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Abstract. We prove a joint partial equidistribution result for common perpendiculars
with given density on equidistributing equidistant hypersurfaces, towards a measure
supported on truncated stable leaves. We recover a result of Marklof on the joint partial
equidistribution of Farey fractions at a given density, and give several analogous arithmetic
applications, including in Bruhat–Tits trees.
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1. Introduction
In this paper, we study geometric equidistribution results on negatively curved manifolds
with applications to arithmetic problems. Let N be a complete connected Riemannian
manifold with pinched negative sectional curvature at most −1. Let mBM be its
Bowen–Margulis measure, which, when finite and renormalized and when the sectional
curvature has bounded derivative, is the probability measure of maximal entropy for
the geodesic flow on T 1N . When, for instance, N has finite volume, it is well known
that the conditional measure of mBM on the image gtW of a closed strong unstable
leaf W by the geodesic flow gt at time t equidistributes towards mBM as t→ + ∞. See,
for instance, the works of Dani, Eskin and McMullen [EM, Theorem 7.1], Margulis,
Kleinbock and Margulis [KlM, Proposition 2.2.1], Ratner, Sarnak [Sar, Theorem 1],
as well as [PaP2, Theorem 1] and [BPP, Theorem 10.2] for generalizations. Given an
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increasing family (Ft )t∈R of finite subsets Ft of points on gtW for all t ∈ R, it is natural
to study the limiting distribution properties of Ft as t→ + ∞. If Ft is denser and denser in
gtW , it is expected that Ft will also equidistribute to mBM. If Ft is too sparse in gtW , the
limiting distribution is expected to be purely punctual. A threshold seems to occur when
Ft has a constant density in gtW , possibly yielding equidistribution of partial nature.

In this paper we take Ft to be the image by gt of the subset of W of initial tangent
vectors of the common perpendiculars to another cusp neighbourhood, having a length
bound chosen in order to have a constant density at each time t. We prove that Ft
then equidistributes towards the conditional measure of mBM on a truncated weak stable
leaf. This type of partial equidistribution result seems to be quite original in hyperbolic
dynamical systems. For instance, we recover the case n = 2 of a theorem by Marklof
[Mar2, Theorem 6], as well as [Lut, Theorem 6.1]. We actually prove a joint partial
equidistribution result, for more general families, give a version of our results for tree
quotients, and give several arithmetic applications.

More precisely, let M̃ be a complete simply connected Riemannian manifold with
pinched negative sectional curvature at most −1, and let � be a non-elementary discrete
subgroup of Isom(M̃), with critical exponent δ� (see, for instance, [BH]). Let D be a
non-empty proper closed convex subset of M̃ and let H be a horoball of M̃ such that the
families D− = (γD)γ∈� and D+ = (γH)γ∈� are locally finite (modulo stabilizers) in M̃ .

Let us introduce the measures that come into play in this paper, referring to §2 and
[BPP] for further explanations. We denote by ‖μ‖ the total mass of a measure μ.

Let (μx)x∈M̃ be a Patterson density for � and let mBM be the associated
Bowen–Margulis measure on �\T 1M̃ . When M̃ is a symmetric space and � has finite
covolume, then (up to a scalar multiple) μx is the unique probability measure on ∂∞M̃
invariant under the stabilizer of x in the isometry group of M̃ , and mBM is the Liouville
measure, which is finite and mixing. Let W be the strong stable leaf in T 1M̃ whose image
in M̃ is ∂H , and let μ0+

D+,t0
be the conditional measure of mBM on the truncated weak

stable leaf �
⋃
s≥t0 g

sW . The measure μ0+
D+,t0

is finite and non-zero, for instance, when
H is centred at a bounded parabolic fixed point of �. Let σ+

D− be the outer skinning
measure of D−; see, for instance, [PaP2], as well as [OS1, OS2] when M̃ is geometrically
finite with constant curvature, and when D is a ball, horoball or complete totally geodesic
submanifold. When D is a horoball, σ+

D− is the conditional measure of mBM on the strong
unstable leaf in �\T 1M̃ having a lift to T 1M̃ whose image in M̃ is ∂D.

For every γ ∈ � such that d(D, γH) > 0, let vγ ∈ T 1M̃ be the outgoing normal vector
of D pointing towards the point at infinity of γH .

THEOREM 1.1. Let t0 ∈ R. Assume that mBM is finite and mixing for the geodesic flow
on �\T 1M̃ , and that σ+

D− and μ0+
D+,t0

are finite and non-zero. Then for the weak-star

convergence of measures on (�\T 1M̃)2, we have

lim
t→+∞ ‖mBM‖ e−δ� t

∑
γ∈�D\�/�H

0<d(D,γH)≤t−t0

��vγ ⊗�gt �vγ = σ+
D− ⊗ μ0+

D+,t0
.
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See Theorem 3.3 for a more general version, as well as a version for quotients of trees
by discrete groups of automorphisms. See §3 for a proof, after some preliminary work in
§2, in particular on the truncated weak stable leaves and their measures. The proof starts
by using the joint equidistribution result of common perpendiculars from [PaP5], but the
statement of Theorem 1.1 is only apparently similar to Eq. (12) in that paper and new ideas
and techniques are required. One of these ideas is a new subdivision scheme along the
geodesic flow that allows good control of the exponential growth. One of the techniques is
an important regularity study of the splitting of the weak stable leaves and of the dynamics
on the unstable horospheres.

As a consequence of our main result (Theorem 1.1), we recover the case n = 2 of a
theorem by Marklof [Mar2, Theorem 6] on the joint partial equidistribution of Farey points
chosen with constant average density on an equidistributing horocycle on the modular
curve PSL2(Z)\H2

R
; see Corollary 4.1. In the present case (in contrast to other distribution

results in number theory), the restriction to a fixed denominator of the Farey fractions
in [Mar2] is only marginally stronger, by the growth properties of the horospheres. The
relationship between Farey fractions and hyperbolic geometry (and, in particular, with the
divergent geodesics) is not new, probably going back to Ford. See, for instance, the works
of Athreya and Cheung [AC], Sarnak, Series, Sullivan, and the references in [HeP, PaP7].
We also recover [Lut, Theorem 6.1], originally proved for hyperbolic surfaces.

In §4, we give several generalizations of Marklof’s result, including the three-
dimensional real hyperbolic version below. See Corollary 4.2 for a more general statement,
and §§4.3 and 4.4 for distribution results for Farey points with constant average density
on closed horospheres in complex and quaternionic hyperbolic orbifolds. It might be
that it is possible to obtain these applications using purely homogeneous dynamics
techniques, along the lines of the cross-section method of Marklof [Mar2] and Athreya
and Cheung [AC]. But no such results appear in the literature yet. We believe that covering
all our examples might require a lot of work, even starting from the three-dimensional
real hyperbolic case with a large class number of the imaginary quadratic field, as
the cross-sections, as well as other fundamental domain issues, are considerably more
complicated for general arithmetic lattices in rank-one real Lie groups than for SL2(Z).
Furthermore, the case of groups over local fields with positive characteristic is likely to
require major innovations by homogeneous dynamics methods.

Let K be an imaginary quadratic number field, with ring of integers OK and discrimi-
nant different from −4 and −3 in order to simplify the statement in this introduction. Let
G = PSL2(C), let � be the Bianchi group PSL2(OK), let

H =
{
n−(r) =

[
1 r

0 1

]
: r ∈ C

}
and for all t ∈ R, let �t =

[
e−t/2 0

0 et/2

]
.

Let M = {[
e−i θ/2 0

0 ei θ/2

]
: θ ∈ R

}
. We endow the compact abelian groups C/OK and

(H ∩ �)\H with their probability Haar measures dx and dμ(H∩�)\H . For every t ∈ R,
we consider the set Ft of complex Farey fractions of height at most et/2, defined by

Ft =
{
p

q
mod OK : p, q ∈ OK , pOK + qOK = OK , 0 < |q| ≤ et/2

}
.
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COROLLARY 1.2. Let f : (C/OK)× (�\G/M) → R be a continuous function with
compact support. Then for every t0 ∈ R, we have

lim
t→+∞

1
Card Ft−t0

∑
r∈Ft−t0

f (r , �n−(r)�tM)

= 2 e2 t0
∫ +∞

s=t0

∫
y ∈ (H∩�)\H

∫
x ∈ C/OK

f (x, � ty−1�sM) dx dμ(H∩�)\H (y) e−2 s ds.

We now give a joint partial equidistribution result for arithmetic points with given
density on an expanding horosphere in an arithmetic quotient of a non-archimedean simple
Lie group (see Corollary 4.7 for a more general version). Let R = Fq [Y ] be the ring
of polynomials over a finite field Fq with one indeterminate Y, and let K̂ = Fq((Y−1))

be the valued field of formal Laurent series in Y−1 over Fq with |Y−1| = 1/q. Let
G = PGL2(K̂), let � = PGL2(R), let

H =
{
n−(r) =

[
1 r

0 1

]
: r ∈ K̂

}
and for all n ∈ Z, let �n =

[
1 0
0 Yn

]
.

Let �H = NG(H) ∩ � and M = {[ 1 0
0 u

] : u ∈ K̂ , |u| = 1}. We endow �H \H with the
induced measure dμ�H \H of a Haar measure of H, normalized to be a probability measure.
For every n ∈ Z, we consider the set Fn of non-archimedean Farey fractions of height at
most qn, defined by

Fn = �H \
{
n−
(
P

Q

)
: P , Q ∈ R, PR +QR = R, 0 ≤ deg Q ≤ n

}
.

COROLLARY 1.3. Let f : (�H \H)× (�\G/M) → R be a continuous function with
compact support. Then for every n0 ∈ Z, we have

lim
n→+∞

1
Card Fn−n0

∑
r∈Fn−n0

f (r , � r �2nM)

= (1 − q−2) q2n0

+∞∑
m=n0

∫
x,y ∈ �H \H

f (x, � ty−1�2mM) dμ�H \H (x) dμ�H \H (y) q−2m.

2. Background and definitions
Let X be either a complete simply connected Riemannian manifold with pinched negative
sectional curvature at most −1 or a proper geodesically complete R-tree. Let � be a
non-elementary discrete group of isometries of X. We refer to [Rob] or [BPP, Chs. 2 and
3], with potential 0 throughout this paper, for background information on the data (X, �).
In particular, see §3.3 of [BPP] for the definitions of the boundary at infinity ∂∞X of X
and the critical exponent δ� > 0 of �.

We refer to [BPP, §2.2] for the following definitions. We denote by G∧X the
Bartels–Lück space of generalized geodesics in X (that is, of continuous maps R→X

https://doi.org/10.1017/etds.2023.116 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.116


2704 J. Parkkonen and F. Paulin

that are isometric on a closed interval of R with non-empty interior and locally constant
outside it), endowed with the distance d defined by

for all 
, 
′ ∈ G∧X, let d(
, 
′) =
∫ +∞

−∞
d(
(t), 
′(t)) e−2|t | dt . (1)

It contains the closed subspace GX of (true) geodesic lines and the closed subspaces
G±,0X of (positive/negative) geodesic rays, that is, of generalized geodesics that are
isometric on exactly ±[0, +∞[ (which we identify with their restriction to ±[0, +∞[).
We denote by 
 �→ 
± the two endpoint maps from G∧X to X ∪ ∂∞X. Let (gt )t∈R be the
(continuous-time) geodesic flow on G∧X, which preserves GX. Let

G±X = GX ∪
⋃
t∈R

gtG±,0

be the closed subspaces of generalized geodesics that are isometric at least on an interval
±[a, +∞[ for some a ∈ R, so that G−X ∩ G+X = GX. The Bartels–Lück space is
important in order to allow the positive geodesic rays pushed by the geodesic flow at large
positive times to converge to geodesic lines.

We denote by m̃BM the Bowen–Margulis measure of � on GX and by mBM the
Bowen–Margulis measure on �\GX associated with any choice of Patterson–Sullivan
density (μx)x∈X; see, for instance, [Rob] or [BPP, §4.2] with potential 0.

Given a proper closed convex subset D of X, we refer to [BPP, §2.4] for the definition
of their inner/outer normal bundles ∂1±D, which are contained in G±,0X. We refer to [BPP,
§7.1] again with potential 0 (see also [PaP2] in the manifold case) for the definition of the
outer/inner skinning measures σ̃±

D on ∂1±D. Given a measurable map f, we denote by f∗
the pushforward map of measures. Recall that, for every γ ∈ �, we have

γ∗(̃σ±
D ) = σ̃±

γD . (2)

Given w in G+X or G−X respectively, we refer to [BPP, §2.3] for the definitions of its
strong stable leafW+(w) or strong unstable leafW−(w), of its (weak) stable leafW 0+(w)
or (weak) unstable leaf W 0−(w), and of its stable horoball HB+(w) or unstable horoball
HB−(w). The antipodal (or time reversal) map ι : G∧X→G∧X defined by 
 �→ {t �→ 
(−t)}
is an involution satisfying ι(G+X) = G−X and,

for all w ∈ G+X, ι W+(w) = W−(ι w).

Let w ∈ G+X. We refer to [BPP, §2.4] for the definition of the canonical homeo-
morphism N+

w : W+(w) → ∂1−HB+(w) that associates to a geodesic line 
 ∈ W+(w) the
unique (negative) geodesic ray ρ ∈ ∂1−HB+(w) such that 
− = ρ−. We also denote, by an
abuse of notation, N+

w (
) = 
| ]−∞,0]. The homeomorphism N+
w relates the inner skinning

measure σ̃−
HB+(w) of HB+(w) to the conditional μW+(w) on the strong stable leaf W+(w)

of w of the Bowen–Margulis measure m̃BM as follows (see [BPP, end of p. 162]): for

 ∈ W+(w), we have

dμW+(w)(
) = d ((N+
w )

−1)∗σ̃−
HB+(w)(
) = d σ̃−

HB+(w)(
| ]−∞,0]). (3)

https://doi.org/10.1017/etds.2023.116 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.116


Joint partial equidistribution of Farey rays 2705

Recall that we have a homeomorphism

hw : W+(w)× R→W 0+(w), (
, s) �→ gs
.

For every isometry γ of X, for all t , s ∈ R and 
 ∈ W+(w), we have

γ hw(
, s) = hγw(γ 
, s) and gt ◦ hw(
, s) = hgtw(g
t 
, s).

The homeomorphism hw writes the conditional measure μW 0+(w) on the stable leaf
W 0+(w) of w of the Bowen–Margulis measure m̃BM as a twisted product measure of the
measure μW+(w) on W+(w) and the Lebesgue measure on R (see [BPP, Eq. (7.12)] with
potential 0): for all s ∈ R and 
 ∈ W+(w), we have

dμW 0+(w)(g
s
) = e−δ�sdμW+(w)(
) ds. (4)

Note that for every γ ∈ �, we have

γ∗μW 0+(w) = μW 0+(γw). (5)

Since the Lebesgue measure is atomless, for every Borel subset + of W+(w), the
boundary of hw(+ × [a, b]) has measure 0 for μW 0+(w) if and only if the boundary of
+ has measure 0 for μW+(w).

For all w ∈ G+X and s ∈ R, let

gs | : ∂1−HB+(w)→∂1−HB+(gsw)

be the homeomorphism that associates to ρ ∈ ∂1−HB+(w) the unique ρ′ ∈ ∂1−HB+(gsw)
such that ρ− = ρ′−, or equivalently such that we have ρ(t) = ρ′(t − s) for every t ∈ R

such that t ≤ min{0, s}. Note that gsW+(w) = W+(gsw) and that the following diagram
is commutative:

W+(w)
N+
w−→ ∂1−HB+(w)

gs ↓ ↓ gs |

W+(gsw)
N+
gsw−→ ∂1−HB+(gsw).

(6)

Let us now introduce the truncated (weak) stable leaves in GX. The projections on the
second factor of the limiting measures of our upstairs empirical joint distributions will
have as support the union of a locally finite family of truncated stable leaves. For every
σ ∈ R ∪ {−∞}, the σ -stable leaf of w ∈ G+X is

W 0+
σ (w) =

⋃
t≥σ

gtW+(w),

so that W 0+−∞(w) equals W 0+(w).

LEMMA 2.1. Let w ∈ G+X and s ∈ R.
(1) The homeomorphism N+

gsw : W+(gsw) → ∂1−HB+(gsw) is uniformly bicontinuous,
uniformly in s.

(2) The homeomorphism hw : W+(w)× R→W 0+(w) is uniformly bicontinuous.
(3) The homeomorphism gs | : ∂1−HB+(w)→∂1−HB+(gsw) is uniformly bicontinuous,

uniformly on s varying in a compact subset of R.
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Proof. (1) For all 
, 
′ ∈ W+(gsw), by equation (1), we have

d(N+
gsw(
), N

+
gsw(


′)) =
∫ 0

−∞
d(
(t), 
′(t)) e2 t dt +

∫ +∞

0
d(
(0), 
′(0)) e−2 t dt

≤ d(
, 
′)+ 1
2 d(
(0), 


′(0)).

Since the footpoint map π : G∧X→X defined by 
 �→ 
(0) is 1
2 -Hölder continuous (see

[BPP, Proposition 3.2]), this proves that N+
gsw is uniformly continuous (actually 1

2 -Hölder
continuous), uniformly in s.

Conversely, note that by convexity, for all 
, 
′ ∈ W+(gsw), since 
+ = 
′+, we have
d(
(t), 
′(t)) ≤ d(
(0), 
′(0)) for every t ≥ 0. Hence,

d(
, 
′) =
∫ 0

−∞
d(
(t), 
′(t)) e2 t dt +

∫ +∞

0
d(
(t), 
′(t)) e−2 t dt

≤
∫ 0

−∞
d(
(t), 
′(t)) e2 t dt +

∫ +∞

0
d(
(0), 
′(0)) e−2 t dt

= d(N+
gsw(
), N

+
gsw(


′)).

Therefore, (N+
gsw)

−1 is 1-Lipschitz, hence uniformly continuous, uniformly in s.

(2) Again since the footpoint map is 1
2 -Hölder continuous, there exists a constant c > 0

such that for every ε ∈ ]0, 1], for all s, s′ ∈ R and 
, 
′ ∈ W+(w), if d(gs
, gs
′

′) ≤ ε,

then d(
(s), 
′(s′)) ≤ c ε1/2. We may assume that s ≤ s′.

Since 
+ = 
′+, by the convexity of the horoballs and by the fact that closest point maps
on non-empty closed convex subsets do not increase the distances, with p the closest point
to 
′(s′) on 
([s, +∞[), we have p ∈ 
([s′, +∞[) and

|s − s′| = d(
(s), 
(s′)) ≤ d(
(s), p) ≤ d(
(s), 
′(s′)) ≤ c ε1/2.

Let us fix T > 0 and let us assume that s ∈ [−T , T ]. By [BPP, Eq. (2.8)], we have
d(gs

′−s
′, 
′) ≤ |s − s′|. By the change of variable t �→ t + s in equation (1), we have

d(
, gs
′−s
′) ≤ e2|s|d(gs
, gs′
′).

Therefore,

d(
, 
′) ≤ d(
, gs
′−s
′)+ d(gs

′−s
′, 
′) ≤ e2T ε + c ε1/2.
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Conversely, for all ε ∈ ]0, 1], T > 0, s, s′ ∈ [−T , T ] and 
, 
′ ∈ W+(w), assume that
max{|s − s′|, d(
, 
′)} ≤ ε. Then by similar arguments, we have

d(gs
, gs
′

′) ≤ d(gs
, gs
′)+ d(gs
′, gsgs′−s
′) ≤ e2T (d(
, 
′)+ |s′ − s|) ≤ 2 e2T ε.

This proves assertion (2) of Lemma 2.1.
(3) Let T > 0 and s ∈ [−T , T ]. By Assertion (1), by the commutativity of diagram

(6) and by the invertibility of gs , we only have to prove that gs : GX→GX is uniformly
continuous, uniformly in s ∈ [−T , T ]. As already seen, for all 
, 
′ ∈ GX, we have
d(gs
, gs

′

′) ≤ e2T d(
, 
′), hence the result follows.

We refer to [BPP, §7.2] for the following definitions. Let D− = (Di)i∈I− be a locally
finite (in the sense that we will explain below) �-equivariant family of non-empty proper
closed convex subsets of X and let D+ = (Hj )j∈I+ be a locally finite �-equivariant
family of (closed) horoballs in X. Let ∼+ be the equivalence relation on I+ defined
by j ∼+ j ′ if and only if Hj ′ = Hj and there exists γ ∈ � such that j ′ = γj . Let
∼− be the similarly defined equivalence relation on I−. By locally finite, we mean
that for every compact subset K of X, the quotients sets {i ∈ I− : K ∩Di �= ∅}/∼− and
{j ∈ I+ : K ∩Hj �= ∅}/∼+ are finite.

For all j ∈ I+ and s ∈ R, let Hj ,s be the horoball contained in Hj consisting of points
at a distance at least s from the complement of Hj if s ≥ 0, and otherwise, let Hj ,s be the
closed (−s)-neighbourhood of Hj , which is the horoball containing Hj consisting of the
points that are at distance at most −s from Hj .

For every j ∈ I+, let wj be any geodesic ray starting from the boundary of the horoball
Hj and converging to the point at infinity of Hj , so that HB+(wj ) = Hj . We denote

W+
j = W+(wj ), W 0+

j = W 0+(wj ), W 0+
σ ,j = W 0+

σ (wj ),

N+
j = N+

wj
, μ+

j = μW+(wj ), hj = hwj and μ0+
j = μW 0+(wj ).

Using the homeomorphism hj from W+
j × R to W 0+

j defined by (
, s) �→ gs
 and the
homeomorphism N+

j : W+
j →∂1−Hj defined by 
 �→ 
| ]−∞,0], for all s ∈ R and 
 ∈ W+

j ,
we thus have by equations (4) and (3),

dμ0+
j (gs
) = e−δ�s d σ̃−

Hj
(
| ]−∞,0]) ds. (7)

For all j ∈ I+ and s0 ∈ R, since Hj is the s0-neighbourhood of Hj ,s0 if s0 ≥ 0 and
since Hj ,s0 is the (−s0)-neighbourhood of Hj if s0 ≤ 0, by [BPP, Eq. (7.7)] (see also
[PaP2, Proposition 4 (iii)] in the manifold case), for every 
 ∈ W+

j , we have

d σ̃−
Hj
(
| ]−∞,0]) = eδ�s0 d σ̃−

Hj ,s0
((gs0
)| ]−∞,0]). (8)

For every t0 ∈ R fixed, we also define

σ̃+
D− =

∑
i∈I−/∼−

σ̃+
Di

and μ̃0+
D+,t0

=
∑

j∈I+/∼+

μ0+
j |W 0+

t0,j
. (9)

Since the �-equivariant family (Hj )j∈I+ is locally finite and since t0 > −∞, the two
measures σ̃+

D− and μ̃0+
D+,t0

on G∧X are locally finite. This is the reason why it is important
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to restrict the (weak) stable leaves W 0+
j to their upper parts W 0+

t0,j . These two measures
are also �-equivariant by equations (2) and (5) (and by the �-equivariance of the families
D±). Hence (see, for instance, [PaPS, §2.8] for the definition of the induced measure when
� may have torsion), they induce locally finite measures σ+

D− and μ0+
D+,t0

on �\G∧X.

3. Joint partial equidistribution of common perpendiculars to shrinking horoballs at a
given density
In this section, we prove, as an application of [BPP, Theorem 11.3], a joint partial
equidistribution theorem for pairs consisting of a common perpendicular between a locally
convex subset and a quotient horoball on the one hand and its image by the geodesic flow
at a large time on the other hand. This gives a generalized geometric version in negative
curvature (including variable curvature and in any dimension) of the case n = 2 of [Mar2,
Theorem 6] and [Lut, Theorem 6.1] for hyperbolic surfaces.

With the notation of §2 (at its beginning and after the proof of Lemma 2.1), under the
finiteness and mixing assumption on the Bowen–Margulis measure and the finiteness and
non-vanishing assumption on the skinning measures, the image gt�∂1+Di by the geodesic
flow at time t ≥ 0 of the image in �\GX of the outer normal bundle of Di (endowed
with its skinning measure) equidistributes as t→ + ∞ towards the Bowen–Margulis
measure in �\GX. For a proof, we refer to [PaP2, Theorem 1] in the manifold case
and to [BPP, Theorem 10.2 with potential 0] in general. We will take on gt�∂1+Di
sufficiently many images by gt and � of common perpendiculars from Di to Hj in
order to have a constant density with respect to the skinning measure on �\GX of the
t-neighborhood of �Di .

For all i ∈ I− and j ∈ I+ such that the point at infinity ofHj is not contained in ∂∞Di
(or equivalently such that ∂∞Di ∩ ∂∞Hj = ∅), let ρi,j be the unique geodesic ray in ∂1+Di
such that ρi,j (+∞) is the point at infinity of Hj , and let λi,j = d(Di , Hj).

THEOREM 3.1. Let X be either a proper geodesically complete R-tree or a complete simply
connected Riemannian manifold with pinched negative sectional curvature at most −1.
Let � be a non-elementary discrete group of isometries of X. Let D− = (Di)i∈I− be a
locally finite �-equivariant family of non-empty proper closed convex subsets of X and let
D+ = (Hj )j∈I+ be a locally finite �-equivariant family of horoballs in X. Assume that
the Bowen–Margulis measure mBM on �\GX is finite and mixing for the geodesic flow on
�\GX. Then for every t0 ∈ R, for the weak-star convergence of measures on G+,0X × G∧X,
we have

lim
t→+∞ ‖mBM‖ e−δ� t

∑
i∈I−/∼− , j∈I+/∼+ , γ∈�

∂∞Di ∩ ∂∞Hγj=∅, λi, γj≤t−t0

�ρi,γj ⊗�gt ρ
γ−1i,j

= σ̃+
D− ⊗ μ̃0+

D+,t0
.

(10)

Proof. Let us first give some notation that will be useful in this proof. For all s ∈ R

and (i, j) in I−× I+ such that the closures Di and Hj ,s of Di and Hj ,s in X ∪ ∂∞X
have empty intersection, let λi,j ,s = d(Di , Hj ,s) > 0 be the length of the common
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perpendicular from Di to Hj ,s , and let α−
i, j , s ∈ G∧X be its parametrization: it is the unique

element of G∧X such that
• α−

i, j , s(t) = α−
i, j , s(0) ∈ Di if t ≤ 0,

• α−
i, j , s(t) = α−

i, j , s(λi, j , s) ∈ Hj ,s if t ≥ λi, j , s , and
• α−

i,j ,s |[0, λi,j ,s ] = αi, j , s is the shortest geodesic arc starting from a point of Di and
ending at a point of Hj ,s .

We have λi,j = 0 if Di ∩ Hj �= ∅ and λi,j = λi,j ,0 > 0 if Di ∩ Hj = ∅, so that
λi,j ,s = λi,j + s when both terms λi,j and λi,j ,s are defined and positive. Note that we
have λi,γj ,s = λγ−1i,j ,s for every γ ∈ �, by equivariance. When λi,j ,s > 0, we define

α+
i,j ,s = gλi,j ,s α−

i,j ,s ∈ G∧X, which is isometric exactly on [− λi,j ,s , 0].
The term on the left in equation (10) is independent of the choice of the representatives

of i and j. Let us fix (i, j) ∈ I− × I+ and let us prove that for the weak-star convergence
of measures on G+,0X × G∧X, we have

lim
t→+∞ ‖mBM‖ e−δ� t

∑
γ∈�

∂∞Di ∩ ∂∞Hγj=∅, λi, γj≤t−t0

�ρi,γj ⊗�gt ρ
γ−1i,j

= σ̃+
Di

⊗ μ0+
j |W 0+

t0,j
.

(11)

The result follows by a (locally finite) summation using equation (9).
For all τ ∈ ]0, 1] and s0 ≥ t0, Theorem 11.3 of [BPP] (in the case with potential 0)

applied to the locally finite �-equivariant families (Dαi)α∈� and (Hβj ,s0)β∈� (see also
[PaP5, Eq. (12)] in the manifold case) gives, for the weak-star convergence of measures on
G∧X × G∧X,

lim
t→+∞ ‖mBM‖ e−δ� t

∑
γ∈�, Di ∩ Hγj , s0 =∅
t−τ<λi, γj , s0 ≤t

�α−
i, γj , s0

⊗�α+
γ−1i, j , s0

= 1 − e−δ� τ

δ�
σ̃+
Di

⊗ σ̃−
Hj , s0

.

(12)

Let us consider two compact subsets − of ∂1+Di and + of W+
j with positive

measure for σ̃+
Di

and μ+
j respectively, whose boundaries have zero measure for σ̃+

Di
and

μ+
j respectively. For all s0 ≥ t0 and τ > 0, the product B = − × hj (

+ × [s0, s0 + τ ])

is contained in ∂1+Di ×W 0+
t0,j .

Step 1. Let us first relate the two right-hand sides of equations (11) and (12) evaluated
on the Borel set B.

By respectively equations (7) and (8), an easy integral computation and the commuta-
tivity of the diagram (6), we have

(̃σ+
Di

⊗ μ0+
j )(B) =

∫
(ρ,
,s)∈−×+×[s0,s0+τ ]

d σ̃+
Di
(ρ) dμ0+

j (gs
)

=
∫
(ρ,
,s)∈−×+×[s0,s0+τ ]

d σ̃+
Di
(ρ) e−δ�sdσ̃−

Hj
(
| ]−∞,0]) ds
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=
∫
(ρ,
)∈−×+

d σ̃+
Di
(ρ)

( ∫ s0+τ

s0

e−δ�seδ�s0 ds
)
d σ̃−

Hj ,s0
((gs0
)| ]−∞,0])

=
∫
(ρ,
)∈−×+

1 − e−δ� τ

δ�
dσ̃+

Di
(ρ) d σ̃−

Hj ,s0
((gs0
)| ]−∞,0])

=
∫
(ρ,ρ′)∈−×gs0 |N+

j (
+)

1 − e−δ� τ

δ�
d σ̃+

Di
(ρ) d σ̃−

Hj ,s0
(ρ′). (13)

Step 2. Let us now relate the two index sets of the left-hand sides of equations (11) and
(12), except for the ranges of λi, γj and λi, γj , s0 , which will be taken care of in Step 3.

For every γ ∈ �, ifDi ∩ Hγj ,s0 = ∅ (so that α−
i, γj , s0 and α+

γ−1i, j , s0
are defined), then

∂∞Di ∩ ∂∞Hγj = ∅ (so that ρi,γj and ργ−1i,j are defined) and α−
i, γj (0) = ρi, γj (0).

Conversely, since the set − is compact and by the local finiteness of the family
(Hj )j∈I+ , hence of (Hj ,t0)j∈I+ , there exists a finite subset F of � (depending on
i, j , −, t0), such that for all γ ∈ � − F and s0 ≥ t0, if ∂∞Di ∩ ∂∞Hγj = ∅ (so that ρi,γj
is defined) and if ρi,γj (0) ∈ π(−), then Di ∩ Hγj ,s0 = ∅ (so that α−

i, γj , s0 is defined).
Step 3. Let us finally relate the two pairs of Dirac masses on the left-hand sides of

equations (11) and (12), as well as the ranges of λi, γj and λi, γj , s0 .
If γ ∈ � − F furthermore satisfies λi, γj ≥ T for some T > 0 (which excludes only

finitely many more γ ∈ �), then the generalized geodesics ρi,γj and α−
i, γj , s0 coincide on

] − ∞, T + s0], hence on ] − ∞, T + t0]. Therefore, they are at distance at most ε for any
given ε > 0 if T is large enough (uniformly in s0 and γ ) by equation (1).

Since X has extendible geodesics, for every γ ∈ � such that ∂∞Di ∩ ∂∞Hγj = ∅ (or
equivalently ∂∞Dγ−1i ∩ ∂∞Hj = ∅), let ρ̃γ−1i,j ∈ GX be any geodesic line such that
we have ρ̃γ−1i,j |[0,+∞[ = ργ−1i,j |[0,+∞[. For t large enough, the generalized geodesics
gt ρ̃γ−1i,j and gt ργ−1i,j , which coincide on [−t , +∞[, are arbitrarily close (uniformly in
γ ) by equation (1). Hence, we may replace gt ργ−1i,j by gt ρ̃γ−1i,j in the formula (11) that
we want to prove.

Note that gt ρ̃γ−1i,j belongs to W 0+
j , and that gλi,γj ρ̃γ−1i,j belongs to W+

j . Since

gt ρ̃γ−1i,j = gt−λi,γj (gλi,γj ρ̃γ−1i,j ),

it follows from Lemma 2.1(2) that gt ρ̃γ−1i,j is close to the subset hj (+ × [s0, s0 + τ ]) if
and only if t − λi,γj is close to [s0, s0 + τ ] and gλi,γj ρ̃γ−1i,j is close to +. In particular,
if gt ρ̃γ−1i,j is close to hj (+ × [s0, s0 + τ ]) and t is large enough, then λi,γj is large
enough, and λi,γj ,s0 is close to [t − τ , t] (uniformly in γ ).

Finally, the negative geodesic ray gs0 |N+
j (g

λi,γj ρ̃γ−1i,j ), which is close to the subset
gs0 |N+

j (
+) by Lemma 2.1(1) and (3), coincides with the generalized geodesic α+

γ−1i,j ,s0
on the whole interval ] − λi,γj ,s0 , +∞[ . Since λi,γj ,s0 is large (uniformly in γ ) when
t is large, and again by equation (1), this implies that the generalized geodesic lines
gs0 |N+

j (g
λi,γj ρ̃γ−1i,j ) and α+

γ−1i,j ,s0
are close (uniformly in γ ).

To conclude the proof of the convergence in Theorem 3.1, we evaluate the two
sides of formula (12) on the relatively compact Borel subset − × gs0 |N+

j (
+) of

G∧X × G∧X, whose boundary has measure zero for the limit measure. By formula (13), this
implies that formula (11) holds when evaluated on the relatively compact Borel subset
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B = − × hj (
+ × [s0, s0 + τ ]), whose boundary has measure zero for the limit

measure. The result follows.

Let us now give a version of Theorem 3.1 in the discrete tree case. Referring to [BPP,
§2.6] for background, let X be a locally finite simplicial tree without terminal vertices,
with geometric realization X = |X|1 (with edge lengths equal to 1) and with boundary at
infinity ∂∞X = ∂∞X. We denote by VX the set of vertices of X, identified with its image
in X. Let � be a non-elementary discrete subgroup of the inversion-free automorphism
group Aut(X) of X, and let δ� > 0 be its critical exponent. We refer also to [BPP, §2.6]
for the definition of the space of generalized discrete geodesic lines

G∧X = {
 ∈ G∧X : 
(0) ∈ VX, 
± ∈ VX ∪ ∂∞X}
of X, and the definition of the discrete-time geodesic flow (gn)n∈Z on G∧X, given by setting
gn
 : t �→ 
(t + n) for all 
 ∈ G∧X, t ∈ R and n ∈ Z.

By taking the intersections with G∧X of the previously defined objects for X, we define
(see [BPP, §2.6])
• the closed subspaces GX, G±X and G±,0X of G∧X,
• the stable horoball HB+(w), the strong stable leaf W+(w), the stable leaf W 0+(w)

and the truncated stable leaf

W 0+
n0
(w) =

⋃
n∈Z,n≥n0

gnW+(w)

of w ∈ G+X, where n0 ∈ Z, and
• the outer/inner unit normal bundles ∂1±D of a non-empty proper simplicial subtree D

of X.
We define similarly (see [BPP, §2.6]) the outer/inner skinning measure σ̃±

D
on ∂1±D and

the Bowen–Margulis measures m̃BM on GX andmBM on �\GX associated with any choice
of Patterson–Sullivan density (μx)x∈VX.

Given w ∈ G+X, its stable horoball HB+(w) is a subtree of X and we again denote
by N+

w : W+(w) → ∂1−HB+(w) the canonical homeomorphism defined in §2. We now
have a homeomorphism hw : W+(w)× Z → W 0+(w) defined by (
, m) �→ gm
. The
conditional measure μW 0+(w) of the Bowen–Margulis measure m̃BM (for the discrete-time
geodesic flow on G∧X) on the stable leaf W 0+(w) of w is now defined, for m ∈ Z and

 ∈ W+(w), by

dμW 0+(w)(g
m
) = e−δ�mdμW+(w)(
) dm, (14)

where dm is the counting measure on Z.
Let D− = (D−

i )i∈I− and D+ = (H+
j )j∈I+ be locally finite �-equivariant families of

non-empty proper simplicial subtrees of X, with H+
j a horoball for every j ∈ I+. We

consider the geometric realizations Di = |Di |1 of Di and Hj = |Hj |1 of Hj . For every
n0 ∈ Z, we define the horoball Hj ,n0 such that Hj is the n0-neighbourhood of Hj ,n0 if
n0 ≥ 0 and Hj ,n0 is the (−n0)-neighbourhood of Hj if n0 ≤ 0. For every n0 ∈ Z, as at the
end of §2, we define the measures σ̃+

D− and μ̃0+
D+,n0

on G∧X, and their induced measures

σ+
D− and μ0+

D+,n0
on �\G∧X.
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For all m ∈ Z and (i, j) ∈ I− × I+, the elements ρi, j and α±
i, j , m, respectively defined

just before and just after the statement of Theorem 3.1, actually belong to G∧X.
Note that for many interesting lattices in Aut(X) (and this will turn out to be the case for

the application in §4.5), the time-one geodesic flow is not mixing (it is not even ergodic),
though the time-two geodesic flow is mixing on a half-subspace; see [BPP, end of §4.4]
for explanations. This explains the usefulness of assertion (2) in the next statement.

Fix a basepoint x• ∈ VX. Let VevenX be the subset of VX of vertices of X at even
distance from x•. Let

G∧evenX = {
 ∈ G∧X : 
(0) ∈ VevenX} and GevenX = G∧evenX ∩ GX.

THEOREM 3.2. Let X be a locally finite simplicial tree without terminal vertices. Let � be
a non-elementary discrete subgroup of Aut(X). Let D− = (D−

i )i∈I− and D+ = (H+
j )j∈I+

be locally finite �-equivariant families of non-empty proper simplicial subtrees of X, with
H+
j a horoball for every j ∈ I+.

(1) Assume that the Bowen–Margulis measure mBM on �\GX endowed with the
discrete-time geodesic flow is finite and mixing. Then for every n0 ∈ Z, for the
weak-star convergence of measures on G+,0X × G∧X, we have

lim
n→+∞ ‖mBM‖ e−δ� n

∑
i∈I−/∼− , j∈I+/∼+ , γ∈�

∂∞Di ∩ ∂∞Hγj=∅, λi, γj≤n−n0

�ρi,γj ⊗�gnρ
γ−1i,j

= σ̃+
D− ⊗ μ̃0+

D+,n0
.

(2) Assume that � preserves VevenX. Assume that the restriction to �\GevenX of the
Bowen–Margulis measure mBM is finite and mixing for the time-two map of the
discrete-time geodesic flow. Assume that the endpoints of every common perpen-
dicular between disjoint elements of D− and D+ belong to VevenX. Then for every
n0 ∈ Z, for the weak-star convergence of measures on G+,0X × G∧X, we have

lim
n→+∞

‖mBM‖
2

e−2 δ� n
∑

i∈I−/∼− , j∈I+/∼+ , γ∈�
∂∞Di ∩ ∂∞Hγj=∅, λi, γj≤2n−2n0

�ρi,γj ⊗�g2nρ
γ−1i,j

= σ̃+
D− |G∧evenX

⊗ μ̃0+
D+,2n0 |G∧evenX

.

Proof. (1) Let us fix i ∈ I− and j ∈ I+. It follows from (the case with zero potential
of) [BPP, Theorem 11.9] in the same way as [BPP, Theorem 11.3] follows from [BPP,
Theorem 11.1] that for every integer m0 ≥ n0, we have

lim
n→+∞ ‖mBM‖ e−δ� n

∑
γ∈�

D−
i ∩H+

γj , m0
=∅, λi, γj , m0=n

�α−
i, γj

⊗�α+
γ−1i, j , m0

= σ̃+
Di

⊗ σ̃−
Hj , m0

for the weak-star convergence of measures on the locally compact space G∧X × G∧X. The
proof of Theorem 3.2(1) is then similar to that of Theorem 3.1 using this equation instead
of equation (12).

(2) Let us fix i ∈ I− and j ∈ I+. It follows from (the case with zero potential of) now
[BPP, Theorem 11.11] (and more precisely of equation (11.28) in its proof with t = 2n) in
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the same way as [BPP, Theorem 11.3] follows from [BPP, Theorem 11.1] that for every
integer m0 ≥ n0, we have

lim
n→+∞

‖mBM‖
2

e−2 δ� n
∑
γ∈�

D−
i

∩H+
γj ,2m0

=∅
λi, γj ,2m0 =2n

�α−
i, γj

⊗�α+
γ−1i, j ,2m0

= σ̃+
Di |G∧evenX

⊗ σ̃−
Hj ,2m0 |G∧evenX

for the weak-star convergence of measures on the locally compact space G∧evenX × G∧evenX.
The proof of Theorem 3.2(2) is then similar to that of Theorem 3.1 using this equation
instead of equation (12).

In order to conclude §3, let us give equidistribution statements in the quotient by � of
the two previous results. In order to simplify them, we assume that D is a proper non-empty
closed convex subset of X and that H is a (closed) horoball of X such that the �-equivariant
families D− = (γD)γ∈� and D+ = (γH)γ∈� are locally finite. In the simplicial tree case
as above, we assume that D and H are the geometric realizations of simplicial subtrees D
and H of X.

We denote by �D and �H the stabilizers of D and H in �, respectively. For every γ ∈ �
such that the point at infinity of γH does not belong to ∂∞D, we define the multiplicity of
the common perpendicular from D to γH by

mγ = 1
Card(�D ∩ (γ�Hγ−1))

and we denote by ργ the unique geodesic ray in ∂1+D converging to the point at infinity of
γH . Note that for all α ∈ �D and β ∈ �H , we have

mγ = mαγβ and αργ = ραγβ .

THEOREM 3.3
(1) For every t0 ∈ R, if (X, �) satisfies the assumptions of Theorem 3.1 for D± as above,

and if the measures σ+
D− and μ0+

D+,t0
on �\G∧X are finite and non-zero, then for the

weak-star convergence of measures on (�\G+,0X)× (�\G∧X) we have

lim
t→+∞ ‖mBM‖ e−δ� t

∑
γ∈�D\�/�H

0<d(D,γH)≤t−t0

mγ ��ργ ⊗�gt �ργ = σ+
D− ⊗ μ0+

D+,t0
. (15)

(2) For every n0 ∈ Z, if (X, �) satisfies the assumptions of Theorem 3.2(1) for D± as
above, and if the measures σ+

D− and μ0+
D+,n0

on �\G∧X are finite and non-zero, then

for the weak-star convergence of measures on (�\G+,0X)× (�\G∧X) we have

lim
n→+∞ ‖mBM‖ e−δ� n

∑
γ∈�D\�/�H

∂∞D ∩ γ ∂∞H=∅, d(D,γH)≤n−n0

mγ ��ργ ⊗�gn�ργ = σ+
D− ⊗ μ0+

D+,n0
.
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(3) For every n0 ∈ Z, if (X, �) satisfies the assumptions of Theorem 3.2(2) for D± as
above, and if the measures σ+

D− and μ0+
D+,2n0

on �\G∧X are finite and non-zero, then

for the weak-star convergence of measures on (�\G+,0X)× (�\G∧X) we have

lim
n→+∞

‖mBM‖
2

e−2 δ� n
∑

γ∈�D\�/�H
∂∞D ∩ γ ∂∞H=∅, d(D,γH)≤2n−2n0

mγ ��ργ ⊗�g2n�ργ

= σ+
D− | �\G∧evenX

⊗ μ0+
D+,2n0 | �\G∧evenX

. (16)

Proof. The first assertion follows from Theorem 3.1 in the same way as Corollary 12.3 in
the manifold case and Theorem 12.8 in the tree case of [BPP] follows from Theorem 11.1
of [BPP]. The second and third assertions follow respectively from Theorem 3.2(1) and
(2) in the same way as Theorems 12.9 and 12.12 of [BPP] follow from Theorems 11.9 and
11.11 of [BPP].

Remark. Assume first in this remark that X is a (negatively curved) symmetric space, that
� is an arithmetic lattice and that D has smooth boundary. Note that the Bowen–Margulis
measure is then the Liouville measure, and in particular is a smooth measure. For all 
 ∈ N

and f ∈ C
c (�\T 1X), we denote by ‖f ‖
 the 
th Sobolev norm of f. We identify G+,0X

and G∧X with T 1X by uniquely extending geodesic rays and segments to geodesic lines.
Then one could prove, as in [PaP5, Theorem 15(2)] (see also [BPP, Theorem 12.7(2)]),
by replacing the above equation (12) by the difference of the evaluations at T = t and
T = t − τ of equation (28) of [PaP5], that there exists τ ′ > 0 such that we have an error
term of the form Ot0(e

−κ ′t‖�−‖
‖�+‖
) when evaluating (before taking the limit on the
left-hand side) the two sides of equation (15) on a pair of functions �± ∈ C
c (�\T 1X).

Assume now, with the notation of §4.5, that X is the geometric realization of the
Bruhat–Tits tree Xv of a (PGL2, Kv) and � = PGL2(Rv) is the Nagao lattice. One could
prove a similar error term in equation (16) replacing a Sobolev regularity by a locally
constant regularity, as in remark (ii) in [BPP, p. 282] using [BPP, Proposition 15.7(2)] in
order to check the main assumption of that remark.

4. Applications to equidistribution of Farey fractions
In this section we give five examples of applications of the results of §3, by taking
arithmetic families of points (of Farey fractions type) with a given average density in
an expanding closed horosphere, and we study their equidistribution properties. As their
proofs, though having similar schemes, make reference to many different papers, and
require numerous different computations and checks, it has not been possible, if only
for the sake of the readability of this paper, to regroup them into one statement. More
corollaries of Theorem 3.3(1) may be obtained by varying a non-uniform arithmetic lattice
� in the isometry group of a negatively curved symmetric space X. In §§4.1 and 4.2, we
denote by

[
a b
c d

]
the image in PSL2(C) = SL2(C)/{± id} of

(
a b
c d

) ∈ SL2(C).

4.1. Standard Farey fractions and Marklof’s theorem. Let us now check that as a
corollary of Theorem 3.3(1), we obtain a new and geometric proof of the case n = 2 of
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[Mar2, Theorem 6]. We give extra details in the proof of Corollary 4.1, as it will serve as
a model for the next four examples.

Let G = PSL2(R) and let � be the modular group PSL2(Z). For all r , t ∈ R, let

n−(r) =
[

1 r

0 1

]
and �t =

[
e−t/2 0

0 et/2

]
.

Let

H = {n−(r) : r ∈ R},
and let

�H = H ∩ � = {n−(r) : r ∈ Z}.
We see �H \H as contained in �\G, and we endow �H \H with its H-invariant probability
measure μ�H \H . We endow R/Z with its probability Haar measure dx, so that the map
r �→ n−(r) induces a measure- preserving homeomorphism R/Z → �H \H .

For every t ∈ R, we consider the subset Ft of R/Z consisting of the (standard) Farey
fractions of height at most et/2, defined by

Ft =
{
p

q
mod 1 : p, q ∈ Z, (p, q) = 1, 0 < q ≤ et/2

}
.

Note that in the definition of both �t and Ft , Marklof replaces t by 2t , but our convention
is more natural, considering the left-hand part of equation (20) below.

Let � : �\G→�\G be the Cartan involutive homeomorphism �g �→ � tg−1, so that
for every continuous function with compact support f : R/Z × �\G → R and for every
s ∈ R, we have∫
f dx ⊗ d (�∗ (�−s)∗ μ�H \H ) =

∫
(x,y)∈(R/Z)×(�H \H)

f (x, �(y�−s)) dx dμ�H \H (y).

COROLLARY 4.1. (Marklof [Mar2, Theorem 6]) For every t0 ∈ R, for the weak-star
convergence of measures on R/Z × �\G, we have

lim
t→+∞

1
Card Ft−t0

∑
r∈Ft−t0

�r ⊗��n−(r)�t = et0
∫ +∞

s=t0
dx ⊗ d (�∗ (�−s)∗ μ�H \H ) e−s ds.

(17)

Proof. We consider in this proof X = H2
R

, where Hn
R

is the upper half-space model of
the real hyperbolic space of dimension n (with constant sectional curvature −1). We
again denote by ι : T 1Hn

R
→T 1Hn

R
the antipodal map v �→ −v. We normalize, as we

may, the Patterson density (μx)x∈X of the (non-uniform arithmetic) lattice � of the
orientation-preserving isometry group G of X to consist of probability measures. The
critical exponent of � is

δ� = 1. (18)

We start the proof by recalling precisely a bijection between G and the unit tangent
bundle of H2

R
. We denote by · the action of G by homographies on H2

R
∪ ∂∞H2

R
, as well as
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its derived action on T 1H2
R

. We fix v• = (i, −i) ∈ T 1H2
R

, which is the unit tangent vector
at the base point i of H2

R
pointing vertically down (its length is not adequate in the picture

below, but this makes the picture easier to understand).

We denote by ϕ̃ : G→T 1H2
R

the orbital map at v•, defined by g �→ g · v•, which is
a G-equivariant (for the left actions) homeomorphism, and by ϕ : �\G→�\T 1H2

R
its

quotient homeomorphism. We define S = [0 −1
1 0

]
, which is an order-two element of �.

The involution S satisfies the following remarkable properties, in the connected center-free
semisimple real Lie group G, that it anticommutes with the standard Cartan subgroup
�R = {�t : t ∈ R} of G and that the conjugation by S is the standard Cartan involution
g �→ t g−1 of G :

for all g ∈ G, we have tg−1 = SgS−1 and for all s ∈ R, we have S�sS−1 = �−s .
(19)

Hence, with � defined just before the statement of Corollary 4.1, for all x ∈ �\G and
s ∈ R, we have

�(x�s) = �(x)�−s .

The element S represents a generator of the standard Weyl group NG(�
R)/ZG(�

R)

(whose order is 2). The following properties say that the action of the geodesic flow gt

on T 1H2
R

corresponds to multiplication on the right by �t in G, and that the antipodal
map on T 1H2

R
corresponds to multiplication on the right by S in G:

for all t ∈ R and g ∈ G, we have gt ϕ̃(g) = ϕ̃(g�t ) and ι ϕ̃(g) = ϕ̃(gS). (20)

By the above two centred formulas and since S ∈ �, the homeomorphism ϕ relates the
antipodal map ι on �\T 1H2

R
to the Cartan involution � on �\G by

ι ◦ ϕ = ϕ ◦�.

Let H∞ = {z ∈ H2
R

: Im z ≥ 1}, which is a (closed) horoball centred at ∞ in H2
R

. The
subgroup �H is equal to the stabilizer �H∞ of H∞ in �. We define

D− = D+ = (γ · H∞)γ∈� , (21)

which are locally finite �-equivariant families of horoballs. The map from � − �H∞ to R

defined by γ = [p r
q s

] �→ γ · ∞ = p/q (where we assume, as we may, that q > 0) induces
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a bijection from �H∞\(� − �H∞)/�H∞ to the additive group Q/Z such that we have
d(H∞, γ · H∞) = 2 ln q (see the above picture). In particular, for all t , t0 ∈ R, we have

d(H∞, γ · H∞) ≤ t − t0 if and only if q ≤ e(t−t0)/2. (22)

Identifying geodesic rays in G+,0X and geodesic lines in GX with their unit tangent vector
at time 0, we have

∂1+H∞ = W−(v•) = ϕ̃(H),

so that, by the left equivariance of ϕ̃, the orbits of the right action of H on G correspond to
the strong unstable leaves for the geodesic flow on T 1H2

R
. Similarly, using equation (20),

we have

∂1−H∞ = W+(−v•) = ιW−(v•) = ϕ̃(H S) and W 0+(−v•) = ϕ̃(H�R S).

More precisely, using the right-hand parts of equations (19) and (20),

for all s, r ∈ R, we have ϕ̃(n−(r) �−s S) = ϕ̃(n−(r) S �s) = gs ι ϕ̃(n−(r)). (23)

The endpoint map ψ̃ : ∂1+H∞→R defined by ρ �→ ρ+ is a �H -equivariant home-
omorphism, such that we have ϕ̃−1(ψ̃−1(r)) = n−(r) for all r ∈ R. We denote by
ψ : �H \∂1+H∞→R/Z the quotient homeomorphism, and we identify �H \∂1+H∞ with
its image in �\T 1H2

R
. For every γ = [p r

q s

] ∈ � − �H , with ργ ∈ ∂1+H∞ the geodesic ray
entering perpendicularly in γ · H∞, we have

ϕ̃−1(ργ ) = n−(γ · ∞) and ψ∗(��ργ ) = �γ ·∞ mod 1 = �p/q mod 1. (24)

Furthermore, by [PaP4, Theorem 9.11] or [PaP5, Proposition 20(2)] with n = 2, the
skinning measure σ̃±

H∞ = ι∗σ̃∓
H∞ is equal to twice the Riemannian volume of ∂1∓H∞,

so that

ψ∗(σ+
D−) = 2 dx and (ϕ−1)∗(σ+

D−) = 2 μ�H \H . (25)

By for instance [PaP4, Theorem 9.10] or [PaP5, Proposition 20(1)] with n = 2, we have

‖mBM‖ = 4π vol(�\H2
R) = 4π2

3
.

Mertens’s formula [HaW, Theorem 330] (see also [PaP3, §3] for a geometric proof)
implies that, as t→ + ∞,

Card Ft−t0 ∼ 3
π2 e

2(t−t0)/2 = 3
π2 e

t−t0 .

Since no element of � pointwise fixes a non-trivial geodesic segment of H2
R

, for every
γ ∈ � such that d(H∞, γ · H∞) > 0, we have

mγ = 1.

For every t0 ∈ R, let us consider the truncation �≥t0 = {�t : t ≥ t0} of the Cartan
subgroup �R. For all t ∈ R and γ ∈ � − �H , by the two left-hand parts of equations
(20) and (24), we have

(ϕ−1)∗(��gt ργ ) = ��n−(γ ·∞)�t . (26)
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By equation (23), the homeomorphism ϕ−1 maps the truncated stable leaf

�W 0+
t0
(−v•) =

⋃
s≥t0

�gs∂1−H∞ =
⋃
s≥t0

�gsW+(−v•) =
⋃
s≥t0

�gs ιW−(v•)

to the truncated orbit �H(�≥t0)−1S in �\G of the lower triangular subgroup of G.
Furthermore, by the left-hand part of equation (19) and since S ∈ � for the first equality,
by equation (23) for the third equality, by equations (7) and (18) for the fourth equality, and
since ι∗σ−

D+ = σ+
D− and by the right-hand part of equation (25) for the last equality, for all

s, r ∈ R with s ≥ t0, we have

d((ϕ−1)∗(μ0+
D+,t0

))(�(�n−(r)�−s)) = d((ϕ−1)∗(μ0+
D+,t0

))(�n−(r)�−sS)

= dμ0+
D+,t0

(�ϕ̃(n−(r)�−sS)) = dμ0+
D+(�gs ι ϕ̃(n−(r))) = e−sdσ−

D+(�ι ϕ̃(n−(r))) ds

= e−s(ϕ−1)∗ ι∗ dσ−
D+(�n−(r)) ds = 2 dμ�H \H (�n−(r)) e−s ds.

Therefore, by the left-hand part of equation (25), for all x ∈ R/Z, y ∈ �H \H and s ≥ t0,
we have

d((ψ × ϕ−1)∗(σ+
D− ⊗ μ0+

D+,t0
))(x, �(y �−s)) = 4 dx dμ�H \H (y) e−s ds. (27)

By the linearity of the pushforward of measures and by equation (22), the left-hand part of
equation (24), and equation (26), as t→ + ∞, we have

(ψ × ϕ−1)∗
(

‖mBM‖ e−δ� t
∑

γ ∈ �H∞\�/�H∞ )
0<d(H∞,γ ·H∞)≤ t−t0

mγ ��ργ ⊗�gt �ργ

)

= 4π2

3
e−t

∑
r∈Ft−t0

�r ⊗��n−(r)�t

∼ 4 e−t0 1
Card Ft−t0

∑
r∈Ft−t0

�r ⊗��n−(r)�t . (28)

Since the product map ψ × ϕ−1 is a homeomorphism from (�W−(v•))× (�W 0+
t0
(−v•))

to (R/Z)× (�H(�≥t0)−1), its pushforward map on measures is continuous for the
weak-star convergence. Hence, Corollary 4.1 follows from equations (27) and (28) by
Theorem 3.3(1) applied to the families D± defined in equation (21).

Remarks
(1) Using the final Remark of §3 and an approximation by linear combinations of

functions with separate variables, one could prove that there exist τ ′ > 0 and

 ∈ N such that for every � ∈ C
c (R/Z × �\G), we have an error term of the form
Ot0(e

−κ ′t‖�‖
) when evaluating (before taking the limit on the left-hand side) the
two sides of equation (17) on the function �. See also [Mar3] when n = 2 and [Li]
when n ≥ 3 for an effective version of Marklof’s result.

(2) A version of Corollary 4.1 with congruences is possible. Let N ∈ N − {0}, and let
�0[N] be the Hecke congruence subgroup of level N of �, preimage of the upper
triangular subgroup by the morphism of reduction modulo N of the coefficients.
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Up to replacing Ft by {p/q ∈ Ft : q ≡ 0 mod N}, to replacing � by �0[N] and to
replacing �∗ by an averaging operator over cosets of �0[N] in � (coming from the
fact that the lattice �0[N] is no longer invariant under the Cartan involution g �→
t g−1), one could obtain as in [Mar1, Theorem 2(B)] a joint partial equidistribution
of Farey fractions with a congruence assumption on their denominator and with an
error term. See also [Hee].

4.2. Equidistribution of complex Farey fractions at a given density. Let K be an
imaginary quadratic number field, with discriminantDK , ring of integers OK , finite group
of unit integers O×

K (which is equal to {±1} unless DK = −4, −3), and Dedekind’s zeta
function ζK .

Let G = PSL2(C) and let � be the Bianchi group PSL2(OK). For all r ∈ C and t ∈ R,
we consider the elements of G defined by

n−(r) =
[

1 r

0 1

]
and �t =

[
e−t/2 0

0 et/2

]
.

Let H = {n−(r) : r ∈ C}. We denote by

M =
{ [

e−i θ/2 0
0 ei θ/2

]
: θ ∈ R

}

the compact factor of the centralizer of the standard Cartan subgroup �R = {�t : t ∈ R}
of G, which normalizes H. Note that both � and M are invariant under the standard Cartan
involution g �→ t g−1. Let

�H = NG(H) ∩ � = (HM) ∩ �

=
{ [

a b

0 a−1

]
=
[
a 0
0 a−1

] [
1 a−1b

0 1

]
: a ∈ O×

K , b ∈ OK
}

,

which is a semidirect product (M ∩ �)�(H ∩ �). The discrete group�H admits a properly
discontinuously action � on the left on H so that H ∩ � acts firstly by translations and
M ∩ � secondly by conjugation: for all a ∈ O×

K , b ∈ OK and r ∈ C, we have[
a b

0 a−1

]
�

[
1 r

0 1

]
=
[
a 0
0 a−1

] ( [
1 a−1b

0 1

] [
1 r

0 1

] ) [
a 0
0 a−1

]−1

=
[

1 a2r + ab

0 1

]
.

(29)

We see, as we may, �H \H contained in �\G/M (as the image (� ∩H)\H/(M ∩ �) of
H in the set of double cosets). We endow �H \H with the induced measure μ�H \H of
a Haar measure on H by the branched cover H→�H \H , normalized to be a probability
measure, which we also see as a probability measure on �\G/M (with support �H \H ).
We denote by O′

K the semidirect product O×
K�OK , which acts on the left, with kernel of

order two, on C by ((a, b), r) �→ a2r + ab. Note that for every t ∈ R, by equation (29) and
since�t centralizes M, the double class �n−(r)�tM is well defined for every equivalence
class r ∈ O′

K\C. We endow the quotient space O′
K\C with the induced measure dx of the

Lebesgue measure on C by the branched cover C→O′
K\C, normalized to be a probability

measure.
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For every t ∈ R, we consider the subset Ft of O′
K\C consisting of the complex Farey

fractions of height at most et/2, defined by

Ft = O′
K\
{
p

q
: p, q ∈ OK , pOK + qOK = OK , 0 < |q| ≤ et/2

}
.

Note that the above set of fractions p/q is indeed invariant under O′
K .

Let � : �\G/M→�\G/M be the Cartan involutive homeomorphism defined by
�gM �→ � tg−1M .

COROLLARY 4.2. For every t0 ∈ R, for the weak-star convergence of probability mea-
sures on (O′

K\C)× (�\G/M), we have

lim
t→+∞

1
Card Ft−t0

∑
r∈Ft−t0

�r ⊗��n−(r)�tM

= 2 e2t0
∫ +∞

s=t0
(dx)⊗ (�∗ (�−s)∗ μ�H \H ) e−2s ds.

This statement implies Corollary 1.2 when DK �= −4, −3, since then we have
O′
K\C = OK\C = C/OK and �H = H ∩ �. As a remark similar to the remarks at the

end of §4.1, one could obtain an error term under an additional regularity assumption, and
a joint partial equidistribution result for complex Farey fractions with their denominator
congruent to 0 modulo any fixed element N in ZK − {0}.
Proof. We mostly indicate the differences with the proof of Corollary 4.1. We now
consider X = H3

R
with coordinates (z, u) ∈ C× ]0, +∞[. The critical exponent of the

(non-uniform arithmetic) lattice � of the orientation-preserving isometry group G of X
is now

δ� = 2.

We denote by · the action of G by homographies on ∂∞H3
R

= C ∪ {∞}, by isometries
on H3

R
through the Poincaré extension, and by the derived action on T 1H3

R
. We now

fix the unit tangent vector v• = ((0, 1), (0, −1)) ∈ T 1H3
R

. The stabilizer of v• in G is
equal to M and is hence centralized by �R. The orbital map ϕ̃ : g �→ g · v• now defines a
homeomorphism ϕ : �\G/M→�\T 1H3

R
. The order-two element S = [0 −1

1 0

]
still belongs

to �. It normalizes M and �R, and formulae (19) and (20) are still satisfied.
Now let H∞ = {(z, u) ∈ H3

R
: u ≥ 1}. With �≥t0 = {�t : t ≥ t0}, we again have

∂1+H∞ = W−(v•) = ϕ̃(H) and W 0+
t0
(−v•) =

⋃
s≥t0

gs∂1−H∞ = ϕ̃(H(�≥t0)−1S).

(30)

The subgroup �H is again equal to the stabilizer �H∞ of the horoball H∞ in �. We again
consider the locally finite �-equivariant families of horoballs

D+ = D− = (γ · H∞)γ∈� .
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The map γ = [p r
q s

] �→ γ · ∞ = p/q now induces, for every t ∈ R, a bijection from the
set {[γ ] ∈ �H∞\(� − �H∞)/�H∞ : d(H∞, γ · H∞) ≤ t} to Ft . With ργ the element of
∂1+H∞ whose point at infinity is γ · ∞, the endpoint map ψ̃ : ∂1+H∞→C now induces a
homeomorphism ψ : �H \∂1+H∞→O′

K\C, such that

ψ∗(��ργ ) = �O′
Kγ ·∞.

Let us compute the total mass of the induced Lebesgue measure d LebO′
K\C on O′

K\C,
yielding dx after renormalization to a probability measure. Since the branched cover
OK\C→O′

K\C is (|O×
K |/2)-sheeted outside the singular part and since OK is generated

as a Z-lattice of C by 1 and (DK + i
√|DK |)/2, we have

‖d LebO′
K\C‖ = 2

|O×
K | ‖d LebOK\C‖ =

√|DK |
|O×

K | .

Again by [PaP4, Theorem 9.11] or [PaP5, Proposition 20(2)], now with n = 3, we have

ψ∗(σ+
D−) = 4 d LebO′

K\C = 4
√|DK |
|O×

K | dx and (ϕ−1)∗(σ+
D−) = 4

√|DK |
|O×

K | dμ�H \H .

Again by [PaP4, Theorem 9.10] or [PaP5, Proposition 20(1)], now with n = 3 and with
Humbert’s volume formula (see, for instance, [EGM, §§8.8 and 9.6]), we have

‖mBM‖ = 4 Vol(S2) Vol(�\H3
R) = 4

π
|DK |3/2 ζK(2).

Mertens’s formula for the quadratic imaginary number fields (see also [PaP3, Theorem
3.1]) gives, using the action of k ∈ OK on (p, q) ∈ OK × OK by horizontal shears
k · (p, q) = (p + kq), as t→ + ∞,

Card Ft−t0
∼ 2

|O×
K |Card

(
OK\

{
p

q
: p, q ∈ OK , pOK + qOK = OK , 0 < |q| ≤ e(t−t0)/2

})

= 2
|O×

K |2 Card(OK\{(p, q) ∈ OK × OK : pOK + qOK = OK , 0 < |q|2 ≤ et−t0})

∼ 2 π
|O×

K |2 ζK(2)√|DK | e
2t−2t0 .

Since OK has finite index in O′
K , there are only finitely many elliptic elements in � up to

conjugation by � ∩H whose fixed point set contains ∞ as a point at infinity. There are
only finitely many �H∞-orbits of images of H∞ by � meeting H∞. Hence, there exists
a finite subset F of the set of double cosets �H∞\�/�H∞ such that for every element
[γ ] ∈ �H∞\�/�H∞ − F , we have

d(H∞, γ · H∞) > 0 and mγ = 1.

We have, similarly to equation (26), for all γ ∈ � − �H∞ and t ∈ R,

(ϕ−1)∗(��gt ργ ) = ��n−(γ ·∞)�tM
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and, for all y ∈ �H \H and s ∈ R with s ≥ t0,

d((ϕ−1)∗(μ0+
D+,t0

))(�(y �−s)) = ‖σ−
D+‖ dμ�H \H (y) e−2s ds

= 4
√|DK |
|O×

K | dμ�H \H (y) e−2s ds.

The end of the proof of Corollary 4.2 now proceeds like that of Corollary 4.1.

4.3. Equidistribution of Heisenberg Farey fractions at a given density. LetK , DK , OK ,
O×
K , ζK be as at the beginning of §4.2. Let tr and n be the (absolute) trace and norm of K.

We denote by 〈a, α, c〉 the ideal of OK generated by a, α, c ∈ OK .
Let q be the non-degenerate Hermitian form −z0z2 − z2z0 + |z1|2 of signature (1, 2) on

C3 with coordinates (z0, z1, z2). Let G = PSUq = SUq/(U3 id) be the projective special
unitary group of q, where SUq = {g ∈ GL3(C) : q ◦ g = q, det g = 1} and U3 is the
group of cube roots of unity. Let � be the image of SUq ∩ SL3(OK) in G, which is a
(non-uniform) arithmetic lattice in G, called the (projective special) Picard modular group
of K.

Denoting by
[
a γ b
α A β

c δ d

]
the image in G of

(
a γ b
α A β

c δ d

)
∈ SUq , let

H =
⎧⎨
⎩n−(w0, w) =

⎡
⎣1 w w0

0 1 w

0 0 1

⎤
⎦ : w0, w ∈ C, 2 Re w0 = |w|2

⎫⎬
⎭,

�R =
⎧⎨
⎩�t =

⎡
⎣ e−t 0 0

0 1 0
0 0 et

⎤
⎦ : t ∈ R

⎫⎬
⎭ and M =

⎧⎪⎨
⎪⎩
⎡
⎢⎣ ζ 0 0

0 ζ
2 0

0 0 ζ

⎤
⎥⎦ : ζ ∈ C, |ζ | = 1

⎫⎪⎬
⎪⎭.

Note that H, �R and M are Lie subgroups of G, that M is the compact factor of the
centralizer in G of the standard Cartan subgroup �R of G, and that the subgroup M�R

normalizes the Heisenberg group H. The groups � and M are invariant under the standard
Cartan involution

g �→ ∗g−1,

where ∗g is the image in G of the transpose-conjugate matrix of any matrix in SUq
representing g.

Let

�H = NG(H) ∩ � = (MH) ∩ � =
⎧⎨
⎩
⎡
⎣u uv uv0

0 u2 u2v

0 0 u

⎤
⎦ :

u ∈ O×
K , v, v0 ∈ OK

tr(v0) = n(v)

⎫⎬
⎭,

which admits a properly discontinuously action � on the left on H by⎡
⎣ u uv uv0

0 u2 u2 v

0 0 u

⎤
⎦ �

⎡
⎣ 1 w w0

0 1 w

0 0 1

⎤
⎦ =

⎡
⎣ 1 u3(w + v) w0 + v0 + wv

0 1 u3(w + v)

0 0 1

⎤
⎦, (31)
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where H ∩ � acts firstly by left translations and M ∩ � secondly by conjugations on H.
The inclusion map H→G induces an identification between the quotient �H \H and the
image of H in �\G/M . We endow �H \H with the induced measure μ�H \H of a Haar
measure on H, by the branched coverH→�H \H , normalized to be a probability measure,
which we also see as a probability measure on �\G/M (with support �H \H ).

For every t ∈ R, we consider the subset Ft of �H \H consisting of the Heisenberg Farey
fractions of height at most et , defined by

Ft = �H \
{
n−
(
a

c
,
α

c

)
:
a, α, c ∈ OK , 〈a, α, c〉 = OK ,

tr(a c) = n(α),
0 < n(c) ≤ e2 t

}
.

Note that the above set of elements n−(a/c, α/c) is indeed invariant under �H , by equation
(31). Let � : �\G/M→�\G/M be the Cartan involutive homeomorphism defined by
�gM �→ � ∗g−1M .

COROLLARY 4.3. For every t0 ∈ R, for the weak-star convergence of probability mea-
sures on (�H \H)× (�\G/M), we have

lim
t→+∞

1
Card Ft−t0

∑
r∈Ft−t0

�r ⊗�� r �tM

= 4 e4 t0
∫ +∞

s=t0
(μ�H \H )⊗ (�∗ (�−s)∗ μ�H \H ) e−4s ds.

As a remark similar to the remarks at the end of §4.1, one could obtain an error term
under an additional regularity assumption, and a joint partial equidistribution result for
Heisenberg Farey points n−(a/c, α/c)modulo �H with their denominators c congruent to
0 modulo any fixed element N in OK − {0}.
Proof. We mostly indicate the differences with the proof of Corollary 4.1. We refer to
[Gol] as well as [PaP1, §6.1], [PaP6, §3] for background on complex hyperbolic geometry.
We follow the conventions of the latter reference concerning the normalization of the
sectional curvature and the choice of the Hermitian form with signature (1, 2).

We now consider X = H2
C

the Siegel domain model of the complex hyperbolic plane,
that is, the complex manifold

{(w0, w) ∈ C2 : 2 Re w0 − |w|2 > 0},
endowed with the Riemannian metric

ds2
H2
C

= 1
(2 Re w0 − |w|2)2 ((dw0 − dw w)(dw0 − w dw)+ (2 Re w0 −|w|2) dw dw ).

(32)

This metric is normalized so that its sectional curvatures are in [−4, −1]. The boundary at
infinity of H2

C
is

∂∞H2
C = {(w0, w) ∈ C2 : 2 Re w0 − |w|2 = 0} ∪ {∞}.

Using homogeneous coordinates, we identify H2
C

∪ ∂∞H2
C

with its image in P2(C) by the
map (w0, w) �→ [w0 : w : 1] and ∞ �→ [1 : 0 : 0]. We denote by · the projective action
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of G on H2
C

∪ ∂∞H2
C

, as well as its derived action on T 1H2
C

. The holomorphic isometry
group of H2

C
is G (acting projectively on P2(C)).

The critical exponent of the (non-uniform arithmetic) lattice � of G is now (see, for
instance, [CI, §6])

δ� = 4.

We now fix v• = ((1, 0), (−2, 0)) ∈ T 1H2
C

, which is indeed a unit tangent vector with
footpoint x• = (1, 0) by equation (32). The stabilizer of v• in G is equal to M and hence
is centralized by �R. The orbital map ϕ̃ : g �→ g · v• now defines a homeomorphism
ϕ : �\G/M→�\T 1H2

C
.

For every t ∈ R, the element �t acts on H2
C

by the map (w0, w) �→ (e−2tw0, e−tw).
The geodesic line 
 in H2

C
such that 
(0) = x• and 
′(0) = v• is t �→ (e−2 t , 0). Hence,

gt v• = 
′(t) = (−2 e−2 t , 0) = dx•�t(v•) = �t · v•. Therefore, by equivariance,

for all t ∈ R and g ∈ G, we have gt ϕ̃(g) = ϕ̃(g�t ).

The order-two element S =
[

0 0 −1
0 1 0−1 0 0

]
∈ � acts by the map (w0, w) �→ (1/w0, −w/w0)

on H2
C

. It thus fixes the point x• = (1, 0) and acts by − id on Tx•H2
C

. In particular, it maps
v• to −v•. By equivariance,

for all g ∈ G, we have ι ϕ̃(g) = ϕ̃(gS).

The element S centralizes M and normalizes �R ; more precisely,

for all t ∈ R, we have S�tS−1 = �−t .

Since S is the projective image of the matrix of the Hermitian form q = −z0z2 − z2z0 +
|z1|2, we have ∗g S g = S for every g ∈ G, hence

for all g ∈ G, we have ∗g−1 = S g S−1.

For all x ∈ �\G and s ∈ R, we again have �(x�s) = �(x)�−s and ι ◦ ϕ = ϕ ◦�.
The (closed) horoball in H2

C
centred at ∞ whose boundary ∂H∞ contains x• is

H∞ = {(w0, w) ∈ H2
C : 2 Re w0 − |w|2 ≥ 2}.

The Heisenberg group H acts simply transitively on ∂H∞ and on ∂1±H∞, which contains
±v•. Thus again with �≥t0 = {�t : t ≥ t0}, equation (30) is still satisfied. By for instance
[PaP6, p. 90], the stabilizer �H∞ in � of the horoball H∞, as well as that of ∂1±H∞, is
equal to �H . The �-equivariant families of horoballs

D− = D+ = (γ · H∞)γ∈�

are again locally finite, since ∞ is a bounded parabolic fixed point of �.
For every γ ∈ � having a representative (whose choice does not change the following

claims) in SUq with first column
(
a
α
c

)
∈ M3,1(OK), we have γ /∈ �H∞ if and only if c �= 0

(see, for instance, [PaP1, Eq. (42)]) and then,
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(i) since ∞ = [1 : 0 : 0], the point at infinity γ · ∞ is equal to (a/c, α/c);
(ii) since H acts simply transitively on ∂∞H2

C
− {∞}, there exists a unique rγ ∈ H such

that rγ · 0 = γ · ∞, and we have rγ = n−(a/c, α/c);
(iii) by [PaP1, Lemma 6.3], we have d(H∞, γ · H∞) = ln |c| = 1

2 ln(n(c)).
Therefore, by [PaP1, Proposition 6.5(2)] with I = OK , the map γ �→ rγ induces, for all
t , t0 ∈ R, a bijection from {[γ ] ∈ �H∞\(� − �H∞)/�H∞ : d(H∞, γ · H∞) ≤ t − t0} to
Ft−t0 .

Again using the simple transitivity of the action of H on ∂1±H∞, we have a
�H -equivariant homeomorphism ψ̃ : ∂1+H∞→H which associates to v ∈ ∂1+H∞ the
unique element ψ̃(v) ∈ H such that ψ̃(v) · (v•) = v.

For every γ ∈ � − �H∞ , with ργ the element of ∂1+H∞ whose point at infinity is γ · ∞,
the map ψ̃ induces a homeomorphism ψ : �H \∂1+H∞→�H \H such that

ψ∗(��ργ ) = ��H rγ .

In the remainder of the proof of Corollary 4.3, we use the same normalization of the
Patterson–Sullivan measures (μx)x∈H2

C
as in [PaP6, §4]. We denote by

δx,y =
{

1 if x = y

0 otherwise

the Kronecker symbol.

LEMMA 4.4. We have

‖σ∓
D±‖ = (1 + 2 δDK ,−3) |DK |

4 |O×
K | .

Proof. By [PaP6, Lemma 12(iv)] with n = 2, we have ‖σ∓
D±‖ = 8 Vol(�H∞\H∞), where

Vol is the Riemannian volume. Denoting as in [PaP6, §3], for every s ∈ R,

Hs = {(w0, w) ∈ H2
C : 2 Re w0 − |w|2 ≥ s},

we have H∞ = H2 and the horoballs Hs all have the same stabilizer �Hs
= �H∞ for s ∈ R.

By the comment following [PaP6, Eq. (11)], we have Vol(�H∞\H∞) = 1
4 Vol(�H1\H1).

The result then follows from [PaP6, Lemma 16] which says that

Vol(�H1\H1) = (1 + 2δDK ,−3) |DK |
8 |O×

K | .

Since we normalized μ�H \H to be a probability measure, it follows from Lemma 4.4
that for x ∈ �H \H ,

ψ∗(σ+
D−) = (ϕ−1)∗(σ+

D−) = (1 + 2 δDK ,−3) |DK |
4 |O×

K | μ�H \H .

By [PaP6, Lemma 12(iii)] with n = 2 and by the Holzapfel–Stover volume formula (see
[PaP6, Lemma 17] for the appropriate normalization of the volume form), we have

‖mBM‖ = π2

2
Vol(M) = π (1 + 2 δDK ,−3) |DK |5/2 ζK(3)

96 ζ(3)
.
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By [PaP6, Eq. (21)] and the comment following it, the index of H ∩ � in �H is equal
to |O×

K |/(1 + 2 δDK ,−3). The map from{
(a, α, c) ∈ OK × OK × OK :

〈a, α, c〉 = OK
tr(a c) = n(α), c �= 0

}

to H defined by (a, α, c) �→ n−(a/c, α/c) is |O×
K |-to-one onto its image. Hence, using the

(lifted linear) action of n−(w0, w) ∈ H ∩ � on (a, α, c) ∈ OK × OK × OK defined by

n−(w0, w) · (a, α, c) = (a + w α + w0 c, α + ω c, c),

by [PaP6, Theorem 4], for every t0 ∈ R, we have, as t→ + ∞,

Card Ft−t0 = 1 + 2 δDK ,−3

|O×
K |2

× Card

⎛
⎝(H ∩�)\

⎧⎨
⎩(a, α, c)∈OK ×OK ×OK :

〈a, α, c〉 = OK
tr(a c) = n(α)

0 < n(c) ≤ e2 t−2 t0

⎫⎬
⎭
⎞
⎠

∼ 3 (1 + 2 δDK ,−3) ζ(3)
2 π |O×

K |2 √|DK | ζK(3)
e4 t−4 t0 .

Since H ∩ � has finite index in �H = �H∞ and acts freely on ∂H∞, there are only
finitely many elliptic elements in � up to conjugation by � ∩H whose fixed point set
contains ∞ = [1 : 0 : 0] as a point at infinity. There are only finitely many �H∞-orbits of
images of H∞ by � meeting H∞. Hence, there again exists a finite subset F of the set of
double cosets �H∞\�/�H∞ such that for every [γ ] ∈ �H∞\�/�H∞ − F , we have

d(H∞, γ · H∞) > 0 and mγ = 1.

We have similarly, for all γ ∈ � − �H∞ and t ∈ R,

(ϕ−1)∗(��gt ργ ) = ��rγ�tM

and by Lemma 4.4, for all y ∈ �H \H and s ∈ R with s ≥ t0,

d((ϕ−1)∗(μ0+
D+,t0

))(�(y �−s)) = ‖σ−
D+‖ dμ�H \H (y) e−4 s ds

= (1 + 2 δDK ,−3) |DK |
4 |O×

K | dμ�H \H (y) e−4 s ds.

The end of the proof of Corollary 4.3 now proceeds like that of Corollary 4.1.

4.4. Equidistribution of quaternionic Heisenberg Farey fractions at a given density.
In this section we write H for Hamilton’s quaternion algebra over R, with x �→ x its
conjugation, n : x �→ xx its reduced norm, tr : x �→ x + x its reduced trace. Let A be
a definite (A⊗Q R = H) quaternion algebra over Q, with discriminant DA. Let O be
a maximal order in A, with O× its finite group of invertible elements. We denote by
O〈a, α, c〉 the left ideal of O generated by a, α, c ∈ O. See [Vig] for definitions.
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Let q be the non-degenerate quaternionic Hermitian form of Witt signature (1, 2) on the
right vector space H3 over H with coordinates (z0, z1, z2) defined by

q = −tr(z0 z2)+ n(z1).

With Uq = {g ∈ GL3(H) : q ◦ g = q}, let G = PUq = Uq /{± id} be the projective uni-
tary group of q. Let � be the image of Uq ∩ GL3(O) in G, which is a (non-uniform)
arithmetic lattice in G.

Denoting by
[
a γ b
α A β

c δ d

]
the image in G of

(
a γ b
α A β

c δ d

)
∈ Uq , let

H =
⎧⎨
⎩n−(w0, w) =

⎡
⎣1 w w0

0 1 w

0 0 1

⎤
⎦ : w0, w ∈ H, tr(w0) = n(w)

⎫⎬
⎭,

�R =
⎧⎨
⎩�t =

⎡
⎣ e−t 0 0

0 1 0
0 0 et

⎤
⎦ : t ∈ R

⎫⎬
⎭,

M =
⎧⎨
⎩m(u, U) =

⎡
⎣ u 0 0

0 U 0
0 0 u

⎤
⎦ : u, U ∈ H, n(u) = n(U) = 1

⎫⎬
⎭.

Since R is central in H, the subgroup M is the compact factor of the centralizer in G of the
standard Cartan subgroup �R of G, and the subgroup M�R normalizes the quaternionic
Heisenberg group H, since

m(u, U) n−(w0, w) m(u, U)−1 = n−(u w0 u, U w u).

Since O is invariant under conjugation in H, the groups � and M are invariant under the
standard Cartan involution

g �→ ∗g−1,

where ∗g is the image in G of the transpose-conjugate matrix of any matrix in Uq
representing g.

Let

�H = NG(H) ∩ � = (MH) ∩ � =
⎧⎨
⎩
⎡
⎣u uv uv0

0 U Uv

0 0 u

⎤
⎦ :

u, U ∈ O×, v, v0 ∈ O
tr(v0) = n(v)

⎫⎬
⎭,

which admits a properly discontinuously action � on the left on H by (noting the lack of
commutativity)⎡
⎣ u uv uv0

0 U Uv

0 0 u

⎤
⎦ �

⎡
⎣ 1 w w0

0 1 w

0 0 1

⎤
⎦ =

⎡
⎣ 1 u(w + v)U u(v0 + w0 + vw)u

0 1 U(w + v)u

0 0 1

⎤
⎦. (33)

The inclusion mapH→G again induces an identification between the quotient �H \H and
the image of H in �\G/M . We again endow �H \H with the induced measure μ�H \H
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of a Haar measure on H, normalized to be a probability measure, that we also see as a
probability measure on �\G/M (with support �H \H ).

For every t ∈ R, we consider the subset Ft of �H \H consisting of the quaternionic
Heisenberg Farey fractions of height at most et , defined by

Ft = �H \
{
n−(a c−1, α c−1) :

a, α, c ∈ O, O〈a, α, c〉 = O,
tr(a c ) = n(α),

0 < n(c) ≤ e2 t
}

.

Note that the above set of elements n−(a c−1, α c−1) is indeed invariant under �H ,
by equation (33). Let � : �\G/M→�\G/M be the Cartan involutive homeomorphism
defined by �gM �→ � ∗g−1M .

COROLLARY 4.5. For every t0 ∈ R, for the weak-star convergence of probability mea-
sures on (�H \H)× (�\G/M), we have

lim
t→+∞

1
Card Ft−t0

∑
r∈Ft−t0

�r ⊗�� r �tM

= 10 e10 t0
∫ +∞

s=t0
(μ�H \H )⊗ (�∗ (�−s)∗ μ�H \H ) e−10 s ds.

As a remark similar to the remarks at the end of §4.1, one could obtain an error
term under an additional smoothness assumption, and a joint partial equidistribution
result for quaternionic Heisenberg Farey points n−(a c−1, α c−1) modulo �H with their
denominators c congruent to 0 modulo any fixed element N in Z − {0}.
Proof. We mostly indicate the differences with the proof of Corollary 4.3. We refer
to [KiP, Mos, Phi] as well as [PaP8, §3] for background on quaternionic hyperbolic
geometry. We follow the conventions of the latter reference concerning the normalization
of the sectional curvature and the choice of the quaternionic Hermitian form with Witt
signature (1, 2).

We now consider X = H2
H the Siegel domain model of the quaternionic hyperbolic

plane, that is, the quaternionic manifold

{(w0, w) ∈ H2 : tr(w0)− n(w) > 0},
endowed with the Riemannian metric

ds2
H2
H

= 1
(trw0 − n(w))2

(n(dw0 − dw w)+ (tr(w0)− n(w)) n(dw)). (34)

This metric is again normalized so that its sectional curvatures are in [−4, −1]. The
boundary at infinity of H2

H is

∂∞H2
H = {(w0, w) ∈ H2 : tr(w0)− n(w) = 0} ∪ {∞}.

Using right-homogeneous coordinates, we identify H2
H ∪ ∂∞H2

H with its image in the right
projective plane P2

r (H) over H by the map (w0, w) �→ [w0 : w : 1] and ∞ �→ [1 : 0 : 0].
We denote by · the left projective action of G on H2

H ∪ ∂∞H2
H, as well as its derived action

on T 1H2
H.
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The critical exponent of the (non-uniform arithmetic) lattice � of G is now (see, for
instance, [CI, Theorem 4.4(i)])

δ� = 10.

We again fix v• = ((1, 0), (−2, 0)) ∈ T 1H2
H, which is indeed a unit tangent vector with

footpoint x• = (1, 0) by equation (34). The stabilizer of v• in G is again equal to M and
is hence centralized by �R. The G-equivariant orbital map ϕ̃ : g �→ g · v• now defines a
homeomorphism ϕ : �\G/M→�\T 1H2

H.
For every t ∈ R, the element �t acts on H2

H by the map (w0, w) �→ (e−2tw0, e−tw).
The geodesic line 
 in H2

H such that 
(0) = x• and 
′(0) = v• is t �→ (e−2 t , 0). Hence, as
in the complex case (see the proof of Corollary 4.3),

for all t ∈ R, and g ∈ G, we have gt ϕ̃(g) = ϕ̃(g�t ).

The order-two element S =
[

0 0 −1
0 1 0−1 0 0

]
still belongs to �, it centralizes M and normalizes

�R, and it acts by the map (w0, w) �→ (w−1
0 , −w w−1

0 ) on H2
H. Since S is the projective

image of the matrix of the quaternionic Hermitian form q = −tr(z0 z2)+ n(z1),

for all g ∈ G, we have ∗g−1 = S g S−1.

As in the complex case, for all g ∈ G, t ∈ R and x ∈ �\G/M , we have

ι ϕ̃(g) = ϕ̃(gS), S�tS−1 = �−t , ι ◦ ϕ = ϕ ◦� and �(x�t) = �(x)�−t .

The (closed) horoball in H2
H centred at ∞ whose boundary ∂H∞ contains x• is

H∞ = {(w0, w) ∈ H2
H : tr(w0)− n(w) ≥ 2}.

The quaternionic Heisenberg group H again acts simply transitively on ∂H∞, and on
∂1±H∞ which contains ±v•. Thus again with �≥t0 = {�t : t ≥ t0}, equation (30) is still
satisfied. By for instance the end of §3 in [PaP8], the stabilizer �H∞ in � of the horoball
H∞, as well as that of ∂1±H∞, is equal to �H . The �-equivariant families of horoballs

D+ = D− = (γ · H∞)γ∈�

are again locally finite, since ∞ is again a bounded parabolic fixed point of �.

For every γ ∈ � having a representative in Uq with first column
(
a
α
c

)
∈ M3,1(O), we

have γ /∈ �H∞ if and only if c �= 0 (see, for instance, [KiP], [PaP8, Eq. (3.3)]) and then
(i) since ∞ = [1 : 0 : 0], the point at infinity γ · ∞ is equal to (a c−1, α c−1);

(ii) since H acts simply transitively on ∂∞H2
C

− {∞}, there exists a unique rγ ∈ H such
that rγ · 0 = γ · ∞, and we have rγ = n−(a c−1, α c−1);

(iii) with Hs = {(w0, w) ∈ H2
H : tr(w0)− n(w) = s} for s > 0, by [PaP8, Lemma 6.5]

where we take s = 2 so that H2 = H∞, we have d(H∞, γ · H∞) = 1
2 ln(n(c)).

Therefore, by [PaP8, Proposition 4.2(ii)] with m = O, the map γ �→ rγ induces, for all
t , t0 ∈ R, a bijection from {[γ ] ∈ �H∞\(� − �H∞)/�H∞ : d(H∞, γ · H∞) ≤ t − t0} to
Ft−t0 .
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As in the complex case, we have homeomorphisms ψ : �H \∂1+H∞→�H \H such that

ψ∗(��ργ ) = ��H rγ .

In the remainder of the proof of Corollary 4.5, we use the same normalization of the
Patterson–Sullivan measures (μx)x∈H2

H
as in [PaP8, §7].

LEMMA 4.6. We have

‖σ∓
D±‖ = D2

A

64 |O×|2 .

Proof. By [PaP8, Lemma 7.2(iv)] with n = 2, we have ‖σ∓
D±‖ = 80 Vol(�H∞\H∞),

where Vol is the Riemannian volume. By [PaP8, Lemma 7.1] and the arguments in its
proofs, and by [PaP8, Eq. (8.4)] for the last equality, we have

Vol(�H∞\H∞) = 1
10

Vol(�H∞\∂H∞) = 1
10

1
25 Vol(�H1\∂H1)) = 1

25 Vol(�H1\H1)

= 1
25

D2
A

160 |O×|2 .

The result follows.

Since we normalized μ�H \H to be a probability measure, it follows from Lemma 4.6
that for x ∈ �H \H ,

ψ∗(σ+
D−) = (ϕ−1)∗(σ+

D−) = D2
A

64 |O×|2 μ�H \H .

Let mA = 24 if DA is even, and mA = 1 otherwise. By respectively Lemma 7.2(iii)
with n = 2 and Theorem 1.4 in [PaP8], we have, with p ranging over primes,

‖mBM‖ = π4

48
Vol(M) = π8 mA

218 · 36 · 52 · 7

∏
p | DA

(p − 1)(p2 + 1)(p3 − 1).

By the definition of �H , the index of H ∩ � in �H is now equal to |O×|2/2. The map
from {

(a, α, c) ∈ O × O × O : O〈a, α, c〉 = O
tr(a c) = n(α), c �= 0

}

to H given by (a, α, c) �→ n−(a c−1, α c−1) is |O×|-to-one onto its image. Hence, using
the (lifted linear) action of n−(w0, w) ∈ H ∩ � on (a, α, c) ∈ O × O × O defined by

n−(w0, w) · (a, α, c) = (a + w α + w0 c, α + ω c, c),

by [PaP8, Theorem 1.1], for every t0 ∈ R, we have, as t→ + ∞,

Card Ft−t0 = 2
|O×|3 Card

⎛
⎝(H ∩ �)\

⎧⎨
⎩(a, α, c)∈O×O×O :

O〈a, α, c〉 = O
tr(a c) = n(α)

0 < n(c) ≤ e2 t−2 t0

⎫⎬
⎭
⎞
⎠

∼ 24 · 36 · 5 · 7 D4
A

π8 mA |O×|4 ∏p | DA(p − 1)(p2 + 1)(p3 − 1)
e10 t−10 t0 .
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As in the complex case, there exists a finite subset F of �H∞\�/�H∞ such that for
every [γ ] ∈ �H∞\�/�H∞ − F , we have

d(H∞, γ · H∞) > 0, mγ = 1, (ϕ−1)∗(��gt ργ ) = ��rγ�tM

and by Lemma 4.6, for all y ∈ �H \H and s ∈ R with s ≥ t0,

d((ϕ−1)∗(μ0+
D+,t0

))(�(y �−s)) = ‖σ−
D+‖ dμ�H \H (y) e−10 s ds

= D2
A

64 |O×|2 dμ�H \H (y) e−10 s ds.

The end of the proof of Corollary 4.5 now proceeds like that of Corollary 4.3.

4.5. Equidistribution of non-archimedean Farey fractions at a given density. In this
section we give an arithmetic application of Theorem 3.3(3), proving a joint partial
equidistribution result for non-archimedean arithmetic points with given density on an
expanding horosphere in the quotient of a regular tree by a non-uniform arithmetic lattice.

We refer to [Gos, Ros] for the notions and complements below, as well as to [BPP,
§14.2] whose notation we will follow. Let K be a (global) function field of genus g over a
finite field Fq of order a positive prime power q, let v be a (normalized discrete) valuation
of K, let Kv be the associated completion of K, let Ov = {x ∈ Kv : v(x) ≥ 0} be its
valuation ring, let πv ∈ K with v(πv) = 1 be a uniformizer of v, let qv be the order of the
residual field Ov/πvOv , let | · |v = q

−v( · )
v be the absolute value associated with v, and let

Rv be the affine function ring associated with v. The simplest example, used in Corollary
1.3, is given by the fieldK = Fq(Y ) of rational fractions over Fq with one indeterminate Y,
g = 0, v = v∞ : P

Q
�→ deg Q− deg P for every P , Q ∈ Fq [Y ] with Q �= 0 the valuation

at infinity,Kv = Fq((Y−1)), the local ring Ov = Fq [[Y−1]] of formal power series in Y−1,
πv = Y−1, qv = q, and Rv = Fq [Y ].

Let G be the locally compact group PGL2(Kv) = GL2(Kv)/(K
×
v id). We denote by[

a b
c d

]
the image in G of

(
a b
c d

) ∈ GL2(Kv). Let � = PGL2(Rv) be the Nagao lattice in G
(see, for instance, [Wei]). We consider the subgroups of G defined by

H =
{
n−(r) =

[
1 r

0 1

]
: r ∈ Kv

}
, �Z =

{
�n =

[
1 0
0 π−n

v

]
: n ∈ Z

}
,

and M = {[
1 0
0 u

]
: u ∈ Kv , |u|v = 1

}
. Note that M centralizes the standard Cartan sub-

group �Z, that the diagonal subgroup M�Z normalizes H, and that both � and M are
invariant under the standard Cartan involution g �→ t g−1.

Let

�H = NG(H) ∩ � = (HM) ∩ � =
{[

1 b

0 d

]
: d ∈ R×

v , b ∈ Rv
}

,

which admits a properly discontinuously action � on the left on H by

[
1 b

0 d

]
�

[
1 r

0 1

]
=
⎡
⎣1

r + b

d
0 1

⎤
⎦.
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The inclusion mapH→G again induces an identification between the quotient �H \H and
the image of H in �\G/M . We again endow �H \H with the induced measure μ�H \H
of a Haar measure on H, normalized to be a probability measure, which we also see as a
probability measure on �\G/M (with support �H \H ).

For every n ∈ Z, we consider the subset Fn of �H \H consisting of the Farey fractions
of height at most qnv with respect to v, defined by

Fn = �H \
{
n−
(
a

c

)
:
a, c ∈ Rv , aRv + cRv = Rv

c �= 0, v(c) ≥ −n
}
.

Let � : �\G/M→�\G/M be the Cartan involutive homeomorphism defined by
�gM �→ � tg−1M .

COROLLARY 4.7. For every n0 ∈ Z, for the weak-star convergence of probability mea-
sures on (�H \H)× (�\G/M), we have

lim
n→+∞

1
Card Fn−n0

∑
r∈Fn−n0

�r ⊗�� r �2nM

= (1 − q−2
v ) q2n0

v

+∞∑
m=n0

(μ�H \H )⊗ (�∗ (�−2m)∗ μ�H \H ) q− 2m
v .

Corollary 1.3 follows by considering the particular valued function field (Fq(Y ), v∞)
indicated above. As a remark similar to the remarks at the end of §4.1, one could obtain an
error term under an additional locally constant regularity assumption, and a joint partial
equidistribution result for non-archimedean Farey points n−(a/c) modulo �H with their
denominators c congruent to 0 modulo any fixed element N in Rv − {0}.
Proof. We mostly indicate the differences with the proof of Corollary 4.3. We refer to
[Tit, Ser] for background on Bruhat–Tits trees, as well as to [BPP, §§15.1 and 15.2] whose
notation we will follow.

We now consider X = Xv the Bruhat–Tits tree of (PGL2, Kv), which is a regular
tree of degree qv + 1 endowed with a vertex transitive action of G. Note that � acts
without inversion on Xv by [Ser, II.1.3]. The set of vertices of Xv is the set of homothety
classes [�] under K×

v of Ov-lattices � in the plane Kv ×Kv , and g[�] = [g�] for every
g ∈ G. We identify the boundary at infinity ∂∞Xv of (the geometric realization of) Xv
and the projective line P1(Kv) = Kv ∪ {∞} by the unique homeomorphism such that the
(continuous) extension to ∂∞Xv of the isometric action of G on Xv is the projective action
of G on P1(Kv), that is, the action of G by homographies on Kv ∪ {∞}. We denote by ·
the action of G by homographies on Kv ∪ {∞}, as well as the action of G on the space
GXv of (discrete) geodesic lines in Xv .

The critical exponent of the (non-uniform arithmetic) lattice � of G is now (see, for
instance, [BPP, Eq. (15.8)])

δ� = ln qv . (35)

The standard basepoint x• of Xv is the homothety class [Ov × Ov] of the stan-
dard Ov-lattice Ov × Ov in Kv ×Kv . We consider the geodesic line v• ∈ GXv with
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v•(0) = x•, v•(−∞) = ∞ ∈ P1(Kv) and v•(+∞) = 0 ∈ P1(Kv). The stabilizer of v•
in G is again equal to M. The G-equivariant orbital map ϕ̃ : g �→ g · v• now defines a
homeomorphism ϕ : �\G/M→�\GXv .

Since v•(n) = [Ov × π−n
v Ov] for every n ∈ Z (see, for instance, [BPP, top of p. 310])

and by equivariance (see also [BPP, Eq. (15.4)]),

for all n ∈ Z, for all g ∈ G, we have gnϕ̃(g) = ϕ̃(g �n).

The order-two element S = [0 −1
1 0

]
still belongs to �, and it normalizes M and�R, more

precisely S �nS−1 = �−n for every n ∈ Z. By equivariance, the antipodal map ι satisfies
ι ϕ̃(g) = ϕ̃(gS) for every g ∈ G. Since the computation is independent of the ground field,
we have tg−1 = S gS−1 for every g ∈ G. Hence, ι ◦ ϕ = ϕ ◦� and �(x�n) = �(x)�−n
for all x ∈ �\G/M and n ∈ Z.

The group H fixes the point at infinity ∞, preserves the horoball H∞ in Xv centred
at ∞ whose boundary contains x•, and acts simply transitively on ∂∞Xv − {∞} = Kv ,
hence on ∂1±H∞. Note that ∂1+H∞ contains the geodesic ray v•| [0,+∞[ and that ∂1−H∞
contains (ιv•)| ]−∞,0]. In particular, we have ∂1+H∞ = {
|[0,+∞[ : 
 ∈ W−(v•)}.

Note that defining VevenXv , G∧evenXv and GevenXv for the above basepoint x• as just
before the statement of Theorem 3.2, we have ∂1±H∞ ⊂ G∧evenXv , since any two points
of the horosphere ∂H∞ are at even distance from one another. Furthermore, � preserves
VevenXv . Indeed, note that in a simplicial tree, if two of the distances between three points
are even, then so is the third. The result then follows from [Ser, Corollary II.1.2], which
proves that the distance d(x•, γ x•) is even for every γ ∈ GL2(Rv), since v(det γ ) = 0.

Each geodesic ray w ∈ ∂1−H∞ can be extended to a unique element ŵ ∈ GXv such
that ŵ(+∞) is the point at infinity of H∞. This element belongs to GevenXv , is equal to

(N+
ι v•)−1(w)with the notationN+· of §2, and we define ∂̂1−H∞ = {ŵ : w ∈ ∂1−H∞}. With

�≥n0 = {�n : n ≥ n0}, we have

W 0+
n0
(ι v•) =

⋃
n≥n0

gn ∂̂1−H∞ =
⋃
n≥n0

gnH ι v• = ϕ̃(H(�≥n0)−1S).

The subgroup �H is again equal to the stabilizer �H∞ of the horoball H∞ in �, and
∞ is again a bounded parabolic fixed point of �. We again consider the locally finite
�-equivariant families of horoballs

D+ = D− = (γ · H∞)γ∈� .

Note that the support of the skinning measure σ+
D− is contained in �\G∧evenXv , hence

σ+
D− | �\G∧evenXv

= σ+
D− .

By [Pau, Proposition 6.1] when K = Fq(Y ) and v = v∞, and by [BPP, Lemma 15.1]
in general, for every γ = [

a b
c d

] ∈ � with c �= 0, we have

d(H∞, γ · H∞) = −2 v(c) = 2 lnqv |c|v .

In particular, the distances d(H∞, γ · H∞) for γ ∈ � are even and the endpoints of the
common perpendiculars between elements of D− and D+ belong to VevenXv . The map
γ = [

a b
c d

] �→ n−(a/c) now induces, for every n ∈ Z, a bijection from
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{[γ ] ∈ �H∞\(� − �H∞)/�H∞ : d(H∞, γ · H∞) ≤ 2n}
to Fn. Denoting by ργ the element of ∂1+H∞ whose point at infinity is γ · ∞ = a/c,
the map ψ̃ : ∂1+H∞→H defined by w �→ n−(w(+∞)) now induces a homeomorphism
ψ : �H \∂1+H∞→�H \H , such that

ψ∗(��Hργ ) = ��Hn−(γ ·∞).

In the remainder of the proof of Corollary 4.7, we use the same normalization of
the Patterson–Sullivan measures (μx)x∈VXv as in [BPP, §15.3]. Since we normalized
μ�H \H to be a probability measure, it follows from [BPP, Proposition 15.3(2)] that, for
x ∈ �H \H ,

ψ∗(σ+
D−) = (ϕ−1)∗(σ+

D−) = qg−1

q − 1
μ�H \H . (36)

With ζK the Dedekind zeta function of K (see, for instance, [Gos, §7.8] or [Ros, §5]),
by [BPP, Proposition 15.3(1)], we have

‖mBM‖ = 2 ζK(−1)
qv + 1
qv

.

By [BPP, Eq. (14.3)], the subgroup H ∩ � = n−(Rv) has index |R×
v | = q − 1 in

�H . The map from the set {(x, y) ∈ Rv × Rv : xRv + yRv = Rv , y �= 0} to H given by
(x, y) �→ n−(x/y) is |R×

v |-to-one onto its image. Hence, using the action by shears
of Rv on Rv × Rv defined by z · (x, y) = (x + zy, y), by [BPP, Corollary 16.2] with
G = GL2(Rv) and (x0, y0) = (1, 0) so that mv,x0,y0 = q − 1 by [BPP, Eq. (16.1)] with
the notation of that book, for every n0 ∈ Z, as n→ + ∞, we have

Card Fn−n0 = 1
|R×
v |2 Card

(
Rv\

{
(x, y) ∈ Rv × Rv :

xRv + yRv = Rv

0 < |y|v ≤ q
n−n0
v

})

∼ q2g−2 q3
v

(q − 1)2 (q2
v − 1) (qv + 1) ζK(−1)

q2n−2n0
v .

For all n ∈ Z and [γ ] ∈ �H∞\�/�H∞ outside a finite subset, we have

d(H∞, γ · H∞) > 0, mγ = 1 and (ϕ−1)∗(��g2nργ
) = ��rγ�2nM .

By equations (14), (35) and (36), with dm the counting measure on Z, for every n0 ∈ Z,
for y ∈ �H \H and m ≥ n0, we have

d((ϕ−1)∗(μ0+
D+,2n0 | �\G∧evenXv

))(�(y �−2m)) = ‖σ−
D+‖ dμ�H \H (y) e−(ln qv) 2m dm

= qg−1

q − 1
dμ�H \H (y) q−2m

v dm.

The end of the proof of Corollary 4.7 now proceeds like that of Corollary 4.1, replacing
Theorem 3.3(1) by Theorem 3.3(3).
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