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Abstract. Given a dynamical simplex K on a Cantor space X, we consider the set G∗
K of

all homeomorphisms of X which preserve all elements of K and have no non-trivial clopen
invariant subset. Generalizing a theorem of Yingst, we prove that for a generic element g of
G∗
K the set of invariant measures of g is equal to K. We also investigate when there exists

a generic conjugacy class in G∗
K and prove that this happens exactly when K has only one

element, which is the unique invariant measure associated to some odometer; and that in
that case the conjugacy class of this odometer is generic in G∗

K .
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1. Introduction
This work is motivated by a recent article by Yingst [Y], concerning the generic behavior
(in the sense of Baire category) of some homeomorphisms of the Cantor space, which here
and throughout this paper we denote by X. We extend some results of [Y] to the setting of
dynamical simplices; before explaining what those are, let us give some context.

Yingst considers some Bernoulli measures μr , that is, measures on {0, 1}N which are a
countable product of measures rδ0 + (1 − r)δ1 for some r ∈ ]0, 1[. Let us say that such a
measure is refinable if, for any two disjoint clopen subsets A1, A2 and any clopen subset
B such that μ(A1)+ μ(A2) = μ(B), there exist disjoint clopen subsets Ã1, Ã2 of B such
that μ(A1) = μ(Ã1) and μ(A2) = μ(Ã2). Refinability of a full atomless measure is a
weakening of the notion of good measure, considered by Akin [A]: a Borel probability
measure μ on X is good if it is full, atomless and, for any clopen A, B such that μ(A) ≤
μ(B), there exists a clopen Ã ⊆ B such that μ(Ã) = μ(A). Glasner and Weiss [GW]
proved that, whenever g is a strictly ergodic homeomorphism of X (that is, g is minimal
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and with a unique invariant Borel probability measure), the unique g-invariant measure is
good. Akin [A] established the converse implication: for any good measure μ on X, there
exists a strictly ergodic homeomorphism g of X whose unique invariant Borel probability
measure is μ.

Dougherty, Mauldin and Yingst [DMY] showed that μr is refinable if and only if
r is a root of an integer polynomial P with P(0) = ±1, P(1) = ±1; μr is good if
and only if it is refinable and r has no algebraic conjugate in ]0, 1[. An interesting
phenomenon is that when μr is refinable, s ∈ ]0, 1[ is an algebraic conjugate of r and g is
a homeomorphism of X such that g∗μr = μr , we also have that g∗μs = μs . Given Akin’s
theorem, one wonders whether, for any refinable Bernoulli measure μr , there exists a
minimal homeomorphism g of X whose set of ergodic invariant Borel probability measures
is equal to {μs : s is an algebraic conjugate of s in ]0, 1[}; this holds true, and that is one
of the main results of [Y].

To prove this result, Yingst uses Baire category techniques. Given a compact, convex
subset K of the set of all Borel probability measures on X, denote

GK = {g ∈ Homeo(X) : for all μ ∈ K , g∗μ = μ}
and let G∗

K be the set of all g ∈ GK such that g(U) �= U for any non-trivial clopen set U.
As pointed out in [Y], G∗

K consists of the chain-transitive elements of GK .
Then GK is a closed subgroup of the homeomorphism group of X, endowed with its

unique Polish group topology; a neighborhood basis of the identity in GK is given by the
subgroups

GA = {g ∈ GK : for all A ∈ A, g(A) = A}
where A ranges over all clopen partitions of X. Mapping a given clopen set to itself is an
open condition in GK , so G∗

K is a closed subset of GK ; Yingst points out that G∗{μ} is
non-empty whenever μ is a refinable Bernoulli measure (this is true in greater generality,
as we will see below).

THEOREM. [Y, Theorem 1.1] Let P be an irreducible integer polynomial with P(0)± 1
and P(1) = ±1. Let R be the set of roots of P which lie in ]0, 1[, and let r ∈ R. ThenG∗{μr }
is non-empty and for a generic element g of G∗{μr } the set of all g-invariant probability
measures is equal to the closed convex hull of {μs : s ∈ R}.

Similarly, assume that μ is a good measure on X. Then G∗{μ} is non-empty and, for a
generic element g of G∗{μ}, the set of all g-invariant probability measures is equal to {μ}.

The results above, for refinable Bernoulli measures and for good measures, have a
common generalization. Before stating it, we need to introduce some more background.

Definition. (See [IM, M]) A compact, convex set K of Borel probability measures on X is
a dynamical simplex if:
• all elements of K are full and atomless;
• for any two A, B ∈ Clopen(X) such that μ(A) < μ(B) for all μ ∈ K , there exists a

clopen Ã ⊂ B such that μ(A) = μ(Ã) for all μ ∈ K .
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It follows from a theorem of Glasner and Weiss [GW, Lemma 2.5] that the set of
invariant measures of any minimal homeomorphism of X is a dynamical simplex. When K
is a singleton {μ}, K is a dynamical simplex if, and only if, μ is a good measure.

Assuming that K has finitely many extreme points which are mutually singular, and K
is a dynamical simplex, Dahl [D] proved that there exists a minimal homeomorphism g
of X whose invariant measures are exactly the elements of K (the term dynamical simplex
was also introduced by Dahl, though its definition was not quite formulated as above).
This extends Akin’s theorem about good measures. It turns out that the assumption that
extreme points of K are mutually singular is redundant with the other assumptions, and
that finite dimensionality may also be dispensed with. Indeed, it was proved by Ibarlucía
and the author in [IM] (with the additional assumption of approximate divisibility, which
was later shown to be superfluous in [M] but will play a part in our arguments) that for any
dynamical simplex K there exists a minimal homeomorphism whose invariant measures
are exactly the elements of K. This converse of the general result of Glasner and Weiss is
thus an extension of Akin’s converse which applies in the special case of uniquely ergodic
systems.

Theorem 5.4 of [Y] (closely related to earlier work of Dougherty, Mauldin and Yingst
[DMY]) shows that, whenever P is an irreducible integer polynomial with P(0) = ±1,
P(1) = ±1, R is the set of roots of P contained in ]0, 1[ and r ∈ R, the closed convex hull
Kr of all μs , for s ∈ R, is a dynamical simplex; further, G{μr } = GKr for all r ∈ R. Thus
Yingst’s theorem may be seen as asserting that, for certain dynamical simplices K, for a
generic element g ∈ G∗

K the set of all g-invariant Borel probability measures coincides
with K. As an aside, note that any g ∈ GK \G∗

K , or more generally any g ∈ GK which is
not minimal, must preserve some measure which does not have a full support, so the set of
g-invariant Borel probability measures cannot be equal to K.

We prove here (Theorem 3.1 below) that the conclusion of Yingst’s theorem holds for
all dynamical simplices: whenever K is a dynamical simplex, a generic element ofG∗

K has
a set of invariant measures equal to K. We actually establish a more precise result, using
the notion of a saturated homeomorphism.

The strategy of [IM] is based on the notion of a Kakutani–Rokhlin partition; we recall
that, if g is a homeomorphism of X, a Kakutani–Rokhlin partition for g is a clopen partition
(Ai,j )0≤i≤n,0≤j≤ni such that for all i and all 0 ≤ j < ni one has g(Ai,j ) = Ai,j+1. When g
is minimal, one can build a refining sequence of such partitions whose atoms generate the
clopen Boolean algebra (see, for instance, [IM] for more details and further references),
and then we can think of these partitions as giving better and better approximations of g.
The proof given in [IM] that any dynamical simplex can be realized as the set of invariant
measures of some minimal homeomorphism works by building a refining sequence of
clopen partitions, which turn out to be Kakutani–Rokhlin partitions of the desired minimal
homeomorphism g. These partitions, which we call K-partitions, also play a major part in
our approach here (see the next section for their definition). To ensure that g preserves K,
we require that μ(Ai,j ) = μ(Ai,j+1) for any μ ∈ K whenever Ai,j is an element of one of
the Kakutani–Rokhlin partitions for g and j < ni . One also needs to ensure that g does not
preserve measures which are not in K; to that end, one works with a stronger notion than
minimality, namely with saturated homeomorphisms. We skip the formal definition for

https://doi.org/10.1017/etds.2021.122 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.122


Generic properties of homeomorphisms preserving a given dynamical simplex 649

now; see the next section for details. What matters here is that, whenever K is a dynamical
simplex and g is K-saturated, g is minimal and the set of invariant measures of g is equal
to K; and the construction of [IM] produces a K-saturated element of GK .

One sees from their definition that K-saturated homeomorphisms form a Gδ subset of
G∗
K . It is asked in [IM, Remark 2] whether one can determine the closure inGK of the set

of K-saturated homeomorphisms, and suggested that it might be equal to G∗
K , by analogy

with [BDK, Theorem 5.9] which proves a similar result in Homeo(X). Our main result
(proved in §3) confirms this suspicion.

THEOREM 3.1. Let K be a dynamical simplex. Then a generic element of G∗
K is

K-saturated. In particular, for a generic element g of G∗
K the set of g-invariant Borel

probability measures is equal to K.

This generalizes Yingst’s result for good measures and refinable Bernoulli measures to
all dynamical simplices; the possibility that such a generalization may be true is mentioned
at the end of [Y].

Yingst mentions after the statement of his theorem that it ‘demonstrates a large class
of uniquely or finitely ergodic homeomorphisms’; one then wonders how large that class
is. Certainly, different dynamical simplices will yield non-conjugate uniquely or finitely
ergodic homeomorphisms (when there is just one extreme point, or finitely many), but it is
not clear a priori whether two generic elements of G∗

K are conjugate. Thus we investigate
when there exist comeager conjugacy classes in G∗

K and establish the following result.

THEOREM 4.5. There exists a comeager conjugacy class in G∗
K if, and only if, K is a

singleton {μ}, and μ is the unique invariant probability measure for some odometer g. In
that case, the conjugacy class of g is comeager in G∗

K .

2. Some background on dynamical simplices
Our argument is based on some terminology and results from [IM, M], which we recall
now (what we call a ‘K-partition’ here is called a ‘KR-partition’ there). It probably helps
to have some familiarity with Kakutani–Rokhlin partitions and the methods used in the
aforementioned papers to follow the arguments, but we recall everything we need from
those sources in order to establish our results.

We recall that a dynamical simplex is a compact, convex set K of Borel probability
measures on X such that all elements of K are atomless and have full support, and whenever
A, B ∈ Clopen(X) are such that μ(A) < μ(B) for all μ ∈ K there exists a clopen Ã ⊂ B

such that μ(A) = μ(Ã) for all μ ∈ K .
We fix a dynamical simplex K. Let

GK = {g ∈ Homeo(X) : for all μ ∈ K , g∗μ = μ}
where as usual g∗μ(A) = μ(g−1A) for any Borel A. We endow GK with the topology
whose base of open neighborhoods of 1 is given by sets of the form

{g ∈ GK : for all A ∈ A, g(A) = A},
where A ranges over all clopen partitions of X. This turns GK into a Polish group.
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LEMMA 2.1. [IM, Proposition 2.7] Assume that A, B are clopen and μ(A) = μ(B) for
all μ ∈ K . Then there exists g ∈ GK such that g(A) = B.

This property is key to our constructions. If μ(A) < μ(B) for all μ ∈ K , then it follows
from this fact and from the definition of a dynamical simplex that there exists g ∈ GK such
that g(A) ⊂ B.

Basic compactness arguments enable one to prove the following facts.

LEMMA 2.2. [IM, Proposition 2.5]
• For any non-empty A ∈ Clopen(X), inf{μ(A) : μ ∈ K} > 0.
• If d is any compatible metric, and ε > 0, there exists some δ > 0 such that whenever

B has diameter less than δ, one has μ(B) ≤ ε for all μ ∈ K .

Below, we will make constant use of the homogeneity properties of dynamical
simplices; the following lemma will be used in the proof of our main result (Theorem
3.1). We prove it now in the hope of helping the reader get acquainted with dynamical
simplices.

LEMMA 2.3. Let U , V be clopen and such that μ(U) = μ(V ) for all μ ∈ K . Let A be a
clopen partition of U, and B be a clopen partition of V. Let also C1, . . . , Cn,D1, . . . , Dm
be non-empty clopen subsets of U , V , respectively.

There exist clopen subsets Y1, . . . , Yq of U, and clopen subsets Z1, . . . , Zq of V, such
that:
• for all i, for all μ ∈ K , μ(Yi) = μ(Zi);
• Y1, . . . , Yq form a partition of U which refines A, and Z1, . . . , Zq form a partition

of V which refines B;
• for all i ∈ {1, . . . , n} and all j ∈ {1, . . . , m}, there exists k ∈ {1, . . . q} such that

Yk ⊆ Ci and Zk ⊆ Dj .

Proof. Fix a compatible distance on X. ReducingC1, . . . , Cn if necessary, we may assume
that they are pairwise disjoint, and that each Ci is contained in some element of A; and
similarly, mutatis mutandis, for D1, . . . , Dm and B.

Fix ε > 0 for which any clopen subset U of X of diameter less than ε is such that
nμ(U) < μ(Dj ) for all j. Inside eachCi , we may find m non-empty, disjoint clopen subsets
(Ai,j )1≤j≤m of diameter less than ε. For every j ∈ {1, . . . , m} and every μ ∈ K , we then
have

n∑
i=1

μ(Ai,j ) < μ(Dj ).

Since K is a dynamical simplex, we may then find disjoint clopen subsets Bi,j inside
each Dj such that μ(Bi,j ) = μ(Ai,j ) for all i ∈ {1, . . . , n}.

Using a bijection from {1, . . . , n} × {1, . . . , m} to {1, . . . , nm}, we enumerate Ai,j
as Y1, . . . , Ynm, and Bi,j as Z1, . . . , Znm. Then μ(Yk) = μ(Zk) for all k, and for all i, j
there exists k such that Yk ⊆ Ci and Zk ⊆ Dj .

Let Ũ = U \ ⊔nm
k=1 Yk and Ṽ = V \ ⊔nm

k=1 Zk . Then μ(Ũ) = μ(Ṽ ) for all μ ∈ K , so
there exists g ∈ GK mapping Ũ to Ṽ . Note that A induces a clopen partition Ã of Ũ
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(obtained by intersecting elements of A with Ũ ), and B similarly induces a clopen partition
B̃ of Ṽ . Consider the coarsest partition of Ũ refining both Ã and g−1(B̃), and list its
elements as Ynm+1, . . . , Yq . Then setZk = g(Yk) for all k ∈ {nm+ 1, . . . , q} to complete
the construction.

We need an additional property of dynamical simplices.

THEOREM 2.4. [M, Corollary 2.6] K is approximately divisible, that is, for any clopen A,
any ε > 0 and any positive integer n, there exists a clopen B ⊆ A such that

for all μ ∈ K , μ(A)− ε ≤ nμ(B) ≤ μ(A).

We will use approximate divisibility (with the same notation as above) by applying the
defining property of a dynamical simplex to find disjoint clopen Bi ⊆ A such that

for all μ ∈ K , for all i ∈ {1, . . . , n}, μ(Bi) = μ(B1) and μ

(
A \

n⊔
i=1

Bi

)
≤ ε.

We recall the following standard definition.

Definition 2.5. For g ∈ Homeo(X), a Kakutani–Rokhlin partition for g is a clopen
partition A = (Ai,j )i∈IA,0≤j≤ni such that Ai,j+1 = g(Ai,j ) whenever 0 ≤ j < ni .

We will need an abstract version of these partitions (intuitively, we manipulate clopen
partitions that could be Kakutani–Rokhlin partitions for some homeomorphism, and use
those to build homeomorphisms).

Definition 2.6. A K-partition is a clopen partition A = (Ai,j )i∈IA,0≤j≤ni such that

for all i ∈ IA, for all j , k ≤ ni , for all μ ∈ K , μ(Ai,j ) = μ(Ai,k).

We use the notation FA to denote {(i, j) : i ∈ IA , 0 ≤ j ≤ ni}.
We call a set (Ai,j )0≤j≤ni a column of the partition; we say that ni + 1 is the height

of this column, Ai,0 is its base and Ai,ni is its top. Similarly, the union of all Ai,0 is the
base of the partition, and the union of all Ai,ni is its top. We sometimes call Ai,j+1 the
successor of Ai,j in A (for j < ni).

We say that a homeomorphism g is compatible with A if g(Ai,j ) = Ai,j+1 for all i and
all j < ni(A).

Note that if g is compatible with A then g(top(A)) = base(A); also, given A, the set of
all g ∈ GK which are compatible with A is clopen. When g is a homeomorphism such that
g∗μ = μ for all μ ∈ K , any Kakutani–Rokhlin partition for g is a K-partition with which
g is compatible.

Definition 2.7. A K-partition B refines another K-partition A if:
(1) for all (i, j) ∈ FB there exists (k, l) ∈ FA such that Bi,j ⊆ Ak,l (that is, every

element of A is a union of elements of B);
(2) for all i ∈ IB, there exists k ∈ IA such that Bi,0 ⊆ Ak,0 (that is, the base of B is

contained in the base of A);
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(3) for all ((i, j), (k, l)) ∈ FB × FA, if Bi,j ⊆ Ak,l and l < nk(A), then j < ni(B) and
Bi,j+1 ⊆ Ak,l+1 (that is, the successor of Bi,j is contained in the successor of Ak,l);

(4) for all (i, j) ∈ FB, if Bi,j ⊆ Ak,nk(A) for some k and j < ni(B), then Bi,j+1 is
contained in some Ap,0 (that is, if Bi,j is contained in the top of A and j < ni

then the successor of Bi,j is contained in the base of A).
Informally, the columns of B have been obtained by cutting the columns of A vertically,

and stacking these fragments of columns on top of each other.
Whenever Bi,j is contained in Ak,0 we say that (Bi,j , . . . , Bi,j+ni(A)) is a copy of the

column (Ak,0, . . . , Ak,nk(A)) contained in (Bi,0, . . . , Bi,nk(B)).

Definition 2.8. Let K be a dynamical simplex, and g ∈ GK . We say that g is K-saturated
if, whenever A, B ∈ Clopen(X) are such that μ(A) = μ(B) for all μ ∈ K , there exists a
Kakutani–Rokhlin partition (Ai,j )i∈I ,0≤j≤ni for g such that A, B are unions of atoms of
this partition and, for all i,

|{j : Ai,j ⊆ A}| = |{j : Ai,j ⊆ B}|
(here and throughout the article |F | denotes the cardinality of a finite set F).

We note that, for a given A, B ∈ Clopen(X) such that μ(A) = μ(B) for all μ ∈ K , the
set of all g admitting a Kakutani–Rokhlin partition with the above property is a clopen
subset in GK : if A is such a partition for g, any h ∈ Gk which is compatible with A will
also have the desired property. Since there are countably many clopen subsets of X, it
follows that K-saturated homeomorphisms form a Gδ subset of GK .

The following result explains why saturated homeomorphisms play such an important
role in our arguments.

PROPOSITION 2.9. [IM, Corollary 4.3] Assume that g ∈ GK is saturated. Then the set of
g-invariant Borel probability measures is equal to K.

Combined with the above fact, the following proposition is the heart of the proof of the
main result of [IM].

PROPOSITION 2.10. Let A be a K-partition. There exists a K-saturated g ∈ GK which is
compatible with A.

This proposition is not formally stated in [IM] (though it is implicit in Remark 2 of that
paper) but is established as in the proof of [IM, Proposition 3.6] by an inductive argument
based on the following lemma.

LEMMA 2.11. (Combination of [IM, Propositions 2.5 and 3.5]) Let A be a K-partition.
Assume that U , V are clopen and μ(U) = μ(V ) for all μ ∈ K . Let W be a non-empty
clopen subset of top(A). Then there exists a K-partition B refining A, whose top is
contained in W, such that U , V are both unions of atoms of B and for all k one has

|{l ∈ {0, . . . , nk(B)} : Bk,l ⊆ U}| = |{l ∈ {0, . . . , nk(B)} : Bk,l ⊆ V }|.
When U , V satisfy the conditions above, we say that (U , V ) are B-equivalent.
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3. Proof that a generic element of G∗
K is K-saturated

Throughout this section we fix a dynamical simplex K. We recall that GK is the group of
all homeomorphisms which preserve K, andG∗

K is the set of all g ∈ GK such that, for any
non-trivial clopen set U, one has g(U) �= U . Our aim is to prove the following theorem.

THEOREM 3.1. Let K be a dynamical simplex. Then a generic element of G∗
K is

K-saturated.

As pointed out above, K-saturated homeomorphisms form a Gδ subset of G∗
K (and we

know that there exist K-saturated homeomorphisms by the main result of [IM], so G∗
K is

also non-empty). So our aim really is to prove that the set of K-saturated homeomorphisms
is dense in G∗

K ; the remainder of this section is devoted to the proof of that fact.
We fix ϕ ∈ G∗

K , and a clopen partition A of X. Our goal is to prove that there exists a
K-saturated element ψ ∈ GK such that ψ(α) = ϕ(α) for all α ∈ A.

The proof proceeds by building certain K-partitions, and we think of A as a K-partition
whose columns all have height equal to 1.

Definition 3.2. Let B be a K-partition which refines A. For every atom Bi,j of B there
exists an atom α(i, j) of A such that Bi,j ⊆ α(i, j); we say that B respects ϕ if Bi,j+1 ⊆
ϕ(α(i, j)) whenever j < ni .

LEMMA 3.3. Assume that B refines A and respects ϕ, and let g ∈ GK be compatible with
B. Then the following assertions hold.
(1) For every α ∈ A, we have g(α \ top(B)) = ϕ(α) \ base(B).
(2) For every α ∈ A and every μ ∈ K , μ(α ∩ top(B)) = μ(ϕ(α) ∩ base(B)).
(3) For every α ∈ A which does not intersect top(B), we have g(α) = ϕ(α).
(4) base(B) ⊆ ⋃{ϕ(α) : α ∈ A and α ∩ top(B) �= ∅}.
Proof. We begin by proving (1). Let α be an atom of A. Since B refines A, respects ϕ and
g is compatible with B, we have g(α \ top(B)) ⊆ ϕ(α); further, g(α \ top(B)) is disjoint
from base(B). This establishes one inclusion. Also, every atom of B which is not contained
in base(B) is contained in ϕ(β) for some atom β of A. Thus, ϕ(α) \ base(B) is a union
of atoms of B; these atoms may be listed as (Bi,j )(i,j)∈F , and for all (i, j) ∈ F we have
j ≥ 1. Using again the fact that B respects ϕ, each Bi,j−1 is contained in α \ top(B), and
Bi,j = g(Bi,j−1), so ϕ(α) \ base(B) is contained in g(α \ top(B)).

Now that (1) is proved, fix μ ∈ K and α an atom of A. We have both

μ(α) = μ(α \ top(B))+ μ(α ∩ top(B)) and

μ(ϕ(α)) = μ(ϕ(α) \ base(B))+ μ(ϕ(α) ∩ base(B)).
Since g and ϕ preserve μ, (1) implies that μ(α ∩ top(B)) = μ(ϕ(α) ∩ base(B)).

Assertion 3 follows immediately: if α ∩ top(B) = ∅, then ϕ(α) ∩ base(B) must also be
empty by (2), and then (1) gives g(α) = ϕ(α).

Since ϕ(α) does not intersect base(B) if α does not intersect top(B), we also obtain
that base(B) is contained in the union of all ϕ(α) such that α ∩ top(B) �= ∅, and that
proves (4).

https://doi.org/10.1017/etds.2021.122 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.122


654 J. Melleray

Definition 3.4. Let B be a K-partition which refines A and respects ϕ. We denote byN(B)
the number of atoms of A which intersect top(B).

Our goal is to prove that there exists B which refines A, respects ϕ and such that
N(B) = 1. Indeed, we note the following fact.

LEMMA 3.5. Assume that there exists a K-partition B which refines A, respects ϕ, and is
such that N(B) = 1. Then there exists a K-saturated ψ ∈ GK such that ψ(α) = ϕ(α) for
all α ∈ A.

Proof. Let B be such a K-partition. By Proposition 2.10 there exists a saturated ψ which
is compatible with B.

For every α ∈ A which does not intersect top(B), we have ϕ(α) = ψ(α) by Lemma
3.3(3). Since ϕ andψ are bijections, and there exists a unique atom β of A which intersects
top(B), this atom must also satisfy ϕ(β) = ψ(β), so we obtain as promised that ϕ(α) =
ψ(α) for every α ∈ A.

Assume that B refines A and respects ϕ. Let C be a column of B; top(C) is contained
in some atom of A, which we denote by τ(C).

We endow the set of columns Col(B) with a directed graph structure 	B (possibly, with
loops), by declaring that

((C, D) ∈ 	B) ⇔ (ϕ(τ(C)) ∩ base(D) �= ∅).
Note that above we are manipulating ϕ(τ(C)) and not ϕ(C); that is because we are

looking for a K-saturated element which coincides with ϕ on A, so the conditions we have
to satisfy are imposed by the behavior of ϕ on atoms of A, not on smaller clopen sets (all
the information we can use is what ϕ does to atoms of A, and the fact that this behavior on
A is compatible with belonging to G∗

K ).

Definition 3.6. Let B be a K-partition. We say that B is admissible if:
• B refines A and respects ϕ;
• for every atom α of A, ϕ(α) is a union of atoms of B;
• for any C, D ∈ Col(B), there exists a path in 	B starting at C and ending at D.

The second condition above mildly simplifies the argument (it helps minimize the
number of cuts we have to do during the construction); the third condition is key to our
construction.

LEMMA 3.7. There exists an admissible K-partition.

Proof. Let A′ be the coarsest partition which refines both A and {ϕ(α) : α ∈ A}. We view
A′ as a K-partition where each column has height 1. It satisfies the first two conditions of
the definition of an admissible K-partition.

Fix an atom β of A′. Let U be the union of atoms of A′ which one can reach from β by
following a path in 	A′ . Then U is clopen and ϕ(U) ⊆ U , whence U = X since ϕ ∈ G∗

K .
This proves that A′ is admissible.
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Given Lemma 3.5, our proof will be complete as soon as we manage to establish the
validity of the following lemma; the argument is based on repeated applications of the
cutting and stacking procedure.

LEMMA 3.8. Assume that B is an admissible K-partition, andN(B) > 1. Then there exists
an admissible K-partition C such that N(C) < N(B).

Proof. We fix B, and let α1, . . . , αN denote the atoms of A which intersect top(B).
Recall that, for every column C of B, there exists an atom τ(C) of A such that top(C) ⊆

τ(C); and an atom β(C) of A such that base(C) ⊆ ϕ(β(C)). By definition, (C, D) ∈ 	B
if and only if τ(C) = β(D).

Pick a column C such that β(C) �= α1 (the existence of such a column follows
from Lemma 3.3(2)). Since B is admissible, there exists a path C = C0, . . . , Cp such
that τ(Cp) = α1; fix such a path with p minimal. If β(Cp) = α1 then either p = 0 or
τ(Cp−1) = α1 by definition of 	B; the second possibility contradicts the minimality of p.
So either C0 or Cp gives us a column C such that β(C) �= α1 and τ(C) = α1.

We write base(C) = U  V , where U, V are non-empty clopen, and cut C into two
finer columns with base U , V . Explicitly, assume that C is of the form (Bi,0, . . . , Bi,ni );
for each j ∈ {1, . . . , ni} we choose a clopen subset Uj of Bi,j such that μ(Uj ) = μ(U)

for all μ ∈ K , and let Vj = Bi,j \ Uj . Then we form a new partition, where C is replaced
by two finer columns, one being (U , U1, . . . , Uni ) and the other being (V , V1, . . . , Vni ).
The partition we obtain refines B and respects ϕ; below, whenever we mention cutting, we
apply a similar procedure.

We set aside one of the two columns we have just built and name it C̃.
Considering a path (D0, . . . , Dq) of minimal length such that β(D0) = α1 and

τ(Dq) �= α1, we similarly obtain the existence of a column D such that β(D) = α1 and
τ(D) �= α1. As above, we cut D into two non-trivial subcolumns and call one of those
D̃. We let B′ denote the partition that we produced by cutting C, D into two subcolumns
each.

There may exist columns in B′ such that β(E) = α(E) = α1; we wish to reduce to the
case where there are no such columns. If no such column exists, we may directly skip to
the next step of the construction. Otherwise, let k ≥ 1 denote the number of these columns.
For every such E, we choose a large integer lE and use approximate divisibility to write

base(E) =
( lE⊔
i=1

Ei

)
 F ,

where for all μ ∈ K one has

for all μ ∈ K , for all i, j , μ(Ei) = μ(Ej ) and (3.1)

for all μ ∈ K , μ(E1)+ μ(F) <
1
k

min(μ(base(C̃)), μ(base(D̃))). (3.2)

We then form a new partition refining B′, in which each column E with β(E) = τ(E) = α1

is replaced by two new columns Ẽ1 and Ẽ2, with Ẽ1 being obtained by stacking lE
copies of E with base Ei on top of each other, and Ẽ2 being the remainder (namely,
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a copy of E with base F). Since each of the columns we stacked on top of each
other has a base contained in ϕ(α1) and a top contained in α1, the partition we obtain
respects ϕ.

The sum of measures of the bases of all columns Ẽ1, Ẽ2 is strictly less than μ(base(C̃))
as well as μ(base(D̃)), for all μ ∈ K; this is what we gained by our use of approximate
divisibility in (3.2). Using the fact that K is a dynamical simplex, and cutting C̃, D̃ as
necessary, we may then form new columns by stacking each Ẽ1 on top of a copy of C̃, and
then a copy of D̃ on top of that; and similarly for each Ẽ2.

Intuitively, we have first used approximate divisibility to make the columns with β(E) =
τ(E) = α1 very thin, and then we have stacked them in the middle of some new columns.
We have thus formed a new K-partition B′′ which refines B′ and respects ϕ, since τ(C̃) =
β(D̃) = α1.

Every column F of B′′ is of one of the following three types:
• β(F ) = α1 and τ(F ) �= α1 (type 1);
• β(F ) �= α1 and τ(F ) = α1 (type 2);
• β(F ) �= α1 and τ(F ) �= α1 (type 3).

Let U1, . . . , Un denote the tops of the columns of type 1, and V1, . . . , Vm denote the
bases of the columns of type 2. Lemma 3.3(2) implies that

for all μ ∈ K μ

( n⊔
i=1

Ui

)
= μ

( m⊔
j=1

Vj

)
.

Using Lemma 2.3, we may find clopen subsets Y1, . . . , Yq , Z1, . . . , Zq such that:
• for all μ ∈ K and for all i, one has μ(Yi) = μ(Zi);
• Y1, . . . , Yq partition

⊔n
i=1 Ui , and Z1, . . . , Zq partition

⊔m
j=1 Vj ;

• for all i there exist j , k such that Yi ⊆ Uj and Zi ⊆ Vk;
• for all j , k, if there exist a column G of type 1 such that τ(G) = αj and a

column H of type 2 such that β(H) = αk , then there exists i such that Yi ⊆ αj and
Zi ⊆ ϕ(αk).

We then cut some columns of B′′ so as to form, for each i ∈ {1, . . . , q}, a column with
top Yi and another with base Zi ; and finally form a K-partition C refining B′′ by stacking
each new column with top equal to Yi on top of the new column with base equal to Zi .

By construction C refines B; C is compatible with ϕ; for every atom α of A ϕ(α) is a
union of atoms of C; and top(C) ∩ α1 = ∅ so N(C) ≤ N(B)− 1. It remains to prove that C
is admissible (note that the admissibility of B was key to our construction, since it enabled
us to produce the columns C̃, D̃, which in turn allowed us to get rid of all the columns
whose top is contained in α1).

During the construction, we ensured that the following properties hold.
• Any column A of B such that τ(A) �= α1 and β(A) �= α1 is also a column of C (these

columns have not been modified).
• Given any j , k ≥ 2 and columns A, B of B such that β(A) = αj , τ(A) = α1, β(B) =

α1, τ(B) = αk , there exists a column E of C such that β(E) = αj and τ(E) = αk . We
guaranteed this by our use of Lemma 2.3, and by cutting C, D in two pieces at the
beginning so that nothing had been lost before applying Lemma 2.3.

https://doi.org/10.1017/etds.2021.122 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.122


Generic properties of homeomorphisms preserving a given dynamical simplex 657

Now let A, B be two columns of C. Since B is admissible, there exist columns C0, . . . , Cn
of B such that:
• τ(C0) = τ(A) and β(Cn) = β(B);
• for all i ≤ n− 1, τ(Ci) = β(Ci+1).
If τ(Ci) �= α1 for each i, then A, C1, . . . , Cn−1, B form a path joining A and B in 	C .
Otherwise, there exists some i such that τ(Ci) = α1 = β(Ci+1); and (considering the
shortest possible path) we may as well assume that there is a unique such i. By construction,
there exists a column D of C such that β(D) = β(Ci) and τ(D) = τ(Ci+1). Then the path
A, C1, . . . , Ci−1, D, Ci+2, . . . , B joins A and B in 	C .

4. Comeager conjugacy classes and odometers
We again fix a dynamical simplex K. Given a K-partition A, we consider

OA = {g ∈ G∗
K : g is compatible with A},

GA = {g ∈ GK : for all A ∈ A, g(A) = A}.
The sets OA form a basis of the topology of G∗

K ; the subgroups GA form a basis of
neighborhoods of the identity in GK .

In our context, we may formulate Rosendal’s criterion for the existence of comeager
conjugacy classes for a Polish group action as follows (for a proof, see [BMT, Proposition
3.2]).

PROPOSITION 4.1. There exists a comeager conjugacy class in G∗
K if, and only if, the

following conditions hold.
(1) The action of GK on G∗

K by conjugation is topologically transitive .
(2) For any K-partition A, there exists a K-partition B refining A such that, for any

K-partitions C, D refining B, there exists g ∈ GA such that gOCg−1 ∩OD �= ∅.

We recall that a continuous action of a Polish group G on a Polish space X is
topologically transitive if it admits a dense orbit or, equivalently in this context, if for
any two non-empty open subsets U , V of X there exists g ∈ G such that g(U) ∩ V �= ∅.

The first part of the above criterion turns out to be always satisfied.

PROPOSITION 4.2. The conjugacy class of any K-saturated element is dense in G∗
K .

Proof. Fix a K-saturated g and a K-partition A. By saturation of g, there exists a
Kakutani–Rokhlin partition B = (Bi,j ) for g such that any two atoms of A belonging to
the same column of A are B-equivalent (see Lemma 2.11 for the definition). Thus, up to a
reordering of the atoms within each of its columns, B is a refinement of A; in other words,
there exists for all i a bijection σi of {0, . . . , ni(B)} such that (Bi,σi(j)) refines A.

We may find h ∈ GK such that for all i and all j ∈ {0, . . . , ni(B)} one has h(Bi,j ) =
Bi,σi(j). Then (Bi,σi(j)) is a Kakutani–Rokhlin partition for hgh−1, which proves that
hgh−1 belongs to OA.

Our aim is now to prove that the second condition of Proposition 4.1 is satisfied exactly
when K is a singleton {μ}, and μ is the unique invariant measure of an odometer.
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Given integers n1, . . . , nk ≥ 0, with at least one being different from 0, we set

r(n1, . . . , nk) = 1∑k
i=1 ni

(n1, . . . , nk).

Let d = gcd(n1, . . . , nk) and n′
i = ni/d; observe that r(n1, . . . , nk) = r(n′

1, . . . , n′
k)

and

r(n1, . . . , nk) = r(m1, . . . , mk) ⇔ (n′
1, . . . , n′

k) = (m′
1, . . . , m′

k).

From now until the end of the proof of Lemma 4.4, we fix a K-partition A, with columns
C1, . . . , Ck . For any K-partition B refining A, and any column D of B, we let ni(D) denote
the number of copies of Ci contained in D.

We define r(D) = r(n1(D), . . . , nk(D)) and call it the repartition of D; as above, set
n′
i (D) = (ni(D)/gcd(n1(D), . . . , nk(D))).

LEMMA 4.3. Let B be a K-partition refining A; assume that for all columns D1, D2 of
B one has r(D1) = r(D2). Then there exists a K-partition C refining A and which has a
single column.

Proof. By assumption, n′
k(D) does not depend on the column D of B, so we let n′

k =
n′
k(D) for some (any) column D of B.

For any column D of B, there exists some integer M such that D is made up of Mn′
1

copies of C1, . . ., Mn′
k copies of Ck stacked on top of each other. Up to reordering, we

see that there exists a K-partition refining A such that each column is obtained by stacking
n′

1 copies of C1 on top of each other, then n′
2 copies of C2, . . ., then n′

k copies of Ck; and
repeating this pattern some number M of times (where M depends on the column).

By separating at the beginning of each of these patterns, and putting the subcolumns
obtained next to each other, we see that A has a refinement where all columns are made up
of exactly n′

1 copies of C1, . . ., n′
k copies of Ck stacked on top of each other. We denote

by N the common height of these columns. We have also ensured that the n′
1 copies of C1

are at the bottom, followed by n′
2 copies of C2, and so on.

Denote this refinement by B = (Bi,j )0≤i≤m,0≤j<N , and set, for all j ∈ {0, . . . , N − 1},
Cj =

⊔
0≤i≤m

Bi,j .

Then (C0, . . . , CN−1) is a K-partition which refines A and has a single column (which
consists of n′

1 copies of C1 followed by n′
2 copies of C2, and so on).

LEMMA 4.4. Assume that B is a K-partition refining A, and that there exist two columns
D1, D2 of B with r(D1) �= r(D2). Then there exist K-partitions C, D refining B such that
for any f ∈ GA one has fOCf−1 ∩OD = ∅.

Proof. To simplify notation below, we note that one can further refine B in such a way
that there exist columns with distinct repartitions but the same height: if D1 has height a
and D2 has height b, form a new partition with one column obtained by stacking b copies
of D1 on top of each other, and another by stacking a copies of D2 on top of each other;
this is possible as long as one chooses a small enough base for these columns. These new
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columns have the same repartitions as D1 and D2, and both have height equal to ab. So
we assume below that height(D1) = height(D2) = H .

We use the fact that D1, D2 have different repartitions to build incompatible C, D
refining B. The intuition is as follows: first choose C so that every column of C begins with
many copies of D1; then every K-partition E refining C will be such that every column
contains many consecutive copies of D1, and to move from an atom of E to an atom at
the bottom of these many successive copies of D1 one only needs to move by at most the
largest height of any column of C. So, if every column of a K-partition D begins with many
copies ofD2, we expect C and D to be incompatible. To turn this intuition into a proof, we
use a counting argument.

We now turn to the details of this argument. Denote by mi the number of copies of Ci
occurring in D2 and set S = ∑k

i=1 mi .
Consider some g ∈ OA, x ∈ X and some N ∈ N bigger than the height of any column

in A. Let i1 < · · · < ip be the indices in {0, . . . , N} for which gi(x) belongs to the
base of A, and note that x, . . . , gi1−1(x) all belong to the same column of A, as
do gij (x), . . . , gij+1−1(x)) for all j ∈ {1, . . . , p − 1} and gip (x), . . . , gN(x). For i ∈
{1, . . . , k}, we let ni,N(g; x) denote the number of times Ci has occurred in this sequence,
and let

sN(g; x) = 1∑k
i=1 ni,N(x)

(n1,N(x), . . . , nk,N(x)).

Fix an integer s ≥ 2 such that kH/(s − 1) < ‖r(D1)− r(D2)‖∞. Using the fact that
K is a dynamical simplex, we may build a K-partition C refining B and such that all the
columns of C begin with s copies of D1. Set N = sH − 1, and fix an integer M which is
larger than the height of any column of C (hence also M ≥ N).

Note that for any g ∈ OC and any x ∈ X there exists some i ∈ {0, . . . , M − 1} such
that sN(g; gi(x)) = r(D1). Indeed, there exists some i ∈ {0, . . . , M − 1} such that gi(x)
belongs to the base of C, and then gi(x), . . . , gN+i (x) are going through s copies of D1.

Thus we have the following:

for all f ∈ GA, for all h ∈ fOCf−1, for all x ∈ X, there exists i ∈ {0, . . . , M − 1}
such that sN(h; hi(x)) = r(D1). (4.1)

Indeed, this follows from the observation in the previous paragraph and the fact that C
refines A and every f ∈ GA maps every atom of A to itself.

Let D be a K-partition refining B and such that all columns of D begin with at least
3M copies of D2; denote by U the base of D. Consider g ∈ OD and x ∈ gj (U) for some
j ∈ {0, . . . , M − 1}. There exists j1 ∈ {0, . . . , H − 1} such that gj1(x) belongs to the
base of D2. Since the points gj1(x), . . . , gj1−1+(s−1)H (x) visit s − 1 copies of D2 and
make up all but H of the elements of g(x), . . . , gN(x), we see that for all i ∈ {1, . . . , k}
one has

(s − 1)mi ≤ ni,N(g; x) ≤ (s − 1)mi +H .
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Denote T = ∑k
i=1 ni,N(g; x); by summing these inequalities (which is overkill, but does

the job) we get

(s − 1)S ≤ T ≤ (s − 1)S + kH .

Thus

for all i ∈ {1, . . . , k},
(s − 1)mi

(s − 1)S + kH
− mi

S
≤ ni,N(g; x)

T
− mi

S
≤ (s − 1)mi +H

(s − 1)S
− mi

S
.

The right-hand side of this inequality is smaller than H/(s − 1). Also

0 ≤ mi

S
− (s − 1)mi
(s − 1)S + kH

= kHmi

S((s − 1)S + kH)
≤ kH

(s − 1)
.

This shows that ‖r(D2)− sN(g; x)‖∞ ≤ (kH/(s − 1)), thus sN(g; x) �= r(D1).
It follows that sN(g; gi(x)) �= r(D1) for all i ∈ {0, . . . , M − 1} and all x ∈ U . Using

(4.1), we conclude that g �∈ fOCf−1 for any f ∈ GA; since g was an arbitrary element of
OD, we obtain as promised that fOCf−1 ∩OD = ∅ for any f ∈ GA.

We briefly recall the definition of an odometer. Fix a sequence k̄ = (ki) of integers
greater than or equal to 2, and let

Yk̄ =
+∞∏
i=0

{0, . . . , ki − 1}.

Then Yk̄ is a Cantor space; the corresponding odometer is the map Tk̄ : Y → Y defined by
‘adding 1 with right-carry’. Formally, if y ∈ Y is such that y(i) < ki − 1 for some i, then
one finds the smallest such i and sets

Tk̄(y) = (0, . . . , 0︸ ︷︷ ︸
a string of i zeros

, y(i)+ 1, yi+1, yi+2, . . .).

If there is no such i, then we set Tk̄(y)(i) = 0 for all i.
We say that a map g : X → X is an odometer if there exist a sequence k̄ and a

homeomorphism h : Yk̄ → X such that g = hTk̄h
−1.

An alternative (and equivalent) description of odometers, up to isomorphism, is as
follows. Let ni be an increasing sequence of integers, with ni dividing ni+1 for all i. LetGi
denote the cyclic group Z/niZ, and πi,j the natural projection from Gi to Gj for i ≥ j .
The inverse limit G of the family (Gi , (πi,j )) is a compact group. Let u = (1, 1, . . .) ∈ G;
the subgroup generated by u is dense in G. Topologically, G is a Cantor space, and the
associated odometer is the map x �→ x + u. The unique invariant measure associated to
this odometer is the Haar measure on G.

Note that for any odometer there is a natural sequence of Kakutani–Rokhlin partitions
(An) which have exactly one column each, obtained by taking as base of An the set {y ∈
Yk̄ : for all i ≤ n, y(i) = 0}. It is easily seen that the existence of such a sequence actually
characterizes odometers ([BDK, Theorem 4.6], a fact we will use below). This property
also implies that odometers are strictly ergodic and saturated.
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THEOREM 4.5. There exists a comeager conjugacy class in G∗
K if, and only if, K is a

singleton {μ}, and μ is the unique invariant probability measure for some odometer g. In
that case, the conjugacy class of g is comeager in G∗

K .

Proof. Assume that there exists a comeager conjugacy class in G∗
K . Since (2) of

Proposition 4.1 is satisfied, any K-partition A admits a refinement B with a unique column.
Indeed, for B to witness that this condition holds, Lemma 4.4 shows that it is necessary
that all columns of B have the same repartition, and we saw in Lemma 4.3 that if A admits
such a refinement then it admits one with a single column.

This allows us to build a K-saturated g ∈ GK with a sequence of Kakutani–Rokhlin
partitions which each have exactly one column, following the same construction as in [IM].
Such a g is an odometer, hence K = {μ} where μ is the unique Borel invariant probability
measure for g.

Conversely, let g be an odometer, and let μ be the unique g-invariant Borel probability
measure. Since g is {μ}-saturated, we know from Proposition 4.2 that g has a dense
conjugacy class in G∗

μ. Denote this conjugacy class by �(g).
Given a Kakutani–Rokhlin partition A for g with one column, we claim that

{hgh−1 : h ∈ GA} = �(g) ∩OA

Indeed, inclusion from left to right is immediate. To see the converse inclusion, pick
f ∈ �(g) ∩OA; then A is a Kakutani–Rokhlin partition for both f and g. Using the fact
that f , g are conjugate odometers, there exist sequences (Bn), (Cn) of Kakutani–Rokhlin
partitions for f, g respectively, which each generate Clopen(X) and are such that, for all
n, Bn and Cn each have exactly one column for all n, and the height of Bn is equal
to the height of Cn. We may additionally ensure that the bases of Bn, Cn shrink to the
same point which belongs to base(A). There exists n0 such that for all n ≥ n0 every
atom of A is a union of atoms of both Bn and Cn; it follows that both Bn and Cn refine
A as K-partitions. One can then build a sequence (starting at n0) of refining partial
isomorphisms hn : Bn → Cn such that hn(α) = α for every atom of A, and for every
atom β of Cn one has hnf h−1

n (β) = g(β). The union of the sequence (hn)n≥n0 defines
an automorphism h of Clopen(X) such that hf h−1(U) = g(U) for every clopen U, and
h(α) = α for every atom α of A. Hence there exists h ∈ GA such that hf h−1 = g.

We just proved that the map GK → �(g), h �→ hgh−1 is open, and then Effros’s
theorem (see, for example, [G, Theorem 3.2.4]) yields that �(g) is comeager in
�(g) = G∗{μ}.

The following consequence of Theorem 4.5 was pointed out by A. Yingst.

COROLLARY 4.6. (Yingst) Let K be a dynamical simplex. There does not exist a comeager
conjugacy class inG∗

K exactly when some measure in K gives some clopen set an irrational
measure.

Proof. A measure μ is the unique invariant measure associated to an odometer if and only
if μ is good and assigns a rational measure to every clopen set (see [A, Theorem 2.16]).
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This proves one implication above, as well as the converse implication in the particular
case when K is a singleton.

Assume now that K is not a singleton, and fix A ∈ Clopen(X), μ1, μ2 ∈ K such that
μ1(A) �= μ2(A). Since K is connected and A �→ μ(A) is continuous, there exists μ ∈ K
such that μ(A) is irrational.
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