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On Ulam Stability of a Functional Equation
in Banach Modules

Lahbib Oubbi

Abstract. Let X and Y be Banach spaces and let f: X — Y be an odd mapping. For any rational
number r # 2, C. Baak, D. H. Boo, and Th. M. Rassias proved the Hyers-Ulam stability of the
functional equation

sy S (-1 Dy a
rf(#) . ,f(M) (€ - ) S f(xy),
r i()<{0.1} ’ =

s i()=e

where d and ¢ are positive integers so that1 < £ < g, and Cf; = #;)!p!, p>qeNwith p<q.

In this note we solve this equation for arbitrary nonzero scalar r and show that it is actually
Hyers-Ulam stable. We thus extend and generalize Baak et al’s result. Other questions concerning
the *-homomorphisms and the multipliers between C*-algebras are also considered.

1 Introduction and Preliminaries

The Ulam stability problem consists of whether an approximate solution of a func-
tional equation must be approximated by an exact solution of the same equation. This
problem was stated in the frame of groups by S. M. Ulam [25] as follows: if G; is a
group, (G,, d) is a metric group and ¢ > 0 is a scalar, does there exist a number § > 0
such that, whenever a function f: G; - G satisfies the inequality

d(f(xy), f(x)f(y)) <8, Vx,yeGi,

there exists a group homomorphism T: G; — G such that
d(f(x), T(x))<e, VxeGi.

A first partial solution of Ulam’s problem was given by D. H. Hyers [10] in the frame
of real Banach spaces. Later, the approximation condition was first improved by Th.
M. Rassias by allowing the Cauchy differences, in the Cauchy functional equation, to
be unbounded [23]. Other improvements of the approximation conditions have also
been made by K. W. Jun and H. M. Kim [11], by P. Gavruta [9], and by L. Cadariu
and V. Radu in [5, 6]. Most of the proofs rely either on the direct method or on the
fixed point method. Nowadays, many functional equations have been investigated
either alone (see for example [1,13,16]) or in combination with other ones in order
to cover, as stable mappings with respect to the so-obtained systems of equations,
different familiar mappings such as algebra homomorphism, multipliers, derivations,
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C*-algebra homomorphisms, and so on (see [7,17, 18, 20, 21]). For further details
concerning the Ulam stability, we refer the reader to the books [12,14, 24].

In this paper, we are concerned with the functional equation

d
Z]’:1 Xj

r ) i(j)e{0,1}
Tiai(i)=e

4 (21)iDy,
(e

d
(L1) rf( ) =T f(x)),
j=1

where r is a nonzero scalar, f is an odd mapping from a vector space X into a Banach
one Y, d and ¢ are positive integers so that1 < £ < %, and T := (C{_ - Ch+1).
This equation was considered first by C. Baak, D. H. Boo, and Th. M. Rassias [2]. The
authors showed there that, whenever r is a positive rational number, an odd mapping
f satisfies (1.1) if and only if it is additive. They have also shown that, for all positive
rational r # 2, the functional equation (1.1) is Hyers-Ulam stable.

In [19], C. Park investigated the stability of isomorphisms between JC*-algebras
with respect to (1.1). The same equation has been also considered by J. R. Lee and
D. Y. Shin [15]. The authors generalize there, in some technical respect, the results of
C.Baakeetal. The functional equation (1.1) has also been studied in the frame of multi-
normed spaces by C. Park and R. Saadati [22]. The authors established similar results
to those obtained by Baak et al. It is worth noting that all the authors mentioned above
consider only the case where r is a positive rational number with r # 2.

Notice at this point that an additive mapping f automatically fulfils f(sx) = sf(x)
for all rational s and all x € X. However if r fails to be rational, an additive mapping
need not satisfy f(rx) = rf(x) for all x. This is the main difference between the case
where r is rational and when it is not. In this note, we solve the functional equation
(L1) whenever r is any arbitrary nonzero scalar. We show that an odd mapping f
satisfies (1.1) if and only if it is additive and satisfies f(rx) = rf(x), x € X. We then
extend and improve the results of [2] and several other previous results. In particular,
we show the Hyers—Ulam stability of the C*-algebra homomorphisms with respect to
(L1).

In what follows, d and € will be positive integers so that1 < £ < %, while r will be
a nonzero scalar. The vector spaces and algebras in consideration will have as basic
field K = R or C. Unless the contrary is expressly stated, we will assume that A is
a unitary (complex) C*-algebra whose norm is denoted by |-|, X a vector space and
(Y,|-|I) a Banach space. The unitary group of A will be denoted by U(A). This is
U(A) ={acA:a*a=aa* = e4}, where obviously e4 stands for the unit of A. By X,
we will denote an arbitrary element (x, x5, .. .,x4) of X% and, forany1< h < k < d,
by X, x the subset of X consisting of all elements X of X¢ such that x; = 0 forall  # h
and I # k. For any x, y € X, we will write x, x(x, y) to mean the element X € X}, ;
with xj, = x and x = y. Similarly, x;,(x) will mean the element x € X 4 where xj, = x
and x; = 0, forall ] # h. If t e Kand X € X%, we will set £x := x = (txy, tX2,...,txq).
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If f:X - Yisamapping, y € T:= {u e K:|u| =1}, and u € U(A), then we will
set

4 ux; 4 (-1)iD yx;
D)= rs( H) e 5 (BRI
i(j)e{0,1}

shi(j)=¢
¢ -1 d
—(Cay = Cyy +1) Z uf(xj),
1

and similarly

_ Z,_le ux;

D, f(%) = rf( =
r i(j)e{0,1}
Z?:l i(j)=€

d
— (Choy— C 1) (Y uf (%)

j=1

) f( z;Ll(—l)"(f)uxj)

r

Whenever g = 1and u = e4, we will write Df(x) instead of D;f(x) and D,, f(x)
respectively.

We will designate the Kronecker symbol by 8y, x. This is 8, = 0if h # k and
O =1ifh = k.

We will use the following result due in its present form to J. Brzdek [4]. It can also
be deduced from [8].

Theorem 1.1  Assume that (Y, d) is a complete metric space, K is a nonempty set,
K=Y, ¢:Y—>Y,a:K— K, and h: K - [0, +oo[ are mappings, and ) is a nonneg-
ative real number such that

d(yo fea(x), f(x)) < h(x), Vx ek,

d(y(x),y(y)) < Ad(x,y), Vx, yeY
and

H(x):= il"h(a"(x)) < 00, Vx e K.

Then for all x € K, the limit F(x) := lim,_. " o f 0 a”(x) exists and F: K — Y is the
unique function such that w o Foa = F and d(F(x), f(x)) < H(x) for all x € K.

2 Solution and Stability of the Equation (1.1)

It is clear that, whenever a mapping g: X — Y is additive, it satisfies necessarily
g(sx) = sg(x) for all x € X and all rational s. However, if s is not rational, this
identity need not hold. We first solve the equation (1.1), for arbitrary r # 0, in the
following lemma which improves and extends [2, Lemma 2.1] and [15, Lemma 2.1].

Lemma 2.1 For an arbitrary odd mapping f: X — Y, the following assertions are
equivalent:

(i)  f is additive and fulfils f(rx) = rf(x) for all x € X.
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(ii) f satisfies (L1) for allx = (x1,...,%4) € X°.
(iii) Foralll1< h <k <d, f satisfies (L1) for all x € X, .
(iv) There exist1< h < k < d such that f satisfies (1.1) for all x € X}, .

Proof Itis clear that (i)= (ii) = (iii) = (iv). For the implication (iv) = (i), if we put
in (L1) X = Xp 1 (x, y), we get

r(Ch,-C3+1f( =

But Cg_z - ng +1=T. Then

2) = T(f(x) + F(0)).

X+
2.1) () = £ + f().
r
Letting y = 0, we get f(rx) = rf(x) for all x € X. Applying this in (2.1), we get the
additivity of f and then (i) is satisfied. ]

If f is assumed to satisfy, in addition to being odd, f (¢/r x) = t/r f(x) for all
x € X and some nonzero scalar t, then we get the following result improving [15,
Proposition 2.2].

Proposition 2.2  Let f: X — Y be an odd mapping such that

t¢ tt
(2.2) Jee {-1,1}, EIteK\{O}:f(Fx) :;f(x), VxeX.
Assume that there exist1 < h < k < d and a mapping ¢: Xj,  — [0, +oo[ such that
rsn &n B
(2.3) lim tan)( - ) =0, VXeXpp
(2.4) IDFE)] < o(x), X eXnk.

Then f is additive and satisfies

f(rx)=rf(x) and f(tx)=tf(x), VYxeX.

Proof Since f(£ x) =& = f(x) forall x € X, we also have tmf(rm ) = f(x) forall
x€Xandalln e N Therefore,
tsn
Df(x) = —Df(—x) VEEXh)k, neN.

tEn

By (2.4), we get
|r|£f’l en

(t—x) VxeXpg, neN.

ENn

IDfF)] <

Letting n tend to co we get, due to (2.3), Df(x) = 0 for all x € X}, ;. By Lemma 2.1, f
is additive and satisfies f(rx) = rf(x) for all x € X. Now, since, by (2.2),
tE

f(—) —f(x) VxeX,

we get f(x) = :: (iix) = & f(tx). Whereby, f(tx) = tf(x) forall x € X. [ |

- |t|£n
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Since Xj, x is isomorphic to X2, the result still holds for any mapping ¢: X*> —
[0, +oo[, with appropriate changes.

Our main result is the following theorem. It generalizes and improves [2, The-
orem 3.1]. In order to prove it, we will henceforth put s = r/2° and again T :=
Co, -Cii+L

Theorem 2.3 Let f:X — Y be an odd mapping. Assume that there exist € € {-1,1},
1< h<k<d,and a function ¢: Xy, ;. — [0, +oo[ such that

25  lim s‘m(p( Siz) -0, VY € Xt
26)  §(x):= Z Is[" g ( X (x, %x)) Vx e X,
2.7) HDf(X)H <o(x), Vx € Xp k-

Then there exists a unique mapping L: X — Y satisfying (1.1) (then L is additive and
satisfies L(rx) = rL(x), VYx € X) and

71
2

(2.8) | f(x)-L(x)| < (s x), VxeX.

r|T

Proof Applying (2.7) to xj, x(x, y), for all x, y € X, we get

[ 1 (F22) = 1(50) + 7)) | < 9(Fu(x. 7))

Therefore, taking y = 6|1r‘x, we obtain

| 71 ( %x) - 12 ()| < p(Fni(x,014%)), VxeX,

whence
Hsf(%x)—f(x)” < ——p(Fr(x,0Lx)), VxeX.
Equivalently,
H - f(sx) f(x)H ‘TH o(sThi(x,0hx)), VxeX.
Hence, for ¢ = 1, we have

ITE x(x, 8‘ |x)) Vx e X.

s f(5x) - <x>H

We can apply Theorem 1.1 by taking K = X, a(x) = 2 x, y(y) = s°y, A = |s|*, and

1
||z -

N l-e__
h(x) = 5 q)(s p xh,k(x>6|1,|x))
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to get a unique mapping L: X — Y such that s°L(+x) = L(x) and

e Z s|"@ ( - xni(x, 6|,‘x)) xeX.
4 n=0

[LCx) = fOo)| < H(x) =

But H(x) is nothing but

as desired. Recall at this point that L(x) = lim,, e s" (35 ), x € X.

We claim that L is additive. Indeed, if we take % (x Ene(®)) i (2.7) instead of nk(x, ),
then multiply both sides by [s|*", we get

H Tssn+1f( 9:8:31’) ~ ngnf( S%) - Tsenf( Ssln) H < |s|en(P( S%ﬂy) .

Letting # tend to infinity, since L(x) = lim, o s"f( 37 ), x € X, we get

TsL x y) ~T(L(x) +L(y)) =0

Since L(sz) = sL(z), z € X, the additivity of L follows. Now, L being additive, it
satisfies in particular 2L(x) = L(2x) for all x € X. But L also satisfies s°L(%x) =
L(x). Hence L(rx) = rL(x), forall x € X.

Due to Lemma 2.1, one can use the same proof as for Theorem 2.3 for the following
theorem.

Theorem 2.4 Let f: X — Y be an odd mapping. Assume that there exist € € {-1,1}
and a function ¢: X* — [0, +oo[ such that

1 1
Jlin;s (p( —X, Se—ny) =0, V(x,y) e X%
(x) = Z |S|£n ( > |7| fn) < 00, Vx e X,
IDFN < 9(x. 7). v(x,y) € X7,

with X = Xp(x,y) for some 0 < h < k < d. Then there exists a unique mapping
L: X - Y satisfying (1.1) and

1

ls| T
290

@)’(sl_Tex), VxeX.

If () = L)) <

If we take € = 1in Theorem 2.3, we get the following as a corollary.
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Corollary 2.5 Let f: X — Y bean odd mapping. Assume that thereexistl < h <k <d
and a function ¢: Xy . — [0, +oo[ such that

1
; no (2 =) _ _
nh_)r{.los go( s”x) 0, Vx € Xpk
- >, 1_
§(x) = Isl"g( k(% 8lx)) < oo, Vx e X,
n=0
IDf (%) < (%), VX € Xj k-

Then there exists a unique mapping L: X — Y satisfying (1.1) and

[f(x) = L) <

|
s 9(x), VxeX.
2°MT

Notice at this point that, whenever |r| < 1, every bounded function ¢ satisfies the
two first conditions of Corollary 2.5. Therefore, we obtain the following corollary.

Corollary 2.6 Let f:X — Y be an odd mapping. Assume that there exist1 < h < k <
d and a bounded function : X% — [0, +oo[ such that

IDFX) < 9(x), VX eXp.
If |r| < 1, then there exists a unique mapping L: X — Y satisfying (1.1) and

1 sup{e(x), x e X9}

1f(x) = L) < — , VxeX.
20T 1-s|

If ¢ is constant in Corollary 2.6, we obtain Hyers’ classical theorem with (1.1) in-
stead of the Cauchy equation.
Corresponding to ¢ = —1 in Theorem 2.3, we also get the following corollary.

Corollary 2.7  Let f: X - Y bean odd mapping. Assume that thereexistl < h <k <d
and a function ¢: Xy . — [0, +oo[ such that

1
lim —(p(s”@ =0, Vx e Xh,k;
n—oo gM
_ <1
p(x) = Z)Wq’(s Xh,k(x,5|1,‘x)) < 00, VxeX,
o
IDfF)] < ¢(%), VX € X k.

Then there exists a unique mapping L: X — Y satisfying (1.1) and
I _
[f(x) = L(x)] < st(sx): Vx e X.

Again as for Corollary 2.5, if |r| > 1, then every bounded function ¢ satisfies the
first two conditions of Corollary 2.7. Therefore, we have the following corollary.

Corollary 2.8 Let f: X — Y be an odd mapping. Assume that there exist1 < h < k <
d and a bounded function ¢: Xj, x — [0, +oo[ such that

IDFX) <o), VX €Xp.
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If || > 1, then there exists a unique mapping L: X — Y satisfying (1.1) and

sup{o(x), X € Xpx}
If(x) = L(x)]| < -1 , VxeX.

Again, if ¢ is constant in Corollary 2.8, we obtain another version of the Hyers’
theorem with respect to (1.1).

3 Stability of (1.1) in Modules on C*-algebras

The following lemma gives conditions under which an approximate solution of (1.1)
can be approximated by a linear exact solution of (1.1).

Lemma 3.1 Let f:X — Y be an odd mapping. Assume that there exist € € {-1,1},
1< h <k <d, and a function ¢: X, — [0, +oo] satisfying (2.5), (2.6), and

(3.) IDif(®)] < (%), VX eXpp VAeT.

Then there exists a unique linear mapping L: X — Y satisfying (2.8). In the real case we
additionally assume that for all x € X, the mappings f,:t — f(tx) and t — ¢(tx) are
bounded on some open interval centered at 0.

Proof If we take A = 1in (3.1), we get exactly (2.7). Hence by Theorem 2.3, there
exists a unique function L satisfying (1.1) and (2.8). It remains to show that L is ho-
mogeneous. Taking =X,  (x, 8|1r|x) in (3.1) then multiplying by s, we obtain

-1
x x s|z el X

o) w2 < S 5 0))
Letting n tend to infinity, we obtain L(Ax) = AL(x) for all x € X and all A € T. Now,
for an arbitrary z € K, there exists A € T such that z = |z|A. But also there are n € Z
and 0 < a < 1such that |z| = n + a. Therefore, L(zx) = nAL(x) + AL(ax). The
problem then reduces to L(ax) = aL(x) for all 0 < a < 1. But for such an « in the
complex case, there are A;, 1, € T such that a« = % Using the additivity of L,
one immediately deduces its homogeneity. In the real case, let (1,) be a sequence
of rational numbers converging to «. Then there is some M > 0 such that, for every
positive integer p, some n,, € N exists so that for n > n,, we have

e=1
Is| 2

5 (s T p(a-uy)x) <M and If(pla—un)x)| <M.

2°MT

Hence,

pIL(ax) - unL(x)[ = |L(p(a - un)x)
<[ L(p(a—un)x) = f(pa = un)x)| + | f(p(a = un)x)]

=1

S| 2 o, 1l
s :L,Jllep(s 2 pla—un)x) + | f(pla—un)x)| <2M.
Therefore, when 7 tends to infinity, we get | L(ax) — aL(x)|| < 2M/p. Letting p tend
to infinity, we come to L(ax) = aL(x) and then to the homogeneity of L. [ |
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Notice that in the condition (3.1), one can replace D, f (x) by D) f(x), where

AQxn + xk) + Xiegn k) xj)
s
A1) Py + (1) Be) + % ey (1) Dx;
+ Z Tf( . J { } J )
i(j)efo.)
s i(j)=¢

~ (Chy - CE (A () + f(x) + Y ).

je{h.k}

Dy f (%) = rf(

Now, we are able to investigate the A-linearity of the mapping L.

Theorem 3.2 Assumethat K = C, X is a left A-module, Y is a left Banach A-module,
andlet f: X — Y be an odd mapping. Suppose that there existe € {-1,1}, 1< h <k < d,
and a function ¢: Xp,  — [0, +oo] satisfying (2.5), (2.6), and

(3.2) [Duf(x)] < 9(X), VX € Xpp, VYueU(A).
Then there exists a unique A-linear mapping L: X — Y satisfying (2.8).

Proof 1If f satisfies (3.2) for all u € U(A), then it satisfies (3.1) for all A € T. By
Lemma 3.1, there exists a unique linear mapping L: X — Y satisfying (2.8). It remains
to show that L(ax) = aL(x) for all a € A. As every element of a C*-algebra is a finite
linear combination of unital elements ([3, p. 70]), it suffices to show that L(ux) =
uL(x) for all unital element u € A. But, for such an u, if we take in (3.2) x, & (x, 6|1r|x),
for arbitrary x € X, we will get

(3.3) H rf(%) —uf(x)H < %(p(fh)k(x,éllr‘x), xeX.

Taking in (3.3) = instead of x, and then multiplying by |s|*", we obtain:

sEn

et S?:il) _”Smf(ssin)H . %ISIE”sv(S%fh,k(x"S\lrlx))’ xeX.

Letting » tend to infinity and using the fact that the mapping ¢t ~ ut is continuous
from Y into itself, we arrive at

L(ux)=uL(x), xeX, ueclU(A),

which achieves the proof. u
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Remark 3.3 (i) As for the preceding lemma, one can replace D, f(x) by
D!, f(x) in (3.2), where

u(xp +xk) + Xjetnk) xj)

D f(x) = rf(

.
. rf u((-1)"Mxy + (-1)"®x) + Zjé{h,k}(_l)i(j)xj)
i(j)e{0,1} r
Tii()=¢
= (Chy - C ) (u(f () + f(x)) + Y f(x5))-
j¢{h.k}

(ii) If X = Ain Theorem 3.2, then L becomes a right multiplier.

The following result gives conditions under which an odd approximate solution f
of (1.1) must be a C*-algebra homomorphism. It extends and improves [2, Theorem
41].

Theorem 3.4  Assume that K = C, X and Y are C*-algebras with Y a left Banach
X-module, and f:X — Y is an odd mapping. Suppose that there exist ¢ € {-1,1},
1< h < k <d, and a function ¢: Xy, ;. — [0, +oo[ satisfying (2.5), (2.6), and (3.2). If
lim, oo s f(5) = ev, f(;&y) = f(;&)f(y) forallu e U(X) and y € X, and

o () )

then f is a C*-algebra homomorphism.

_,u
g(p(xl(sg—n)),VueU(X), neN,

Proof ByLemma 3.1, L(x) = lim, o s" f( i) defines a linear mapping L: X — Y.
Let us show that f = L and that f is a C*-algebra homomorphism. From f(5y) =
f(;&)f(y) forall u € U(X) and all y € X, we deduce L(uy) = L(u)f(y). In par-
ticular, L(y) = L(ex)f(y) = f(»), y € X, whereby f = L. Moreover, L(uv) =
L(u)L(v)f(ex) = L(u)L(v). Since every element of X is a finite linear combination
of unitary elements and L is linear, L is an algebra homomorphism. Finally, if we mul-
tiply (3.4) by s°” then let n tend to infinity, we obtain L(#*) = L(u)* forall u ¢ U(X).
Again by the linearity of L, we obtain L(x*) = L(x)* for all x € X. Therefore f is a
C*-algebra homomorphism. ]

If in the preceding theorem, f is assumed to be one to one, then it is a C*-algebra
isomorphism into. In particular, we get the following corollary.

Corollary 3.5 Under the hypotheses of Theorem 3.4, if f: X — Y is bijective, then it
is a C*-algebra isomomorphism.
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