 1: vertical velocity
contours compared with linear theory at x/D = 10 (a–c) and 30 (d–f ). Line plots compare w at θ = 90◦.

divergence magnitude at the local maxima/minima for w at x/D = 10, r/D = 3 for the
disk simulations is plotted along with the data from Meunier et al. (2018) in figure 7.
Note that the chosen locations of the maxima/minima in the simulations are somewhat
different from those in Meunier et al. (2018), reflecting the difference between simulation
and experimental methodologies. The simulation results for the disk are comparable to the
experimental results of Meunier et al. (2018) for other axisymmetric bodies.

4. Wake-generated internal gravity waves

The wake-generated internal waves are manifested in the simulation reference frame as
the unsteady component of the wave field. To visualise these waves without their steady
counterpart, instantaneous contours of the fluctuation (∂w′/∂z) in vertical divergence on
the top half of the vertical plane is plotted in figure 8 for all the five cases. In a time series
of these contours, these waves are seen to advect downstream (see Supplementary material
‘Movie1.mp4’ available at https://doi.org/10.1017/jfm.2024.717), unlike the steady lee
waves. When viewed in a reference frame moving with the free stream (see Supplementary
material ‘Movie2.mp4’), these waves move slowly towards the left while growing in
the vertical. In other words, the wave phase speed is less than the free stream velocity
magnitude.

Across the five cases, three features of these internal waves can be noted: (i) the
inclination angle with the vertical (Θ) is in a narrow range (35◦–40◦), specifically
35◦, 39◦, 35◦, 40◦ and 37◦ in the order of increasing Fr; (ii) the wavelength increases with
increasing Fr; (iii) the vertical extent of propagation with respect to the body decreases
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Figure 6. (a) Vertical mean velocity magnitude of the lee waves at local maxima/minima near x/D = 20 in
figure 4(a). (b) Variation of m and a (obtained by fitting the resulting ovoid to the mean separation bubble) with
Fr.
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Figure 7. Comparison of mean divergence magnitude of the lee-wave field between the present disk

simulation and the laboratory results reported by Meunier et al. (2018).

with increasing Fr. The first feature, the clustering of the waves around the same vertical
angle, was explained using the argument of maximising the vertical component of group
velocity for a fixed horizontal wavenumber by Taylor & Sarkar (2007). The vertical group
velocity for internal gravity waves in stratified flow without rotation is given by

cgz = − N
|k| cosΘ sinΘ = − N

|kx| | cosΘ| cosΘ sinΘ, (4.1)

where |k| is the wavenumber magnitude and kx is the horizontal wavenumber. Note that
for our simulations, Θ is an obtuse angle because the waves propagate in the negative x
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Figure 8. Instantaneous contours of vertical derivative of vertical velocity fluctuation showing
wake-generated internal gravity waves on the θ = 90◦ plane for the five cases.

direction as discussed earlier. It can be shown that the expression on the right-hand side
of (4.1) is maximum when Θ ≈ 145◦ or 35◦ from the vertical, which is close to the angles
observed in the simulations.

It is evident from figure 8 that the wavelength of the wake waves increases with Fr.
This dependence is quantified by computing the wavelength (λ), normalised by D, from
wave packets in the instantaneous ∂w′/∂z fields shown in figure 8. The wave packets
are chosen to be 4–5 wavelengths long in the NEQ region away from the wake to avoid
turbulence but also close enough to get a strong clean signal (this corresponds to the region
5 < z < 15, 5 < Nt < 30 depending on Fr). Figure 9 shows λ plotted against Fr. There is
reasonable agreement with the scaling λ ∝ Fr1/3 (dashed line) found by Abdilghanie &
Diamessis (2013) and Meunier et al. (2018). The horizontal width (LHk) of the kinetic
energy profile of the disk wake varies as LHk ∝ x1/3 (Chongsiripinyo & Sarkar 2020).
Assume that the energetic eddies responsible for wave generation scale with LHk and that
the internal wave radiation becomes significant only when Nt reaches a specific value.
Then, the distance at which the internal wave radiation commences scales as Fr, the value
of LHk at that location varies as Fr1/3 and, therefore, λ ∝ Fr1/3. Indeed, it will be shown in
§ 5.3 that the wake-wave potential energy (as a fraction of turbulent kinetic energy of the
wake) becomes significant at Nt ≈ 5 and then does not change appreciably until Nt ≈ 30
when it decreases.
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Figure 10. (a–e) Wake wave envelope visualised by the root mean square (r.m.s.) of buoyancy term for the
five cases. ( f ) Contour lines of brms = 0.0015U2∞/D plotted with Nt.

Lastly, to explain the trend in vertical extent of the waves, the contours of the r.m.s.
buoyancy term brms = gρdrms/ρ0 are plotted in figure 10(a–e), thereby providing a good
visualisation of the envelope of the wake-generated internal waves. When the vertical
extent of this envelope (quantified by a small value of brms = 0.0015U2∞/D) is plotted
against Nt in figure 10( f ), a good collapse is seen, showing that the vertical extent of
propagation is the same for these waves in buoyancy time units. For example, x = 40
corresponds to Nt = 80 for Fr = 0.5 and Nt = 8 for Fr = 5, accounting for the difference
in wave envelope between these cases at the same x.
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5. Wake and wave energetics

A turbulent stratified flow has both kinetic and potential energy with each having a mean
and a fluctuating component. Furthermore, the mean and the fluctuation can be divided
into a turbulent wake component and a wave part surrounding the wake component. In
this section, the variation of the energy partition among its components will be diagnosed.
It will be shown that, across the five levels of stratification, there is a systematic variation
of mean relative to turbulent components as well as potential versus kinetic energy. The
definitions of various energy components are as follows:

mean kinetic energy,

MKE = 1
2 ((〈u〉 − U∞)2 + 〈v〉2 + 〈w〉2); (5.1)

mean potential energy,

MPE = g2〈ρd〉2

2ρ2
0N2

; (5.2)

turbulent kinetic energy,

TKE = 1
2 (〈u′2〉 + 〈v′2〉 + 〈w′2〉); (5.3)

turbulent potential energy,

TPE = g2〈ρ′2
d 〉

2ρ2
0N2

. (5.4)

The various plots in this section compare the evolution of these energy components,
integrated over the r–θ plane, as a function of streamwise distance (x). Let A be the
complete r–θ plane in the simulation domain at any x. If C is a closed curve on A enclosing
the area AC, the following three integrals of a quantity E(r, θ, x) can be defined as a
function of x (see figure 11 for two examples of the curve C chosen to separate the wave
from the wake field): Total integral over the complete r–θ plane,

ETI(x) =
∫

A
E(r, θ, x)r dr dθ; (5.5)

inside integral over the area bounded by C on r–θ plane (note that C varies as a function
of x),

EII(x) =
∫

AC(x)
E(r, θ, x)r dr dθ; (5.6)

outside integral, which is computed over the area external to that bounded by C,

EOI(x) =
∫

A−AC(x)
E(r, θ, x)r dr dθ; (5.7)

so that, ETI(x) = EII(x)+ EOI(x).

5.1. Mean kinetic energy and mean potential energy
The curve C in (5.6), and (5.7) will be chosen to be at the edge of the wake so that the
outside integral serves as a surrogate for the wave energy and the inside integral for the
wake energy. Specifically, an ellipse with its semimajor and semiminor lengths equal to
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Figure 11. Examples of curve C (here an ellipse shown in dashed yellow line) used to separate the wave from
the wake contribution: (a) mean kinetic energy contours for Fr = 1.5 at x/D = 20 as separated by C based on
half-width of wake Ud profile; (b) turbulent kinetic energy contours for Fr = 1.5 at x/D = 20 as separated by
C based on half-width of wake turbulent kinetic energy profile.

the horizontal and vertical half-width of the mean defect velocity profile is chosen for
each Fr case; these lengths vary as a function of x. Thus, using (5.5), (5.6) and (5.7), the
wake and wave contributions based on the inside and outside regions of the ellipse can be
calculated.

Figure 12(a–c) shows the various integrals of MKE for all five cases. For cases with
lower Fr, MKETI (figure 12a) is initially low because of shorter separation zones (see
figure 4). However, MKETI also exhibits slower decay with increasing x for the higher-Fr
cases, reflecting the fact that stratification prolongs wake lifetime, so that the Fr variation
in MKETI eventually reverses at later time. There is significant mean kinetic energy in
the outside wave region (figure 12c), which can be attributed to the lee waves, except
at the highest simulated Fr = 5 case with weak lee waves. Moving to mean potential
energy shown in the bottom row, comparison of figure 12(e) and figure 12( f ) shows
that the outside contribution (MPEOI ) owing to steady lee waves dominates over the
wake contribution (MPEII) over the entire streamwise extent of the flow. Evidently, the
turbulent wake does not lead to significant mean distortion of the isopycnals although
there is fluctuating distortion leading to turbulent kinetic energy as will be shown shortly.
Beyond x = 10, both MKETI and MPETI decrease with increasing Fr. The decrease is
quite substantial from Fr = 2 to Fr = 5. Note that the energy values are normalised
using U∞ and D. Thus if the increase of Fr is due to a higher flow speed under the
same background N, the Fr-related decrease in the dimensional value of energy would be
less.

To summarise, the distribution of mean energy associated with stratified flow past a disk
is such that almost all of the mean potential energy component resides outside the turbulent
wake in the lee wave field. At Fr = 2 or less, most of mean kinetic energy resides in the
lee wave field in contrast to the higher Fr = 5 case where it is the wake that carries most
of the mean kinetic energy.
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Figure 12. Area-integrated mean energies for all five cases. Total integral (TI) of the mean energy is shown
as well as its partition into wake or inside integral (II) and wave or outside integral (OI).

5.2. Turbulent kinetic energy and turbulent kinetic energy
Figure 13 shows the various fluctuation energies for all five cases. The fluctuation energy
can be divided into the turbulent energy of the wake and the outside fluctuation energy
carried by wake-generated internal waves. This is achieved by defining an ellipse with
its semimajor and semiminor axes equal to the horizontal and vertical half-width of the
turbulent kinetic energy profile, respectively. The various contributions to the turbulent
component are plotted similar to what was shown for the mean component in figure 12.
Looking at the TKETI profiles in figure 13(a), it is evident that the general Fr-dependence
seen in figure 12(a) has been flipped, i.e. the total TKE is larger for the cases with
larger Fr. Furthermore, the cases with higher Fr also have stronger turbulence as shown
by the interior integral TKEII in figure 12(b). The exception is the case of Fr = 0.5.
Here, both TKEII (interior wake turbulence) and TKEOI (external to the wake) flatten at
x ≈ 20,Nt ≈ 40 and then increase slightly before decaying again. The increase of wake
fluctuation energy in the late NEQ/early quasi-two-dimensional regime of the Fr = 0.5
case is a result of the wake structure becoming increasingly two-dimensional and its
flapping in the horizontal, similar to what was found for Fr < 1 sphere wakes at Re = 3700
by Pal et al. (2016).

The TPETI for Fr = 0.5 also shows slight stalling at x/D ≈ 10 before decaying again at
x/D ≈ 30, although this is likely the result of internal wave activity in the NEQ regime as
can be seen from increase in external fluctuation energy, TPEOI in figure 13( f ). Comparing
figure 13 with figure 12 shows that Fr = 5 is qualitatively different than the other four
cases, e.g. it has a larger potential energy in the fluctuations than in the mean.

5.3. Ratio of kinetic and potential energies
Figure 14 shows the mean and fluctuation energy ratios (MPETI/MKETI and
TPETI/TKETI), respectively, plotted as a function of x/D as well as Nt. For the mean
energies, the ratio MPETI/MKETI approaches a constant value after Nt ≈ 5. This constant
O(1) value has a small variation for the lower Fr cases, e.g between 0.9 at Fr = 0.5 to
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Figure 13. Area integrated fluctuation energies for all five cases. The total integral of the fluctuating energy
is shown as well as its partition into wake or inside integral and wave or outside integral.

0.6 at Fr = 2. However, there is a large decrease of the ratio to 0.2 at Fr = 5, pointing to a
decrease in the importance of the lee wave field at high Fr. Insofar as the fluctuation energy
ratio, TPETI/TKETI , it increases as the wake evolves to approach a plateau at 0.6–0.7 in the
region 5 < Nt < 30 (figure 14d). This plateau lies within the NEQ regime where the wake
adjusts to the background stratification and the activity of the wake-generated internal
waves is the highest.

5.4. Comparison of body lee wave energy with wake wave energy
Previous laboratory measurements (Brandt & Rottier 2015; Meunier et al. 2018) at selected
spatial locations have shown that, while the body wave field is more energetic than the
wake wave field at lower Fr, there is a crossover to dominance of wake wave energy at
sufficiently large Fr. The wave energy is computed from the outside integral terms, i.e.
Ebody wave = MPEOI + MKEOI and Ewake wave = TPEOI + TKEOI . Figure 15 compares
the downstream evolution of Ebody wave and Ewake wave. Unlike the behaviour in the
lower-Fr cases, the energy in the wake-generated internal waves at at Fr = 5 surpasses
the energy in steady lee waves. Thus, in the disk wake, a crossover to the dominance of
wake waves occurs at a value of Fr between 2 and 5.

6. Comparison with disk wakes at Re = 50 000

In this section, internal waves from the data (Chongsiripinyo & Sarkar 2020) for a disk
wake at a higher Re = 50 000 and with Fr = 2, 10 are quantified and the results compared
with the Fr dependencies discussed in the previous sections.

6.1. Structure of body-generated lee waves and wake-generated internal gravity waves
Lee waves for Re = 5000 and Re = 50 000 at Fr = 2 are compared in figure 16 by plotting
vertical velocity (w) contours on the θ = 90◦ plane and also the value of w along the line
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Figure 14. Ratio of potential and kinetic energy for all the five cases. This ratio is plotted for the mean and
turbulent components as a function of x/D (a,c) and Nt (b,d).
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Figure 15. (a) Total energy in body lee waves (b). Total energy in wake-generated internal waves.

z = x, y = 0. The influence of Re on the wavelength and spatial distribution of the wave
field is negligible. The lee waves for the Re = 50 000 case at Fr = 10 (not shown here) are
weaker than at Fr = 2 and have longer wavelength, in agreement with the linear theory
result of § 3.

The influence of Re on wake waves is illustrated by figure 17(a,b) that shows ∂w′/∂z
on the vertical centre half-plane (θ = 90◦). Similarity is observed in the inclination of
the waves (Θ ≈ 40◦) as well as their wavelength (λ/D ≈ 4.5). The Re = 50 000 wake is
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Figure 16. Lee wave comparison for Re = 5000 and Re = 50 000 at Fr = 2: (a,b) instantaneous vertical
velocity contours; (c) vertical velocity on the line z = x, y = 0 (s = √

x2 + z2).

more turbulent than at Re = 5000 as suggested visually by figure 17(b) with enhanced
small-scale features in the wake core relative to 17(a).

The wake wave amplitude, measured by (∂w′/∂z)rms, is compared between Re = 5000
and Re = 50 000 in figure 17(c,d). Proximity to the wake leads to a higher difference
in wave amplitude, as is observed at z/D = 2 relative to z/D = 4. The scales of wake
structures that give rise to wake waves are more broadband for Re = 50 000 as compared
with Re = 5000 and at higher Re, waves are less affected initially by viscosity.

Meunier et al. (2018) report an empirical scaling of Re0.4 for the wake wave amplitude
and Abdilghanie & Diamessis (2013) report that wave momentum flux varies as 〈uw〉 ∼
Re0.25. Since the increase of wave amplitude with Re depends on streamwise location in
the present simulations, we refrain from proposing a power law dependence on Re.

6.2. Plane-integrated wave energy
Analysis of the Re = 5000 results showed that when Fr is increased, the total energy
in wake waves progressively increases while the total energy in body waves decreases.
Those results also showed that at Fr = 5, the wake wave energy overtook the body
wave energy. Figure 18(a,b) shows the downstream variation of body wave energy
(Ebody wave = MPEOI + MKEOI) and wake wave energy (Ewake wave = TPEOI + TKEOI),
after including the additional results for Re = 50 000 at Fr = 2, 10 to the Re = 5000 cases.
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Figure 17. Wake-generated internal wave comparison for (a) Re = 5000 and (b) Re = 50 000 at Fr = 2.

The streamwise evolution of Ebody wave at Fr = 2 is qualitatively similar between the two
values of Re although the values are slightly larger at the higher Re. The Fr = 10 case in
figure 18(a) has the weakest stratification and also the smallest body wave energy among
all the simulations, which is consistent with the trend at Re = 5000. Turning to the wake
wave energy as a function of x/D, the Fr = 2 case shows consistently higher wave energy
at Re = 50 000 relative to the lower-Re case.

When the ratio TPETI/TKETI is plotted against Nt in figure 18(c), now also including
the data for Re = 50 000, the two new cases also show that the ratio increases as a function
of Nt until reaching a maximum value of 0.6–0.7 in the NEQ region, 5 < Nt < 30. This
implies that the balance between the turbulent energies for a stratified flow evolves in a
similar fashion not only across different Fr for a fixed Re, but also for higher Re, pointing
towards a potential universality of this statistic for stratified flows.

7. Summary and discussion

Body-inclusive LES are used to study the effect of changing stratification levels in flow
past a disk. The focus is on internal gravity waves. Systematic investigation of internal
waves over a range of Fr is new insofar as body-inclusive simulations and adds to
our knowledge base from previous experiments, temporal-model simulations and theory.
Linear stratification at five different levels is considered: Fr = 0.5, 1, 1.5, 2 and 5 and the
flow is quantified up to a relatively long streamwise distance of x/D = 80. The Reynolds
number based on the free stream velocity (U∞) and disk diameter (D) is fixed at 5000
and, thus, variability across these cases can be attributed to Fr alone. The dataset of
Chongsiripinyo & Sarkar (2020) for a disk at Re = 50 000 at Fr = 2, 10 is also analysed
for studying Reynolds number dependence.

The questions posed in § 1.5 are answered and discussed below.
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Figure 18. (a) Total energy in body lee waves. (b) Total energy in wake waves. (c) Ratio of total turbulent
potential energy and turbulent kinetic energy.

7.1. Prediction of lee waves
With regards to the steady lee waves, the non-dimensional amplitude (w) of the vertical
velocity decreases with increasing Fr. All five cases showed excellent agreement with the
linear theory for steady lee waves by Voisin (2007) when an equivalent body including the
separation bubble was used to calculate the potential flow solution. As to the separation
bubble, its length differed considerably among the Fr = 0.5, 1 and 1.5 cases but not so
much between Fr = 2 and Fr = 5. According to linear theory (3.3a,b), w/U∞ ∝ Fr−1 if
m is constant and the change of m adds some variability. The wavelength (Λ) was found
to increase linearly with Fr according to Λ/D ∼ 6.7Fr, close to the asymptotic relation
of Λ/D = 2πFr. The amplitude of mean ∂w/∂z, which was obtained by Meunier et al.
(2018) in laboratory experiments, was compared with the present simulation results and
good mutual agreement was found. The theory proposed by Meunier et al. (2018) involves
a forcing of the momentum conservation equation (to model the drag) as the leading-order
contribution to wave generation while the theory of Voisin (2007) that was adapted for
the present application is different and involves a volumetric forcing of the continuity
equation. Our adaptation of the theory involves the inclusion of the separation bubble,
whose size is related to and generally increases with the drag force, as part of the wave
forcing. Thus, although not equivalent, both the theory used here and that used by Meunier
et al. (2018) lead to higher wave amplitude for blunter body shapes.

7.2. Properties of wake waves
Unlike the body-attached lee waves, the wake waves advect downstream with respect
to the disk. In a reference frame moving with the free stream, the wake waves move
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upstream consistent with the notion that the wake has a velocity deficit with respect to
the free stream. A narrow band (Θ = 35◦–40◦ with respect to the vertical) is found for the
wave propagation angles for all the five Fr cases. Narrow-band emission from turbulent
shear flows has been found previously, e.g. from a shear layer (laboratory experiments
by Sutherland & Linden (1998) and DNS by Pham et al. (2009)), a turbulent Ekman
layer (Taylor & Sarkar 2007) and temporal-model simulations of a wake (Abdilghanie
& Diamessis 2013). The wave propagation angles observed here are consistent with
the analytical result of 35◦ that follows from the vertical group velocity maximisation
(equivalently, viscous decay minimisation) criterion given by Taylor & Sarkar (2007). It
is worth noting that Abdilghanie & Diamessis (2013) found that the narrow band in their
lower Re cases expanded to a wider band of inclination angles (26◦–50◦) at higher Re; a
possible reason is the reduced effect of viscosity on the waves.

Other characteristics of the wake waves were studied as well. The wavelength of these
waves increases with an increase in Fr, agreeing well with the λ ∝ Fr1/3 scaling found by
Abdilghanie & Diamessis (2013) and Meunier et al. (2018). Also, the wavelength remains
approximately constant until the end of the test domain at x = 80. The horizontal width
of the turbulent kinetic energy profile increases as x1/3 and the wave potential energy as
a fraction of turbulent kinetic energy becomes significant at Nt = Nx/U∞ ≈ 5 for all five
cases. Thus, the streamwise distance at which the internal wave burst becomes significant
scales as Fr, the length scale of the energetic flow structures (same order as the turbulent
kinetic energy profile thickness) at that point scales as Fr1/3, and so does the corresponding
wavelength of the radiated internal wave.

The envelope of the wake waves is quantified by choosing the r.m.s. value of the
buoyancy at the envelope boundary to be a small fixed value. The width of the thus defined
envelope at a given x expands with decreasing Fr. Nevertheless, self-similar evolution is
found when the wave envelope is plotted as a function of the buoyancy time scale (Nt).
The use of Nt in place of x/D is necessary because the evolution time scale of wake
waves is a buoyancy effect that depends on stratification (1/N) and not on advection
(D/U∞).

7.3. Wave and wake energetics
Because of the presence of both a turbulent wake and internal gravity waves external to
the wake, it makes sense to partition the energies in the flow into their respective interior
(wake) and exterior (wave) contributions. This is done by calculating the area integrals of
the energy which are then segregated into their wake and wave parts. The interior wake
part of the energy is defined to be inside an ellipse whose dimensions are determined
by the x-dependent values of the vertical and horizontal half-widths of the wake and the
exterior wave part is the remaining portion. The wake–wave decomposition is applied to
the kinetic energy (both the mean component, MKE, and the turbulent component, TKE)
and the potential energy (mean component, MPE, and turbulent component, TPE).

Comparison of the body lee wave energy (outside integrals of mean energies) and wake
wave energy (outside integrals of fluctuation energies) shows that lee waves are a dominant
feature for lower Fr ∼ O(1) while unsteady wake waves become more significant as Fr
is increased. For the disk wake, Fr = 2 is below the crossover and Fr = 5 is above the
crossover point at which both types of waves have similar energetic importance. The
crossover from lee-wave dominance to wake-wave dominance at sufficiently large Fr has
been seen at selected measurement stations in previous experimental studies, e.g. Brandt
& Rottier (2015) and Meunier et al. (2018).
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For the mean flow, it is found that although mean kinetic energy gets its contribution
from both the wake defect and the lee waves, mean potential energy is primarily in
the lee waves with Fr = 0.5 having the highest value. Beyond the near wake, the wake
contribution to mean kinetic energy increases with a decrease in Fr, i.e. strengthening
stratification, consistent with stratification prolonging the lifetime of the wake. The ratio of
total mean potential energy to total mean kinetic energy reaches a case-dependent constant
value beyond Nt ≈ 5 that decreases with increasing Fr. The ratio takes higher values of
0.6 –1 at Fr between 0.5 and 2 – the regime where lee waves dominate over wake waves.

For the fluctuation energies, Fr = 5 has the highest wake turbulent kinetic energy.
Notably, the ratio of turbulent potential energy and turbulent kinetic energy exhibits a
universal trend based on all the cases considered in this study, where it is seen to have
a constant value of 0.6 to 0.7 for 5 < Nt < 40, which coincides with the NEQ regime,
wherein the wake-generated internal wave activity is the highest as part of the adjustment
of the wake turbulence to the background stratification.

7.4. Effect of increasing Reynolds number
Using the dataset of Chongsiripinyo & Sarkar (2020), it was established that the increase in
Reynolds number has little effect on lee wave properties such as wavelength and amplitude.
However, the amplitude of wake waves, measured by pointwise values of (∂w′/∂z)rms,
increases with Re. The relative enhancement of wave energy is higher at locations closer
to the wake. The increase of wake wave amplitude with increasing Re is consistent with
previous results (Abdilghanie & Diamessis 2013; Meunier et al. 2018). Importantly, the
ratio of cross-sectional areas of turbulent potential energy and turbulent kinetic energy
exhibits some universality. Specifically, the peak value of this ratio takes the value 0.6–0.7
in the NEQ regime for all Re and Fr cases in this study.

7.5. Limitations and outlook
Internal waves are examined in this study with body-inclusive simulations for Fr between
0.5 and 10. It is of interest to expand the parameter space to Fr > 10, a regime with
initially weak buoyancy effects, and test the present scaling laws on wake wave structure
and energetics. At such high values of Fr, a large streamwise domain with x/D =
FrNt is required to capture the regime (5 < Nt < 40) that has energetic internal waves.
The robustness of the present results at higher Re also deserves further study. A pure
body-inclusive approach with the long streamwise domains required at high Fr or the
fine grid spacing required at high Re would incur excessively high computational cost.
The hybrid approach, which combines a body-inclusive simulation with a body-exclusive
simulation (either spatial or temporal), is a good option to extend the Fr and Re range of
simulations.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.717.

Funding. The authors gratefully acknowledge the support of Office of Naval Research, grant
no. N00014-20-1-2253.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
D. Gola https://orcid.org/0009-0002-4377-4850;
S. Nidhan https://orcid.org/0000-0003-0433-6129;
S. Sarkar https://orcid.org/0000-0002-9006-3173.

999 A23-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://dx.doi.org/10.1017/jfm.2024.717
https://orcid.org/0009-0002-4377-4850
https://orcid.org/0009-0002-4377-4850
https://orcid.org/0000-0003-0433-6129
https://orcid.org/0000-0003-0433-6129
https://orcid.org/0000-0002-9006-3173
https://orcid.org/0000-0002-9006-3173
https://doi.org/10.1017/jfm.2024.717


Internal gravity waves in flow past a bluff body

REFERENCES

ABDILGHANIE, A.M. & DIAMESSIS, P.J. 2013 The internal gravity wave field emitted by a stably stratified
turbulent wake. J. Fluid Mech. 720, 104–139.

BALARAS, E. 2004 Modeling complex boundaries using an external force field on fixed Cartesian grids in
large-eddy simulations. Comput. Fluids 33 (3), 375–404.

BONNETON, P., CHOMAZ, J.M. & HOPFINGER, E.J. 1993 Internal waves produced by the turbulent wake of
a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254, 23–40.

BONNIER, M. & EIFF, O. 2002 Experimental investigation of the collapse of a turbulent wake in a stably
stratified fluid. Phys. Fluids 14 (2), 791–801.

BRANDT, A. & ROTTIER, J.R. 2015 The internal wavefield generated by a towed sphere at low Froude number.
J. Fluid Mech. 769, 103–129.

BRUCKER, K.A. & SARKAR, S. 2010 A comparative study of self-propelled and towed wakes in a stratified
fluid. J. Fluid Mech. 652, 373–404.

CASTRO, I.P., SNYDER, W.H. & MARSH, G.L. 1983 Stratified flow over three-dimensional ridges. J. Fluid
Mech. 135, 261–282.

CHOMAZ, J.M., BONNETON, P. & HOPFINGER, E.J. 1993 The structure of the near wake of a sphere moving
horizontally in a stratified fluid. J. Fluid Mech. 254, 1–21.

CHONGSIRIPINYO, K. & SARKAR, S. 2020 Decay of turbulent wakes behind a disk in homogeneous and
stratified fluids. J. Fluid Mech. 885, A31.

DIAMESSIS, P.J., SPEDDING, G.R. & DOMARADZKI, J.A. 2011 Similarity scaling and vorticity structure in
high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech. 671, 52–95.

DOMMERMUTH, D.G., ROTTMAN, J.W., INNIS, G.E. & NOVIKOV, E.A. 2002 Numerical simulation of the
wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 473, 83–101.

GARRETT, C. & KUNZE, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech.
39, 57–87.

GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W.H. 1991 A dynamic subgridscale-scale eddy viscosity
model. Phys. Fluids 3 (7), 1760–1765.

GILREATH, H.E. & BRANDT, A. 1985 Experiments on the generation of internal waves in a stratified fluid.
AIAA J. 23 (5), 693–700.

GOLA, D., NIDHAN, S., ORTIZ-TARIN, J.L., PHAM, H.T. & SARKAR, S. 2023 Disk wakes in nonlinear
stratification. J. Fluid Mech. 956, A5.

GOURLAY, M.J., ARENDT, S.C., FRITTS, D.C. & WERNE, J. 2001 Numerical modeling of initially turbulent
wakes with net momentum. Phys. Fluids 13 (12), 3783–3802.

HANAZAKI, H. 1988 A numerical study of three-dimensional stratified flow past a sphere. J. Fluid Mech.
192, 393–419.

HUNT, J.C.R. & SNYDER, W.H. 1980 Experiments on stably and neutrally stratified flow over a model
three-dimensional hill. J. Fluid Mech. 96 (4), 671–704.

JACOBITZ, F.G., SARKAR, S. & VANATTA, C.W. 1997 Direct numerical simulations of the turbulence
evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech. 342, 231–261.

LILLY, D.K. 1992 A proposed modification of the germano sugrid-scale closure method. Phys. Fluids A
4, 633–635.

LIN, J.T. & PAO, Y.H. 1979 Wakes in stratified fluids. Annu. Rev. Fluid Mech. 11 (1), 317–338.
LIN, Q., BOYER, D.L. & FERNANDO, H.J.S. 1992 Turbulent wakes of linearly stratified flow past a sphere.

Phys. Fluids 4 (8), 1687–1696.
MENEVEAU, C., LUND, T.S. & CABOT, W.H. 1996 A lagrangian dynamic subgrid-scale model of turbulence.

J. Fluid Mech. 319, 353–385.
MEUNIER, P., LE DIZÈS, S., REDEKOPP, L. & SPEDDING, G.R. 2018 Internal waves generated by a stratified

wake: experiment and theory. J. Fluid Mech. 846, 752–788.
NIDHAN, S., CHONGSIRIPINYO, K., SCHMIDT, O.T. & SARKAR, S. 2020 Spectral proper orthogonal

decomposition analysis of the turbulent wake of a disk at Re = 50 000. Phys. Rev. Fluids 5 (12), 124606.
NIDHAN, S., SCHMIDT, O.T. & SARKAR, S. 2022 Analysis of coherence in turbulent stratified wakes using

spectral proper orthogonal decomposition. J. Fluid Mech. 934, A12.
ORLANSKI, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3),

251–269.
ORR, T.S., DOMARADZKI, J.A., SPEDDING, G.R. & CONSTANTINESCU, G.S. 2015 Numerical simulations

of the near wake of a sphere moving in a steady, horizontal motion through a linearly stratified fluid at
Re = 1000. Phys. Fluids 27 (3), 035113.

ORTIZ-TARIN, J.L., CHONGSIRIPINYO, K.C. & SARKAR, S. 2019 Stratified flow past a prolate spheroid.
Phys. Rev. Fluids 4 (9), 094803.

999 A23-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.717


D. Gola, S. Nidhan and S. Sarkar

PAL, A., SARKAR, S., POSA, A. & BALARAS, E. 2016 Regeneration of turbulent fluctuations in low-Froude
number flow over a sphere at Reynolds number of 3700. J. Fluid Mech. 804 R2, 1–11.

PAL, A., SARKAR, S., POSA, A. & BALARAS, E. 2017 Direct numerical simulation of stratified flow past a
sphere at a subcritical Reynolds number of 3700 and moderate Froude number. J. Fluid Mech. 826, 5–31.

PASQUETTI, R. 2011 Temporal/spatial simulation of the stratified far wake of a sphere. Comput. Fluids 40 (1),
179–187.

PHAM, H.T., SARKAR, S. & BRUCKER, K.A 2009 Dynamics of a stratified shear layer above a region of
uniform stratification. J. Fluid Mech. 630, 191–223.

REDFORD, J.A., LUND, T.S. & COLEMAN, G.N. 2015 A numerical study of a weakly stratified turbulent
wake. J. Fluid Mech. 776, 568–609.

REDFORD, J.A., CASTRO, I.P. & COLEMAN, G.N. 2012 On the universality of turbulent axisymmetric wakes.
J. Fluid Mech. 710, 419–452.

ROBEY, H.F. 1997 The generation of internal waves by a towed sphere and its wake in a thermocline. Phys.
Fluids 9 (11), 3353–3367.

ROWE, K.L., DIAMESSIS, P.J. & ZHOU, Q. 2020 Internal gravity wave radiation from a stratified turbulent
wake. J. Fluid Mech. 888, A25.

SARKAR, S. & SCOTTI, A. 2017 From topographic internal gravity waves to turbulence. Ann. Rev. Fluid Mech.
49, 195–220.

SPEDDING, G.R. 1997 The evolution of initially turbulent bluff-body wakes at high internal Froude number.
J. Fluid Mech. 337, 283–301.

SPEDDING, G.R. 2001 Anisotropy in turbulence profiles of stratified wakes. Phys. Fluids 13 (8), 2361–2372.
SPEDDING, G.R., BROWAND, F.K. & FINCHAM, A.M. 1996 Turbulence, similarity scaling and vortex

geometry in the wake of a towed sphere in a stably stratified fluid. J. Fluid Mech. 314, 53–103.
DE STADLER, M.B. & SARKAR, S. 2012 Simulation of a propelled wake with moderate excess momentum in

a stratified fluid. J. Fluid Mech. 692, 28–52.
SUTHERLAND, B.R. & LINDEN, P.F. 1998 Internal wave excitation from stratified flow over a thin barrier.

J. Fluid Mech. 377, 223–252.
TAYLOR, J.R. & SARKAR, S. 2007 Internal gravity waves generated by a turbulent bottom ekman layer.

J. Fluid Mech. 590, 331–354.
VANDINE, A., CHONGSIRIPINYO, K. & SARKAR, S. 2018 Hybrid spatially-evolving DNS model of flow past

a sphere. Comput. Fluids 171, 41–52.
VOISIN, B. 1991 Internal wave generation in uniformly stratified fluids. Part 1. Green’s function and point

sources. J. Fluid Mech. 231, 439–480.
VOISIN, B. 2003 Limit states of internal wave beams. J. Fluid Mech. 496, 243–293.
VOISIN, B. 2007 Lee waves from a sphere in a stratified flow. J. Fluid Mech. 574, 273–315.
WATANABE, T., RILEY, J.J., NAGATA, K., ONISHI, R. & MATSUDA, K. 2018 A localized turbulent mixing

layer in a uniformly stratified environment. J. Fluid Mech. 849, 245–276.
WUNSCH, C. & FERRARI, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu.

Rev. Fluid Mech. 36, 281–314.
YANG, J. & BALARAS, E. 2006 An embedded-boundary formulation for large-eddy simulation of turbulent

flows interacting with moving boundaries. J. Comput. Phys. 215 (1), 12–40.
ZHOU, Q. & DIAMESSIS, P.J. 2019 Large-scale characteristics of stratified wake turbulence at varying

Reynolds number. Phys. Rev. Fluids 4 (8), 084802.

999 A23-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.717

	1 Introduction
	1.1 Internal waves and their impact
	1.2 Lee wave studies in the laboratory and with simulations
	1.3 Evolution of stratified turbulent wakes
	1.4 Wake waves and their link to wake structures
	1.5 Objectives of present study

	2 Methodology
	2.1 Governing equations and numerical scheme
	2.2 Domain and statistics
	2.3 Boundary conditions

	3 Body-generated lee waves
	4 Wake-generated internal gravity waves
	5 Wake and wave energetics
	5.1 Mean kinetic energy and mean potential energy
	5.2 Turbulent kinetic energy and turbulent kinetic energy
	5.3 Ratio of kinetic and potential energies
	5.4 Comparison of body lee wave energy with wake wave energy

	6 Comparison with disk wakes at Re = 50000
	6.1 Structure of body-generated lee waves and wake-generated internal gravity waves
	6.2 Plane-integrated wave energy

	7 Summary and discussion
	7.1 Prediction of lee waves
	7.2 Properties of wake waves
	7.3 Wave and wake energetics
	7.4 Effect of increasing Reynolds number
	7.5 Limitations and outlook

	References

