
1

Introduction

Consider an array1 of complex numbers{
ar : r ∈ Nd

}
:=

{
ar1,...,rd : r1, . . . , rd ∈ N

}
where, as in the rest of this book, we include zero in the set N = {0, 1, 2, . . .}.
The numbers ar usually come with a story – a reason they are interesting.
Often, they count a class of objects parametrized by r. For example, it could
be that ar is the multinomial coefficient ar =

(
|r|

r1 ··· rd

)
, in which case ar counts

sequences of elements in {1, . . . , d} with r1 occurrences of 1, r2 occurrences
of 2, and so forth up to rd occurrences of the symbol d. Another frequent
source of these arrays is probability theory, where the numbers ar ∈ [0, 1]
are probabilities of events parametrized by r. For example, ars might be the
probability that a simple random walk of r steps in {−1, 1} ends at the integer
point s.

Definition 1.1 (running notation). Throughout this text we use d to denote
the dimension of an arbitrary array, and often employ r, s, and t as synonyms
for r1, r2, and r3, respectively, so as to avoid subscripts in low-dimensional
examples. We also use the notation |r| :=

∑d
j=1 |r j| for any vector r, which

helps us normalize in a way convenient for combinatorial examples.

How might one understand an array of numbers? In some cases there may
be a simple explicit formula, for instance the multinomial coefficients are given
by a ratio of factorials. When a formula of such brevity exists, we don’t need
fancy techniques to describe the array. Unfortunately, this rarely happens. Of-
ten, if a formula exists at all, it will not be in closed form but will include in-
definite summation. As Stanley [Sta97, Ex.1.1.4] notes in his foundational text
on enumeration, “There are actually formulas in the literature (nameless here
1 To simplify our presentation in this introduction we consider arrays indexed by vectors of

natural numbers, while later in the text we generalize to arrays indexed by integer vectors.
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4 Introduction

forevermore) for certain counting functions whose evaluation requires listing
all of the objects being counted! Such a ‘formula’ is completely worthless.”
Less egregious are the formulae containing functions that are rare or compli-
cated and whose properties are not immediately familiar to us. It is not clear
how much good comes from this kind of formula.

Another way of describing arrays of numbers is via recursions. The simplest
examples are finite linear recurrences, such as the recurrence ar,s = ar−1,s +

ar,s−1 for the binomial coefficients ar,s =
(

r+s
r

)
. A recursion for ar in terms of

values {as : s ≺ r} whose indices precede r in the coordinatewise partial order
may be unwieldy, perhaps requiring evaluation of a complicated function of all
as with s ≺ r, but if the recursion is of bounded complexity then it can give an
efficient algorithm for computing ar. Still, we will see that even in the case of
simple recursions the estimation of ar may not be straightforward. Thus, while
we look for recursions to help us understand number arrays, and for efficient
methods of computation, they rarely provide definitive descriptions.

A third way of understanding an array of numbers is via an estimate. For
instance, Stirling’s formula, which approximates

n! ≈
nn

en

√
2πn

for large n, yields an approximation(
r + s

r

)
≈

( r + s
r

)r ( r + s
s

)s
√

r + s
2πrs

(1.1)

for the binomial coefficients when r and s are large. If number-theoretic prop-
erties of the binomial coefficients are required then we are better off sticking
with a ratio of factorials; when their approximate size is paramount, the esti-
mate (1.1) is better.

A fourth way to understand an array of numbers is to encode it algebraically.
The generating function (often abbreviated GF) of the array {ar} is the formal
series F(z) :=

∑
r∈Nd arzr. Here z is a d-dimensional vector of indeterminates

(z1, . . . , zd) and we use the notation zr := zr1
1 · · · z

rd
d . In our running example of

multinomial coefficients, we have the generating function

F(z) =
∑
r∈Nd

(
|r|

r1 · · · rd

)
zr1

1 · · · z
rd
d =

1
1 − z1 − · · · − zd

,

where the final expression can be viewed either as a multiplicative inverse
in a formal power series ring, or as an analytic function over an appropriate
domain of Cd. Stanley calls the generating function “the most useful but the
most difficult to understand” method for describing a sequence or array.
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1.1 Generating functions and asymptotics 5

The algebraic form of a generating function is intimately related to recur-
sions – and exact formulae – for its coefficient sequence ar, as well as combi-
natorial decompositions for the objects enumerated by ar. In a complementary
manner, the analytic properties of a generating function correspond to esti-
mates of ar.

1.1 Generating functions and asymptotics

In this text we are chiefly concerned with the asymptotic behavior of ar as
r → ∞ in certain directions. To discuss the behavior of sequences as their
indices go off to infinity, we introduce some standard asymptotic notation.

Definition 1.2 (asymptotic notation). If f and g are real-valued functions then
we write

• f = O(g) if and only if lim sup
x→x0

| f (x)/g(x)| < ∞,

• f = o(g) if and only if lim
x→x0

f (x)/g(x) = 0,

• f ∼ g if and only if lim
x→x0

f (x)/g(x) = 1,

• f = Ω(g) when g = O( f ), and
• f = Θ(g) when both f = O(g) and g = O( f ),

for some value x0 understood in context, typically 0 or +∞.
As n → ∞ the function f (n) is said to be rapidly decreasing if f (n) =

O
(
n−K

)
for every K > 0, exponentially decaying if f (n) = O(e−cn) for some

c > 0, and super-exponentially decaying if f (n) = O(e−cn) for every c > 0.

Remark. An alternative definition is that f = O(g) when there exists C > 0
and an open neighborhood N of x such that f (x) ≤ Cg(x) for all x ∈ N. In this
case C is called an implied constant. One may increase C and decrease N and
still maintain the inequality, so implied constants are not unique, even if they
are chosen to give a tight inequality.

Example 1.3. As n→ ∞ the function f (n) = 1/n! decays super-exponentially,
while 2−n decays exponentially and e−

√
n approaches zero but does not decay

exponentially. /

An asymptotic scale is a sequence {g j : j ∈ N} of functions satisfying g j+1 =

o(g j) for all j ≥ 0. An asymptotic expansion (also called asymptotic series or
asymptotic development)

f ≈
∞∑
j=0

c jg j
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6 Introduction

for a function f in terms of an asymptotic scale {g j : j ∈ N} and constants
c j ∈ C is said to hold if

f −
M−1∑
j=0

c jg j = O(gM) (1.2)

for every M ≥ 1.

Remark. It is possible that c j = 0 for all j. For example, this will happen if
g j(n) = n− j and f is exponentially decaying. In this case there is no leading
term in the expansion. Otherwise, the leading term of an asymptotic expan-
sion is the first non-zero term ckgk in the expansion.

Example 1.4. Stirling’s famous approximation to the factorial can be refined
to give an asymptotic series

n! ≈
(n

e

)n √
2πn

∑
`≥0

c`n−`

with coefficient sequence {c`} beginning 1, 1/12, 1/288,−139/51840, . . . . /

Example 1.5. Let f ∈ C∞(R) be a smooth real function defined on a neighbor-
hood of zero, so that cn = f (n)(0)/n! is the nth term in its Taylor expansion. If f
is not analytic then this expansion may not converge to f , and may even diverge
for all non-zero x, but Taylor’s Theorem with remainder always implies

f (x) =

M−1∑
n=0

cnxn + cMξ
M

for some ξ > 0 bounded close to the origin. This proves that

f ≈
∑
n≥0

cnxn

is always an asymptotic expansion for f near zero. /

Remark. Following Poincaré, many authors use the symbol ∼ to denote both
asymptotic equivalence of functions and asymptotic series expansions. How-
ever, this overloading of notation can lead to inconsistencies. We thus follow
texts such as [dBru81] in using ≈ for asymptotic expansions.

Exercise 1.1. Let f (x) = ex. Prove that f (x) ∼ 1 as x → 0 but f (x) 6≈ 1 as an
asymptotic expansion in powers of x at x = 0.

All these notations hold in the multivariate case as well, except that if the
limit value z0 is infinity then a statement such as f (z) = O(g(z)) must also
specify how z approaches the limit. A direction is a ray in Rd defined by all
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1.1 Generating functions and asymptotics 7

positive multiples of a fixed non-zero vector, which can also be viewed as
an element of (d − 1)-dimensional real projective space RPd−1. Often we will
parametrize directions of interest by taking r → ∞ while fixing or bounding
the normalized vector r̂ := r/|r|, where, as introduced above,

|r| = |r1| + |r2| + · · · + |rd |.

Sometimes we shall loosely refer to “the direction r”, by which we mean the
direction parametrized by r̂, or the ray determined by r.

Definition 1.6. A multivariate asymptotic expansion

fr ≈
∞∑
j=0

c jg j(r)

holds on a compact set of directions D ⊆ RPd−1 if each c j ∈ C, each g j =

o(g j+1), and fr −
∑M−1

j=0 g j(r) = O(gM) for each M as r → ∞ with r̂ ∈ D. This
asymptotic expansion is a uniform asymptotic expansion on D if the implied
constants can be chosen independently of the sequence r as long as r̂ ∈ D.

Example 1.7. In Chapter 9 we shall derive the result(
r + s

s

)
∼

(r + s)(r+s)

rr ss

√
r + s
2πrs

for all r, s > 0 as (r, s) → ∞ with r/(r + s) and s/(r + s) remaining bounded
and away from 0. This gives the first term of an asymptotic series which is
uniform provided r/s and s/r are bounded away from 0, with all terms in the
series varying smoothly with direction. Because of our restrictions on r/s, this
asymptotic series can be expressed in terms of the asymptotic scale

g j(r, s) =
(r + s)(r+s)

rr ss

√
r + s

rs
(r + s)− j ,

an asymptotic scale involving decreasing powers s− j of s, or an asymptotic
scale involving decreasing powers r− j of r. Note that this multivariate asymp-
totic approximation is not uniform for all real directions: for instance, if r = 0
then

(
r+s

s

)
= 1 for all s. /

Remark. Throughout this book, we typically use f (z) and an instead of F(z)
and ar when dealing with the univariate case.

As we will see in Chapter 3, the generating function f (z) for a univariate
sequence {an : n ∈ N} leads, almost automatically, to asymptotic estimates for
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8 Introduction

an as n → ∞. To estimate an when its generating function f is known, we
begin with Cauchy’s integral formula

an =
1

2πi

∫
C

z−n−1 f (z) dz . (1.3)

Equation (1.3) represents an by a complex contour integral on a sufficiently
small circle C around the origin, and one may apply complex analytic methods
to obtain an asymptotic estimate. The necessary knowledge of residues and
contour shifting may be found in an introductory complex variables text such
as [Con78b; BG91], with a particularly nice treatment of univariate saddle
point integration found in [Hen88; Hen91]. In particular, the singularities of
f (z) play a large role in characterizing asymptotic behavior.

The situation for multivariate arrays is nothing like the situation for uni-
variate arrays. In 1974, when Bender published his review article [Ben74] on
asymptotic enumeration, the literature on asymptotics of multivariate generat-
ing functions was in its infancy. Bender’s concluding section urges research in
this area:

Practically nothing is known about asymptotics for recursions in two variables even
when a generating function is available. Techniques for obtaining asymptotics from
bivariate generating functions would be quite useful.

In the 1980s and 1990s, a small body of results was developed by Bender,
Richmond, Gao, and others, giving the first partial answers to asymptotic ques-
tions for multivariate generating functions. The first paper to concentrate on
extracting asymptotics from multivariate generating functions was [Ben73], al-
ready published at the time of Bender’s survey, but the seminal paper is [BR83].
The authors work under the hypothesis that F has a singularity of the form
A/(zd − g(x))q on the graph of a smooth function g, for some real exponent
q, where x denotes (z1, . . . , zd−1). They show, under appropriate further hy-
potheses on F, that the probability measure µn one obtains by renormalizing
{ar : rd = n} to sum to 1 converges to a multivariate normal distribution when
appropriately rescaled. Their method, which we call the GF-sequence method,
is to break the d-dimensional array {ar} into a sequence of (d−1)-dimensional
slices and consider the sequence of (d − 1)-variate generating functions

fn(x) =
∑
r:rd=n

arxr .

They show that, asymptotically as n→ ∞,

fn(x) ∼ Cng(x)h(x)n (1.4)
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1.2 New multivariate methods 9

and that sequences of generating functions obeying (1.4) satisfy a central limit
theorem and a local central limit theorem.

The GF-sequence method is limited to the single, though important, case
where the coefficients ar are nonnegative and possess Gaussian (central limit)
behavior. The work of [BR83] has been greatly expanded upon, but always
in a similar framework. For example, it has been extended to matrix recur-
sions [BRW83] and, in [GR92; BR99], from algebraic to algebraico-logarithmic
singularities of the form F ∼ (zd −g(x))q logα(1/(zd −g(x))). The difficult step
under these hypotheses is deducing asymptotics from the quasi-power hypoth-
esis (1.4).

1.2 New multivariate methods

The research presented in this book grew out of several problems encoun-
tered by the first author, concerning bivariate and trivariate arrays of probabil-
ities. One might have thought, based on the situation for univariate generating
functions, that there would be well-known, neatly packaged results yielding
asymptotic estimates for the probabilities in question. At that time, the most
recent and complete reference on asymptotic enumeration was a 1995 survey
of Odlyzko [Odl95]. As mentioned in the preface, only six of the over 100
pages of the survey are devoted to multivariate asymptotics, mainly to the GF-
sequence results of Bender et al., and its section on multivariate methods closes
with a call for further work in this area. Evidently, a general asymptotic method
was not known in the multivariate case, even for the simplest non-trivial class
of rational functions.

This stands in stark contrast to the univariate theory of rational functions,
which is trivial in combinatorial applications (see Chapter 3). The relative dif-
ficulty of the problem in higher dimensions is perhaps unexpected, but connec-
tions to other areas of mathematics such as Morse theory are quite intriguing.
These connections, as much as anything else, have caused us to pursue this
line of research long after the urgency of the original motivating problems had
faded.

Odlyzko [Odl95] describes why he believes multivariate coefficient estima-
tion to be difficult. First, generating function singularities are no longer iso-
lated, but generally form (d−1)-dimensional hypersurfaces, so even multivari-
ate rational functions have an infinite set of singularities. Second, the multivari-
ate analogue of the one-dimensional residue theorem is the considerably more
difficult theory of Leray residues [Ler59]. This theory is fleshed out in the text
of Aizenberg and Yuzhakov [AY83], who also spend a few pages [AY83, Sec-
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10 Introduction

tion 23] on generating functions and combinatorial sums. Further progress in
using multivariate residues to evaluate coefficients of generating functions was
made by Bertozzi and McKenna [BM93], though at the time of Odlyzko’s sur-
vey none of the papers based on multivariate residues such as [Lic91; BM93]
had resulted in any kind of systematic application of these methods to enumer-
ation. It is interesting to note that several of these early works, such as [BM93;
KY96], are centered on queueing theory applications.

The focus of this book is a more recent vein of research, begun in [PW02],
continued in its infancy in [PW04; Lla03; Wil05; Lla06; RW08; RW11; PW08;
DeV10; PW10], and now comprising a stable and ever-growing component
of enumerative combinatorics. This research extends ideas that are present to
some degree in [Lic91; BM93; KY96], using complex methods that are gen-
uinely multivariate to evaluate coefficients via the multivariate Cauchy formula

ar =

(
1

2πi

)d ∫
T
z−r−1F(z) dz , (1.5)

where T is a suitable product of circles in each variable. We hope that by
avoiding the symmetry-breaking decompositions of the GF-sequence method
we will obtain methods that are more universally applicable. In particular,
much of this past work can be viewed as instances of a more general result
estimating the Cauchy integral via topological reductions of the cycle T of
integration. These topological reductions, while not fully automatic, are algo-
rithmically decidable in many cases. The ultimate goal, now well on its way
to fruition [Mel21, Chapter 7], is to develop software to automate all of the
computation.

We can by no means say that the majority of multivariate generating func-
tions fall prey to these new techniques. Nevertheless, as illustrated in this
text and a steadily increasing number of papers, we can treat a large num-
ber of combinatorially interesting examples. The class of functions to which
the methods described in this book may be applied is larger than the class of
rational functions, but similar in spirit: the function must have singularities,
and the singularities dictating asymptotics must be poles. This translates to the
requirement that the function be meromorphic in a neighborhood of a certain
polydisk, which means that it has a representation, at least locally, as a quotient
of analytic functions.

Throughout this book, we reserve the symbols F, P, and Q for a meromor-
phic function F expressed as the quotient P/Q of analytic functions with a
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1.2 New multivariate methods 11

convergent series expansion

F(z) =
P(z)
Q(z)

=
∑
r

arzr .

Although this introduction has focused on power series expansions, we will
develop the theory for convergent Laurent expansions, allowing the index r to
range over Zd. The set V of singularities of F, which is crucial to the asymp-
totic analysis, is known as its singular variety. For instance, if P and Q are
coprime polynomials then the singular variety is the algebraic set V = {z ∈

Cd : Q(z) = 0}.
We now briefly describe the ACSV approach to computing multivariate

asymptotics. A more detailed overview is provided in Chapter 7.

(i) Use the multidimensional Cauchy integral (1.5) to express ar as an inte-
gral over a d-dimensional torus (product of circles) T in Cd.

(ii) Observe that T may be replaced by any cycle homologous to [T ] in
Hd(M), whereM is the domain of analyticity of the integrand.

(iii) Deform the cycle T to lower the modulus of the integrand as much as
possible. Morse-theoretic arguments imply that local maxima are char-
acterized by the set critical(r) of critical points of V, which depend
only on the direction r̂ of r as r → ∞ and are saddle points for the
magnitude of the integrand.

(iv) Use algebraic methods to encode the elements of critical(r) by a finite
collection of equalities and inequalities (defined by polynomials when F
is rational).

(v) Use topological methods to find certain minimax cycles C(w) near each
critical point w, termed quasi-local cycles, such that the homology class
[T ] can be represented by a sum

∑
w nwC(w) with each nw ∈ Z.

(vi) Refine the set of critical points to the set contrib(r) of contributing
points that maximize the modulus of the Cauchy integrand among the
critical pointsw with nw , 0. In the vast majority of cases for which we
have explicit asymptotic results, it is the case that nw ∈ {0,±1}.

(vii) Asymptotically approximate integrals over the C(w) as w ranges over
the set of contributing points, using a combination of residue and saddle
point techniques.

When successful, this approach leads to an asymptotic representation of the
coefficients ar that is uniform as r varies on the interior of finitely many cones
that partitionRd. As r̂ varies over compact subsets in the interior of such cones,
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12 Introduction

the elements of contrib(r) ⊆ V vary smoothly with r̂ and there exist asymp-
totic series {Φw(r) : w ∈ contrib(r)} whose terms can be computed explic-
itly such that

ar =
1

(2πi)d

∫
[T ]
zr−1F(z) dz

=
∑

w∈critical(r)

nw
(2πi)d

∫
C(w)

zr−1F(z) dz (1.6)

=
∑

w∈contrib(r)

nwΦw(r) .

The first line in this chain of equalities reflects steps (i) and (ii) of our program
above, while the second is the result of steps (iii)–(v), and the final line comes
from steps (vi) and (vii). The set critical(r) is algorithmically computable
in reasonable time, while determining membership in the subset contrib(r)
can be extremely challenging. The explicit formulae Φw(r) in the last line are
sometimes relatively easily to compute (see Chapter 9) and sometimes more
difficult (see Chapter 10 and especially Chapter 11).

1.3 Outline of the remaining chapters

This book is divided into three parts, of which the third part is the heart of the
subject: deriving asymptotics in the multivariate setting once a meromorphic
generating function is known. Nevertheless, some discussion is required on
how generating functions are obtained, how to interpret them, what the chief
motivating examples and applications are, and what we knew how to do be-
fore the line of research described in Part III. These topics also make the book
into a self-contained reference, and allow one to obtain asymptotics by deriv-
ing new forms of a generating function, turning an intractable analysis into
a tractable one by changing variables, re-indexing, aggregating, and so forth.
Consequently, the first three chapters comprising Part I form a crash course
in univariate analytic combinatorics. Chapter 2 explains generating functions
and their uses, introducing formal power series, their relation to combinatorial
enumeration, and the combinatorial interpretation of rational, algebraic, and
transcendental operations on power series. Chapter 3 is a review of univariate
asymptotics, much of which serves as mathematical background for the multi-
variate case. While some excellent sources are available in the univariate case,
for example [dBru81; Wil06; FS09], none of these is concerned with provid-
ing the brief yet reasonably complete summary of analytic techniques that we
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1.3 Outline of the remaining chapters 13

provide here. It seems almost certain that someone trying to understand the
main subject of this text will profit from a review of the essentials of univariate
asymptotics.

Carrying out the multivariate analyses described in Part III requires a fair
amount of mathematical background. Most of this is at the level of graduate
coursework, ideally already known by practicing mathematicians but in reality
often forgotten, never learned, or not learned in sufficient depth. The required
background is composed of small to medium-sized chunks taken from many
areas: undergraduate complex analysis, calculus on manifolds, saddle point in-
tegration (both univariate and multivariate), algebraic topology, computational
algebra, and Morse theory. Many of these background topics would require a
full semester’s course to learn from scratch. That is too much material to in-
clude here, but we also want to avoid the scenario where a reference library is
required each time a reader picks up this book. Accordingly, we have included
substantial background material.

This background material is separated into two pieces. The first piece is
the three chapters that comprise Part II, which contains material that we feel
should be read or skimmed before the central topics are tackled. The topics in
Part II have been sufficiently pared down that it is possible to learn them from
scratch if necessary. Chapters 4 and 5 describe how to asymptotically evalu-
ate saddle point integrals in one and several variables, respectively. Familiar-
ity with these results is needed for the final steps in the analyses in Part III
to make sense. Most of the results in these chapters can be found in a refer-
ence such as [BH86]; the treatment here differs from the usual sources in that
Fourier and Laplace type integrals are treated as instances of a single complex-
phase case. Working in the holomorphic setting, analytic techniques (contour
deformation) are used whenever possible, after which comparisons are given
to the corresponding C∞ approach (which uses integration by parts in place
of contour deformation). Chapter 6 covers domains of convergence of mul-
tivariate power series and Laurent series, the notion of polynomial amoebas,
and results relating amoebas to domains of convergence of Laurent series. We
also note that much of Chapter 8, which recalls several tools from polynomial
system solving such as Gröbner bases, morally belongs with the background
material in Part II; we have placed it in Part III so that we can compute quan-
tities appearing in our multivariate analyses that are introduced in Chapter 7.
It is possible to skip Chapter 8, if one wants to understand the theory and does
not care about computation; however, few users of analytic combinatorics live
in a world where computation does not matter.

The remaining background material is relegated to the four appendices, each
of which contains a reduction of a semester’s worth of material. It is not ex-
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pected that the reader will go through these in advance. Rather, they serve as
references so that frequent library visits will not be necessary. Appendix A
presents for beginners all relevant knowledge about calculus on manifolds and
algebraic topology. Manifolds and tangent and cotangent vectors are defined,
differential forms in Rn are constructed from scratch, and integration of forms
is developed. The appendix ends with a short treatment of complex differential
forms. Appendix B reviews the essentials of algebraic topology: chain com-
plexes, homology and cohomology, relative homology, Stokes’s Theorem, and
some important exact sequences. Appendix C summarizes classical Morse the-
ory – roughly the first few chapters of Milnor’s classic text [Mil63] – after
which Appendix D introduces the notion of stratified spaces and describes
stratified Morse theory as developed by Goresky and MacPherson [GM88].
Part I I and the appendices also have a second function: some of the results
used in Part III are often quoted in the literature from sources that do not pro-
vide a proof. On more than one occasion, when organizing the material in this
book, we found that a purported reference to a proof ultimately led to nothing.
Beyond serving as a mini-reference library, therefore, the background sections
provide some key proofs and corrected citations to eliminate ghost references
and the misquoting of existing results.

The heart of this book, Part III, is devoted to new results in the asymptotic
analysis of multivariate generating functions. Chapter 7 sets out the theory
by which multivariate asymptotics are derived, greatly expanding the outline
given in Section 1.2. The internal structure of Chapter 7 is described at length
in the beginning of the chapter. Because some of the material in this long chap-
ter relies on specialized topological knowledge, it is possible to take a concep-
tual off-ramp after most sections, which get progressively more general as the
chapter proceeds. We begin with extended examples in Section 7.1, before de-
scribing the argument in the simpler case when V is a smooth manifold in
Section 7.2. Section 7.3 covers the general case, ultimately deriving the fun-
damental result of the chapter: a decomposition (7.2) for ar as an integer sum
of quasi-local cycles near critical points, without any specification of the set
contrib(r) or the asymptotic series Φz .

Having reduced the computation of ar to saddle point integrals with com-
putable parameters, plugging in results on saddle point integration yields the-
orems for the end user. These break into several types. Chapter 9 discusses the
case when the singular variety V is smooth near the contributing points. This
case is simpler than the general case in several respects: the residues are more
straightforward, so multivariate residue theory is not always needed, and only
classical Morse theory is required. Chapter 10 discusses the case where V
is locally the union of smooth hypersurfaces near contributing points, which
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1.3 Outline of the remaining chapters 15

is also a case that is reasonably well understood. Finally, we discuss ratio-
nal functions with singularities having non-trivial monodromy. In this case
our knowledge is limited, but some known results are derived in Chapter 11.
This chapter is not quite as self-contained as the preceding ones; in particular,
some results from [BP11] are quoted without proof. This is because the tech-
nical background for these analyses exceeds even the relatively large space
we have allotted for background. The paper [BP11], which is self-contained,
already reduces by a significant factor the body of work presented in the cel-
ebrated paper [ABG70], and further reduction is only possible by quoting key
results. Chapter 12 works out a large number of examples following the the-
ory in Chapters 9–11. Finally, Chapter 13 is devoted to further topics, includ-
ing higher order asymptotics, algebraic generating functions, diagonals, and a
number of open problems.

Notes

The overall viewpoint on enumeration discussed here is heavily influenced
by [Sta97] and [FS09]. The two, very different, motivating problems alluded
to in Section 1.2 were the hitting time generating function from [LL99] and
the Aztec Diamond placement probability generating function from [JPS98].
The first versions of the seven step program at the end of Section 1.2 that were
used to obtain multivariate asymptotics involved expanding a torus of integra-
tion until it was near a critical point on the boundary of the domain of conver-
gence of the series under consideration, and then doing some surgery to isolate
the main asymptotic contribution as the integral of a univariate residue over
a complementary (d − 1)-dimensional chain. This was carried out in [PW02;
PW04] and was brought to the attention of the authors by several analysts at
Wisconsin, among them S. Wainger, J.-P. Rosay, and A. Seeger. Although their
names do not appear in any bibliographic citations associated with this project,
they are acknowledged in these early publications and should be credited with
useful contributions to this enterprise.

Additional exercises

Exercise 1.2. (asymptotic expansions need not converge) Find an asymptotic
expansion f ≈

∑∞
j=0 g j for a function f as x ↓ 0 such that

∑∞
j=0 g j(x) is not

convergent for any x > 0. Conversely, suppose that f (x) =
∑∞

j=0 g j(x) for
x > 0 and g j+1 = o(g j) as x ↓ 0 — does it follow that

∑∞
j=0 g j is an asymptotic

expansion of f at the origin?
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Exercise 1.3. Prove or give a counterexample: if g is a continuous function
and for each λ we have ars = g(λ) + O

(
(r + s)−1

)
as r, s → ∞ with r/s → λ,

then ars ∼ g(r/s) when r, s→ ∞ as λ varies over a compact interval in R+.

Exercise 1.4. (Laplace transform asymptotics) Let A be a smooth real function
in a neighborhood of zero and define its Laplace transform by

Â(τ) :=
∫ ∞

0
e−τxA(x) dx .

Writing A(x) =
∑

n≥0 cnxn with cn = A(n)(0)/n! and integrating term by term
using ∫ ∞

0
xne−τx dx = n!τ−n−1

suggests the series ∑
n≥0

A(n)(0)τ−n−1 (1.7)

as a possible asymptotic expansion for Â. Although the term-by-term integra-
tion is completely unjustified, show that the series (1.7) is a valid asymptotic
expansion of Â in decreasing powers of τ as τ→ ∞.

Exercise 1.5. Recall Stirling’s approximation from Example 1.4. Use a com-
puter algebra system to experiment, for 1 ≤ m ≤ 5, with the mth order approx-
imation for n = 1, . . . , 50. For each such value of n, find the best value m at
which to truncate the asymptotic series. For each n, what is the best relative
error in the approximation to n! that we can obtain in this way?

Exercise 1.6. Use a computer algebra system to experiment for 1 ≤ m ≤ 20
with the error in the mth order Stirling approximation to n! when n = 1. After
which value of m does the error become noticeably bad?
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