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The basic Idea of Inflation in cosmology Is very simple: It is the 
assumption that the expansion factor R(t) of a Friedmann-Lemaltre 
cosmological model grows exponentially during a brief time Interval In 
the very early universe. The phase of exponential growth is followed by 
a thermallzatlon stage and a subsequent "normal" evolution R ( t ) - v t . 
This "Inflationary expansion" can help to solve cosmological puzzles 
inherent in the standard model - such as the large-scale flatness, the 
horizon structure, the numerical value of the entropy in a comoving 
volume [ for a review see Brandenberger 1985]. To turn this romantic 
Idea of Inflation into a quantitative model requires still a lot of work: 
The simple change in the thermal history of the universe must be 
derived from a fundamental particle theory. The models proposed so far 
do not Inspire much confidence. In the following a few difficulties of the 
Higgs field idea, especially the Coleman-Welnberg formalism will be 
pointed out (section 1) . In section 2 some problems connected with the 
investigation of initially strongly anisotropic or Inhomogeneous 
cosmological models will be mentioned. 

1. Problems in the Particle Physics Input 

There is no generally accepted model for a unified theory of elementary 
particles, but quite generally the concept of a large local gauge 
symmetry G Is usually supplemented in grand unified theories (GUT) by 
the introduction of selflnteracting scalar fields which serve to give a 
mass to some of the gauge bosons. The self-interaction of the Higgs 
field Φ 

V( IΦI > = λ I φ I 4 - σ | φ | 2 (1) 
(λ>0) 

0 2 
has a maximum (depending on the parameters) at IΦI = σ/2λ (Higgs 
phase), with V"< IΦI > > 0. Usually a representative state from the 
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ground state orbit is chosen to define the ground state in the symmetric 
C I φ I = 0) and the Higgs phase C IΦI = ν σ / 2 λ ) . 

A semiclassical picture is often employed which assumes spontaneous 
symmetry breaking, i .e . a nonzero expectation value <φ(χ)> ψ 0 In the 
Higgs phase. Inflationary models use this Idea to describe a phase 
transition of the universe field with Higgs fields with the expectation 
value <φ(χ)> acting as an order parameter. The classical potential 
energy V( IΦ 01 > then has a nonzero "vacuum energy density" 
Iν(0)-Λ / (σ/2λ) I which can appear like a constant energy density in the 
Friedmann equation. Inflation occurs when this constant energy density 
becomes dominant. 

This semiclassical picture may be a reasonable description in lowest 
order perturbation theory, but to test its reliability it should be 
contrasted to the exact results from model theories. 

Studies of Abelian Higgs models on a lattice have yielded mixed results: 
I) Without fixing the gauge there is no spontaneous symmetry breaking, 

i .e . <φ(χ)> = 0 everywhere [see e . g . Borgs, Nill 1986].» 
ii) The gauge can be fixed by requiring the gauge transformations to be 

unity in a fixed direction (axial gauge) [Fröhlich, Morchio, Strocchi 
1981] then aiso <Φ> = 0. 

ill) The so-called α-gauges consist In adding a term Ί/2α ε < 3 μ Α μ ) 2 

to the (euclidean) action. Then for α * 0 there is no spontaneous 
symmetry breaking, <Φ> = 0, in dimensions d < 4. The reasons ly 
in spinwave contributions ~ d d k / ( k 2 ) 2 at k » 0 [Kennedy, King 
1985; Borgs. Nill 1986] 

iv) For α > 0, G = U( 1) , and the coupling g 2 >> 1, again <Φ> = 0. 

The exception is the noncompact case G = R (σ << - 1 , g 2 << 1. 
λ « 1 ) , where indeed <Φ> * 0 [c f . Nill 1987; Borgs, Nill 1986; 
Kennedy, King 1985]. 

The semi-classical picture looses 1:3, but perhaps it wins In 
cosmology. 

In a perturbation approach to quantum field theory the effective potential 
V e f f ( ι φ I ) - Interpreted as the thermodynamic Helmholtz free energy for 
the fields Φ - is computed in "loop" approximations which are basically 
an expansion in orders of ft, of the Euclidean action S E / f t . The 
"1-loop" approximation of the Coleman-Welnberg type gives a 
double-hump potential with a relative maximum at IΦ01 = 0 . This is 
used in inflationary models to describe the time-evolution of the 
classical scalar field Φ 0, according to 

D g OC = VEFF<«>C>- ( 2 > 

The effective potential V e f f must, however, be strictly convex, and the 
1-loop expansion can therefore not be used to describe a time evolution 
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of the scalar field [ e . g . Börner, Seiler 1984]. 

These criticisms apply only to specific versions of the Inflationary model, 
but It remains to be seen whether other suggestions, such as "chaotic 
Inflation" [Undo 1985] , can survive a more precise scrutlng. 

2. Problems with the Input from General Relativity 

Most models start already in a homogeneous and isotropic FL universe 
at t < 10" 3 6 sec. But the inflationary concept is of value only, if it 
works in more general initial conditions. A few more general cases 
have been investigated. 
I) It is found that in anisotropic and homogenous models the anisotropy 

is strongly reduced by an inflationary phase (Rothman & Ellis 1986). 
Inhomogeneous and anisotropic cosmologies give rise to a stable 
state <Φ> = 0 If the initial anisotropy is too large, only for 
reasonably small values does the universe recenter a FL-like stage 
(Barrow & Turner 1982; Börner & Götz 1987). 

il) There are many choices in deSitter space for a time direction. How 
then can the choice of a spatially homogeneous time direction be 
guaranteed during the transition from a vacuum-energy dominated 
deSitter space to a radiation-dominated FL universe? 
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