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Models for slow flow of dense granular materials often treat the medium as
incompressible, thereby neglecting the role of Reynolds dilatancy. However, recent particle
simulations have demonstrated the presence of a significant coupling between the volume
fraction and velocity fields. The model of Dsouza & Nott (J. Fluid Mech., vol. 888,
2020, R3) incorporates dilatancy and captures the coupling, but it has thus far lacked
experimental validation. In this paper, we provide the first experimental demonstration
of dilatancy and its coupling to the kinematics in a two-dimensional cylindrical Couette
cell. We find a shear layer near the inner cylinder within which there is significant dilation.
Within the shear layer, the azimuthal velocity decays roughly exponentially and the volume
fraction rises with radial distance from the inner cylinder. The predictions of the model of
Dsouza & Nott (2020) are in good agreement with the experimental data for a variety
of roughness features of the outer cylinder. Moreover, by comparing the steady states
resulting from different initial volume fraction profiles (but having the same average), we
show the inter-dependence of the velocity and volume fraction fields, as predicted by the
model. Our results establish the importance of shear dilatancy even in systems of constant
volume.

Key words: dry granular material

1. Introduction

The formulation of reliable and robust continuum models for the flow of granular materials
has been an important endeavour, owing to the widespread occurrence of granular flows
in industrial processes and natural phenomena. While particle cohesion and complex
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shape are complicating factors in many practical systems, the simpler case of cohesionless
granular media composed of roughly isotropic particles is still sufficiently prevalent that
modelling them is informative and, to a reasonable extent, generalisable. Early models
have focused on two limiting regimes of slow and rapid flow; the flow regime is determined
by the Savage number (Savage & Hutter 1989) or, equivalently, the inertia number I,

Sa ≡ ρpd2
pγ̇

2

N
= I2, (1.1)

which characterises the contribution of particle inertia to the stress. Here, ρp and dp are the
density and mean diameter of the particles, γ̇ is the nominal shear rate, and N a stress scale
(typically the confining stress). Slow flow corresponds to the limit Sa � 1, where particle
inertia is of no consequence, and rapid flow to Sa ∼ 1, where particle inertia is dominant.
Models for slow flow are based on plasticity theories for soils (Rao & Nott 2008), and
models for rapid flows are based on the kinetic theory of dense gases extended to account
for inelasticity of particle collisions (Lun et al. 1984). The phenomenological μ(I) model
(Jop, Forterre & Pouliquen 2006), an extension of a simple plasticity model wherein the
friction coefficient is assumed to depend on I, has been used to model the intermediate
regime between slow and rapid flows. The recent paper of Berzi (2024) shows that the
μ(I) model can be derived from kinetic theory if spatial correlation of particle velocity
fluctuations is accounted for.

In this paper, we restrict attention to the slow-flow regime. Classical plasticity
models used for this regime suffer from two major deficiencies. The first is kinematic
indeterminacy, meaning that the deformation rate (and therefore the velocity) cannot
be uniquely determined if the stress field is specified. This is a consequence of the
models being designed to incorporate rate-independence of the stress, an experimentally
observed feature of slow flow. The second deficiency is their inability to incorporate
shear dilatancy or volume deformation caused by shear deformation; this feature, first
observed by Reynolds (1885), is peculiar to granular materials and has no analogue in
fluids. Dilatancy alters the particle volume fraction field φ, which in turn affects the stress
and therefore the velocity field. Determining the change in φ due to dilatancy is therefore
important in practical problems such as determining the drag on an intruder (Schröter et al.
2007).

A few models have successfully resolved the kinematic indeterminacy of classical
plasticity models. Mohan, Nott & Rao (1999) and Mohan, Rao & Nott (2002) treated
granular media as Cosserat continua, in which stress symmetry is not presumed, thereby
requiring that the angular momentum balance be enforced along with the balances of
linear momentum and mass. However, asymmetry of the stress has thus far not been
experimentally verified. Another class of models introduce a scalar order parameter that
is governed by a diffusion equation (Aranson & Tsimring 2002; Bouzid et al. 2013;
Henann & Kamrin 2013) in the constitutive relation for the stress. These models are
phenomenological, with the order parameter chosen by analogy with other physical
systems; moreover, the boundary conditions for the order parameter are speculative.
Despite their different physical origins, all the models mentioned above share the common
feature of introducing a mesoscopic length scale �, whose effect is to allow the material
to deform to a distance O(�) from the point where the yield condition ceases to be
satisfied. For this reason, they are called non-local models, though they are not non-local
in the formal, mathematical sense (Eringen 1983). Although these models repair kinematic
indeterminacy, and their predictions of the velocity profile have been found to be in good
agreement with experimental data (Tang et al. 2018; Fazelpour, Tang & Daniels 2022;
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Dilatancy and kinematics in sheared granular media

Fazelpour & Daniels 2023), they all assume the material to be incompressible. As a result,
they do not capture shear dilatancy and thereby its effect on the kinematics.

A coupling between the φ and u fields was observed in the particle dynamics simulations
of Krishnaraj & Nott (2016) and Dsouza & Nott (2021), who show that dilatancy in
conjunction with gravity drives large-scale secondary flows in cylindrical Couette and
split-bottom shear cells. However, very few experimental studies have measured the
variation of φ in three-dimensional (3-D) sheared granular media in the slow-flow regime,
as non-invasive imaging of opaque media requires relatively specialised and expensive
facilities such as X-ray computed tomography (X-ray CT) and magnetic resonance imaging
(MRI). The only study that we are aware of that measured the density field is that of Mueth
et al. (2000), who imaged a cylindrical Couette shear cell using a specialised high-speed
MRI facility. While they do find dilation in the shear layer, they report data only very close
to the rotating inner cylinder.

Recently, Dsouza & Nott (2020) proposed a model that addresses both the shortcomings
of classical plasticity, namely kinematic indeterminacy and absence of dilatancy, by
a systematic non-local extension of the critical state plasticity theory. The model
poses the flow rule, and the relation between volume fraction and the critical state
pressure in a non-local sense without introducing additional variables or equations. Its
predictions for plane shear flow were found to be in good agreement with 3-D discrete
particle simulations. However, the model predictions have thus far not been validated by
experiments.

In this paper, we provide the first experimental measurement of the coupling between
the volume fraction and velocity fields in the slow-flow regime, and thereby a verification
of the model of Dsouza & Nott (2020), by simultaneously measuring the area fraction and
velocity fields in a two-dimensional (2-D) cylindrical Couette shear cell. By imaging a
horizontal layer of circular disks sheared between two concentric cylinders, as developed
by Tang et al. (2018), Fazelpour et al. (2022) and Fazelpour & Daniels (2023), we measure
directly the variation of the azimuthal velocity uθ and φ with radial distance r. While
measurements in a 2-D monolayer are not expected to correspond quantitatively with those
in three dimensions, it has been shown in several studies that the qualitative features of
the kinematics and even the statistics of particle velocity (Ananda, Moka & Nott 2008)
in two and three dimensions are very similar. By determining the steady-state profiles
uθ (r) and φ(r) for different initial φ profiles (but having the same spatial average), we
demonstrate the coupling between the two fields. We compare our experimental data with
the predictions of the non-local model of Dsouza & Nott (2020) and find good agreement.

2. Experimental method

Our experiments are conducted in the 2-D cylindrical Couette rheometer shown in figure 1
described by Fazelpour & Daniels (2023). The granular material is confined between
coaxial inner and outer cylinders of radii ri = 16 cm and ro = 27 cm, respectively. The
inner cylinder has semi-circular cavities of diameter dp so that disks settle into them
and are carried by the cylinder; this generates sufficient traction to shear the assembly.
The inner cylinder is rotated by a motor at a constant angular speed Ω such that its
azimuthal velocity of uw ≡ riΩ = 1.1 cm s−1. Each experiment was conducted using an
outer cylinder with a specified pattern of roughness (figure 1): two with cavities, two with
convex bumps (protrusions) and one made of compliant leaf springs. The dimensions of
the roughness features of all the outer cylinders are given in the caption of figure 1.

The granular material is composed of polyurethane disks (Vishay Precision
Group, PhotoStress material PSM-4) of Young’s modulus E = 4 MPa and density
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Large cavities (LC) Small cavities (SC)

Large bumps (LB)

y

ri
ro r

x

Small bumps (SB) Leaf spring (LS)

θ

Ω

Figure 1. Top view of 2-D cylindrical Couette device. The inner cylinder of radius ri = 16 cm is rotated at
constant angular speed Ω and the outer cylinder of radius ro = 27 cm is stationary. The inner cylinder is
machined to have semi-circular cavities of diameter dp. The outer cylinder is changeable, and five different
roughness designs were used: semi-circular bumps of diameter dp, hereafter called small bumps (SB); bumps
of diameter 8dp and chord length 5.4dp, hereafter called large bumps (LB); semi-circular cavities of diameter
dp, hereafter called small cavities (SC); cavities of diameter 8dp and chord length 5.4dp, hereafter called large
cavities (LC); constructed with leaf springs (LS) (see Fazelpour & Daniels 2023) with the same roughness
dimensions as the LB cylinder.

ρ = 1.06 g m−3 (Fazelpour & Daniels 2023). The disks are bidisperse in size, with equal
numbers of disks of diameter 0.9dp and 1.1dp, where the mean diameter dp = 1 cm. The
disks are of thickness 6.35 mm and rest on a flat acrylic base while being sheared between
the cylinders. They are placed by hand randomly and distributed as uniformly as possible
within the Couette gap. For the 2-D monolayer of disks, the dimensionless density is
characterised by the area fraction; hereafter, we use φ to represent the area fraction of
the disks. The roughness of a boundary typically determines the shear rate and velocity
slip adjacent to it (Ananda et al. 2008; Dsouza & Nott 2020). While they are small near
the outer cylinder, due to the roughly exponentially decay of uθ with distance from the
inner cylinder, there is a measurable difference in their values for the different outer
cylinders. The boundary roughness also plays a role in another way: the initial volume
fraction profiles φ(r) are not identical for the different boundaries. We shall see below
that these two effects yield measurably different steady-state profiles of uθ and φ(r) in the
shear layer near the inner cylinder.

Because the net area available for the disks varies slightly for the different outer
cylinders, the number of particles is adjusted to maintain an average area fraction of
φ̄ = 0.76. For the outer cylinder composed of LS, the area fraction cannot be held precisely
constant due to their compliance; the number of disks used is equal to that for the outer
cylinder with LB, which have the same shape.

We track the motion of all particles by imaging the Couette cell by a video camera
mounted above the apparatus. The movies are taken at 30 frames s−1 for a duration
of 10 min (7 revolutions of the inner cylinder). Each frame in a movie is processed to
identify the circular disks and determine their centres xi. The velocities of the disks are
computed from their displacement between two successive frames, ui = �xi/�t. As the
flow is axisymmetric and steady, continuum estimates of uθ and φ at radial position r are
determined by averaging the particle velocities and their areas within an annular bin of
width �r = 1dp (centred at r) and azimuthal span 0 � θ � π/2, and further averaging
over a time interval of 200 s (6000 frames). The profiles of uθ and φ are obtained by
moving the annular bin by small radial increments to generate data at 48 radial positions.
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Dilatancy and kinematics in sheared granular media

We note that such fine spatial resolution is achieved because we average over large intervals
of time and θ , which may not be possible when the flow is unsteady or not fully developed.

The stress field σ (r) was measured for the same set-up and all the outer cylinders
by Fazelpour & Daniels (2023). As discussed below, we use their measurements of the
pressure to determine one of the parameters in the continuum model.

3. The non-local model of Dsouza & Nott

The model of Dsouza & Nott (2020) is based on the idea that the deformation rate D at a
point depends on the stress σ not just at that point, but in a mesoscopic volume surrounding
it, as a result of the stress and strain rate being correlated over a mesoscale (such as
through force chains). Mathematically, this idea translates to a non-local flow rule (the
relation between the strain rate and the stress) and similarly between the volume fraction
and the critical state pressure. A mesoscopic length �, a material parameter, characterises
the extent of non-locality. The constitutive relation for σ resulting from these arguments is

σ = −pδ + 2μ

γ̇
( pcD′ − �2Π∇2D′), (3.1a)

p = pc

(
1 − μb

γ̇
∇ · u

)
+ �2Π

μb

γ̇
∇2∇ · u, (3.1b)

pc = Π − �2 dΠ

dφ
∇2φ, (3.1c)

where D′ ≡ D − 1
3∇ · u δ is the deviatoric part of D and γ̇ ≡ (2D′ : D′)1/2 is its scalar

invariant, p is the pressure and pc the pressure at the critical state. The terms multiplied
by �2 are the non-local contributions to the constitutive relation. The material properties
are the friction coefficients μ and μb for shear and volume deformation, respectively, the
mesoscopic length � and the local form of the critical state pressure Π(φ).

We now apply the non-local model (3.1) to shear in a 2-D cylindrical Couette cell,
for which the deviatoric deformation rate tensor is D′ ≡ D − 1

2∇ · u δ and φ represents
the area fraction. The governing equations are the balances of mass, and the r and θ

components of momentum. For steady axisymmetric flow, the mass balance is trivially
satisfied, and the r and θ momentum balances reduce to

∂σrr/∂r = 0, (1/r2)∂/∂r(r2σrθ ) + μbase φρpg = 0. (3.2a,b)

The second term in (3.2b) is the frictional resistance offered by the base. On substituting
the constitutive relation for σ (3.1), the momentum balances (3.2) take the form

d
dr

[
Π − l2

dΠ

dφ

(
d2φ

dr2 + 1
r

dφ

dr

)]
= 0, (3.3a)

1
r2

d
dr

[
r2 μpc

γ̇

(
duθ

dr
− uθ

r

)
− r2�2 μΠ

γ̇

(
d3uθ

dr3 + 1
r2

duθ

dr
− uθ

r3

)]
− μbase φρpg = 0,

(3.3b)

where γ̇ = |duθ /dr − uθ /r|.
To close (3.3), four boundary conditions for uθ and three for φ are required. Unlike

fluids, granular media usually slip at rigid boundaries (Natarajan, Hunt & Taylor 1995;
Ananda et al. 2008), and accounting for slip is often important. A boundary condition that
accommodates slip was proposed by Mohan et al. (2002) for their Cosserat continuum
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model in which the slip velocity is Kdpn × ω, where K is the slip coefficient and ω is
the rate of material spin at the boundary of unit normal n. For a classical continuum,
ω is equal to half the vorticity w; the two fields can differ in Cosserat continua and the
difference is proportional to the asymmetry of the Cauchy stress (Dahler 1959; Lun 1991;
Mohan et al. 2002). As there is little experimental evidence for asymmetry of the Cauchy
stress in granular media, we proceed with the assumption that the granular medium is a
classical continuum, and hence ω = w. Using this condition and the wall friction boundary
condition (Rao & Nott 2008), we have

uθ − uw = Kdp

(
duθ

dr
+ uθ

r

)
,

−σrθ

σrr
= μw at r = ri, (3.4a,b)

where μw is the friction coefficient between the inner wall and the granular material.
At steady state, the shear stress σrθ decreases with r while the normal stress σrr is constant,
whence |σrθ /σrr| decreases with r. For large enough Couette gap, non-local effects cannot
transmit shear to the outer wall, whence the shear rate there must vanish (Mohan et al.
2002; Dsouza & Nott 2020). Together with the slip condition (3.4a), we get the boundary
conditions

uθ = 0,
duθ

dr
= 0 at r = ro. (3.5a,b)

The value of the slip coefficient K in (3.4a) will depend on the nature of the boundary;
in studies where the boundaries are topographically roughened, such as by gluing coarse
sandpaper to the wall, the slip velocity has been found to be small, implying K = 0. For
a given wall, K must be determined by fitting with experimental data for the velocity.
Jing et al. (2016) correlated the slip velocity in an inclined chute with the roughness
parameters of the base using discrete element method simulations; generalising such a
study to determine K as a function of the wall roughness features and φ would be a useful
exercise.

For the area fraction φ, one obvious condition is that the mean solids fraction φ̄, or
alternatively the normal stress at one of the boundaries, must be specified. Apart from that,
we do not have other well-established boundary conditions for φ at the walls. We follow
Dsouza & Nott (2020) and assume that φ at the two boundaries are known; we discuss this
choice in § 5. As a result, we have the following conditions for φ:∫ ro

ri

φ2πr dr = φ̄ π(r2
o − r2

i ), φ(ri) = φi, φ(ro) = φo. (3.6a–c)

Equations (3.3)–(3.6) constitute a well-posed boundary value problem. Note that the
momentum balances (3.3a) and (3.3b) are uncoupled; solution of the former yields the
area fraction profile φ(r) and the latter then yields the velocity profile uθ (r). The equations
are solved by the finite difference method using second-order discretisation. The resulting
nonlinear algebraic equations for uθ and φ at the N discretised values of r are solved
using the nonlinear equation solver fsolve in MATLAB. The results reported in § 4 are
for N = 100; the solutions remain unchanged (to within a relative tolerance of 10−3) for
larger N.

4. Results and discussion

For numerical solution of the governing equations (3.3)–(3.6), the values of parameters
that characterise the granular material and the boundaries are needed. To solve (3.4a),
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we need the form of the function Π(φ) in the expression for the critical state pressure
(3.1c); as done by Dsouza & Nott (2020), we assume the form proposed by Nott & Jackson
(1992),

Π(φ) =
⎧⎨
⎩

α
(φ − φmin)

n1

(φmax − φ)n2
, φ � φmin,

0, φ < φmin,
(4.1)

where φmin = 0.65 and φmax = 0.82 are the area fractions for loose and dense random
packing, respectively. For a 2-D layer of particles, we expect the exponents n1 and n2 to
differ from the values used for 3-D assemblies by Nott & Jackson (1992) and Dsouza &
Nott (2020). We determine them by minimising the error between the model predictions
and the experimental data for φ(r) for the outer cylinder with LB (see figure 1). The
constant α is estimated from the measurement by Fazelpour & Daniels (2023) of the
pressure p ≈ 103 Pa for φ̄ = 0.76, which yields the value α = 30 Pa. To solve (3.4b), we
need values for the three friction coefficients, the slip coefficient K and the mesoscopic
length �. We retain the value � = 10 used in all our previous studies (Mohan et al. 2002;
Ananda et al. 2008; Dsouza & Nott 2020). By integrating (3.3b) once from ri to r and using
the boundary condition (3.4b), we see that the friction coefficients occur only as the ratios
μw/μ and μbase/μ. These ratios and K are determined by minimising the error between
the model predictions and the experimental data for uθ (r) for the LB outer cylinder. Details
of parameter estimation by minimising the error are given in the Appendix. The best-fit
set of model parameters are n1 = 2, n2 = 1, μw/μ = 1, μbase/μ = 3.76 and K = 0.63.
The parameters are now fixed at these values and used for comparison against all the other
experimental data sets.

The experimental data for the LB outer cylinder are shown in figure 2, along
with the model predictions using the best-fit parameter values. A notable feature of
the experimental data is that the initial area fraction profile (i.e. before shearing has
commenced) has significant spatial fluctuations about the mean φ̄ = 0.76. They arise
because the disks are placed in the Couette gap by hand, whence some non-uniformity
is unavoidable. Moreover, φ is lower near the inner and outer cylinders due to packing
constraints near rigid boundaries. As the material is sheared, we observe the development
of pronounced dilation (reduction of φ) in the shear layer near the inner cylinder;
concurrently, the fluctuations in φ become smoother and ultimately vanish at steady
state. Conservation of mass leads to some compaction at larger radial positions, but the
fluctuations in φ in the outer half of the Couette gap remain even after prolonged shear.
This is because the velocity and shear rate decay roughly exponentially with distance from
the inner cylinder (figure 2(b) and inset of figure 4b), thereby causing little rearrangement
of the packing away from the inner cylinder.

A brief discussion on how dilatancy arises in the model is pertinent. At the steady
state, which in the present problem is the critical state, the momentum balance in the r
direction (3.3a) requires the critical state pressure pc to be constant across the Couette
gap. The non-local relation between pc and φ results in the spatial variation in φ across
the Couette gap such that φ is lower in the shear layer, i.e. dilatancy. In the absence of the
non-local contribution to pc, namely the second term on the right-hand side of (3.1c), φ is
constant and there is no dilatancy. The physical mechanism for the evolution of φ from the
initial state, by depletion of particles from the shear layer and accumulation further away,
becomes clear when we consider the unsteady development of the flow fields in § 4.1.

As described in § 2, experiments were conducted with outer cylinders of different
roughness patterns. Figure 3 compares the area fraction and velocity profiles and the
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0

Steady state model prediction

Steady state experimental data

Data at t = 0

0.40.2

(r – ri)/(ro – ri) (r – ri)/(ro – ri)
0.6 0.8 1.0

0.65

0.68

0.71

0.74φ

0.77

0.80

0.83

0.2 0.4 0.6 0.8 1.00

u θ
/u
w

0.2

0.4

0.6

LB model prediction

LB experimental data

(b)(a)

Figure 2. Experimental data and model predictions for the outer cylinder with LB, see figure 1. (a) Data for
the area fraction φ(r) before shear is commenced and at steady state compared with the model prediction using
the best-fit parameters values n1 = 2 and n2 = 1 and α = 30 Pa. (b) Data for the velocity uθ (r) at steady state
compared with the model predictions using the best-fit parameters values μw/μ = 0.99, μbase/μ = 3.76 and
K = 0.63. The best-fit parameters are obtained by minimising the error between the model predictions and the
data (see the Appendix).

0.65

0.68

0.71

0.74

0.77

0.80

0.83

0.2

0.4

0.6

0 0.40.2

(r – ri)/(ro – ri)
0.6 0.8 1.0 0 0.40.2

(r – ri)/(ro – ri)
0.6 0.8

LS

LC

LB

SC

SB

1.0

u θ
/u
w

(b)(a)

Figure 3. Data for the five different outer cylinders (see figure 1) and the corresponding model predictions.
(a) Area fraction profiles, with the mean area fraction being φ̄ = 0.76 in all the cases. (b) Azimuthal velocity
profiles scaled by the velocity of the inner cylinder. The solid lines are the model predictions and the symbols
with error bars are experimental data.

corresponding model predictions (solid lines) for all the cylinders. We observe that the
profiles of φ and uθ in all the cases are quite similar: there is substantial dilation near the
inner cylinder (figure 3a), where the velocity gradient is high (figure 3b), and the velocity
profiles decay roughly exponentially.

Nevertheless, there are slight variations between the φ(r) and uθ (r) profiles for outer
cylinders of different roughness, possibly due to the differences in the initial area fraction
profile. Since the shear rate is very small (∼10−5 s−1) in the outer portion of the Couette
gap, it is likely that the small differences in the mean area fraction within the shear layer
remain even at steady state. Serendipitously, these differences turn out to be useful in
demonstrating a key aspect of the model, namely the coupling between the packing fraction
and velocity fields. Figure 4 compares the steady-state profiles for the outer cylinder with
LS and LB. Despite the error bars, a small but systematic difference in the steady-state area
fraction profiles is evident. For the cylinder with LS, φ is lower near the inner cylinder and
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Figure 4. Experimental data (symbols) for (a) area fraction and (b) azimuthal velocity uθ for the outer
cylinders with LS and LB compared with the model predictions (solid lines). The mean area fraction in both
the cases is φ̄ = 0.76. The blue dashed line in panel (b) is the model prediction obtained by assuming the area
fraction to be constant, i.e. φ(r) = φ̄. The inset in panel (b) shows the velocity on a logarithmic scale; data for
y > 0.5 are not shown, as uθ /uw approaches the measurement resolution (≈10−3).

higher at larger r. Figure 4(b) shows that this results in a measurable difference in the
uθ profiles, which are in agreement with the model predictions. To further establish the
coupling, we have shown in figure 4(b) the velocity profile obtained by assuming the area
fraction to be constant, i.e. φ(r) = φ̄; it is clear the velocity profile differs substantially
from those corresponding to the dilated steady states. Thus, the data show clearly the
inter-dependence of the packing fraction and velocity profiles, which was demonstrated
earlier in Dsouza & Nott (2020) using particle simulations.

4.1. Unsteady evolution of the packing fraction and velocity fields
Thus far, we have shown the predictions of the model for the steady state and compared
them with the experimental data. As already noted, for the steady state, momentum
balances in the r and θ directions are uncoupled, allowing the determination of φ first
and then uθ . We now consider the unsteady evolution of the flow fields from the initial
un-sheared state, where the packing fraction and velocity fields evolve together, and the
mechanism in the model that captures dilatancy becomes much clearer.

We expect the presence of a radial velocity ur and therefore a non-zero bulk deformation
rate ∇ · u = ∂ur/∂r + ur/r. Discarding the inertial terms in the unsteady momentum
balances, as our interest is in the slow-flow regime, the equations of motion for
axisymmetric unsteady flow are

∂φ

∂t
+ 1

r
∂

∂r
(rφur) = 0, (4.2a)

− ∂p
∂r

+
(

2
r

+ ∂

∂r

)[
μpc

γ̇

(
∂ur

∂r
− ur

r

)
− �2 μΠ

γ̇

(
∂3ur

∂r3 + 1
r2

∂ur

∂r
− ur

r3

)]

− μbase φρpg
ur

(u2
r + u2

θ )
1/2

= 0, (4.2b)
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1
r2

∂

∂r

[
r2 μpc

γ̇

(
∂uθ

∂r
− uθ

r

)
− r2�2 μΠ

γ̇

(
∂3uθ

∂r3 + 1
r2

∂uθ

∂r
− uθ

r3

)]

− μbase φρpg
uθ

(u2
r + u2

θ )
1/2

= 0, (4.2c)

with the pressure p given by (3.1b) and γ̇ = [(∂uθ /∂r − uθ /r)2 + (∂ur/∂r − ur/r)2]1/2.
Since the momentum balances are quasistatic, solution of (4.2) requires an initial

condition only for φ, for which we use the initial distribution φ0(r),

φ(0, r) = φ0(r). (4.3)

Additionally, we require four boundary conditions for ur. Two obvious conditions are no
penetration at the walls. For the two additional conditions, we propose that the ratio of
dilation rate normal to a wall to the tangential shear rate is proportional to the departure
from the critical state,

(∇ · u)n/γ̇t = β(φ − φc), (4.4)

where (∇ · u)n ≡ n · D · n and γ̇t ≡ |n · D′ · t|, n and t are the unit normal and unit
tangent in the flow direction, φc is the packing fraction at the critical state (which here
is the steady state), and β is a constant. As γ̇t vanishes at the outer cylinder (see (3.5)),
(4.4) implies that the dilation rate also vanishes. The boundary conditions for ur then are

ur = 0,
2

|∂uθ /∂r − uθ /r|
∂ur

∂r
= β(φ − φi) at r = ri, (4.5a,b)

ur = 0,
∂ur

∂r
= 0 at r = ro. (4.5c,d)

For the reasons mentioned at the end of this section, we do not attempt to determine β by
fitting with experimental data; however, we find that β = 1 gives a reasonable match with
experiments for the time scale to approach steady state.

Equations (4.2) with initial condition (4.3) and boundary conditions (3.4)–(3.6) and
(4.5) form a well-posed problem. They are solved numerically in the same manner as
in § 3. As an illustrative example, we determine the unsteady solution starting from an
initial state corresponding to the data for the outer cylinder with large bumps, shown in
figure 2(a). We take φ0(r) to be a smoothed fit of the data, shown in the inset of figure 5(a).
The model prediction of the unsteady evolution of the φ and velocity fields are shown in
figure 5. The mechanism for dilatancy now becomes clear – we see that a radial velocity ur
develops in the transient state (figure 5b), which convects particles away from the region of
high shear rate, thereby reducing φ near the inner cylinder (figure 5a). The radial velocity
decays with time, and at steady (critical) state, φ(r) is determined by the constraint of
constant pressure (3.2a). Thus, the non-local contribution to pc in (3.1c) is essential for
the non-uniform distribution of φ. As dilatancy proceeds, we see in figure 5(c) that the
sharpness in the decay of the primary velocity uθ increases. Thus, the unsteady evolution
illustrates the physical mechanism in the model that leads to dilatancy via convection of
particles away from the shear layer, and how that couples with the velocity field.

We are unable to make a comparison of the transient profiles in figure 5 with
experimental data, as the unsteady data are noisy. As explained in § 2, obtaining smooth
profiles with reasonable spatial resolution requires averaging over a long period of time,
which is not possible in the transient state.
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Figure 5. Unsteady evolution of the packing fraction and velocity profiles with dimensionless time t̂ ≡
tuw/(ro − ri). The flow is taken to be axisymmetric. (a) Evolution of the φ profile. The inset shows the
initial condition φ0(r), which is a smoothed fit of initial state in the experiment for the LB outer cylinder
(see figure 2a). (b) Evolution of the radial velocity ur; note that ur is everywhere positive, largest near (but not
at) the inner cylinder and decays to zero at large t̂. (c) Evolution of the azimuthal velocity uθ ; the decay with
distance from the inner cylinder becomes more rapid with time, due to depletion of particles near the inner
cylinder.

5. Discussion and conclusion

We have presented experimental data for the profiles of the area fraction φ and the
azimuthal velocity uθ for the shear of disks in a 2-D cylindrical Couette cell. At steady
state, we find the velocity to decay roughly exponentially with radial distance from
the rotating inner cylinder, in agreement with the findings of previous studies (Howell,
Behringer & Veje 1999; Losert et al. 2000; Mueth et al. 2000). Shear causes pronounced
dilation, or reduction in φ, in the shear layer, and mass conservation results in compaction
at larger radial positions. The experimental data are in good agreement with the predictions
of the non-local model of Dsouza & Nott (2020). To our knowledge, this is the first
systematic experimental measurement of dilatancy at constant volume and the coupling
between packing fraction and velocity fields for granular materials in the slow-flow regime.

As elaborated in § 1, classical plasticity models, which have been traditionally used
for slow granular flow, suffer from two major inadequacies: kinematic indeterminacy
and inability to capture shear dilatancy. The former is associated with the mathematical
ill-posedness of the models (Barker et al. 2015). While a few models have been proposed
to repair kinematic indeterminacy, they treat the medium as incompressible. The non-local
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model of Dsouza & Nott (2020) treats the medium as compressible and builds in dilatancy.
The experimental validation of the model is therefore a useful advance, and highlights the
importance of incorporating dilatancy in models for slow granular flow. It is pertinent to
note that Andrade et al. (2012) proposed a model for the rate-dependent regime, where
they introduced a phenomenological dilatancy function β ≡ ∇ · u/γ̇ which decays with
increasing shear strain; to capture the effect of dilatancy, they solved the time-dependent
problem. In the model of Dsouza & Nott (2020), dilatancy arises naturally from the
momentum balances; no additional function needs to be introduced and the steady-state
solution can be obtained directly.

Though the model of Dsouza & Nott (2020) is formulated for the (non-inertial)
slow-flow regime, it can be extend to include the effects of particle inertia by using the
ansatz of the μ(I) model (GDR MiDi 2004; Jop et al. 2006), i.e. by considering μ to be
a function of the inertia number I. We hope that our study will spur other investigations
to probe the effect of inertia on dilatancy and its coupling to kinematics. A shortcoming
of the model prediction is that we have used the experimentally measured values of φ at
the two cylinders as the boundary conditions for that variable. Ideally, one would like a
boundary condition that specifies φ (or its gradient) as a function of the normal stress
and the kinematic state of the material. Deriving such a boundary condition from a first
principles approach is an important exercise and requires further investigation.

We were only able to study the effect of small variations in the φ profile (keeping
its average φ̄ constant) on the velocity profile. While our data do provide evidence of
the inter-dependence of the two fields, it would nevertheless be useful to achieve larger
variations in φ(r), such as by altering the roughness of the inner cylinder, in a future
investigation. Finally, our study points to the need for precise non-invasive measurement of
the volume fraction field in granular flow. Despite X-ray CT and MRI being expensive and
not widely available, using them to study a few complex three-dimensional flows would
be worthwhile to validate and refine models.
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Appendix. Estimation of the model parameters

We determine the values of parameters from the experimental data for the outer cylinder
with LB (see figure 1). The 2-norm of the errors in the predicted area fraction and velocity
are

E2
φ ≡ 1

N

N∑
n=1

(�φ(rn))
2, E2

u ≡ 1
N

N∑
n=1

(�uθ (rn))
2, (A1a,b)
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Figure 6. Parameter estimation for the LB outer cylinder. In each panel, the filled circle identifies the parameter
values that minimise the error, and the colour bars indicate the magnitude of the error. (a) Contours of constant
Eφ in the (n1, n2) plane. The difference is minimum at n1 = 2, n2 = 1. (b,c) Contours of constant Eu in the
(K, μbase/μ, μw/μ) space; the two panels show two orthogonal planes passing through the point K = 0.63,
μbase/μ = 3.76, μw/μ = 0.99 at which Eu is minimum.

where �φ(rn) and �uθ (rn) are the differences between the model prediction and
experimental data for φ and uθ , respectively, at the finite difference nodes rn. The
parameters n1 and n2 are determined by minimising Eφ , and the parameters K, μw/μ

and μbase/μ are estimated by minimising Eu. Figure 6(a) shows that Eφ is minimum
at n1 = 2, n2 = 1. We only explore integer values of the indices n1 and n2, as data on
the dependence of the pressure at critical state with φ are sparse; we were therefore
content with a rough determination of the functional form of Π(φ). Solution of (3.3b)
for uθ (r) requires Π(φ) and the parameters K, μw/μ and μbase/μ. The model prediction
and thereby Eu are computed using the above-determined values of n1 and n2 = 1, and for
a range of the other three parameters. Figures 6(b) and 6(c) show that Eu is minimum for
the values K = 0.63, μbase/μ = 3.76 and μw/μ = 0.99. The parameter set thus obtained
is used to make predictions for all the other outer cylinder designs described in § 2.
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