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LUSTERNIK-SCHNIRELMANN CATEGORY
AND ALGEBRAIC R-LOCAL HOMOTOPY THEORY

H. SCHEERER AND D. TANRÉ

ABSTRACT. In this paper, we define the notion of RŁ-LS category associated to an
increasing system of subrings of Q and we relate it to the usual LS-category. We also
relate it to the invariant introduced by Félix and Lemaire in tame homotopy theory,
in which case we give a description in terms of Lie algebras and of cocommutative
coalgebras, extending results of Lemaire-Sigrist and Félix-Halperin.

Introduction. Let r ½ 3 be a natural number. Let R be a subring ofQand RŁ = (Ri)i½0

an increasing system of subrings of Q such that Ri � R for i ½ 0. We call “(RŁÒ r)-
homotopy theory” the homotopy category of spaces of the homotopy type of r-reduced
CW-complexes X which are RŁ-local, i.e. ôr+i(X) is an Ri-module for i ½ 0. The most
interesting of these theories is tame homotopy theory [5] where the rings Ri have to
satisfy certain divisibility conditions. In fact, tame homotopy theory is equivalent to the
homotopy theory of a closed model category Lies of s-reduced (s = r � 1) differential
Lie algebras over R by [5].

We begin the present investigation by defining a notion of RŁ-Lusternik-Schnirelmann
category (RŁ-cat(�) for short) for any r-reduced CW-complex. Our first main result then
states that RŁ-cat(Y) = cat(Y) (ordinary LS-category) provided Y is an r-reduced R-local
CW-complex of R-dimension m and Ri = R for i � m � r. In passing we establish a
mapping theorem for cat for maps between such complexes. We also show that RŁ-cat(Y)
equals an invariant defined by Y. Félix and J. M. Lemaire [8], [9]. But it is the invariant
RŁ-cat(Y) we need to work with.

Our next objective is to consider tame homotopy theory and to establish an algorithm
for computing RŁ-cat(Y) from the Lie algebra model of Y. To this end we transfer the
notion of “fibrations à la Ganea” developed in [21] into the tame setting. For the case
of R-local CW-complexes of R-dimension m as above we obtain a particularly simple
method of calculation which will be illustrated by examples.

The third main point is to demonstrate that the description of rational LS-category as
given by Y. Félix and S. Halperin [7] can also be obtained for RŁ-cat in tame theory. We
use the description of tame homotopy theory via differential cocommutative coalgebras
over R [20]. Let C be the coalgebra representing a space Y, let Ci be the i-th term in the
primitive filtration of C, then Ci ! C is a model of an i-th fibration à la Ganea.

The last result may open up a way to extend the proof of the rational Ganea conjecture
[11], [14] to obtain the following: Given an r-reduced CW-complex X and n ½ r, then
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one has RŁ-cat(X ð Sn) = RŁ-cat(X) + 1 provided RŁ is tame. In particular, if Ri = R for
i � m�r, X is R-local and R-dim(X)+n � m, then cat(XðSn) = cat(X)+1. The idea is to
dualize the proof of [11], [14] to the category of cocommutative differential coalgebras.
In fact, we know of such attempts presently undertaken.

1. LS-category and RŁ-homotopy. We first recall some facts about classical LS-
category. Then we shall discuss RŁ-homotopy theory (with tame homotopy theory as a
particular case) and consider the fibre-cofibre construction in model categories. In 1.4
we define RŁ-category. In 1.5 we recall an invariant of Félix-Lemaire and prove our first
main result. As an application we prove in 1.6 a mapping theorem for LS-category of
r-reduced R-local CW-complexes of R-dimension� m. In Section 1.7 we transfer, in the
tame situation, the definition of RŁ-cat to the homotopy category of Lies.

In all what follows “space” will mean a pointed space of the pointed homotopy type
of a pointed CW-complex.

1.1. Lusternik-Schnirelmann category. We refer to the survey article [13] for a discus-
sion of all the statements in Section 1.1.

DEFINITION 1.1. The Lusternik-Schnirelmann category, cat(X), of a space X is the
smallest integer k, k ½ 0, such that X can be covered by (k + 1) open subsets which are
contractible in X, or it is infinity, if no such k exists.

NOTE. The original definition [16] worked with k ½ 1 and coverings by k open
contractible sets.

Recall that the “fat wedge”, Tk(X), of a space X is the subspace of Xk+1 of points
having at least one component equal to the base point. Then one has:

PROPOSITION 1.2. For any X cat(X) is the smallest integer k (or infinity) such that
the diagonal ∆: X ! Xk+1 factors up to homotopy through the inclusion j: Tk(X)! Xk+1;
i.e. there exists õ: X ! Tk(X) with ∆ ¾ j Ð õ.

We also have to recall the “fibre-cofibre construction”:

Given a map Y ! X. Factorize it as Y
¾
! Y0 p0

!! X, a homotopy equivalence followed
by a fibration p0 (We call p0 the associated fibration of Y ! X). Let F0 be the fibre of p0

and form Y1 := Y0 [ C(F0) where C(F0) is the reduced cone on F0 and define p1: Y1 ! X
by p1jY0 = p0, p1jC(F0) = Ł. The map p1 is called the fibre-cofibre construction of Y ! X.

The sequence pi: Gi(X) ! X of Ganea maps is inductively defined as follows: p0 is
Ł ! X and pi is the fibre-cofibre construction of pi�1 for i ½ 1. The associated fibrations
are called Ganea fibrations.

Note that G1(X)! X is equivalent to the evaluation map ΣΩ(X)! X (where Ω resp.
Σ denotes loop space resp. reduced suspension).

PROPOSITION 1.3. The value cat(X) is equal to the smallest integer k (resp. infinity)
such that pk: Gk(X)! X admits a section up to homotopy.
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REMARK. Gilbert proved this [10] by showing that the k-th Ganea fibration is equiva-
lent over X to the pullback by ∆: X ! Xk+1 of the fibration associated to j: Tk(X)! Xk+1.

For a proof in a more general setting see [3].

1.2. RŁ-homotopy. Let the subring R � Q and the integer r ½ 3 be fixed. An R-system
of rings is a sequence RŁ = (Ri)i½0 of increasing subrings of Q such that R � R0.

The R-system RŁ is called “tame”, if each k ½ 0 with 2k� 3 � i is invertible in Ri.

Denote by S the category of simplicial sets and by Sr the category of r-reduced
simplicial sets. The category Sr carries the following closed model category structure, to
be denoted by RŁ-Sr, [5]: The cofibrations are the injective maps; the weak equivalences
are the maps f such that ôr+i(f ) 
 Ri is an isomorphism for all i ½ 0; the fibrations are
implicitly defined.

We will need a partial direct characterization of fibrations in RŁ-Sr given in [5]: A
morphism f in RŁ-Sr is a fibration in RŁ-Sr and ô0(f )
R0 is surjective, if and only if f is
a Kan fibration in S and for all k ½ 0 (a) ôr+k(F) is an Rk-module (F the fibre of f ) and
(b) cokernel

�
ôr+k+1(f )

�
is without p-torsion, p invertible in Rk+1.

In particular, an object X 2 RŁ-Sr is fibrant, if it is a Kan complex and ôr+i(X) is an
Ri-module for i ½ 0.

If Ri = R, i ½ 0, we denote RŁ-Sr by R-Sr; the fibrant objects are then called “R-
local”, and the corresponding homotopy theory is the usual R-local homotopy theory
(From Q-Sr we obtain rational homotopy theory).

Note that Z-Sr defines “ordinary” homotopy theory.

We will also have to consider a particular subcategory of the homotopy category
Ho-RŁ-Sr of RŁ-Sr.

An r-reduced R-local CW-complex of R-dimension m is a cellular complex con-
structed from Ł by successively attaching cones on R-local spheres, Sn

R, r� 1 � n Ú m.

Let R�CWm
r be the category of such spaces. Then (see [17]) the ordinary homotopy

category of R-CWm
r embeds as a full subcategory into Ho-RŁ-Sr provided Ri = R for

i = 0Ò    Òm� r.

NOTATION. We use “¾
RŁ

” (resp. “¾”) to denote weak equivalences in RŁ � Sr (resp.

Z � Sr). The ornamented arrows “ ”, “!!” indicate cofibrations (resp. fibrations) in
various model categories.

1.3. The fibre-cofibre construction in a model category. Let M be a pointed model
category. We want to give a simple-minded fibre-cofibre construction in M . In fact it is
the exact analogue of the ordinary construction recalled in 1.1. On the other hand it is a
particular case of the more general “join” construction of J. P. Doeraene [3].

Let X 2 M be fibrant. Let Y ! X be a morphism with Y cofibrant. Factor Y ! X
into Y

¾
X0 !! X, a cofibration and weak equivalence followed by a fibration. Let F0

be the fibre of X0 !! X and factor F0 ! Ł in F0 C(F0)
¾
! Ł, a cofibration followed by
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a weak equivalence. Define Y1 ! X by the following diagram:

F0 ��! X0

???y pushout
???y

C(F0) ��! Y1 ��! X

We now assume that M satisfies the following property:

(Ł) Given a fibration Z0 ! Z in M with Z0 cofibrant, then the fibre is cofibrant.

One can then show that up to weak equivalence over X the morphism Y1 ! X does
not depend on the choices made, nor does it depend on the weak equivalence class of Y
over X (all objects over X taken cofibrant!). The assumptions have been arranged such
that the gluing lemmas (comp. [2]) can be applied. No assumption about “properness”
of M is needed.

1.4. RŁ-LS-category. Let M be a model category as above. For X fibrant we can
then define a sequence of Ganea maps by starting at Ł ! X giving rise to a notion of
M -LS-category in analogy to 1.1. For details we refer to [3] and [4].

Applying this procedure to RŁ-Sr leads to the following phenomenon which—from a
geometrical viewpoint—is undesirable:

Let S3
Q be the Q-local sphere (and a Kan complex) in Q � S3. Then the map Ł ! S3

Q

is a fibration. With M = Q� S3 this implies that all M -Ganea fibrations of S3
Q are equal

to Ł ! S3
Q and M -cat(S3

Q) = 1 (see [4]). Of course, the usual category of the “space”
S3
Q is 1.

On the other hand we wish to have a good definition of cat in the model categories
RŁ-Sr. For, if RŁ is tame, we can then read the definition in the category Lies of Lie
algebras.

The solution is to change the beginning of the construction of the Ganea fibrations.
We need the following convention: Let f be a map between (r� 1)-connected spaces.

Then a morphism f 0: K ! L in Sr is called a model of f , if there exists a homotopy
commutative diagram

X
¾
 � jKj

f

???y
???y jf 0j

Y
¾
 � jLj

where j�j means geometric realization and “¾” homotopy equivalence.
Such a model always exists. One may take for K the subcomplex rS(X) of the singular

complex of X consisting of those simplices whose i-th faces are at Ł for i Ú r, and
similarly L := rS(Y). Then the diagram

X
¾
 � jrS(X)j???y

???y
Y

¾
 � jrS(X)j

even commutes. The above definition, however, will enable particular choices.
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DEFINITION 1.4. Let X 2 RŁ-Sr be fibrant.
Define q1: RŁ-G1(X) ! X as a model of G1(jXj) ! jXj and qi: RŁ-Gi(X) ! X as the

fibre-cofibre construction of qi�1 for i ½ 2. (Note that RŁ-Sr satisfies condition 1.3 (Ł),
because all objects are cofibrant).

The spaces RŁ-Gi(X), i ½ 1, will be called Ganea spaces in RŁ-Sr, the fibrations
associated to the qi are the Ganea fibrations.

DEFINITION 1.5. Let X 2 RŁ-Sr.
If X is homotopy equivalent to Ł in the homotopy category of RŁ-Sr, then we set

RŁ-cat(X) = 0.
Otherwise we define RŁ-cat(X) := inffn j qn: RŁ-Gn(Xf ) ! Xf admits a section in

the homotopy categoryg. (Here Xf is a fibrant model of X. Therefore, by definition
RŁ-cat(X) = RŁ-cat(Xf )).

(Note that—by the discussion above—the definition does not depend on the choice
of the fibrant model of X).

CONVENTIONS. Since for X 2 Z-Sr we have cat(jXj) = Z-cat(X), we will in the
following simply write cat(X) for Z-cat(X).

If X is an (r� 1)-connected space, we will write RŁ-cat(X) for RŁ-cat(K), where K is
a model of X in Sr.

1.5. Comparing cat, RŁ-cat and an invariant of Félix-Lemaire.

DEFINITION 1.6. Let X 2 RŁ-Sr, let Tk(X) ² Xk+1 be the fat wedge, let Tk(X)f and
Xk+1

f be fibrant models. Denote by ∆̃k: X ! Xk+1
f the composition of ∆k: X ! Xk+1 with

Xk+1 ! Xk+1
f . Then one sets [8], [9]

fw -RŁ- cat(X) := inffk j k ½ 0 and ∆̃k factors through Tk(X)f ! Xk+1
f in

the homotopy category of RŁ-Srg.

(Of course, “fw” should remind us of “fat wedge”).

We are now able to formulate the first main result:

THEOREM 1. Let X be an (r� 1)-connected CW-complex.

(i) Then fw-RŁ-cat(X) = RŁ-cat(X) � cat(X).
(ii) If RŁ is an R-system such that Ri = R for i = 0Ò    Òm � r and X is an R-local

CW-complex of R-dim(X) � m, then RŁ-cat(X) = cat(X).

The proof will follow easily from two lemmas. To simplify the notation we will
notationally not distinguish between the Ganea maps and the associated Ganea fibrations.
(Recall that Gi(X) denotes Ganea space with respect to Z-Sr).

LEMMA 1.7. Let X 2 RŁ-Sr be fibrant. Then Gi(X)f is equivalent in RŁ-Sr over X to
RŁ-Gi(X) for i ½ 1.
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PROOF. The existence of a commutative diagram

G1(X) ��!eRŁ

RŁ-G1(X)

X

follows from the definitions. Both fibrations are Kan fibrations and surjective on homo-
topy groups. Hence the long exact homotopy sequences decompose into short ones what
implies that the map induced on the fibres is a weak equivalence in RŁ-Sr. By induction
we now suppose that, for i ½ 2, a weak equivalence Gi�1(X) ! RŁ-Gi�1(X) over X
exists; it induces a weak equivalence between the respective fibres Fi�1 and RŁ-Fi�1. In
the following diagram

Gi�1(X) [ C(Fi�1) ��!eRŁ

RŁ-Gi�1(X) [ C(RŁ-Fi�1)

¾

???y ã

???y eRŁ

Gi(X) !! X   RŁ-Gi(X)

the weak equivalence ã in RŁ-Sr making the diagram commute exists by the properties
of a closed model category.

LEMMA 1.8. For each X 2 RŁ-Sr one has

fw -RŁ- cat(X) = RŁ- cat(X)

PROOF. We assume X fibrant and regard the following diagram.

å

ã

Gk(X)
¾
��! P ��! E

¾
 � Tk(X) ��!eRŁ

Tk(X)f  � Q

???y
???y

???y
???y

???y
???y

???y
???y

X
∆
��! Xk+1 = Xk+1 = Xk+1 ∆

 � X

The map Tk(X)! Xk+1 is factored into a product of a trivial cofibration Tk(X)
¾

E and
a fibration E !! Xk+1 in SŁ on one side; on the other side it is factored into a product
of a weak equivalence Tk(X) ! Tk(X)f and a fibration Tk(X)f !! Xk+1 in RŁ-Sr. The
morphisms P ! X and Q ! X are the pullbacks by ∆. The morphism ã making the
diagram commute exists by the properties of the model category RŁ-Sr; hence å exists
by the pullback property.

Observe that E ! Xk+1 and Tk(X)f ! Xk+1 induce surjective homomorphisms of
homotopy groups. It follows in particular that Tk(X)f ! Xk+1 is also a Kan fibration (by
the criterion recalled above). Therefore the exact homotopy sequences of E! Xk+1 and
Tk(X)f ! Xk+1 decompose into short exact sequences. Since ã is a weak equivalence in
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RŁ-Sr, this implies that the map induced byã on the fibres of E! Xk+1 and Tk(X)f ! Xk+1

is a weak equivalence in RŁ-Sr. Then it follows from the exact homotopy sequences of
P! X and Q! X that å is a weak equivalence in RŁ-Sr.

By [10] there is a weak homotopy equivalence (in Sr) Gk(X) ! P over X; by

Lemma 1.7 we deduce RŁ-Gk(X)
eRŁ

! Pf . Thus fw-RŁ-cat(X) = RŁ-cat(X).

PROOF OF THEOREM 1. Part (1) is given by Lemma 1.8 because, obviously, cat(X) ½
fw-RŁ-cat(X).

To prove part (2) it suffices to show that cat(X) � fw-RŁ-cat(X). Since X is R-local,
so is the fat wedge Tk(X). Hence Tk(X) ! Tk(X)f is an m-equivalence (in the R-local
sense), and the result follows.

1.6. A mapping theorem for cat in CWm
r . Suppose f : X ! Y is a morphism in RŁ-Sr.

Assume that Ω(Xf ) and Ω(Yf ) are homotopy equivalent to weak products of Eilenberg-
MacLane complexes and that fŁ:ôi(Xf ) ! ôi(Yf ) is split injective for i ½ r. By [8] we
then have RŁ-cat(X) � RŁ-cat(Y). In particular, if RŁ is an R-system and XÒY 2 CWm

r ,
then cat(X) � cat(Y). But in that case the following is the appropriate formulation:

PROPOSITION 1.9. Let XÒY 2 CWm
r and f : X ! Y be a map. Suppose R-dim(X) �

k � m; assume that fŁ:ôi(X) ! ôi(Y) is split injective for i � k and that there is a
k-equivalence ΩY !

Qk
i=r K

�
ôi(Y)Ò i � 1

�
.

Then we have cat(X) � cat(Y).

PROOF. Consider the fibre sequence

! ΩX! ΩY
h
��! F! X

f
��! Y

of the map f . Denote by Ai the cokernel of ôi(f ), r � i � k. Then there is a k-equivalence

ΩY
(gÒh)
��!

� kY
i=r

K(AiÒ i � 1)
�
ð F

Let Fk ! F be a k-equivalence with Fk R-local of R-dim � k. Then Fk ! F factors (up to
homotopy) through h: ΩY ! F and hence the composite Fk ! F! X is nullhomotopic.
Assume cat(Y) � q and let Y0 [ Ð Ð Ð [ Yq be a covering of Y by in Y contractible
subcomplexes. We may assume that f is cellular. Let Xi = f�1(Yi), then Xi ! X factors
through F ! X and (Xi)R ! X through Fk ! X, because R-dim(Xi)R � k. Hence
cat(X) � q.

REMARK. If RŁ is tame, a k-equivalence ΩY !
Qk

i=r K
�
ôi(Y)Ò i � 1

�
exists [19].

1.7. Translating the definition of RŁ-cat into Lies. Let RŁ be an R-system, r ½ 3 and
s = r� 1.

Denote by Chs the category of s-reduced chain complexes over R. It carries the
following closed model category structure: The cofibrations are the injective morphisms
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with degreewise projective cokernel; the weak equivalences are the morphisms f such
that Hs+i(f ; Ri) is an isomorphism for all i ½ 0; a morphism f is a fibration, if it is
surjective in degreesÙ s, if Hs+i (kernel (f )) is an Ri-module and if cokernel (Hs+i(f )) is
without q-torsion for q invertible in Ri, i ½ 0. This closed model category structure is
denoted by RŁ-Chs.

Assume now that RŁ is mild, i.e. for i ½ 0 the positive integers k with sk � s + i are
invertible in Ri. Note that “tame” implies “mild”.

Then [5] the category Lies of s-reduced differential Lie algebras over R has the
following closed model category structure denoted by RŁ-Lies: A morphism in Lies is a
weak equivalence (resp. a fibration) if it is a weak equivalence (resp. fibration) as map
in RŁ-Chs; the cofibrations are implicitly defined.

By [5] there is a sequence of pairs of adjoint functors between RŁ-Lies and RŁ-Sr

inducing adjoint functors on the corresponding homotopy theories (comp. [20]). If RŁ is
tame, these induced functors are equivalences. If L 2 RŁ-Lies and X 2 RŁ-Sr correspond
to each other via these functors, L is called a model of X.

REMARK. To avoid the presence of 2- and 3-torsion in free Lie algebras over R we
suppose that the Lie bracket always satisfies the following conditions:

(1) For all x of pair degree [xÒ x] = 0,
(2) For all homogeneous x one has

h
xÒ [xÒ x]

i
= 0.

As it was remarked in [20] this has no effect on Ho-RŁ-Lies for RŁ mild.

DEFINITION 1.10. Let L 2 RŁ-Lies be fibrant.

The first Ganea map RŁ-G1(L)! L is a model of RŁ-G1(X)! X where L is a model
of the fibrant object X.

For i ½ 2, the Ganea maps RŁ-Gi(L)! L are given by the fibre-cofibre construction
on RŁ-Gi�1(L)! L.

Property 1.3(Ł) is true for RŁ-Lies, because the cofibrant objects are the free Lie
algebras and sub-Lie algebras of free ones are free.

DEFINITION 1.11. In analogy to Definition 1.5 we define RŁ-cat(L) for L fibrant.
(Details may be omitted).

For arbitrary K 2 RŁ-Lies we set RŁ-cat(K) := RŁ-cat(Kf ) where Kf is a fibrant model
of K.

PROPOSITION 1.12. Let RŁ be tame. Let X 2 RŁ-Sr and L be a model of X in RŁ-Lies.
Then RŁ-cat(X) = RŁ-cat(L).

PROOF. We may assume XÒL fibrant. Then, by definition, RŁ-G1(X) ! X and RŁ-
G1(L) ! L correspond to each other under the equivalence of homotopy theories. By
[4] also the following fibre-cofibre constructions RŁ-Gi(X) ! X and RŁ-Gi(L) ! L
correspond.
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2. RŁ-cat and LS-fibrations.

2.1. LS-fibrations in RŁ-Sr.

DEFINITION 2.1. Let X 2 RŁ-Sr with fibrant model Xf .
A map f : Y ! X0 is called an “n-LS-morphism”, if two commutative rectangles exist

in Ho-RŁ-Sr as follows:
RŁ-Gn(Xf )  ��! Y???y

???y f

Xf eRŁ

X0

If f is a fibration, we call it an “n-LS-fibration”.

REMARK. If Yn ! X0
n, n ½ 1, is a sequence of n-LS-morphisms, then RŁ-cat(X) = 0,

or RŁ-cat(X) = inffn j Yn ! X0
n admits a section in Ho-RŁ-Srg.

Following [21] we will construct sequences of n-LS-morphisms in RŁ-Sr (and in
RŁ-Lies in 2.2).

Let Ω̄( ) denote a suitable loop space functor Ω̄: Sr ! Sr�1.

THEOREM 2. Let X 2 RŁ-Sr and Y ! X a morphism in Sr such that
(i) Ω̄(Yf )! Ω̄(Xf ) admits a section up to homotopy,

(ii) RŁ-cat(Y) � 1,
then Y ! X is a 1-LS-morphism; the homotopy fibre F of Y ! Xf has RŁ-cat(F) � 1.

PROOF. The proofs of [21], Proposition 2.2 and Proposition 4.5 apply here as well.
(In fact, the proof can also be left as an exercise).

DEFINITION 2.2. Let a pointed model category M be given. Let F
i
! E

f
! X be a

fibration in M with fibre F. Let j: A ! F; we factorize A ! Ł as A C(A)
¾
! Ł and

define E0 ! X by the diagram

A
j

��! F
i

��! E???y pushout
???y

C(A) ��! E0 ��! X

The construction will be called “modified fibre-cofibre construction with respect to j”.

THEOREM 3. Let X 2 RŁ-Sr be fibrant, let F ! E! X be an n-LS-fibration. Given
j: A ! F let E0 ! X be the modified fibre-cofibre construction with respect to j.

If F! E0 is trivial in Ho-RŁ-Sr, then E0 ! X is an (n + 1)-LS-morphism.

PROOF. The proof of Théorème 1 in [21] applies here as well.
We also want to transcribe the way the holonomy was used in [21] into the present

situation.
Let X 2 RŁ-Sr be fibrant and f : E! X a fibration such that ôr
R0 is surjective. Then

f is also a Kan fibration and we may consider its holonomy (calculated in Sr�1)

m: Ω̄(X) ð F! F
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where F is the fibre of f .

Given A
j
! F we denote by

m0: Ω̄(X)ð A! F

the composition of m with (idðj): Ω̄(X)ð A! Ω̄(X)ð F.
If the connecting map (of the Kan fibration) ] : Ω̄(X) ! F is homotopically trivial,

we obtain a map

m̄0: Ω̄(X)ð AÛΩ̄(X)! F

Note that ] ¾ Ł, if f is an LS-fibration.
Let E0 ! X be obtained by the modified fibre-cofibre construction with respect to m̄0.

PROPOSITION 2.3. Let f be an n-LS-fibration and m̄0 a homotopical epimorphism in
RŁ-Sr (i.e. the homotopy class of m̄0 is an epimorphism in Ho-RŁ-Sr in the categorical
sense). Then E0 ! X is an (n + 1)-LS-morphism whose homotopy fibre (with respect to
RŁ-Sr) F0 has RŁ-cat(F0) � 1.

PROOF. Let RŁ-E0 ! X be the fibration associated to E0 ! X in RŁ-Sr (whose fibre
is F0 by definition), let Ẽ0 ! X be the fibration associated to E0 ! X in Z-Sr with fibre
F̃. From the diagram

F̃ F0

# #

Ẽ0  �
¾

E0 ��!eRŁ

RŁ-E0

???y
X

follows the existence of a map Ẽ0 ! RŁ-E0 inducing a weak equivalence F̃ ! F0 in
RŁ-Sr. Note that ôr(E0)! ôr(X) is surjective, hence Ẽ0 !! X is a Kan fibration and F̃ is
the homotopy fibre of E0 ! X in the category of pointed simplicial sets.

Hence, by [21] there is a cofibration sequence

Ω̄(X)ð AÛΩ̄(X)
m̄0

��! F �! F̃

Therefore F! F̃ and, by the above, F! F0 is homotopically trivial in RŁ-Sr. Moreover,
cat(F̃) � 1 by [21], Lemma 4.7, thus RŁ-cat(F0) � 1.

REMARK. Theorem 2 and Proposition 2.3 allow the construction of a sequence of
n-LS-fibrations, n ½ 1. In this context a criterion for “homotopical epimorphism” is
provided by the following result.

LEMMA 2.4. Let RŁ be tame. Let g: Y ! Z be a morphism in RŁ-Sr, let RŁ-cat(Y),
RŁ-cat(Z) � 1. Then g is a homotopical epimorphism in RŁ-Sr provided the induced
homomorphisms Hr+i(Y; Ri)! Hr+i(Z; Ri) are split surjective, i ½ 0.

https://doi.org/10.4153/CJM-1998-045-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-045-4


LUSTERNIK-SCHNIRELMANN CATEGORY 855

PROOF. For any R-module A let M(AÒ k), k ½ 3, be a Moore space with reduced
homology isomorphic to A concentrated in degree k. It follows from the assumptions on
RŁ-cat that Y and Z are equivalent to

W
i½0 M(Hr+i(Y; Ri)Ò r + i) resp.

W
i½0 M(Hr+i(Z; Ri)Ò

r + i) in Ho-RŁ-Sr. Therefore, in Ho-RŁ-Sr there exists h: Z ! Y such that ḡ Ž h = idZ

(where ḡ is the image of g in Ho-RŁ-Sr).

NOTE. Let us assume that RŁ-cat(A) � 1. Then we have also
RŁ-cat

�
Ω̄(X) ð AÛΩ̄(X)

�
� 1. For, if A is equivalent in RŁ-Sr to a suspension ΣA0, then

Ω̄(X)ð ΣA0ÛΩ̄(X) being homotopy equivalent to (Ω̄(X) ^ ΣA0) _ ΣA0 is a suspension.

Hence, if also RŁ-cat(F) � 1, the criterion of Lemma 2.4 can be applied to
m̄0: Ω̄(X)ð AÛΩ̄(X)! F.

2.2. Sequences of LS-applications in RŁ-Lies. We assume again that RŁ is a tame R-
system.

The results of Section 2.1 have to be translated into the language of RŁ-Lies.

PROPOSITION 2.5. Let L 2 RŁ-Lies be fibrant. Let (VÒ d) be a free chain complex over
R, L(VÒ d) the free R-Lie algebra over (VÒ d) and assume that L(VÒ d)! L is given such
that Hs+i

�
L(VÒ d)
 Ri

�
! Hs+i(L
Ri) is split surjective for i ½ 0. Then L(VÒ d)! L is

a 1-LS-morphism whose homotopy fibre F has RŁ-cat(F) � 1.

PROOF. Let Y ! X be a map between fibrant objects of RŁ-Sr which corresponds to
L(VÒ d)! L. Then [19], Ω̄(Y) and Ω̄(X) are homotopy equivalent to the weak products

of the Eilenberg-MacLane-spaces K
�

Hs+i

�
L(VÒ d)
Ri

�
Ò s+i

�
resp. K

�
Hs+i(L
Ri)Ò s+i

�
.

Therefore, up to a homotopy equivalence of Ω̄(X) a section up to homotopy of Ω̄(Y)!
Ω̄(X) can be constructed; hence Ω̄(Y)! Ω̄(X) has a section up to homotopy.

Moreover, L(VÒ d) models a suspension by [6], hence RŁ-cat(Y) � 1. The result
follows from Theorem 2.

Let L be fibrant. Let En ! L be an n-LS-fibration, n ½ 1, such that En is cofibrant
and such that the fibre Fn has RŁ-cat(Fn) � 1.

As in [21] we now want to use the holonomy of the fibration En ! L to simplify the
construction of the next (n + 1)-LS-morphism. We need some more conventions:

For any complex D 2 Chs we set HŁ(D; RŁ) :=
L

i½0 Hs+i(D; Ri).

If L 2 Lies, we denote by ab(L) the abelianization of L.
Recall that, if L is cofibrant, HŁ

�
ab(L); RŁ

�
is up to a degree shift by 1 the homology of

the space corresponding to L. By [6] there exists a free chain complex (WÒ d) over R and
a weak equivalence L(WÒ d) ! Fn in RŁ-Lies; in particular, we have HŁ

�
ab(Fn); RŁ

�
≤

HŁ(W; RŁ).
Recall that, if L is cofibrant, then there is an algebra isomorphism HŁ

�
U(L); RŁ

�
!

HŁ(Ω̄X; RŁ) (where U(L) denotes the universal enveloping algebra of L) [18].

Let ú: HŁ(L; RŁ)! HŁ(En; RŁ) be a section. We define an operation of U
�
HŁ(L; RŁ)

�
on HŁ(W; RŁ) ≤ HŁ

�
ab(Fn); RŁ

�
by defining it on the generators hui 2 Hs+‡(L; R‡) by
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the formula

Hs+‡(L; R‡)
Hs+k

�
ab(Fn); Rk

�
! H2s+‡+k

�
ab(Fn); Rs+‡+k

�

hui 
 hwi 7! h[ú 0(u)Òw]i

where the symbol “h�i denotes homology class, where ú0(u) 2 ú(hui) and [� Ò�] is the
Lie bracket.

One deduces from [21], Theorem 2, that this operation coincides with the one induced
by the holonomy map. Thus we finally obtain:

PROPOSITION 2.6. Let (VÒ d) be a subcomplex of (WÒ d), set j equal to the composition
L(VÒ d)! L(WÒ d)! Fn; assume that

M
k½0

M
i+j=k

Us+i

�
HŁ(L; RŁ)

�

Hs+j(A; Rj)
 Rk ! HŁ(W; RŁ)

is split surjective. Then the modified fibre-cofibre construction on En ! L with respect
to j is an (n + 1)-LS-morphism.

2.3. Computation of cat in algebraic R-local homotopy theory. Let RŁ be a tame R-
system with Ri = R for i � m � r. Recall ([17], or [1]) that the homotopy category
of CWm

r (see Proposition 1.2 for definitions) is equivalent to the full subcategory of
Ho-RŁ-Lies given by the free differential Lie algebras L over R with only generators x
such that s � degree(x) � m� 1.

Given such a Lie algebra let us inspect what we really need to calculate its LS-category.

(i) To construct L Lf involves only adding generators in degrees ½ m. Thus, if
En ! Lf is an LS-fibration, the existence of a section is already detected in degrees
� m� 1 (i.e. on L).

Moreover, if E0
n ! Lf is an LS-morphism which is surjective in degrees� m� 1, the

construction of an LS-fibration E0
n

¾
En !! Lf involves again only attaching generators

in degrees½ m.

(ii) In the first step (Proposition 2.5) we need to calculate Hs+i(L; Ri) for s + i �
m� 1. We then can choose (V1Ò d1) (concentrated in degrees between s and m) such that
L(V1Ò d1)! Lf is surjective in degrees� m� 1 and Hs+i(L(V1Ò d1); R)! Hs+i(Lf ; R) is
split surjective for s + i � m� 1. Then we may choose L(V2Ò d2) ! Lf , V2 m-reduced,
such that L(V1Ò d1) t L(V2Ò d2) ! Lf satisfies the conditions of Proposition 2.5. (But
(V2Ò d2) is not needed for the interesting part in the next construction).

(iii) Suppose the n-LS-fibration En ! Lf has been constructed. Let Fn be the fibre.
Then we need only to know Hs+i(Fn; R) for s+i Ú m�1 to construct an (n+1)-LS-fibration
up to degrees� m� 1.

Let us give two examples.
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EXAMPLE 2.8. Let R = Z[ 1
2 Ò

1
3 Ò

1
5 ]. Let XR be the R-local space corresponding to the

following Lie algebra where p Ù 5 is prime.

(LÒ ] ) =
�
L(x1Ò x2Ò yÒw)Ò ]

�
; jx1j = jyj = 3Ò jx2j = 4Ò jwj = 10Ò

] x1 = ] y = 0Ò ] x2 = px1Ò ] w =
h
x1Ò [yÒ y]

i

In fact, XR is the localization of X =
�
(S4 [ e5) _ S4

�
[ e11 with suitable attaching maps.

Inside the first step we choose L(V1Ò d1) ! L as follows: L(V1Ò d1) = L(x̂1Ò x̂2Ò ŷÒ ã2Ò

ã1), d1x̂2 = px̂1, d1ŷ = 0, d1ã2 = ã1; x̂1 7! x1, x̂2 7! x2, ŷ 7! y, ã2 7! w, ã1 7! dw =h
x1Ò [yÒ y]

i
.

10 w 7�!
ã2

9
h
x1Ò [yÒ y]

i
ã1

8
7
6
5
4 x2 x̂2

3 x1Ò y x̂1ŷ

Next we have to determine kernel(L(V1) ! L) in degrees � 10. It is generated as R-
module by ã1�

h
x̂1Ò [ŷÒ ŷ]

i
. Obviously, L(V1)! L does not yet admit a section. Looking

at the next step, L(V1)tL(u), du = ã1�
h
x̂1Ò [ŷÒ ŷ]

i
, we see the section L ! L(V1)tL(u),

x1 7! x̂1, x2 7! x̂2, y 7! ŷ, w 7! ã2 � u.
Therefore cat(XR) = 2. (We knew already at the beginning cat(XR) � cat(X) � 2,

because X is a 2-cone).

EXAMPLE 2.9. Let now R = Z[1Û2Ò 1Û3Ò 1Û5Ò 1Û7], p Ù 7 prime and (LÒ ] ) =
L(x1Ò x2Ò yÒ zÒw); jx1j = jyj = 3; jx2j = 4, jzj = 7, jwj = 14 and ] x1 = ] y = 0, ] x2 = px1,
] z = [yÒ y], ] w =

h
x1Ò [yÒ z]

i
. The corresponding space is the R-localization of

Y =
��

(S4 [ e5) _ S4
�
[ e8

�
[ e15

with suitable attaching maps; in fact, Y is the analogue with torsion of the Lemaire-Sigrist
example [15].

Since Y is a 3-cone, we know cat(YR) � cat(Y) � 3.
To prove cat(YR) = 3 we even do not need to complete the first step.
Inside the first step define L(WÒ ] ) ! L, L(W) = L(x̂1Ò x̂2Ò ŷÒ ẑÒ ã), ] x̂2 = px̂1, ] ŷ =

]ã = 0, ] ẑ = ã and x̂1 7! x1, x̂2 7! x2, ŷ 7! y, ã 7! [yÒ y], ẑ 7! z.
The morphismL(W)! L is surjective and split surjective in homology up to degree 9.

In degrees� 9 the kernel of L(W)! L is generated as R-module by the cycles ã� [ŷÒ ŷ]
and

h
ŷÒ ã � [ŷÒ ŷ]

i
;
h
ŷÒ ã � [ŷÒ ŷ]

i
is given by the map induced by the holonomy. Hence,
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in the next step one adds a generator u with du = ã � [ŷÒ ŷ] (in degrees� 9).

Step 1 Step 2
9
8
7 z ẑ u
6 [yÒ y] ã
5
4 x2 x̂2

3 x1y x̂1ŷ

The first (completed) step does not have a section. In the second step an eventual
section õ is uniquely determined by õ(x1) = x̂1, õ(x2) = x̂2, õ(y) = ŷ, õ(z) = ẑ � u.
Whatever the completed second step may be, õ(dw) = õ

h
x1Ò [yÒ z]

i
=
h
x̂1Ò [ŷÒ ẑ]

i
�h

x̂1Ò [ŷÒ u]
i
. But, whatever element a = õ(w) in degree 14 one chooses, the expressionh

x̂1Ò [ŷÒ u]
i

cannot appear in d(a), only multiples of p
h
x̂1Ò [ŷÒ u]

i
can. Thus the second

LS-fibration does not admit a section and cat(YR) = 3.
We remark that the Toomer invariant of Y is 2, the cuplength of Y is 2 and cat(YQ) = 2.

3. The model LC (LÒ ] )! (LÒ ] ).

3.1. The analogue of the Félix-Halperin characterization of cat. Let Coalgr be the cat-
egory of differential cocommutative r-reduced coalgebras which are free as R-modules.
Let Lies be the full subcategory of Lies of Lie algebras which are free as R-modules. Then,
for a mild system RŁ, the full subcategory Ho-Lies of Lies in Ho-RŁ-Lies is equivalent to
Ho-RŁ-Lies.

We have adjoint functors

L: Coalgr
 ! Lies : C 

which—after tensorizing with Z[1Û2]—become the classical functors. If RŁ is a mild
system, the category Coalgr can be endowed with the structure of a cofibration category
such that the above adjoint functors induce equivalences

Ho - Coalgr
 ! Ho -Lies

In particular LC (LÒ ] )! (LÒ ] ) is a weak equivalence. (Comp. [20]).
Given D 2 Coalgr, let PnD be the n-th term in the primitive filtration of D, i.e., if ∆̄

denotes the reduced diagonal, then PnD := kernel
�
(id
∆̄
 Ð Ð Ð 
 ∆̄) Ž Ð Ð Ð Ž (id
∆̄) Ž ∆̄

�
where the composition consists of n factors.

THEOREM 4. Let RŁ be tame. Then Pn(D)! D represents an n-LS-map.

PROOF. It suffices to assume D = C (LÒ ] ), L 2 Lies, L cofibrant, and to show that
L(PnD)! L(D) is an n-LS-map, respectively the composition L(PnD)! L(D)

¾
! L.

This is the content of the next result.
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PROPOSITION 3.1. Let (LÒ ] ) 2 Lies be cofibrant. Then L
�

Pn

�
C (LÒ ] )

��
! (LÒ ] ) is

an n-LS-map in RŁ-Lies, RŁ tame.

The proof is based on the following fact.

LEMMA 3.2. For mild RŁ there exists a homotopy in RŁ-Chs between the injection

L
�

Pn

�
C (LÒ ] )

��
! L

�
Pn+1

�
C (LÒ ] )

��
and the composition † of the restriction of

LC (LÒ ] )! (LÒ ] ) with the injection (LÒ ] )! L
�

Pn+1

�
C (LÒ ] )

��
.

PROOF OF PROPOSITION 3.1. First we observe that L
�
PnC (LÒ ] )

�
! (LÒ ] ) is surjec-

tive and split surjective in homology. Denote by Kn its kernel and construct the following
diagram

Kn ��! Fn???y
???y

L
�
PnC (LÒ ] )

� ¾
��! En???y

???y
???y

(LÒ ] )
¾
��! (LÒ ] )f

by factorizing L
�
PnC (LÒ ] )

�
! (LÒ ] )f appropriately, Fn being the fibre of En !! (LÒ ] )f .

It follows that Kn ! Fn is a weak equivalence.
For n = 1 we have L

�
P1C (LÒ ] )

�
≤ L(LÒ ] )! L and it follows from Proposition 2.5

that E1 ! Lf is an 1-LS-fibration with RŁ-cat(F1) � 1.
Suppose inductively that L

�
PnC (LÒ ] )

�
! (LÒ ] ) is an n-LS-map such that its kernel

Kn has RŁ-cat(Kn) � 1. From the lemma we deduce that Kn ! En+1 is homotopically
trivial in RŁ-Chs. There is (WÒ d) such that Kn is homotopically equivalent to L(WÒ d);
the corresponding class L(WÒ d)! En+1 in Ho-RŁ-Chs is trivial.

Recall [19] that if Chs denotes the full subcategory of abelian Lie algebras in Lies

then L(�) and the forgetful functor F

L: Chs
 ! Lies: F

are adjoint and induce adjoint functors on the homotopy categories. Thus (WÒ d) !
En+1 is trivial in Ho-RŁ-Chs; we deduce that L(WÒ d) ! En+1 is trivial in Ho-RŁ-Lies.
By Theorem 3 we conclude that En+1 ! Lf is an (n + 1)-LS-fibration. Note that the
theorem applies, because L

�
Pn+1C (LÒ ] )

�
is the cofibre of the appropriate morphism

L
�

s�1
�
Pn+1C (LÒ ] )ÛPnC (LÒ ] )

��
! Kn. It remains to show that RŁ-cat(Kn+1) = RŁ-

cat(Fn+1) � 1.
The exact homotopy sequence in Ho-RŁ-Lies

! [ΣFnÒEn+1]! [ΣFnÒLf ]! [FnÒFn+1]! [FnÒEn+1]! [FnÒLf ]

decomposes into short sequences, because Ω̄Y ! Ω̄X admits a section (if YÒX fibrant
in RŁ-Sr represent En+1ÒLf resp.). Thus Fn ! Fn+1 is homotopically trivial, hence Fn+1

being a cofibre of a map into Fn we have RŁ-cat(Fn+1) � 1.
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PROOF OF LEMMA 3.2. We shall deduce the result from Proposition 3.3 below about
the Bar construction B and the Cobar construction Ω.

With the arguments for Lemmas 2.6, 2.7 of [20] one can show that

(i) gn: Pn

�
C (LÒ ] )

�
! Pn

�
B
�
U(LÒ ] )

��
is a mild quasi-equivalence (i.e. Hr+i(gn; Ri)

is an isomorphism and Hr+i+1(gn; Ri) an epimorphism for all i ½ 0; and
(ii) Ω(gn) is a mild quasi-equivalence.
By Proposition 3.3 there is a chain homotopy between L

�
PnC (LÒ ] )

�
!

L
�
Pn+1C (LÒ ] )

�
and† considered as chain maps into Ω

�
Pn+1

�
BU(LÒ ] )

��
. Since Ω(gn+1)

is a weak equivalence in RŁ-Chs, the maps are homotopic in RŁ-Chs as maps into
Ω
�
Pn+1C (LÒ ] )

�
. Recall (see below) that as algebra Ω

�
Pn+1C (LÒ ] )

�
is isomorphic to the

tensor algebra T
�
s�1P̄n+1C (LÒ ] )

�
. Let Tk

�
s�1P̄n+1C (LÒ ] )

�
denote the subspace gener-

ated by the tensors of length k and define Ω0
�
Pn+1C (LÒ ] )

�
=
L

k½0 Tk
�
s�1P̄n+1C (LÒ ] )

�



Rk, similarly define L0
�
Pn+1C (LÒ ] )

�
² Ω0

�
Pn+1C (LÒ ] )

�
. There is a retraction

of chain complexes Ω0
�
Pn+1C (LÒ ] )

�
! L0

�
Pn+1C (LÒ ] )

�
. Moreover, the inclusions

L
�
Pn+1C (LÒ ] )

�
! L0

�
Pn+1C (LÒ ] )

�
and Ω

�
Pn+1C (LÒ ] )

�
! Ω0

�
Pn+1C (LÒ ] )

�
are weak

equivalences in RŁ-Chs. Thus the assertion follows.

3.2. The functors Bar and Cobar. Let (AÒ d) be an augmented graded differential asso-
ciative algebra over a ring R such that A is free as R-module. Denote by öA: Ω

�
B(A)

�
! A

the counit of the adjunction given by the bar construction B and cobar construction Ω
[12]. The essential definitions concerning B and Ω will be recalled in the course of the
proof below.

PROPOSITION 3.3. There exists a chain homotopy between the canonical injection
Ω
�
Pi(BA)

�
! Ω

�
Pi+1(BA)

�
and the composition ö of the restriction of öA with the

canonical injection A! Ω
�
Pi+1(BA)

�
.

PROOF. Let Ā be the augmentation ideal of A. The underlying algebra of Ω(BA) is

T
�

s�1(T̄
�
sĀ)

��
(where T( ) denotes the tensor algebra and s the suspension of chain

complexes). We will use different symbols for the two tensor products involved. Thus a

homogeneous element w 2 T
�

s�1
�
T̄(sĀ)

��
will be written as

w = w1
̃w2
̃ Ð Ð Ð 
̃wp

= s�1(sa1
1 
 Ð Ð Ð 
 sa1

n1
)
̃s�1(sa2

1 
 Ð Ð Ð 
 sa2
n2

)
̃ Ð Ð Ð 
̃s�1(sap
1 
 Ð Ð Ð 
 sap

np
)Ò

where wi 2 s�1
�
T̄(sĀ)

�
, ai

j 2 Ā. The differential D on Ω(BA) is of the form D(w) =
D1(w) + D2(w) + D3(w) where

D1(w) = ΣiÒj(�1)¢(iÒj) Ð Ð Ð 
̃s�1(sai
1 
 Ð Ð Ð 
 sai

j)
̃s�1(sai
j+1 
 Ð Ð Ð 
 sai

ni
)
̃ Ð Ð Ð

D2(w) = ΣiÒj(�1)¢(iÒj) Ð Ð Ð 
̃s�1(sai
1 
 Ð Ð Ð 
 sai

j 
 sdai
j+1 
 Ð Ð Ð 
 sai

ni
)
̃ Ð Ð Ð

D3(w) = ΣiÒj(�1)¢(iÒj) Ð Ð Ð 
̃s�1
�
sai

1 
 Ð Ð Ð 
 s(ai
ja

i
j+1)
 Ð Ð Ð 
 sai

ni

�

̃ Ð Ð Ð
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with

¢(iÒ j) =
i�1X
l=1

(jsal
1 
 Ð Ð Ð 
 sal

nl
j + 1) +

jX
l=1
jsai

1 
 Ð Ð Ð 
 sai
lj

The following linear map h: Ω(BA) ! Ω(BA) will allow to construct the homotopy
we are looking for:

h(w) =

8><
>:

0 if n1 Ù 1 or
if n1 = 1 and p = 1

(�1)ja
1
1j+1

�
s�1(sa1

1 
 sa2
1 
 Ð Ð Ð 
 sa2

n2
)
̃w3
̃ Ð Ð Ð 
̃wp

�
if n1 = 1 and p Ù 1.

Easy calculations establish the following properties of h:
(i) if n1 ½ 3, then (hD + Dh)(w) = hDw = w;

(ii) if n1 = 2 and p Ù 1, then

(hD+Dh)(w) = w+(�1)ja
1
1 j(1+ja1

2j)
n

s�1
�
s(a1

1 Ða
1
2)
sa2

1
Ð Ð Ð
sa2
n2

�

̃w3
̃ Ð Ð Ð 
̃wp

o
;

(iii) if n1 = 2 and p = 1, then (hD + Dh)(w) = w;
(iv) if n1 = 1 and p = 1, then (hD + Dh)(w) = 0; if n1 = 1 and p Ù 1, then

(hD + Dh)(w) = w�
n

s�1
�
s(a1

1 Ð a
2
1)
 sa2

2 
 Ð Ð Ð 
 sa2
n2

�

̃w3
̃ Ð Ð Ð 
̃wp

o
;

By induction over the tensor length in 
̃ we conclude from these formulas that for
each w there exists a strictly positive integer j(w) such that

(hD + Dh� id)j(w) = (�1)j(w)ö(w)

In particular, if n1 = n2 = Ð Ð Ð = np = 1 and p Ù 1 we have

(hD + Dh� id)p�1 = (�1)p�1s�1
�
s(a1

1a
2
1 Ð Ð Ð a

p
1)
�


Using h Ž h = D ŽD = 0 we get the general formula

ö(w)� w =
j(w)X
ñ=1

(�1)ñf(hD)ñ + (Dh)ñg

=
j(w)X
ñ=1

(�1)ñf[(hD)ñ�1h]D + D[(hD)ñ�1h]g

Hence, the homotopy we are looking for can be defined as a sum of terms (hD)ãh,
ã ½ 0, provided we can show that

(hD)ãh
�

Ω
�
Pi(BA)

��
² Ω

�
Pi+1(BA)

�


Denote by Ω
�
Pi+1(BA)

�
(1)

the submodule of Ω
�
Pi+1(BA)

�
generated by the homo-

geneous elements w such that nj � i for j ½ 2 and n1 Ù 1. We will in fact prove by
induction that

(hD)ãh
�

Ω
�
Pi(BA)

��
² Ω

�
Pi+1(BA)

�
(1)

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The formula is true for ã = 0. To perform the induction it suffices therefore to establish
that

(hD)
�

Ω
�
Pi+1(BA)

�
(1)

�
² Ω

�
Pi+1(BA)

�
(1)


This follows immediately from formulas (i), (ii), (iii) above.
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