Can. J. Math. Vol. 50 (4), 1998 pp. 845-862.

LUSTERNIK-SCHNIRELMANN CATEGORY
AND ALGEBRAIC R-LOCAL HOMOTOPY THEORY

H. SCHEERER AND D. TANRE

ABSTRACT. In this paper, we define the notion of R,-LS category associated to an
increasing system of subrings of @ and we relate it to the usual LS-category. We also
relate it to the invariant introduced by Félix and Lemaire in tame homotopy theory,
in which case we give a description in terms of Lie algebras and of cocommutative
coalgebras, extending results of Lemaire-Sigrist and Félix-Halperin.

Introduction. Letr > 3beanatural number. Let Rbeasubringof Qand R, = (R)i>o
an increasing system of subrings of @ suchthat R © Rfori > 0. We call “(R.,r)-
homotopy theory” the homotopy category of spaces of the homotopy type of r-reduced
CW-complexes X which are R,-local, i.e. 7+ (X) is an R-module for i > 0. The most
interesting of these theories is tame homotopy theory [5] where the rings R, have to
satisfy certain divisibility conditions. In fact, tame homotopy theory is equivalent to the
homotopy theory of a closed model category Lies of s-reduced (s = r — 1) differential
Lieagebrasover Rby [5].

We begin the present investigation by defining anotion of R,-Lusternik-Schnirelmann
category (R.-cat(-) for short) for any r-reduced CW-complex. Our first main result then
statesthat R,-cat(Y) = cat(Y) (ordinary L S-category) provided Y is an r-reduced R-local
CW-complex of R-dimensionmand R = Rfori < m—r. In passing we establish a
mapping theorem for cat for maps between such compl exes. We also show that R,-cat(Y)
equalsaninvariant defined by Y. Félix and J. M. Lemaire[8], [9]. But it isthe invariant
R.-cat(Y) we need to work with.

Our next objectiveisto consider tame homotopy theory and to establish an algorithm
for computing R.-cat(Y) from the Lie algebra model of Y. To this end we transfer the
notion of “fibrations a la Ganea” developed in [21] into the tame setting. For the case
of R-local CW-complexes of R-dimension m as above we obtain a particularly simple
method of calculation which will beillustrated by examples.

Thethird main point is to demonstrate that the description of rational L S-category as
givenby Y. Félix and S. Halperin [7] can also be obtained for R,-cat in tame theory. We
use the description of tame homotopy theory via differential cocommutative coalgebras
over R[20]. Let C be the coalgebrarepresenting aspace Y, let C; be thei-th term in the
primitive filtration of C, then C; — Cisamodel of ani-th fibration ala Ganea.

Thelast result may open up away to extend the proof of the rational Ganea conjecture
[11], [14] to obtain the following: Given an r-reduced CW-complex X and n > r, then
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one has R,-cat(X x S") = R,-cat(X) + 1 provided R, istame. In particular, if R = Rfor
i <m-—r, XisR-local and R-dim(X)+n < m, thencat(X x S") = cat(X)+1. Theideaisto
dualize the proof of [11], [14] to the category of cocommutative differential coalgebras.
In fact, we know of such attempts presently undertaken.

1. LS-category and R,-homotopy. We first recall some facts about classical LS
category. Then we shall discuss R,-homotopy theory (with tame homotopy theory as a
particular case) and consider the fibre-cofibre construction in model categories. In 1.4
we define R,-category. In 1.5 we recall aninvariant of Félix-Lemaire and prove our first
main result. As an application we prove in 1.6 a mapping theorem for LS-category of
r-reduced R-local CW-complexesof R-dimension < m. In Section 1.7 we transfer, in the
tame situation, the definition of R,-cat to the homotopy category of Lies.

In al what follows “space” will mean a pointed space of the pointed homotopy type
of a pointed CW-complex.

1.1. Lusternik-Schnirelmann category. Werefer to the survey article [13] for a discus-
sion of al the statementsin Section 1.1.

DerINITION 1.1. The Lusternik-Schnirelmann category, cat(X), of a space X is the
smallest integer k, k > 0, such that X can be covered by (k + 1) open subsetswhich are
contractiblein X, or it isinfinity, if no such k exists.

NoTe. The origina definition [16] worked with k > 1 and coverings by k open
contractible sets.

Recall that the “fat wedge”, T¥(X), of a space X is the subspace of X** of points
having at least one component equal to the base point. Then one has:

PROPOSITION 1.2. For any X cat(X) is the smallest integer k (or infinity) such that
the diagonal A: X — X**1 factorsup to homotopy through theinclusion j: TX(X) — X*1;
i.e.thereexistso: X — TK(X) WithA ~ j - 0.

We also have to recall the “fibre-cofibre construction”:

Givenamap Y — X. FactorizeitasY — Y’ LA X, ahomotopy equivalencefollowed
by afibration p’ (We call p’ the associated fibration of Y — X). Let F’ be the fibre of p’
and form Yy := Y’ U C(F’) where C(F’) is the reduced cone on F’ and define p;: Y1 — X
by p1|Y' = p’, p1|C(F") = *. Themap p; is called thefibre-cofibreconstruction of Y — X.

The sequence p;: Gj(X) — X of Ganea maps is inductively defined as follows: py is
x — X and p; isthefibre-cofibre construction of pj_; for i > 1. The associated fibrations
are called Ganea fibrations.

Note that G;(X) — X isequivalent to the evaluation map ZQ(X) — X (where Q resp.
> denotesloop space resp. reduced suspension).

ProPOSITION 1.3. The value cat(X) is equal to the smallest integer k (resp. infinity)
such that py: Gx(X) — X admits a section up to homotopy.
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REMARK. Gilbert proved this[10] by showing that the k-th Ganeafibration isequiva-
lent over X to the pullback by A: X — X**1 of the fibration associated to j: TX(X) — X*1,
For a proof in amore general setting see [3].

1.2. R.-homotopy. Letthesubring R C Q andtheinteger r > 3 befixed. An R-system
of ringsis asequenceR. = (R )i>o of increasing subrings of Q suchthat R C Ry.

The R-system R, iscalled “tame”, if eachk > O0with 2k — 3 < i isinvertiblein R.

Denote by S the category of simplicial sets and by S, the category of r-reduced
simplicial sets. The category S, carriesthefollowing closed mode! category structure, to
be denoted by R.-S;, [5]: The cofibrations are the injective maps; the weak equivalences
are the maps f such that 7+ (f) ® R isan isomorphism for all i > 0; the fibrations are
implicitly defined.

We will need a partial direct characterization of fibrations in R,-S; given in [5]: A
morphismf in R,-S; isafibrationin R,-S, and mo(f) ® Ry issurjective, if and only if f is
aKan fibrationin S and for all k > 0 (a) m.«(F) isan Re-module (F the fibre of f) and
(b) cokernel( a1 (f)) iswithout p-torsion, p invertible in Re.y.

In particular, an object X € R,-S; is fibrant, if it is a Kan complex and 7. (X) is an
Ri-modulefori > 0.

If R = R i > 0, we denote R,-S; by R-S;; the fibrant objects are then called “R-
local”, and the corresponding homotopy theory is the usual R-local homotopy theory
(From Q-S; we obtain rational homotopy theory).

Note that Z-S; defines*ordinary” homotopy theory.

We will also have to consider a particular subcategory of the homotopy category
Ho-R,-S; of R.-S;.

An r-reduced R-local CW-complex of R-dimension m is a cellular complex con-
structed from * by successively attaching cones on R-local spheres, §},r —1 <n<m.

Let R— CW" be the category of such spaces. Then (see[17]) the ordinary homotopy
category of R-CW[" embeds as a full subcategory into Ho-R,-S, provided R = R for
i=0,..., m-—r.

NOTATION. We use“ RN" (resp. “~") to denote weak equivalencesin R, — S; (resp.

Z—S)). The ornamented arrows “ =", “—»" indicate cofibrations (resp. fibrations) in
various model categories.

1.3. The fibre-cofibre construction in a model category. Let M be a pointed model
category. We want to give a simple-minded fibre-cofibre constructionin M . In fact it is
the exact analogue of the ordinary construction recalled in 1.1. On the other hand it isa
particular case of the more general “join” construction of J. P. Doeraene[3].

Let X € M befibrant. Let Y — X be a morphism with Y cofibrant. Factor Y — X
into Y == X' —» X, a cofibration and weak equivalence followed by afibration. Let F’
be the fibre of X’ —- X and factor " — x in F'>»C(F’) = x, a cofibration followed by
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aweak equivalence. Define Y; — X by the following diagram:

F/ x/

| e | N

CF) — Y. — X

We now assumethat M satisfies the following property:
()  Givenalfibration Z/ — Zin M with Z’ cofibrant, then the fibre is cofibrant.

One can then show that up to weak equivalence over X the morphism Y; — X does
not depend on the choices made, nor does it depend on the weak equivalence class of Y
over X (all objects over X taken cofibrant!). The assumptions have been arranged such
that the gluing lemmas (comp. [2]) can be applied. No assumption about “ properness’
of M is needed.

1.4. R.-LS-category. Let M be a model category as above. For X fibrant we can
then define a sequence of Ganea maps by starting at * — X giving rise to a notion of
M -L S-category in analogy to 1.1. For details we refer to [3] and [4].

Applying this procedureto R,-S; leadsto the following phenomenon which—from a
geometrical viewpoint—is undesirable:

Let § be the Q-local sphere (and a Kan complex) in @ — Sz. Thenthemap x — S,
isafibration. WithM = @ — S; thisimpliesthat all M -Ganeafibrations of S} are equal
tox — S and M -cat(S}) = oo (see[4]). Of course, the usual category of the * space”
S isl

On the other hand we wish to have a good definition of cat in the model categories
R.-S;. For, if R, is tame, we can then read the definition in the category Lies of Lie
algebras.

The solution is to change the beginning of the construction of the Ganeafibrations.

We need the following convention: Let f be a map between (r — 1)-connected spaces.
Then a morphism f”:K — L in S; is called a model of f, if there exists a homotopy
commutative diagram

X < K|
| m
Y <& |

where || means geometric realization and “ ~" homotopy equivalence.

Such amodel always exists. One may takefor K the subcomplex . S(X) of the singular
complex of X consisting of those simplices whose i-th faces are at x for i < r, and
similarly L := . XY). Then the diagram

X e [SX)|
L
Y — |rS(X)|

even commutes. The above definition, however, will enable particular choices.
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DEFINITION 1.4. Let X € R,-S; befibrant.

Define g;: R.-G1(X) — X asamodel of G1(|X|) — |X| and g: R.-Gi(X) — X asthe
fibre-cofibre construction of g;_; for i > 2. (Note that R,-S, satisfies condition 1.3 (x),
because all objects are cofibrant).

The spaces R,-G;(X), i > 1, will be called Ganea spaces in R.-S,, the fibrations
associated to the g; are the Ganeafibrations.

DEFINITION 1.5. LetX € R,-S;.

If X is homotopy equivalent to * in the homotopy category of R,-S;, then we set
R.-cat(X) = 0.

Otherwise we define R.-cat(X) := inf{n | gn: R.-Gn(X;) — X; admits a section in
the homotopy category}. (Here X; is a fibrant model of X. Therefore, by definition
R.-cat(X) = R.-cat(X)).

(Note that—by the discussion above—the definition does not depend on the choice
of the fibrant model of X).

CONVENTIONS. Since for X € Z-S; we have cat(|X|) = Z-cat(X), we will in the
following simply write cat(X) for Z-cat(X).

If Xisan (r — 1)-connected space, we will write R,-cat(X) for R,-cat(K), whereK is
amodel of XinS;.

1.5. Comparing cat, R,-cat and an invariant of Félix-Lemaire.

DEFINITION 1.6. Let X € R,-S;, let TK(X) ¢ X**1 be the fat wedge, let T¥(X); and
XK1 be fibrant models. Denote by Ay: X — Xk*1 the composition of Ay: X — X< with
Xkt — X1 Then one sets[8], [9]

fw-R.- cat(X) := inf{k | k > 0 and A factorsthrough T¥(X); — Xk*1in
the homotopy category of R.-S; }.

(Of course, “fw” should remind us of “fat wedge”).
We are now able to formulate the first main result:

THEOREM 1. Let X bean (r — 1)-connected CW-complex.

(i) Then fw-R,-cat(X) = R,-cat(X) < cat(X).

(i) If R, isan R-systemsuchthat R = Rfori =0,....m—r and X is an R-local
CW-complex of R-dim(X) < m, then R.-cat(X) = cat(X).

The proof will follow easily from two lemmas. To simplify the notation we will
notationally not distinguish between the Ganeamaps and the associated Ganeafibrations.
(Recall that G;(X) denotes Ganea space with respect to Z-S;).

LEMMA 1.7. Let X € R,-S; befibrant. Then G;(X); is equivalent in R,-S; over X to
R.-Gi(X) for i > 1.
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PROCF. The existence of acommutative diagram

G1(X) - R.-G1(X)
\ ) /
follows from the definitions. Both fibrations are Kan fibrations and surjective on homo-
topy groups. Hence the long exact homotopy sequences decomposeinto short oneswhat
implies that the map induced on the fibresis aweak equivalencein R,-S;. By induction
we now suppose that, for i > 2, a weak equivalence Gi_1(X) — R.-Gj_1(X) over X

exists; it induces aweak equivalence between the respective fibres Fi_; and R.-Fi_1. In
the following diagram

G-1X)UC(Fi-1)) —— R.-Gi_1(X) UC(R.-Fi_1)

| /

G,(X) - «— R-Gi(X)

the weak equivalence o in R,-S; making the diagram commute exists by the properties
of aclosed model category.

LEMMA 1.8. For each X € R,-S; one has
fw -R;- cat(X) = R,- cat(X).

PrROOF. We assume X fibrant and regard the following diagram.

G(X) —— P — E T — Ty — Q
R

N

X A XK+l - Xkl - XK+l A X

The map T¥(X) — X¥*1 isfactored into a product of atrivial cofibration TX(X) -~ E and
afibration E — X1 in S, on one side; on the other side it is factored into a product
of aweak equivalence TK(X) — TK(X); and a fibration TK(X); — Xk*1in R,-S;. The
morphisms P — X and Q — X are the pullbacks by A. The morphism o making the
diagram commute exists by the properties of the model category R.-S,; hence 3 exists
by the pullback property.

Observe that E — X! and TX(X); — X** induce surjective homomorphisms of
homotopy groups. It follows in particular that T*(X); — X<*1 is also a Kan fibration (by
the criterion recalled above). Therefore the exact homotopy sequencesof E — XK1 and
TK(X); — X¥*1 decomposeinto short exact sequences. Since o is aweak equivalencein
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R.-S;, thisimpliesthat the map induced by o onthefibresof E— X< and TK(X); — Xk*1
is aweak equivalencein R,-S;. Then it follows from the exact homotopy sequences of
P — Xand Q — Xthat 3 is aweak equivalencein R,-S;.

By [10] there is a weak homotopy equivalence (in S;) G(X) — P over X; by

Lemma 1.7 we deduce R.-G(X) = P;. Thus fw-R.-cat(X) = R.-cat(X).

PROOF OF THEOREM 1. Part (1) isgiven by Lemma 1.8 because, obviously, cat(X) >
fw-R.-cat(X).

To prove part (2) it suffices to show that cat(X) < fw-R,-cat(X). Since X is R-local,
0 is the fat wedge T(X). Hence T*(X) — TX(X); is an m-equivalence (in the R-local
sense), and the result follows.

1.6. A mapping theorem for cat in CW". Suppose f: X — Y isamorphism in R.-S;.
Assume that Q(X¢) and Q(Y;) are homotopy equivalent to weak products of Eilenberg-
MacL ane complexes and that f,: 7 (X¢) — mi(Ys) is split injective for i > r. By [8] we
then have R,-cat(X) < R.-cat(Y). In particular, if R, isan R-system and X,Y € CW/",
then cat(X) < cat(Y). But in that case the following is the appropriate formulation:

PrROPOSITION 1.9. Let X,Y € CW/" and f: X — Y be a map. Suppose R-dim(X) <
k < m; assume that f.: i (X) — mi(Y) is split injective for i < k and that there is a
k-equivalence QY — TT, K(mi(Y).i — 1).

Then we have cat(X) < cat(Y).

ProOOF. Consider the fibre sequence
h f
— QQX— QY — F—>X—Y
of themap f. Denoteby A the cokernel of ;j(f), r <i < k. Thenthereisak-equivalence

oy -9Y, @K(A-.i —1)) x F.

Let Fk — F beak-equivalencewith F¥ R-local of R-dim < k. Then FX — F factors (up to
homotopy) through h: QY — F and hencethe composite FK — F — X isnullhomotopic.
Assume cat(Y) < g and let YoU --- U Yy be a covering of Y by in Y contractible
subcomplexes. We may assume that f is cellular. Let X; = f~1(Y;), then X; — X factors
through F — X and (X;))r — X through F — X, because R-dim(X;)r < k. Hence
cat(X) <q.

REMARK. If R, istame, ak-equivalence QY — TTI, K(mi(Y).i — 1) exists [19].

1.7. Trandlating the definition of R,-cat into Lies. Let R, be an R-system, r > 3 and
s=r—1

Denote by Chs the category of s-reduced chain complexes over R. It carries the
following closed model category structure: The cofibrations are the injective morphisms
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with degreewise projective cokernel; the weak equivalences are the morphisms f such
that Hei(f; R) is an isomorphism for al i > 0; a morphism f is a fibration, if it is
surjective in degrees > s, if Hgyi (kernel (f)) isan R-module and if cokernel (Hs:i(f)) is
without g-torsion for g invertible in R;, i > 0. This closed model category structure is
denoted by R,-Chs.

Assume now that R, ismild, i.e. for i > 0 the positive integersk with sk < s+ are
invertible in R. Note that “tame” implies “mild”.

Then [5] the category Lies of sreduced differential Lie algebras over R has the
following closed model category structure denoted by R,-Lies: A morphismin Liesisa
weak equivalence (resp. afibration) if it is a weak equivalence (resp. fibration) as map
in R,-Chg; the cofibrations are implicitly defined.

By [5] there is a sequence of pairs of adjoint functors between R,-Lies and R,-S,
inducing adjoint functors on the corresponding homotopy theories (comp. [20]). If R, is
tame, these induced functors are equivalences. If L € R,-Lies and X € R,-S, correspond
to each other viathese functors, L is called a model of X.

ReEMARK. To avoid the presence of 2- and 3-torsion in free Lie algebras over R we
supposethat the Lie bracket always satisfies the following conditions:
(1) For al x of pair degree[x,X] =0,
(2) For all homogeneous x one has [x. [x.X]| = 0.
Asit was remarked in [20] this has no effect on Ho-R,-Lies for R, mild.

DEFINITION 1.10. LetL € R,-Liegbe fibrant.

Thefirst Ganeamap R,-G1(L) — L isamodel of R,-G;(X) — X whereL isamodel
of the fibrant object X.

For i > 2, the Ganeamaps R,-G;(L) — L are given by the fibre-cofibre construction
on R,-Gj_1(L) — L.

Property 1.3(x) is true for R,-Lies, because the cofibrant objects are the free Lie
algebras and sub-Lie algebras of free ones are free.

DerINITION 1.11. In analogy to Definition 1.5 we define R.-cat(L) for L fibrant.
(Details may be omitted).

For arbitrary K € R,-Lies we set R,-cat(K) := R,-cat(Ks) where K isafibrant model
of K.

ProPOSITION 1.12. Let R, betame. Let X € R,-S, and L bea model of X in R,-Lies.
Then R.-cat(X) = R.-cat(L).

PROOF. We may assume X, L fibrant. Then, by definition, R,-G1(X) — X and R;-
Gi1(L) — L correspond to each other under the equivalence of homotopy theories. By
[4] aso the following fibre-cofibre constructions R,-Gj(X) — X and R,-Gj(L) — L
correspond.
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2. R.-cat and LS-fibrations.
2.1. LSHfibrationsin R,-S;.

DEFINITION 2.1. Let X € R,-S; with fibrant model X;.
A mapf:Y — X iscalled an “n-LS-morphism”, if two commutative rectangles exist

in Ho-R,-S; asfollows:
R*'Gn(xf) =Y

| I

X R X

If f isafibration, wecal it an “n-LS-fibration”.
REMARK. If Y, — X!, n > 1, isasequenceof n-LS-morphisms, then R.-cat(X) = 0,
or R.-cat(X) = inf{n | Y, — X/, admits asection in Ho-R.-S; }.
Following [21] we will construct sequences of n-LS-morphisms in R,-S; (and in
R.-Liesin2.2). B
Let Q() denote a suitable oop space functor Q: S; — S,_1.
THEOREM 2. Let X € R.-S; and Y — X amorphismin §; such that
() Q(Y;) — Q(X¢) admits a section up to homotopy,
(i) R-cat(Y) <1,
then Y — Xisa 1-L S-morphism; the homotopy fibre F of Y — X; has R.-cat(F) < 1.
PrROOF. The proofs of [21], Proposition 2.2 and Proposition 4.5 apply here as well.
(In fact, the proof can aso be |eft as an exercise).

DEFINITION 2.2. Let a pointed mode! category M be given. Let F LE 5 Xbea
fibration in M with fibre F. Let j: A — F; we factorize A — * as A—C(A) — * and
defineE’ — X by the diagram

A L F L E
l pushout / J
cA — E — X
The construction will be called “maodified fibre-cofibre construction with respect to j”.

THEOREM 3. Let X € R,-S, befibrant, let F — E — X be an n-L Sfibration. Given
j:A— F let E' — X be the modified fibre-cofibre construction with respect to j.
If F— Eistrivial in Ho-R,-S;, then E' — X isan (n + 1)-L S-morphism.

ProOOF. The proof of Théoréme 1 in [21] applies here aswell.

We also want to transcribe the way the holonomy was used in [21] into the present
situation.

Let X € R.-S, befibrant and f: E — X afibration such that 7, @ Ry is surjective. Then
f is also aKan fibration and we may consider its holonomy (calculated in S,_1)

mQX) x F—F
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whereF is th_e fibre of f.
Given AL F we denote by

m:Q(X) x A—F

the composition of mwith (id xj): Q(X) x A— Q(X) x F.
If the connecting map (of the Kan fibration) d: ﬁ(x) — F is homotopically trivial,
we obtain a map
m: Q(X) x A/Q(X) — F.

Notethat 9 ~ x, if f isan LSHfibration.
Let E' — X be obtained by the maodified fibre-cofibre construction with respect to nt.

ProPOSITION 2.3. Let f be an n-L S-fibration and m’ a homotopical epimorphismin
R,-S; (i.e. the homotopy class of nv is an epimorphismin Ho-R,-S; in the categorical
sense). Then E' — X is an (n + 1)-L S-mor phism whose homotopy fibre (with respect to
R.-S;) F’ hasR.-cat(F') < 1.

PROOF. Let R,-E’ — X be the fibration associated to E' — X in R,-S; (whose fibre
is F” by definition), let E' — X be the fibration associated to E' — X in Z-S; with fibre
F. From the diagram 5

F F
| e
E/

follows the existence of a map E' — R.-E’ inducing a weak equivalence F — F’ in
R.-S,. Note that 7 (E") — ,(X) is surjective, hence E' —» X isaKan fibration and F is
the homotopy fibre of E' — X in the category of pointed simplicial sets.

Hence, by [21] thereis a cofibration sequence

Q(X) x A/Q(X) —— F — E.
ThereforeF — F and, by the above, F — F’ ishomotopically trivial in R.-S,. Moreover,
cat(F) < 1by[21], Lemma4.7, thus R,-cat(F') < 1.

REMARK. Theorem 2 and Proposition 2.3 allow the construction of a sequence of
n-LSHfibrations, n > 1. In this context a criterion for “homotopical epimorphism” is
provided by the following result.

LEMMA 2.4. Let R, betame. Let g:Y — Z be a morphismin R,-S;, let R.-cat(Y),
R,-cat(Z) < 1. Then g is a homotopical epimorphismin R.-S; provided the induced
homomorphismsH,.i(Y; R) — H;+i(Z; R) are split surjective, i > 0.
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ProoOF. For any R-module A let M(A, k), k > 3, be a Moore space with reduced
homology isomorphic to A concentrated in degreek. It follows from the assumptionson
R.-cat that Y and Z are equivaent to />0 M(H+i(Y; R), 1 +1) resp. \/i>o M(Hr+(Z; R),
r +i) in Ho-R,-S,. Therefore, in Ho-R,-S; there exists h: Z — Y such that go h = id;
(where gistheimage of g in Ho-R.-S,).

NOTE. Let us assume that R,-cat(A) < 1. Then we have aso
R.-cat(Q(X) x A/Q(X)) < 1. For, if Ais equivalentin R.-S; to asuspension ZA', then
Q(X) x ZA'/Q(X) being homotopy equivalent to (Q(X) A ZA') V ZA is asuspension.

Hence, if aso R,-cat(F) < 1, the criterion of Lemma 2.4 can be applied to
m': Q(X) x A/Q(X) — F.

2.2. Sequences of LS-applications in R,-Lies. We assume again that R, is atame R-
system.
Theresults of Section 2.1 have to be trandlated into the language of R,-Lies.

PROPOSITION 2.5. LetL € R,-Liesbefibrant. Let (V, d) bea free chain complex over
R, L(V,d) the free R-Lie algebra over (V, d) and assumethat L(V, d) — L isgiven such
that Hg ([L(V. d)® Rg) — Hai(L @ R) issplit surjectivefor i > 0. ThenL(V.d) — Lis
a 1-L S-mor phism whose homotopy fibre F has R,-cat(F) < 1.

PrROOF. Let Y — X be amap between fibrant objects of R.-S; which correspondsto
L(V,d) — L. Then[19], §(Y) and §(X) are homotopy equivalent to the weak products
of the EiIenberg-MacLanespacesK(H5+i([L(V. deR). S+i) resp. K (Hsi(LOR)). s+i).
Therefore, up to a homotopy equivalence of ﬁ(x) a section up to homotopy of §(Y) —
ﬁ(X) can be constructed; hence §_2(Y) — §(X) has a section up to homotopy.

Moreover, L(V,d) models a suspension by [6], hence R,-cat(Y) < 1. The result
follows from Theorem 2.

Let L befibrant. Let E, — L be an n-LSHfibration, n > 1, such that E, is cofibrant
and such that the fibre Fj, has R,-cat(Fp,) < 1.

Asin [21] we now want to use the holonomy of the fibration E, — L to simplify the
construction of the next (n + 1)-L S-morphism. We need some more conventions:

For any complex D € Chs we set H,(D; R,) := ®i>oHs+i(D; R).

If L € Lies, we denote by ab(L) the abelianization of L.

Recall that, if L iscofibrant, H. (ab(L); R. ) isup to adegreeshift by 1 thehomology of
the space corresponding to L. By [6] there exists afree chain complex (W, d) over Rand
aweak equivalence L (W, d) — F, in R.-Lies; in particular, we have H,.(ab(Fy); R.) =
H.(W; R.).

Recall that, if L is cofibrant, then there is an algebraisomorphism H.(U(L);R.) —
H.(QX; R,) (where U(L) denotesthe universal enveloping algebraof L) [18].

Let 7:H,(L; R.) — H.(En; R.) be a section. We define an operation of U(H.(L; R.))
on H.(W;R.) = H.(ab(Fn); R.) by defining it on the generators (u) € Hs:(L; R;) by
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the formula

Hseo (LR ® Hs+k(ab(Fn); Rk) - H25+/+k<ab(Fn); Rs+f+k)
(U) @ (w) — ([r'(U), W)

where the symbol “(_) denotes homology class, where 7/(u) € 7((u)) and [, _] isthe
Lie bracket.

Onededucesfrom [21], Theorem 2, that this operation coincideswith the oneinduced
by the holonomy map. Thus we finally obtain:

PrROPOSITION 2.6. Let (V. d) beasubcomplexof (W, d), setj equal to the composition
L(V,d) — L(W,d) — Fn; assumethat

B P Usi(H.(L;R)) @ Hsi (A R) @ Re— H.(W;R.)

K>0i+j=k

is split surjective. Then the modified fibre-cofibre construction on E,, — L with respect
toj isan (n+ 1)-LS-morphism.

2.3. Computation of cat in algebraic R-local homotopy theory. Let R, be a tame R-
system with R, = Rfor i < m—r. Recall ([17], or [1]) that the homotopy category
of CW[" (see Proposition 1.2 for definitions) is equivalent to the full subcategory of
Ho-R,-Lies given by the free differential Lie algebras L over R with only generators x
suchthat s < degreg(x) < m— 1.

GivensuchalLiealgebralet usinspect what wereally need to calculateitsL S-category.

(i) To construct L>—L; involves only adding generators in degrees > m. Thus, if
E, — Ls is an LSHibration, the existence of a section is already detected in degrees
<m-—1(i.e.onl).

Moreover, if E;, — L; isan LS-morphism which is surjectivein degrees < m— 1, the
construction of an L S-fibration E/, = E,, —- L; involvesagain only attaching generators
in degrees > m.

(i) In the first step (Proposition 2.5) we need to calculate Hsii(L; R) for s+i <
m— 1. We then can choose (V1, d1) (concentrated in degrees between s and m) such that
L(V1,d1) — Ls issurjectivein degrees < m— 1 and He+i (L(V1, d1); R) — Hsii(Ls; R) is
split surjectivefor s+i < m— 1. Then we may choose L(V2, d2) — L¢, Vo mrreduced,
such that L(Vy, d1) L L(V2, dp) — Ls satisfies the conditions of Proposition 2.5. (But
(V2, dy) is not needed for the interesting part in the next construction).

(iii) Suppose the n-L Sibration E,, — L; has been constructed. Let Fy, be the fibre.
Thenweneed only to know Hsi(Fn; R) for s+i < m—1to construct an (n+1)-L Sfibration
up todegrees< m-— 1.

Let us give two examples.
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EXAMPLE 2.8. Let R=Z[3.1. 2]. Let Xg be the R-local space corresponding to the
following Lie algebrawherep > 5is prime.

(L.9) = (LOa.%. Y. W).0);  [xa| = |y] =3, |%| =4. |w| = 10,
X1 =ay=0, de=pxa. IW=|x.[y.y]]
Infact, Xg isthe localization of X = ((S'U€°) v S') U e"* with sitable attaching maps.

Inside the first step we choose IL(Vy, d;) — L asfollows: L(V1, d1) = L(Xg, X2, ¥, a2,
az), diXe = pXy, diy = 0, droz = ag; X = Xq, Ko = X2, Y= Y, a2 — W, g — dw =

X0 [y- V]
10| w ap
of > [Xl-[VJ/]] a1
8
7
6
5
4] X 5\(2
3| Xy Xy

Next we have to determine kernel(L(V1) — L) in degrees < 10. It is generated as R-
moduleby g — 1. [§. §] |. Obviously, L (V1) — L doesnot yet admit a section. Looking
at the next step, L (V1) UL (u), du = oz — [%a. [§. 9] |, we seethe section L — L (V1) LIL(u),
X1 F— X, Xo— X0, Y— Y, W— a2 — U.

Therefore cat(Xg) = 2. (We knew already at the beginning cat(Xg) < cat(X) < 2,
because X is a 2-cone).

EXAMPLE 2.9. Let now R = 7[1/2,1/3,1/5,1/7], p > 7 prime and (L,d) =
L, X2, y. 2 W); Pl = |yl = 35 | =4, (2 =7, [w| = 14and o3 = 9y = 0, 9% = pxa,
az=1[y,y],ow= [xl. ly. 7] ] The corresponding space is the R-localization of

Y= (((S4Ue5)VS4)Ue8)Ue15

with suitable attaching maps; in fact, Y isthe analoguewith torsion of the Lemaire-Sigrist
example[15].

Since Y is a 3-cone, we know cat(Ygr) < cat(Y) < 3.

To prove cat(YR) = 3 we even do not need to compl ete the first step.

Inside the first step define L(W,9) — L, L(W) = L(X1,%,9,Z ), 0% = pXy, 09 =
da=0,0Z=aand Ry — X3, X — X0, Y — Y, a — [V, Y], 2— 2

Themorphism L(W) — L issurjectiveand split surjectivein homology up to degree9.
In degrees < 9thekernel of L(W) — L isgenerated as R-module by the cycles o —[§. §]
and [§. o« — [§.91]; [9. « — [9.91] is given by the map induced by the holonomy. Hence,
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in the next step one adds a generator u with du = o — [¥, §] (in degrees < 9).

Step 1| Step 2
9
8
7z A u
6|[y.¥] |«
5
4| %o f(z
3 xy  [X¥

The first (completed) step does not have a section. In the second step an eventual
section ¢ is uniquely determined by o(X1) = X1, c(X2) = X2, o(y) = 9, 0(2) = z— u.
Whatever the completed second step may be, o(dw) = o[x.[y. 2| = [%.[§.2] —
[%.[9. u]|. But, whatever element a = o(w) in degree 14 one chooses, the expression
[%.[9. u]| cannot appear in d(a), only multiples of p[%. [§.u]| can. Thus the second
L S-fibration does not admit a section and cat(Yg) = 3.

We remark that the Toomer invariant of Y is 2, the cuplength of Y is2 and cat(Yq) = 2.

3. Themodel LC(L,9) — (L.d).

3.1. Theanalogue of the Félix-Halperin characterizationof cat. Let Coalg, bethe cat-
egory of differential cocommutative r-reduced coalgebraswhich are free as R-modules.
Let Liesbethefull subcategory of Lies of Liealgebraswhich arefree asR-modules. Then,
for amild system R,, the full subcategory Ho-Lies of Lies in Ho-R,-Lies is equivalent to
Ho-R,-Lies.

We have adjoint functors

L:Coag, < Lies: C.

which—after tensorizing with Z[1/2]—become the classical functors. If R, is a mild
system, the category Coalg, can be endowed with the structure of a cofibration category
such that the above adjoint functors induce equivalences

Ho- Coalg, <= Ho-Lies.

In particular LC(L,9) — (L. ) isaweak equivalence. (Comp. [20]). _

Given D € Coalg,, let P,D be the n-th term in the primitive filtration of D, i.e., if A
denotes the reduced diagonal, then P,D := kernel ((d@A® - -- @A) o - - o (id @A) 0 A)
where the composition consists of n factors.

THEOREM 4. Let R, be tame. Then P,(D) — D representsan n-LS-map.

PrROOF. It sufficesto assume D = C(L.d), L € Lies, L cofibrant, and to show that
L (P.D) — L(D) is an n-LS-map, respectively the composition L (P,D) — L(D) = L.
Thisisthe content of the next resullt.
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PROPOSITION 3.1. Let (L. d) & Lies be cofibrant. Then L (Pn(c (L. a))) —(L.a)is
ann-LS-mapin R,-Lies, R, tame.

The proof is based on the following fact.

LEMMA 3.2. For mild R, there exists a homotopy in R,-Chs between the injection
L(Pn(C(L.a))) — L(Pn+1(C(L,a))) and the composition v of the restriction of

LC(L,9) — (L.0) with theinjection (L.9) — L(Pn+1(C(L.a))).

PROOF OF PROPOSITION 3.1. First we observethat L (P,C(L.)) — (L. ) is surjec-
tive and split surjectivein homology. Denote by K, its kernel and construct the following
diagram

Kn — Fn

| l

L(P.C(L.0)) — Eq

l |

~

(L.9) — (Lo}

by factorizing L (PoC (L. 8)) — (L. d)r appropriately, F, beingthefibreof E, —» (L. d).
It follows that K, — Fp, is aweak equivalence.

Forn=1wehaveL (P:C(L.d)) = L(L.3) — L and it follows from Proposition 2.5
that E; — L isan 1-L Sfibration with R,-cat(F;) < 1.

Supposeinductively that L (P,C(L.9)) — (L.9) isan n-LS-map such that its kernel
Kn has R,-cat(K,) < 1. From the lemma we deduce that K, — En+1 is homotopically
trivial in R,-Chs. There is (W, d) such that K, is homotopically equivalent to L(W, d);
the corresponding class L(W, d) — Eps1 in HO-R,-Chg istrivial.

Recall [19] that if Chs denotes the full subcategory of abelian Lie algebrasin Lies
then IL(_) and the forgetful functor F

L:Chs = Lies F
are adjoint and induce adjoint functors on the homotopy categories. Thus (W, d) —
En+q istrivial in Ho-R,-Chg; we deduce that L(W, d) — Ensq istrivia in Ho-R.-Lies.
By Theorem 3 we conclude that En.; — L; is an (n + 1)-LSHibration. Note that the
theorem applies, because L (Pn1C (L. 9)) is the cofibre of the appropriate morphism
ﬂ_(s’l(PnﬂC (L.a)/PC (L, a))) — K. It remains to show that R.-cat(Kns1) = R.-
Cat(Fn+1) S l
The exact homotopy sequencein Ho-R,-Lies
i [ZFm En+1] i [ZFn- Lf] - [Fn- Fn+1] i [Fn~ En+1] i [Fn~ Lf]

decomposes into short sequences, because QY — QX admits a section (if Y, X fibrant

in R,-S; represent Eq.1. Ly resp.). Thus F,, — Fn.q is homotopically trivial, hence Fp.q
being a cofibre of amap into F, we have R.-cat(Fp+1) < 1.
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PROOF OF LEMMA 3.2. We shall deducethe result from Proposition 3.3 below about
the Bar construction B and the Cobar construction Q.

With the arguments for Lemmas 2.6, 2.7 of [20] one can show that

(i) Gn:Pa(C(L.3)) — Pn(B(U(L, a))) is amild quasi-equivalence (i.e. Hrsi(gn: R)
is an isomorphism and H;+i+1(gn; R;) an epimorphism for all i > 0; and

(i) Q(gn) isamild quasi-equivalence.

By Proposition 3.3 there is a chain homotopy between L(P,.C(L.3)) —
L (PraC(L.9)) and v consideredaschainmapsinto Q (Pn+1(BU(L, d ))) .Since Q(gn+1)
is a weak equivalence in R.-Chs, the maps are homotopic in R.-Chg as maps into
Q(Pn1C(L.9)). Recall (see below) that as algebraQ (Pns1C (L. 9)) isisomorphic to the
tensor algebra T(s™*Pn1C (L. ). Let T(s7'Pnu1C (L, 9)) denote the subspace gener-
ated by thetensorsof length k and define Q' (Pn+1C (L. 0)) = Bi=0 T"(s*1|5n+1C (L.9)@
R. similarly define L'(PhC(L.9)) < Q'(PnaC(L.3)). There is a retraction
of chain complexes Q'(Pn1C(L.9)) — L'(Pn1C(L,3)). Moreover, the inclusions
L (PmaC(L.8)) — L'(PnaC(L.0)) and Q(PraC(L.8)) — Q'(PmaC(L.0)) areweak
equivalencesin R,-Chs. Thusthe assertion follows.

3.2. ThefunctorsBar and Cobar. Let (A, d) be an augmented graded differential asso-
ciative algebraover aring Rsuchthat AisfreeasR-module. Denoteby pa: Q(B(A)) — A
the counit of the adjunction given by the bar construction B and cobar construction Q
[12]. The essential definitions concerning B and Q will be recalled in the course of the
proof below.

ProOPOSITION 3.3. There exists a chain homotopy between the canonical injection
Q(Pi(BA)) — Q(Pi:1(BA)) and the composition p of the restriction of pa with the
canonical injection A— Q(Pi+1(BA)).

PROOF. Let A be the augmentation ideal of A. The underlying algebra of Q(BA) is
T(s*l('F(sK))) (where T( ) denotes the tensor algebra and s the suspension of chain
complexes). We will use different symbolsfor the two tensor productsinvolved. Thus a
homogeneous element w & T(S‘l(f(s&))) will be written as

= _1(Sai R ® Saﬂ];)@s_l(sa% R ® Sa{i)@ R @S_l(sag R ® Saﬁp)_

wherew € s7Y(T(sA)), @ € A The differential D on Q(BA) is of the form D(w) =
D1(w) + D2(w) + D3(w) where

i) = Z- 1 0 )T e O )
D,(W) = Zi,j(—l)g(i-j) . @S_l(sail R ® sa]' ® sda]iﬂ R ® Sa'ln.)® .
Ds(W) = Zi_j(_]_)f(iJ) e @s‘l(sail Q- ® S(a]'a]'+l) R ® 91'1.)59 e
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with - _
)= e o s+ )+ Y s o s
The following linear map h: Q(BA) — Q(BA) will allow to construct the homotopy
we are looking for:

ifnp=21landp=1

0 ifnp>1or
h(w) = { ) o
(-DE(s st @ s @ - @ )EWED - EWP) ifnp=landp > 1.

Easy calculations establish the following properties of h:
(i) if ny > 3, then (hD + Dh)(w) = hDw = w;,
(i) if np=2andp > 1, then

(hD+Dh)(w) = w+(—1)MEN s (s(@l - ah) o s @ - @ 5B, ) W’ - - - EWP;

(iii) if ny =2and p = 1, then (hD + Dh)(w) = w;
(iv) ifnp=1andp =1, then (hD + Dh)(w) =0; if ny =1landp > 1, then

(hD +Dh)(w) =w— {s7'(s(a} - &) @ s @ - - © &, ) W'D - - - WP };

By induction over the tensor length in @ we conclude from these formulas that for
each w there exists a strictly positive integer j(w) such that

(hD + Dh — idy™ = (—1))™ p(w)
Inparticular, if Ry =, =--- =ny = 1andp > 1 we have
(hD + Dh —id)P~* = (—1)p*13*1(s(a%.a§ - aﬁ))
Using ho h =D o D = 0 we get the general formula

j(w)
o) —w = S (1) {(hD)" + (DR}

n=1

i(w)
= >_(=1y"{[(hD)**h]D + D[(hD)"~*h]}
p=1
Hence, the homotopy we are looking for can be defined as a sum of terms (hD)*h,
a > 0, provided we can show that

(hD)”‘h(Q(Pi(BA))) C Q(Pa(BA)).
Denote by Q(Pi+1(BA))  the submodule of Q(Pi+1(BA)) generated by the homo-
geneous elements w such that n; <i forj > 2 and ny > 1. We will in fact prove by
induction that

(hD)“h(Q(Pi(BA))) C O(Pia(BA)) -
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Theformulaistrue for o« = 0. To perform the induction it suffices therefore to establish

that

(hD)(Q(Pi+1(BA)) (1)) C Q(Pia(BA) -

Thisfollows immediately from formulas (i), (ii), (iii) above.
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