
Proceedings of the Edinburgh Mathematical Society (2023) 66, 346–365

doi:10.1017/S0013091523000196

TOTAL MEAN CURVATURE SURFACES IN THE PRODUCT SPACE
Sn × R AND APPLICATIONS

ALMA L. ALBUJER1 , SYLVIA F. DA SILVA2 AND FÁBIO R.
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Sn ×R is considered and its first variational formula is presented. Later on, two second-order differential
operators are defined and a nice integral inequality relating both of them is proved. Finally, we prove our
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where the equality is attained.
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1. Introduction

Along the last decades, integral inequalities have become an interesting tool for the
study of rigidity results for closed submanifolds immersed in Riemannian spaces. In this
setting, we point out that the first contribution in this thematic was given in the 60s by
Simons [14] who computed the Laplacian of the squared norm of the second fundamental
form σ of a minimal submanifold in the sphere. As a consequence, he showed that if Σm

is a closed minimal submanifold in Sn, the following integral inequality holds:∫
Σ

|σ|2
(
|σ|2 − c(n,m)

)
dΣ ≥ 0 with c(n,m) =

m(n−m)

2(n−m) − 1
, (1.1)

where dΣ is the volume element on Σm. Simons noticed that the inequality (1.1) provides
a natural gap concerning the size of the squared norm of the second fundamental form.
Indeed, if the second fundamental form satisfies 0 ≤ |σ|2 ≤ c(n,m), then either |σ|2 = 0
and Σm is totally geodesic, so a sphere Sm, or |σ|2 = c(n,m). This last equality was
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studied by Chern, do Carmo and Kobayashi [5], who concluded that in this case, Σm is
necessarily a Cliffod torus or a Veronese surface in S4. It is worth pointing out that the
case of co-dimension 1 was also studied simultaneous and independently by Lawson [10].
Nowadays, the inequality (1.1) is known as the Simons integral inequality.

On the other hand, an interesting line of research is to study which submanifolds are
critical points of certain geometric functionals. In this scenario, let us highlight three
classical different functionals. First, Chen considered in [4] the following functional for
closed surfaces Σ2 in R3:

W̃(Σ) =
1

2

∫
Σ

|φ|2 dΣ =

∫
Σ

(H2 −K) dΣ, (1.2)

where φ = A − HI is the umbilicity tensor of Σ, A denotes the shape operator of Σ
and H and K stand for the mean and Gaussian curvature of Σ, respectively. Closely
related to Equation (1.2), we can consider the well-known Willmore energy or Willmore
functional given by

W(Σ) =

∫
Σ

H2 dΣ. (1.3)

In fact, because of the classical Gauss–Bonnet theorem, both functionals W̃ and W have
the same critical points in the set of closed surfaces in R3. Associated to Equation (1.3),
there is the famous Willmore conjecture, proposed in 1965 by Willmore [16] and solved
in 2014 by Marques and Neves [12], which guarantees that the value of W(Σ) is at least
2π2 when Σ2 is an immersed torus into R3.

Finally, another interesting functional, the total mean curvature functional, was
introduced by Chen [3] for any closed submanifold Σm in the Euclidean space Rn:

H(Σ) =

∫
Σ

Hm dΣ. (1.4)

Chen proved that H is bounded from below by the volume of the unit m-sphere, being
the equality attained precisely when the submanifold is the unit m-sphere. The total
mean curvature functional has also been considered for submanifolds in other ambient
spaces. In the case of closed submanifolds in the sphere Sn, H is bounded from below by
zero and the equality is attached at all closed minimal submanifolds of Sn. Considering
the variational problem associated to such functional, it is said that a submanifold Σm

is an H-submanifold if it is a stationary point for the functional H. In this context, Guo
and Yin [9] established an integral inequality relating the total umbilicity tensor and the
Euler characteristic χ(Σ) of a closed H-surface Σ2 immersed in Sn:∫

Σ

{
|φ|2

(
1 −

(
2 − 1

n− 2

)
|φ|2

)
+ 2

}
dΣ ≤ 4πχ(Σ) (1.5)

being the equality achieved if and only if Σ2 is either a totally geodesic 2-sphere, a Clifford
torus in S3 or a Veronese surface in S4.

Considering more general ambient spaces, recently the first and third authors com-
puted in [1] the Euler–Lagrange equation of a suitable Willmore functional for closed
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immersed surfaces in an homogeneous space E3(κ, τ). As an application, they developed
a Simons-type integral inequality for such surfaces, characterizing the surfaces for which
the equality holds as Clifford or Hopf tori of the ambient space. Furthermore, recently,
the last two authors obtained an integral inequality for closed immersed submanifolds
Σm into the product space Sn × R having parallel normalized mean curvature vector
field [7]. They also showed that, in this case, the equality is attained if and only if Σm is
isometric to either a totally umbilical sphere or to a certain family of Clifford tori in a
totally geodesic sphere Sm+1 of Sn.

In the spirit of the previous results, we will obtain the Euler–Lagrange equation of
the total mean curvature functional for closed immersed surfaces into the product space
Sn × R, Proposition 2. As a consequence, we will get a Simons-type integral inequality
and we will characterize when the equality is attained. Specifically, if φ and φh stand
for the umbilicity tensor of Σm, and the umbilicity tensor related to the mean curvature
vector field h, respectively, and T denotes the tangential part of the vector field ∂t in
Sn × R, the main aim of the paper is to prove the following result:

Theorem 1. Let Σ2 be a closed immersed H-surface into the product space Sn × R.
Then, ∫

Σ

{
|φ|2

(
1 − 5|T |2 − 3

2
|φ|2

)
− 2(|φh| + 1)|T |2 + 2

}
dΣ ≤ 4πχ(Σ). (1.6)

In particular, the equality holds if and only if Σ2 is isometric to either

(i) a slice S2 × {t0}, or
(ii) a totally geodesic 2-sphere or a Clifford torus in S3 × {t0}, or

(iii) a Veronese surface in S4 × {t0},

for some t0 ∈ R.

On the one hand, let us remark that, since given m,n ∈ N, m <n, the unit sphere Sm
is a totally geodesic submanifold of the unit sphere Sn, the above surfaces for which the
equality in Equation (1.6) is attained are in fact surfaces of the product Sn×R in general
dimension. On the other hand, let us also observe that Equation (1.6) do not depend on
the co-dimension. Besides that, in the case where Σ2 is contained in a slice of Sn × R,
T = 0. Thus, Equation (1.6) reduces to∫

Σ

{
|φ|2

(
1 − 3

2
|φ|2

)
+ 2

}
dΣ ≤ 4πχ(Σ), (1.7)

which in the case n = 4 coincides with Guo and Yin’s inequality [Equation (1.5)], and it
improves it when n > 4.

2. Preliminaries

In this section, we will present some basic facts about the product manifold Sn × R, as
well as a suitable Simons-type formula for submanifolds immersed in such product.
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As usual, let Rn+2 be the (n + 2)-dimensional Euclidean space. Then, the product
space Sn × R is defined as the following subset of Rn+2:

Sn × R = {(x1, . . . , xn+2) ∈ Rn+2; x21 + · · · + x2n+1 = 1} (2.1)

equipped with the induced metric from the Euclidean space, 〈, 〉, that is, Sn × R is the
usual product of the unit sphere Sn(1) and the real line. Associated to it,

∂t := (∂/∂t)
∣∣
(p,t)

, (p, t) ∈ Sn × R, (2.2)

is a parallel and unitary vector field, that is,

∇∂t = 0 and 〈∂t, ∂t〉 = 1, (2.3)

where ∇ is the Levi-Civita connection of Sn × R.
Concerning the curvature tensor of Sn × R, it is well known that it satisfies (see [6])

R(X,Y )Z =〈X,Z〉Y − 〈Y, Z〉X + 〈Z, ∂t〉(〈Y, ∂t〉X − 〈X, ∂t〉Y )

+ (〈Y, Z〉〈X, ∂t〉 − 〈X,Z〉〈Y, ∂t〉)∂t, (2.4)

where X,Y, Z ∈ X(Sn × R) and R is defined by (see [13])

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z. (2.5)

Let us consider Σm an m-dimensional submanifold of Sn × R and let us also denote
by 〈, 〉 the induced metric on Σm. In this setting, we will denote by ∇ the Levi-Civita
connection of Σm and ∇⊥ will stand for the normal connection of Σm in Sn×R. We will
denote by σ the second fundamental form of Σm in Sn × R and by Aξ the Weingarten
operator associated to a fixed normal vector field ξ ∈ X(Σ)⊥. We note that for each
ξ ∈ X(Σ)⊥, Aξ is a symmetric endomorphism of the tangent space TpΣ at p ∈ Σm.
Moreover, Aξ and σ are related by

〈σ(X,Y ), ξ〉 = 〈Aξ(X), Y 〉 (2.6)

for all X,Y ∈ X(Σ) and ξ ∈ X(Σ)⊥. We also recall that the Gauss and Weingarten
formulas of Σm in Sn × R are given by

∇XY = ∇XY + σ(X,Y ) and ∇Xξ = −Aξ(X) + ∇⊥
Xξ, (2.7)

for all X,Y ∈ X(Σ) and ξ ∈ X(Σ)⊥.
Since ∂t ∈ X(Sn × R), it can be decomposed along Σm as

∂t = T +N, (2.8)

where T := ∂>t and N := ∂⊥t denote, respectively, the tangent and normal part of the
vector field ∂t on the tangent and normal bundle of the submanifold Σm in Sn × R.
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Moreover, from Equations (2.3) and (2.8), we get the relation

1 = 〈∂t, ∂t〉 = |T |2 + |N |2, (2.9)

| · | being the norm related to the metric 〈, 〉. It is clear that if T vanishes identically
along Σ, then ∂t is normal to Σm and hence Σm lies in a slice Sn × {t0}, t0 ∈ R. Besides
that, a direct computation from Equations (2.3) and (2.7) gives

∇XT = AN (X) and ∇⊥
XN = −σ(T,X), for all X ∈ X(Σ). (2.10)

A well-known fact is that the curvature tensor R of Σm can be described in terms of
its second fundamental form σ and the curvature tensor R of the ambient space Sn × R
by the so-called Gauss equation, which is given by

〈R(X,Y )Z,W 〉 = 〈R(X,Y )Z,W 〉 + 〈σ(X,Z), σ(Y,W )〉 − 〈σ(Y, Z), σ(X,W )〉
= 〈X,Z〉〈Y,W 〉 − 〈Y, Z〉〈X,W 〉 + 〈Z, T 〉(〈Y, T 〉〈X,W 〉 − 〈X,T 〉〈Y,W 〉)

+ (〈Y, Z〉〈X,T 〉 − 〈X,Z〉〈Y, T 〉)〈T,W 〉
+ 〈σ(X,Z), σ(Y,W )〉 − 〈σ(Y, Z), σ(X,W )〉 (2.11)

for all X,Y, Z,W ∈ X(Σ), and the Codazzi equation

(∇⊥
Y σ)(X,Z)− (∇⊥

Xσ)(Y, Z) = (R(X,Y )Z)⊥ = (〈Y, Z〉〈X,T 〉 − 〈X,Z〉〈Y, T 〉)N (2.12)

for all X,Y, Z ∈ X(Σ), where ∇⊥σ satisfies

(∇⊥
Xσ)(Y, Z) = ∇⊥

Xσ(Y, Z) − σ(∇XY, Z) − σ(Y,∇XZ). (2.13)

Let us denote by h the mean curvature vector field of Σm in Sn × R, defined by

h =
1

m
tr(σ) (2.14)

and by H its norm, that is, H2 = 〈h, h〉. It is immediate to check that if {em+1, . . . , en+1}
is an orthonormal frame of X(Σ)⊥, we can write Equation (2.14) in the following way:

h =
∑
α

Hαeα where Hα :=
1

m
tr(Aα) = 〈h, eα〉, (2.15)

and Aα := Aeα . In particular, mH2 = tr(Ah).
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Next, for any normal vector field ξ, let us define the tensor φξ as the traceless part of
Aξ, i.e. φξ := Aξ − 1

m tr(Aξ)I. We shall also consider φ the traceless part of σ, given by

φ(X,Y ) := σ(X,Y ) − 〈X,Y 〉h. (2.16)

The tensors φ and φξ are also known as the umbilicity tensor and the umbilicity tensor
related to ξ of Σm, respectively. It is easy to check that

|φ|2 = |σ|2 −mH2 and |φξ|2 = |Aξ|2 −m〈ξ, h〉2. (2.17)

Observe that |φ|2 = 0 if and only if Σm is a totally umbilical submanifold of Sn × R.
We end this section by recalling the following two results, which we shall use later in

this paper. The first one is a Simons-type formula proved in [7, 8]. It should be noticed
that, for the sake of simplicity, in Proposition 1 and, in general, along this manuscript,
we will naturally identify, at convenience, the Weingarten operator with its associated
symmetric matrix.

Proposition 1. Let Σm be a submanifold in the product space Sn × R. Then

1

2
∆|σ|2 = |∇⊥σ|2 +m

∑
α

tr(Aα ◦ HessHα) +m|φN |2 − 2m
∑
α

|φα(T )|2

+ (m− |T |2)|φ|2 −m〈φh(T ), T 〉 +
∑
α,β

tr(Aβ)tr(A2
αAβ)

−
∑
α,β

(
N(AαAβ −AβAα) + [tr(AαAβ)]2

)
, (2.18)

where φα := φeα , m+ 1 ≤ α, β ≤ n+ 1 and N(B) := tr(BBt) for all matrix B.

The second one is an algebraic lemma which was proved in [11].

Lemma 1. Let B1, . . . , Bp, where p ≥ 2, be symmetric m×m matrices. Then

p∑
α,β=1

(
N(BαBβ −BβBα) + [tr(BαBβ)]2

)
≤ 3

2

(
p∑

α=1

N(Bα)

)2

. (2.19)

3. The first variation of the total mean curvature

The goal of this section is to study the stationary points of the functional H, defined
in (1.4), for closed surfaces in Sn × R. To that end, we will recall the rough Laplacian
∆⊥ : X(Σ)⊥ → X(Σ)⊥, which is defined by setting

∆⊥ξ := tr(∇2ξ) =
∑
i

∇⊥
ei
∇⊥

ei
ξ, (3.1)

where {e1, . . . , em} is any orthonormal frame of X(Σ).
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Now, let us compute the first variational formula of H.

Proposition 2. Let x : Σm → Sn×R be an isometrically immersed closed submanifold.
Then x is a stationary point of H, or an H-submanifold, if and only if

Hm−2

∆⊥h+
(
m− |T |2 −mH2

)
h−m〈N,h〉N +

∑
α,β

Hαtr(AαAβ)eβ

 = 0, (3.2)

for m> 2, and

∆⊥h+
(
2 − |T |2 − 2H2

)
h− 2〈N,h〉N +

∑
α,β

Hαtr(AαAβ)eβ = 0, (3.3)

in the case m = 2, where m+ 1 ≤ α, β ≤ n+ 1.

Proof. Let us consider a variation of x, that is, a smooth map X : Σm × (−ε, ε) →
Sn × R satisfying that for each s ∈ (−ε, ε), the map Xs : Σm → Sn × R, given by
Xs(p) = X(p, s), is an immersion and X0 = x. Then, we can compute the first variation
of H along X, that is,

d

ds
H(Xs)

∣∣∣∣
s=0

=

∫
Σ

d

ds
(Hm

s dΣs)

∣∣∣∣
s=0

, (3.4)

where, for each s ∈ (−ε, ε), Hs =
√
〈hs, hs〉 stands for the norm of the mean curvature

vector of Σm in Sn × R with respect to the metric induced by X s and dΣs denotes its
volume element.

On the one hand, let us compute
d

ds
Hm

s

∣∣∣∣
s=0

. For the sake of simplicity, let us denote

v = d/ds. We claim that

m

2
v(H2

s )

∣∣∣∣
s=0

= 〈mh− |T |2h−m〈N,h〉N +
∑
α,β

Hα tr(AαAβ)eβ , v
⊥〉

+
m

2
v>(H2) + 〈h,∆⊥v⊥〉. (3.5)

Let us assume now that m > 2. Then,

v(Hm
s ) = v((H2

s )
m
2 ) =

m

2
Hm−2

s v(H2
s ) (3.6)

and, consequently,

v(Hm
s )

∣∣∣∣
s=0

= Hm−2〈mh− |T |2h−m〈N,h〉N +
∑
α,β

Hαtr(AαAβ)eβ , v
⊥〉

+Hm−2
(m

2
v>(H2) + 〈h,∆⊥v⊥〉

)
. (3.7)
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Furthermore, by using [15, Lemma 5.4] (see also [2, Lemma 4.2]), we have

v(dΣs)

∣∣∣∣
s=0

=
(
−m〈h, v⊥〉 + div(v>)

)
dΣ. (3.8)

Therefore, along Σm, m > 2, it holds

v(Hm
s dΣs)

∣∣∣∣
s=0

= v(Hm
s )

∣∣∣∣
s=0

dΣ +Hmv(dΣs)

∣∣∣∣
s=0

=
{
Hm−2

(
〈mh− |T |2h−m〈N,h〉N −mH2h, v⊥〉

)}
dΣ

+

Hm−2

∑
α,β

Hαtr(AαAβ)〈eβ , v⊥〉 + 〈h,∆⊥v⊥〉

+ div(Hmv>)

 dΣ, (3.9)

where Equations (3.7) and (3.8) have been used and the fact that

div(Hmv>) =
m

2
Hm−2v>(H2) +Hmdiv(v>). (3.10)

Consequently,

d

ds

∫
Σ

Hm
s dΣs

∣∣∣∣
s=0

=

∫
Σ

Hm−2〈∆⊥v⊥, h〉 dΣ +

∫
Σ

Hm−2
∑
α,β

Hα tr(AαAβ)〈eβ , v⊥〉dΣ

−
∫
Σ

Hm−2
(
〈|T |2h−mh+m〈N,h〉N +mH2h, v⊥〉

)
dΣ. (3.11)

Hence, x is a stationary point of H if and only if

Hm−2

∆⊥h− |T |2h+mh−m〈N,h〉N −mH2h+
∑
α,β

Hαtr(AαAβ)eβ

 = 0. (3.12)

The case m = 2 follows with an analogous argument using Equation (3.5) instead of
Equation (3.7).

It remains to prove the claim. By (2.14),

mv(H2
s ) =

∑
i

〈(∇vAhs)ei, ei〉 =
∑
i

〈∇vAhs(ei), ei〉 −
∑
i

〈Ahs(∇vei)
>, ei〉, (3.13)

for any {e1, . . . , em} orthonormal frame of X(Σ). In particular, given p ∈ Σ, we can choose
locally a totally geodesic frame, that is, (∇ei

ej)(p) = 0 for all 1 ≤ i, j ≤ m.
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Although in the following we will work at p, by simplicity, we will omit the point. Let
us denote

I =
∑
i

〈∇vAhs(ei), ei〉 and II =
∑
i

〈Ahs(∇vei)
>, ei〉 (3.14)

and let us compute both terms separately. From Equation (2.7) and the fact that [v, ei] =
∇vei −∇ei

v = 0, we have

I = −
∑
i

〈∇v∇ei
hs, ei〉 +

∑
i

〈∇v∇⊥
ei
hs, ei〉

=
∑
i

〈R(v, ei)hs, ei〉 −
∑
i

〈∇ei
∇vhs, ei〉 −

∑
i

〈∇⊥
ei
hs,∇vei〉

=
∑
i

〈R(v, ei)hs, ei〉 −
∑
i

ei〈∇vhs, ei〉 +
∑
i

〈∇vhs,∇ei
ei〉 −

∑
i

〈∇⊥
ei
hs,∇ei

v〉

=
∑
i

〈R(v, ei)hs, ei〉 +
∑
i

ei〈hs,∇vei〉 +
∑
i

〈∇vhs, σ(ei, ei)〉 −
∑
i

〈∇⊥
ei
hs, σ(ei, v

>)〉

−
∑
i

〈∇⊥
ei
hs,∇⊥

ei
v⊥〉

=
∑
i

〈R(v, ei)hs, ei〉 +
∑
i

ei〈hs, σ(ei, v
>)〉 +

∑
i

ei〈hs,∇⊥
ei
v⊥〉 +

m

2
v(H2

s )

−
∑
i

〈∇⊥
ei
hs, σ(v>, ei)〉 −

∑
i

〈∇⊥
ei
hs,∇⊥

ei
v⊥〉

=
∑
i

〈R(v, ei)hs, ei〉 +
∑
i

〈hs,∇⊥
ei
σ(v>, ei)〉 + 〈hs,∆⊥v⊥〉 +

m

2
v(H2

s ), (3.15)

where we have also used Equations (2.14) and (3.1).
From the Codazzi equation (2.12) it holds that

∇⊥
ei
σ(v>, ei) = (∇⊥

ei
σ)(v>, ei) + σ(ei,∇ei

v>)

= (R(v>, ei)ei)
⊥ + (∇⊥

v>σ)(ei, ei) + σ(ei,∇ei
v>). (3.16)

Inserting Equation (3.16) in Equation (3.15),

I =
∑
i

〈R(v⊥, ei)hs, ei〉 +
∑
i

〈hs,∇⊥
v>σ(ei, ei) + σ(ei,∇ei

v>)〉 + 〈hs,∆⊥v⊥〉 +
m

2
v(H2

s )

=
∑
i

〈R(v⊥, ei)hs, ei〉 +
m

2
v>(H2

s ) +
∑
i

〈Ahs(ei),∇ei
v>〉 + 〈hs,∆⊥v⊥〉 +

m

2
v(H2

s ).

(3.17)

For the second expression of (3.14), it is not difficult to check that

II =
∑
i

〈Ahs(∇vei)
>, ei〉
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=
∑
i

〈Ahs(∇ei
v> + ∇ei

v⊥), ei〉 =
∑
i

〈Ahs(∇ei
v>), ei〉 − tr(AhsAv⊥). (3.18)

Therefore,

m

2
v(H2

s ) =
∑
i

〈R(v⊥, ei)hs, ei〉 +
m

2
v>(H2

s ) + 〈hs,∆⊥v⊥〉 + tr(AhsAv⊥); (3.19)

thus,

m

2
v(H2

s )|s=0 =
∑
i

〈R(v⊥, ei)h, ei〉 +
m

2
v>(H2) + 〈h,∆⊥v⊥〉 + tr(AhAv⊥). (3.20)

On the other hand, writing v⊥ =
∑

β〈v⊥, eβ〉eβ and h =
∑

αH
αeα, from Equation (2.14),

we get

Ah =
∑
α

HαAα and Av⊥ =
∑
β

〈v⊥, eβ〉Aβ . (3.21)

Hence,

tr(AhAv⊥) =
∑
α,β

Hαtr(AαAβ)〈v⊥, eβ〉. (3.22)

Besides this, from Equation (2.4),

m∑
i=1

〈R(v⊥, ei)h, ei〉 = 〈mh− |T |2h−m〈N,h〉N, v⊥〉. (3.23)

So, the claim is proved by replacing Equations (3.22) and (3.23) into Equation (3.20). �

It is not difficult to see that minimal submanifolds are stationary points of the total
mean curvature functional H. In fact, Equation (3.2) is trivial for minimal submanifolds
and Equation (3.3) is also satisfied since H = 0 implies that the mean curvature vector
field h vanishes identically at Σm. Let us prove that minimal submanifolds are the only
stationary points in the class of totally umbilical submanifolds contained in a slice of
Sn × R. To that end, we need to present first the following auxiliary result.

Lemma 2. If Σm is a totally umbilical submanifold contained in a slice of Sn × R,
then the mean curvature vector field is parallel in the normal bundle.
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Proof. From umbilicity, Equation (2.16) gives

σ(X,Y ) = 〈X,Y 〉h, X, Y ∈ X(Σ). (3.24)

Hence, a direct computation from the Codazzi equation (2.12) yields

(〈Y, Z〉〈X,T 〉 − 〈X,Z〉〈Y, T 〉)N = 〈X,Z〉∇⊥
Y h− 〈Y, Z〉∇⊥

Xh, (3.25)

for all X,Y, Z ∈ X(Σ). Since Σm is contained in a slice, T = 0, so from Equation (3.25)

〈Y, Z〉∇⊥
Xh = 〈X,Z〉∇⊥

Y h (3.26)

for all X,Y, Z ∈ X(Σ). Therefore, choosing Y = Z orthogonal to X, we conclude that h
is parallel in the normal bundle. �

As a consequence of the previous result, we get the following corollary.

Corollary 1. Let Σm be a totally umbilical submanifold contained in a slice of Sn×R.
Then, Σm is an H-submanifold of Sn × R if and only if it is totally geodesic.

Proof. Let Σm be a submanifold of Sn × R under the assumptions of the corollary.
From Lemma 2 it follows that ∇⊥h = 0. Furthermore, since Σm is contained in a slice,
T = 0. Thus, using Equation (2.10) and the assumption of umbilicity, we have

0 = 〈AN (X), Y 〉 = 〈σ(X,Y ), N〉 = 〈X,Y 〉〈h,N〉 (3.27)

for all X,Y ∈ X(Σ), so 〈h,N〉 = 0. Besides that, the umbilicity of Σm also implies that,
for every m+ 1 ≤ α ≤ n+ 1, it holds that Aα(X) = 〈h, eα〉X.

Hence, the first variational formula for H in Proposition 2 becomes

0 = Hm−2

(
mh−mH2h+m

∑
α

〈h, eα〉2h

)
= mHm−2h (3.28)

if m > 2 and simply h = 0 in the case m = 2. In any case, it is immediate to check that
Σm is a H-submanifold if and only if it is minimal. Thus, from umbilicity, if and only if
it is totally geodesic. �

4. Two key lemmas

Associated to the second fundamental form of Σm, let us consider the following operator
P : X(Σ) × X(Σ) → X(Σ)⊥ by setting

P (X,Y ) = m〈X,Y 〉h− σ(X,Y ). (4.1)

We observe that P is symmetric and tr(P ) = m(m− 1)h. Concerning P, let us consider
the following second-order differential operator:

�∗ : X(Σ)⊥ → C∞(Σ) (4.2)
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given by

�∗(ξ) = 〈P,∇2ξ〉, (4.3)

where 〈 , 〉 denotes the Hilbert–Schmidt inner product. We observe that for each α ∈
{m+ 1, n+ 1}, by Equation (4.1), it holds that

〈P (X,Y ), eα〉 = m〈X,Y 〉〈h, eα〉 − 〈σ(X,Y ), eα〉
= m〈X,Y 〉Hα − 〈Aα(X), Y 〉,

(4.4)

which motivates the definition of the operator Pα : X(Σ) → X(Σ) given by Pα = mHαI−
Aα. It is immediate to see that Pα is symmetric, tr(Pα) = m(m− 1)Hα and∑

α

tr(Pα)eα = m(m− 1)
∑
α

Hαeα = m(m− 1)h = tr(P ). (4.5)

We can also define another second differential operator

� : C∞(Σ) → X(Σ)⊥ (4.6)

such that

�(f) =
∑
α

tr(Pα ◦ Hess f)eα. (4.7)

The following result gives a relation between both operators �∗ and �.

Lemma 3. Let Σm be a closed submanifold in the product space Sn × R. Then∫
Σ

f �∗(ξ) dΣ =

∫
Σ

〈�(f), ξ〉dΣ + (m− 1)

∫
Σ

(
f〈∇⊥

T ξ,N〉 − 〈N, ξ〉〈∇f, T 〉
)

dΣ (4.8)

for all f ∈ C2(Σ) and ξ ∈ TΣ⊥.

Proof. Let p ∈ Σm and {e1, . . . , em} be an orthonormal frame of X(Σ) on a neigh-
bourhood U ⊂ Σm of p, geodesic at p, that is, (∇ei

ej)(p) = 0 for all 1 ≤ i, j ≤ m. By
using the Hilbert–Schmidt inner product, we have

f�∗(ξ) = f〈P,∇2ξ〉 = f
∑
i,j

〈P (ei, ej),∇2ξ(ei, ej)〉

=
∑
i,j

ej

(
f〈P (ei, ej),∇⊥

ei
ξ〉
)
−
∑
i,j

ei (ej(f)〈P (ei, ej), ξ〉)

− f
∑
i,j

〈∇⊥
ej
P (ei, ej),∇⊥

ei
ξ〉 +

∑
i,j

ei(ej(f))〈P (ei, ej), ξ〉

+
∑
i,j

ej(f)〈∇⊥
ei
P (ei, ej), ξ〉.

(4.9)
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On the other hand, by a direct computation∑
i,j

ei(ej(f))〈P (ei, ej), ξ〉 = m
∑
i,j

ei(ej(f))δij〈h, ξ〉 −
∑
i,j

ei(ej(f))〈σ(ei, ej), ξ〉

= m∆f〈h, ξ〉 −
∑
α,i,j

ei(ej(f))〈Aα(ei), ej〉〈eα, ξ〉

=
∑
α

(mHα∆f − tr(Aα ◦ Hess f)) 〈eα, ξ〉

=
∑
α

tr(Pα ◦ Hess f)〈eα, ξ〉 = 〈�(f), ξ〉, (4.10)

where δij = 〈ei, ej〉. Inserting Equation (4.10) in Equation (4.9), we get

f�∗(ξ) = 〈�(f), ξ〉 − f
∑
i,j

〈∇⊥
ej
P (ei, ej),∇⊥

ei
ξ〉 +

∑
i,j

ej(f)〈∇⊥
ei
P (ei, ej), ξ〉

+
∑
i,j

ej

(
f〈P (ei, ej),∇⊥

ei
ξ〉
)
−
∑
i,j

ei (ej(f)〈P (ei, ej), ξ〉) . (4.11)

We observe that the last expressions in Equation (4.11) can be seen as divergences,
that is,∑
i,j

div (ej(f)〈P (ei, ej), ξ〉ei) =
∑
i,j

ej(f)〈P (ei, ej), ξ〉div(ei) +
∑
i,j

ei (ej(f)〈P (ei, ej), ξ〉)

(4.12)
and ∑

i,j

div
(
f〈P (ei, ej),∇⊥

ei
ξ〉ej

)
= f

∑
i,j

〈P (ei, ej),∇⊥
ei
ξ〉div(ej)

+
∑
i,j

ej

(
f〈P (ei, ej),∇⊥

ei
ξ〉
)
. (4.13)

Since at p ∈ Σm it holds div(ei)(p) = 0 for any 1 ≤ i ≤ m, we obtain∑
i,j

div
(
f〈P (ei, ej),∇⊥

ei
ξ〉ej − ej(f)〈P (ei, ej), ξ〉ei

)
=
∑
i,j

ej

(
f〈P (ei, ej),∇⊥

ei
ξ〉
)
−
∑
i,j

ei (ej(f)〈P (ei, ej), ξ〉) . (4.14)

Now, by using the Codazzi equation (2.12),

〈∇⊥
ej
P (ei, ej),∇⊥

ei
ξ〉 = mδij〈∇⊥

ej
h,∇⊥

ei
ξ〉 − 〈∇⊥

ei
σ(ej , ej),∇⊥

ei
ξ〉 + 〈R(ei, ej)∇⊥

ei
ξ, ej〉

= mδij〈∇⊥
ej
h,∇⊥

ei
ξ〉 − 〈∇⊥

ei
σ(ej , ej),∇⊥

ei
ξ〉

+ 〈∇⊥
ei
ξ,N〉 (〈ej , T 〉δij − 〈ei, T 〉) ,

(4.15)
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and hence

f
∑
i,j

〈∇⊥
ej
P (ei, ej),∇⊥

ei
ξ〉 = −(m− 1)f〈∇⊥

T ξ,N〉. (4.16)

In a similar way, ∑
i,j

ej(f)〈∇⊥
ei
P (ei, ej), ξ〉 = −(m− 1)〈N, ξ〉〈∇f, T 〉. (4.17)

Replacing Equations (4.14), (4.16) and (4.17) all in Equation (4.11),

f�∗(ξ) = 〈�(f), ξ〉 +
∑
i,j

div
(
f〈P (ei, ej),∇⊥

ei
ξ〉ej − ej(f)〈P (ei, ej), ξ〉ei

)
+ (m− 1)

(
f〈∇⊥

T ξ,N〉 − 〈N, ξ〉〈∇f, T 〉
)
.

(4.18)

It is worth pointing that the expression in the divergence term is independent of the
chosen frame. Finally, by using the divergence theorem, we obtain the desired result. �

In particular, taking f ≡ 1 in Lemma 3, we get the following:

Corollary 2. Let Σm be a closed submanifold in the product space Sn ×R. Then, for
all ξ ∈ X(Σ)⊥, ∫

Σ

�∗(ξ) dΣ = (m− 1)

∫
Σ

〈∇⊥
T ξ,N〉 dΣ. (4.19)

The next result gives a Hiusken-type inequality for submanifolds in Sn × R.

Lemma 4. If Σm is a submanifold in the product space Sn × R, then

|∇⊥σ|2 ≥ m

m+ 2

(
3m|∇⊥h|2 + 4(m− 1)〈∇⊥

T h,N〉
)
. (4.20)

Proof. Let F : X(Σ)3 → X(Σ)⊥ be the tensor defined by

F (X,Y, Z) = ∇⊥
Zσ(X,Y ) + a

(
〈Y, Z〉∇⊥

Xh+ 〈X,Z〉∇⊥
Y h+ 〈X,Y 〉∇⊥

Zh
)

(4.21)

for a given a ∈ R. Let us compute its norm. A direct computation gives

〈F (X,Y, Z), F (X,Y, Z)〉 = 〈∇⊥
Zσ(X,Y ),∇⊥

Zσ(X,Y )〉 + 2aQ1(X,Y, Z) + a2Q2(X,Y, Z),
(4.22)

where

Q1(X,Y, Z) = 〈Y, Z〉〈∇⊥
Xh,∇⊥

Zσ(X,Y )〉 + 〈X,Z〉〈∇⊥
Y h,∇⊥

Zσ(X,Y )〉
+ 〈X,Y 〉〈∇⊥

Zh,∇⊥
Zσ(X,Y )〉,

(4.23)
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and

Q2(X,Y, Z) =
(
〈Y, Z〉2〈∇⊥

Xh,∇⊥
Xh〉 + 〈X,Z〉2〈∇⊥

Y h,∇⊥
Y h〉 + 〈X,Y 〉2〈∇⊥

Zh,∇⊥
Zh〉

)
+ 2〈Y, Z〉〈X,Z〉〈∇⊥

Xh,∇⊥
Y h〉 + 2〈Y, Z〉〈X,Y 〉〈∇⊥

Xh,∇⊥
Zh〉

+ 2〈X,Z〉〈X,Y 〉〈∇⊥
Y h,∇⊥

Zh〉. (4.24)

Given p ∈ Σm and {e1, . . . , em} an orthonormal frame of X(Σ) on a neighbourhood
U ⊂ Σm of p, which is geodesic at p, it is not difficult to check that∑
i,j,k

〈∇⊥
ek
σ(ei, ej),∇⊥

ek
σ(ei, ej)〉 = |∇⊥σ|2 and

∑
i,j,k

Q2(ei, ej , ek) = 3(m+ 2)|∇⊥h|2.

(4.25)
Besides that, from the Codazzi equation (2.12), we have∑

i,j,k

Q1(ei, ej , ek) =
∑
i,j,k

(
δjk〈∇⊥

ei
h,∇⊥

ek
σ(ei, ej)〉 + δik〈∇⊥

ej
h,∇⊥

ek
σ(ei, ej)〉

+δij〈∇⊥
ek
h,∇⊥

ek
σ(ei, ej)〉

)
= 3m|∇⊥h|2 + 2(m− 1)

∑
i

〈ei, T 〉〈∇⊥
ei
h,N〉

= 3m|∇⊥h|2 + 2(m− 1)〈∇⊥
T h,N〉. (4.26)

Hence,

|F |2 = |∇⊥σ|2 + 2a
(
3m|∇⊥h|2 + 2(m− 1)〈∇⊥

T h,N〉
)

+ 3a2(m+ 2)|∇⊥h|2. (4.27)

Taking a = −m/(m+ 2), we obtain Equation (4.20). �

5. Proof of Theorem 1

From now on, we will deal with H-surfaces immersed in the product space Sn×R. Before
proving our main result, Theorem 1, we need the following auxiliary proposition.

Proposition 3. Let Σ2 be an H-surface in the product space Sn ×R. Then, we have∫
Σ

(
|∇⊥σ|2 + 2

∑
α

tr(Aα ◦ HessHα)

)
dΣ ≥

∫
Σ

(
2〈N,h〉2 − (2 − |T |2 + |φ|2)H2

)
dΣ.

(5.1)

Proof. First, taking into account the definition of P, a direct computation gives us

〈P,∇2ξ〉 =
∑
i,j

〈P (ei, ej),∇2ξ(ei, ej)〉

= 2
∑
i,j

δij〈h,∇2ξ(ei, ej)〉 −
∑
i,j

〈σ(ei, ej),∇2ξ(ei, ej)〉
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= 2〈h,∆⊥ξ〉 −
∑
i,j

〈σ(ei, ej),∇2ξ(ei, ej)〉, (5.2)

for any orthonormal frame {e1, e2} of X(Σ). Furthermore, with a similar reasoning as the
one in Equation (4.10), we get∑

i,j

〈σ(ei, ej),∇2ξ(ei, ej)〉 =
∑
α

tr(Aα ◦ Hess ξα), (5.3)

where ξα := 〈ξ, eα〉. Therefore,

�∗(ξ) = 2〈h,∆⊥ξ〉 −
∑
α

tr(Aα ◦ Hess ξα). (5.4)

Making ξ = 2h in Equation (5.4), we write

�∗(2h) = 4〈∆⊥h, h〉 − 2
∑
α

tr(Aα ◦ HessHα). (5.5)

On the other hand, by using the following identity

1

2
∆H2 = 〈∆⊥h, h〉 + |∇⊥h|2, (5.6)

Equation (5.5) reads

�∗(2h) = 〈∆⊥h, h〉 +
3

2
∆H2 − 3|∇⊥h|2 − 2

∑
α

tr(Aα ◦ HessHα). (5.7)

By using Lemma 4 in the case m = 2,

−3|∇⊥h|2 ≥ −|∇⊥σ|2 + 2〈∇⊥
T h,N〉. (5.8)

Hence,

�∗(2h) ≥ 〈∆⊥h, h〉 +
3

2
∆H2 − |∇⊥σ|2 + 2〈∇⊥

T h,N〉 − 2
∑
α

tr(Aα ◦ HessHα). (5.9)

Let us consider now {e3, . . . , en+1} a normal orthonormal frame in X(Σ)⊥. Then, by
writing h =

∑
αH

αeα and taking into account the definition of φα, we easily get∑
α,β

Hαtr(AαAβ)〈eβ , h〉 =
∑
α,β,γ

HαHγtr(AαAβ)〈eβ , eγ〉

=
∑
α,β

HαHβtr(φαφβ) + 2
∑
α,β

(Hα)2(Hβ)2
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=
∑
α,β

HαHβtr(φαφβ) + 2H4. (5.10)

So, by Proposition 2,

〈∆⊥h, h〉 +
(
2 − |T |2

)
H2 − 2〈N,h〉2 +

∑
α,β

HαHβtr(φαφβ) = 0. (5.11)

Now let us consider σαβ = tr(φαφβ) for all 3 ≤ α, β ≤ n+ 1. Observe that the (n− 1) ×
(n − 1)-matrix (σαβ) is symmetric, and it can be assumed to be diagonal for a suitable
choice of the normal orthonormal frame {e3, . . . , en+1}. Hence,∑

α,β

HαHβtr(φαφβ) =
∑
α

(Hα)2tr(φ2α) ≤
∑
α

(Hα)2
∑
β

tr(φ2β) = H2|φ|2. (5.12)

Replacing Equations (5.11) and (5.12) in Equation (5.9),

�∗(2h) − 2〈∇⊥
T h,N〉 ≥ −(2 − |T |2 + |φ|2)H2 + 2〈N,h〉2 +

3

2
∆H2

− |∇⊥σ|2 − 2
∑
α

tr(Aα ◦ HessHα). (5.13)

Finally, Proposition 3 is proved taking into account Corollary 2 and the divergence
theorem. �

Now, we are in the position to present the proof of Theorem 1.

Proof. To begin with, taking into account the definition of φα, it is immediate to
check that for all 3 ≤ α, β ≤ n+ 1, it holds that

AαAβ −AβAα = φαφβ − φβφα. (5.14)

Furthermore, since for any 3 ≤ α ≤ n+1, φα is a 2×2 symmetric matrix with tr(φα) = 0,
we easily get φ2α = λI for a certain λ ∈ R and, consequently,

tr(φ2αφβ) = 0 (5.15)

for all 3 ≤ α, β ≤ n+ 1.
Besides that, with a straightforward computation and considering Equation (5.15), we

can get the following algebraic identities:∑
α,β

tr(Aβ)tr(A2
αAβ) = 2H2|φ|2 + 4H4 + 4

∑
α,β

HαHβtr(φαφβ) (5.16)

and ∑
α,β

[tr(AαAβ)]2 =
∑
α,β

[tr(φαφβ)]2 + 4H4 + 4
∑
α,β

HαHβtr(φαφβ). (5.17)
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Hence, from all the above identities,

−
∑
α,β

(
N(AαAβ −AβAα) + [tr(AαAβ)]2 − tr(Aβ)tr(A2

αAβ)
)

= −
∑
α,β

(
N(φαφβ − φβφα) + [tr(φαφβ)]2

)
+ 2H2|φ|2. (5.18)

So, Proposition 1 can be written as follows:

1

2
∆|σ|2 = |∇⊥σ|2 + 2

∑
α

tr(Aα ◦ HessHα) + 2|φN |2 − 4
∑
α

|φα(T )|2

+
(
2 − |T |2 + 2H2

)
|φ|2 − 2〈φh(T ), T 〉

−
∑
α,β

(
N(φαφβ − φβφα) + [tr(φαφβ)]2

)
. (5.19)

Observe now that by using Lemma 1,

−
∑
α,β

(
N(φαφβ − φβφα) + [tr(φαφβ)]2

)
≥ −3

2
|φ|4. (5.20)

Moreover, the Cauchy–Schwarz’s inequality implies

−4
∑
α

|φα(T )|2 ≥ −4|φ|2|T |2 and − 2〈φh(T ), T 〉 ≥ −2|φh||T |2. (5.21)

Inserting Equations (5.20) and (5.21) in Equation (5.19), we get

1

2
∆|σ|2 ≥ |∇⊥σ|2 + 2

∑
α

tr(Aα ◦ HessHα) + 2|φN |2 − 2|φh||T |2

+

(
2 − 5|T |2 + 2H2 − 3

2
|φ|2

)
|φ|2. (5.22)

Taking integrals and using the divergence theorem, it follows from Proposition 3 that

0 ≥
∫
Σ

{
2(|φN |2 + 〈N,h〉2) +

(
|T |2 + |φ|2

)
H2
}

dΣ

+

∫
Σ

{(
2 − 5|T |2 − 3

2
|φ|2

)
|φ|2 − 2H2 − 2|φh||T |2

}
dΣ. (5.23)
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Hence, ∫
Σ

{(
2 − 5|T |2 − 3

2
|φ|2

)
|φ|2 − 2H2 − 2|φh||T |2

}
dΣ ≤ 0. (5.24)

On the other hand, by the Gauss equation (2.11), it holds that

2H2 = 2K + |φ|2 − 2(1 − |T |2). (5.25)

Then, the Gauss–Bonnet theorem implies∫
Σ

{(
1 − 5|T |2 − 3

2
|φ|2

)
|φ|2 − 2(|φh| + 1)|T |2 + 2

}
dΣ ≤ 4πχ(Σ). (5.26)

Finally, let us study when the equality holds in Equation (5.26). In such case, all the
inequalities obtained along the proof should become equalities. In particular, the equality
in Equations (5.23) and (5.24) holds. Thus, |φN | = 〈N,h〉 = 0 and either |T | = |φ| = 0
or H = 0. In the first case, Σ2 is a H-surface satisfying the assumptions of Corollary 1,
so it is totally geodesic. Therefore, either it is isometric to a slice S2 × {t0} in the case
n = 2 or to a totally geodesic sphere S2 in a certain S3 × {t0}.

Let us focus on the second case. On the one hand, since |φN | = 〈N,h〉 = 0,
Equation (2.17) implies that AN = 0. Consequently, from Equation (2.10), we have
that |T | is constant on Σ2, and so it is |N |. On the other hand, since H = 0 and the
equality also holds in Lemma 4, Σ2 is necessarily a parallel surface of S2 × R. Then, the
Codazzi equation (2.12) reads

0 = 〈R(X,Y )Z,N〉 = |N |2 (〈X,T 〉〈Y, Z〉 − 〈Y, T 〉〈X,Z〉) (5.27)

for all X,Y, Z ∈ X(Σ). Therefore, we easily get that either N = 0 or T = 0. In the case
where N = 0, we must have that Σ2 is a vertical cylinder π−1(γ), γ being a circle in S2 and
π : S2 × R → S2 the natural projection map. This case cannot occur since it contradicts
the compactness assumption of Σ2. Hence, T = 0, so Σ2 is a minimal surface in a slice of
Sn × R. For the case where Σ2 can be isometrically immersed in a certain S3 × {t0}, a
classical result of isoparametric surfaces in Riemannian space forms [10] guarantees that
Σ2 is isometric to a Clifford torus S1(1/

√
2) × S1(1/

√
2) in S3 × {t0}, for some t0 ∈ R.

In other case, observe that, again from Equation (2.17), |φ|2 = |σ|2, so the equality in
Equation (5.24) becomes ∫

Σ

|σ|2
(

3

2
|σ|2 − 2

)
dΣ = 0. (5.28)

Therefore, from [11, Theorem 1], Σ2 is isometric to a Veronese surface in S4 × {t0}, for
some t0 ∈ R. �
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