
Mapping viscoelastic and plastic properties of polymers and
polymer-nanotube composites using instrumented indentation

Andrew J. Gayle and Robert F. Cooka)

Materials Measurement Science Division, National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA

(Received 26 February 2016; accepted 12 May 2016)

An instrumented indentation method is developed for generating maps of time-dependent
viscoelastic and time-independent plastic properties of polymeric materials. The method is based
on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements
and a quadratic plastic element in series. Closed-form solutions for indentation displacement
under constant load and constant loading-rate are developed and used to determine and validate
material properties. Model parameters are determined by point measurements on common
monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two
composite materials consisting of epoxy matrices containing multiwall carbon nanotubes. A fast
viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes,
whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation.
Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses
in the composites, particularly in the material with a greater fraction of nanotubes.

I. INTRODUCTION

Indentation of polymeric or biological materials or their
composites frequently leads to three concurrent modes of
contact deformation, characterized by three different var-
iations of the indenter displacement into the material, h,
with indentation load, P, and time, t1–12:

(V) Viscous deformation, in which the indenter dis-
placement is time-dependent, typically with the rate of
displacement varying with load.

(E) Elastic deformation, in which the indenter displace-
ment is time-independent and recovers completely on load
removal.

(P) Plastic deformation, in which the indenter displace-
ment is time-independent and does not recover at all on
load removal.

Indentation with a spherical probe or flat punch often
suppresses plastic deformation such that the deformation
is completely viscoelastic,6,11,13–20 or is assumed so for
fluid-like materials.14,15,21,22 Under these conditions, vis-
coelastic correspondence principles23–27 can be used to
predict the h(t) response from an imposed P(t) spectrum
(or vice versa) if the purely elastic P(h) indentation
behavior is known and a time-dependent creep
(or relaxation) function is selected for the material. The
predictions are frequently framed in terms of superposi-
tion integrals. Indentation with the more-commonly used

pyramidal probes, such as the three-sided Berkovich
diamond, usually generates all three of the viscous-
elastic-plastic (VEP) indentation deformations. Under
these conditions, correspondence principles, which rely
on material linearity in elastic and viscous constitutive
behavior (Hookean and Newtonian, respectively), cannot
be used as the plasticity renders the nonviscous com-
ponent of the deformation nonlinear. Hence, although
correspondence methods can incorporate the geometrical
nonlinearity of spherical and pyramidal indentation, in
which the indentation contact area increases with indenta-
tion depth,25 plastic deformation precludes their use.
The original VEP indentation model incorporated the

geometrical nonlinearity of pyramidal indentation explic-
itly into each component of the deformation,1 treating each
displacement component separately. The plastic displace-
ment, hP(t), was given by

hP tð Þ ¼ Pmax tð Þ=a1H½ �1=2 ; ð1Þ

where Pmax(t) is the maximum load experienced over the
time interval t, a1 is a dimensionless indenter geometry
constant, and H is the resistance to plastic deformation.
For an elastic-perfectly plastic material H is the hardness.
The elastic displacement, hE(t), was given by

hE tð Þ ¼ P tð Þ=a2M½ �1=2 ; ð2Þ

where a2 is another dimensionless indenter geometry
constant, and M is the resistance to elastic deformation.
For an elastic material, M is the indentation modulus.
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The viscous displacement, hV(t), was expressed as
a rate,

dhV tð Þ=dt ¼ P tð Þ�a2Ms2
� �1=2

; ð3Þ

where s is the time constant for viscous flow. The term
a2Ms2 is an effective quadratic viscosity. [Eqs. (2) and (3)
use the more recent notation.4] The total indentation dis-
placement was taken as the sum

h ¼ hE þ hP þ hV ð4Þ

such that the overall indentation model could be viewed
as a generalized quadratic “Maxwell”-like model of
elements in series. For simple loading schemes, such as
triangular, linear load-unload, spectra, the integral implicit
in Eq. (3) is simply performed and the total displacement
given by Eq. (4) can be expressed in closed form. The
simplicity of this formulation allows the resistance to the
three different modes of deformation to be scaled sepa-
rately via H, M, and s, such that the complete variety of
material indentation load–displacement responses can be
described and analyzed.4,6

The quadratic Maxwell VEP model above was rea-
sonably successful in a quantitative sense: the material
properties H, M, and s inferred from fits of the model to
triangular load spectra, specifically fits to the unloading
response in which all three displacement components
are distinct, were in agreement with other measure-
ments1,2,5; the ability of the model to predict loading
behavior from unloading behavior was excellent1,2,4,5,8;
and the material properties inferred using a triangular
load spectrum at a reference time- or load-scale could be
used to predict the triangular responses for indentation
time scales factors of three shorter or longer than the
reference and indention load-scales factors of ten dif-
ferent from the references.1,2,4,8 The limitations of the
quadratic Maxwell VEP model are apparent in comparisons
of observed and predicted behavior during constant-load
creep, a test method that focuses on the time-dependent
constitutive behavior. The free viscous element, mean-
ing that it has no element constraining it in parallel, of
the quadratic Maxwell VEP model leads to unbounded
displacement increasing linearly with time for an imposed
constant load and an instantaneous displacement re-
covery on load removal.1 Neither of these phenomena
are observed during indentation of the vast majority of
polymeric and biological materials: Displacement rates
during constant-load creep decrease with time such
that the displacement approaches a bounded value at
long times1,3,7,9,11,12,20 and recovery on load removal is
not instantaneous but occurs over time scales comparable
to those required to reach the bounded creep displace-
ment.9,12 Furthermore, the time-dependent indentation
creep and recovery behavior of most polymeric and

biological materials is not well described by a single-
time-constant, but by two or more.3,9,12,16,18–20

Here, a new VEP pyramidal indentation model and
analysis is developed that is similar in spirit to the orig-
inal model (elements in series, closed-form displacement
expressions, simple identification of material behavior
dependencies) but which overcomes the deficiencies
noted above. As foreshadowed earlier,4 the model is
based on a quadratic “Kelvin”-like element, in which
the viscous element is bounded by an elastic element in
parallel, such that displacement during constant-load
creep is bounded and displacement recovery on load
removal is not instantaneous. Two such viscoelastic
elements are combined in series to provide for deforma-
tion over two time scales, along with a third, plastic,
element in series as before. A schematic diagram of the
full quadratic Kelvin VEP model is shown in Fig. 1.
The model is nearly identical to that recently imple-
mented by Mazeran et al.9 and Isaza et al.,12 with the
omission of the fourth quadratic Maxwell element used
by Mazeran, Isaza et al. to describe a viscoplastic response.
In the original VEP model, the behavior of the single-
time-constant viscous element could be deconvoluted
unambiguously from the indentation unloading response
of a simple load triangle. The extra degree of freedom
associated with the two time constants of the two vis-
coelastic elements in Fig. 1 precludes such simple
deconvolution and a more extensive testing protocol is

FIG. 1. Schematic diagram of the pyramidal indentation quadratic
Kelvin VEP model. The model consists of two quadratic viscoelastic
Kelvin elements in series with a quadratic plastic element.
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required. Here, a three-segment load spectrum is used as
shown in Fig. 2(a): (i) a triangle wave, followed by (ii)
a near-zero load hold, followed by (iii) a trapezoidal load
wave. The protocol is identical to that used by Zhang
et al.3 for exactly the same reasons: the final trapezoidal
segment isolates the viscoelastic response under constant-
load conditions that are simple to analyze.

A major motivation for the development of the new
model and analysis was to map the mechanical properties
of polymer-carbon nanotube (CNT) composites. Such
composites have great potential as lightweight mechan-
ical or electrical materials that take advantage of the high
stiffness and strength or electrical conductivity of CNTs,
respectively. As with all composites, appropriate disper-
sion of the minority enhancing phase in the majority
matrix phase is critical to obtaining desired properties:
For example, the stiff CNTs must be dispersed and bound
to the compliant polymer matrix so as to achieve stress
transfer and stiffening of the composite; the conducting
CNTs must be dispersed so as to percolate throughout the
insulating polymer matrix so as to obtain a conducting
structure. As a consequence, considerations of CNT
dispersion in polymer matrices have been the subject of
much study since the early applications of CNTs.28–31

The goal here was to develop an instrumented in-
dentation testing (IIT) method that could provide a direct
measure of the mechanical behavior of polymer-CNT
composites in the form of two-dimensional maps of vis-
coelastic and plastic properties. Such maps take advan-
tage of the local probing capabilities of IIT and have been
used to explore the effects of microstructure on spatial
variations of mechanical properties in ceramic-metal
composites,32 tooth enamel,33 bone,34 cement paste and
rocks,35 and metals.36,37 In these cases, time-dependent
deformation was not considered and elastic and plastic
properties were mapped. The next section develops the
new VEP indentation model and expressions for h(t) that
allow material properties to be determined from simple
P(t) protocols. The following sections then demonstrate
and validate the applicability of the model in single-point
tests on monolithic polymers and glass. The mapping
capability is then demonstrated in multipoint tests on a
ceramic–polymer interface and two polymer–CNT com-
posites. Finally, possible extensions of the model and
protocols are discussed.

II. MATERIALS AND METHODS

A. Materials

Five common commercial polymeric materials were
obtained in approximately 1 mm thick solid sheet form.
The materials were a high-density polyethylene (HDPE),
two poly(methyl methacrylate)s (PMMA1, and PMMA2),
a polystyrene (PS), and a polycarbonate (PC). Samples
approximately 15 mm � 15 mm were cut from the sheets
and fixed to aluminum pucks for IIT measurements. The
surfaces of the samples were highly reflective and tested in
the as-received state, except for the HDPE, which was
diamond polished to a reflective state. A commercial soda-
lime silicate glass (SLG) microscope slide was also tested.

Two commercial epoxy materials were obtained in
liquid form as separate resins and curing agents. The first
(Epoxy1) consisted of Epon 828 resin (miller–stephenson,
Danbury, CT) and Ancamide 507 curing agent (Air
Products, Allentown, PA). The resin and curing agent
were mixed in the proportion 3:1 by mass and samples
approximately 5 mm thick cast into circular plastic molds
35 mm in diameter, allowed to cure at room temperature
for 48 h, and then removed from the molds. The surfaces
cast against the base of the molds were highly reflective
and tested in the as-cast state. The second (Epoxy2) con-
sisted of a resin and curing agent used for metallographic
sample preparation, mixed as directed by the supplier
(Buehler, Lake Bluff, IL), cast into a circular plastic mold
along with a piece of dense aluminum nitride (AlN)
ceramic, and allowed to cure as directed. The composite
sample was removed from the mold and diamond polished
to a reflective state such that a sharp epoxy-ceramic
interface was normal to the sample surface.

FIG. 2. Experimental load–displacement–time, P–h–t, data for the
PMMA1 material during the three-segment indentation test. (a) The
imposed triangle-hold-trapezoid load spectrum; the end of the initial
triangle to peak load PT and the beginning of the creep segment at load
PR of the final trapezoid are indicated by vertical lines. (b) The
resulting displacement response; at the end of the central hold the
displacement is hPT. (c) The displacement in the creep segment of the
final trapezoid in shifted coordinates.
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Two epoxy-CNT composite materials were obtained
from a commercial vendor. The composites consisted of
mass fractions of 1% and 5% of multiwall CNT (MWCNT)
mixed into an epoxy matrix equivalent to Epoxy1 above.
To enable direct comparison with the mechanical properties
of the matrix epoxy, no chemical additives to improve
homogeneity of MWCNT dispersion were included in
the composites; it was thus expected that the MWCNT
dispersion would be somewhat inhomogeneous.29,30

The composite material samples were in the form of
15 mm � 15 mm sheets approximately 0.5 mm thick
and were fixed to aluminum pucks with Epoxy1 for IIT
measurements. The surfaces of the samples were re-
flective and tested in the as-received state.

B. Experimental methods

Single-point IIT measurements of the monolithic
materials were used to establish and validate the exper-
imental and analytical methods in two sequential stages.
In the first stage, indentation displacements were mea-
sured during a three-segment applied load spectrum as
described above. Material properties were determined
from these measurements. In the second stage, indenta-
tion displacements were predicted from these properties
for a range of single-segment linear load ramps and com-
pared with experimental measurements; the property values
were also compared with accepted values for the materials.
In this way, the validity of both the form of the analysis
and the magnitude of the included parameters could be
assessed. A Berkovich diamond probe was used for all
experiments. The data collection rate for load, displace-
ment, and time for all experiments was at least 10 Hz.

The first-stage, three-segment applied load spectrum
was as follows:

(i) A triangular segment, consisting of a linear load
ramp from zero to a peak load of PT and then a linear
ramp back to near zero over a total period of approx-
imately 30 s; the end of this segment is indicated by
the left vertical line in Fig. 2. PT 5 100 mN was used.
The displacement response for PMMA1 is shown in
Fig. 2(b) and consisted of an increase from zero to
a peak displacement followed by a decrease to a nonzero
displacement at the end of the segment.

(ii) A period of near zero load, approximately 1 mN,
typically extending for 600 s. The displacement response
for PMMA1 is shown in Fig. 2(b) and consisted of
recovery to a near invariant displacement, hPT, at the end
of the segment.

(iii) A trapezoidal segment consisting of a linear ramp
from near zero load to peak load of PR , PT in a time of
tR, a long creep load-hold period at PR, and a linear ramp
to zero load. PR 5 60 mN and tR � 10 s were used and
the creep hold period was typically 1000 s; the beginning
of the creep hold period is indicated by the right vertical
line in Fig. 2. The displacement response for PMMA1 is

shown in Fig. 2(b) and consisted of a rapid increase in
displacement followed by a slower increase to near in-
variant displacement at the end of the creep hold. An
expanded view of the slower creep displacement response
is shown in shifted creep coordinates in Fig. 2(c) (setting
the creep time to 0 after the tR � 10 s rise to the creep
load); analysis of such data provided the majority of the
material viscoelastic information. At least four three-
segment spectra were measured and analyzed for each
material. Prior to measurement, preliminary trapezoidal
experiments were used to ascertain the characteristic time
scales for deformation.

The second-stage validation experiments were a series
of linear load ramps. The ramps were part of a triangular
load wave as illustrated in the initial segment of Fig. 1(a),
with the exceptions that the peak loads were variable
values PU and the rise times were much longer variable
values tU. (The subscript “U” indicates that these val-
idation conditions are in principle unknown during
the above first-stage measurements.) Only the loading
parts of the triangle waves were used in the validation
experiments. Two different forms of validation experi-
ments were performed on PMMA1: (i) loading to a fixed
peak load of PU 5 100 mN with variable rise times of
tU 5 (20, 50, 100, 200, 500, 1000, and 2000) s; and,
(ii) loading with fixed rise time of tU 5 500 s and variable
peak loads of PU 5 (20, 50, 100, 200, and 500) mN.
A single form of validation experiment was performed
on the set of monolithic materials: loading with a fixed
rise time of tU 5 1000 s to a peak load of PU 5 100 mN
or PU 5 50 mN (HDPE only).

Multipoint measurements of the epoxy-ceramic inter-
face and the epoxy-CNT composites were used to generate
line scans and maps of viscoelastic and plastic deformation
properties. Linear arrays of 10 indentations on 100 lm
centers were performed over randomly selected areas
of the composites for direct quantitative comparisons
of properties with the base epoxy. A two-dimensional
10 � 10 array of indentations was performed over a
900 lm � 900 lm square centered on the interface in
the epoxy-ceramic sample to demonstrate the mapping
capability in an extreme case of spatial property variation.
Similar arrays of indentations were performed on ran-
domly selected areas of the epoxy-CNT composites to
demonstrate the mapping capability in inhomogeneous
polymer microstructures. The three-segment test sequence
described above was used for all the multipoint measure-
ments; the total test time for the two-dimensional arrays
was nearly 48 h.

C. Analysis method

The analytical method developed here will be used to
extract material mechanical properties from displacement
measurements during the three-segment experimental
applied load spectrum. The total indentation displacement

A.J. Gayle et al.: Mapping viscoelastic and plastic properties of polymers and polymer-nanotube composites

J. Mater. Res., Vol. 31, No. 15, Aug 15, 20162350

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/jm

r.
20

16
.2

07
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1557/jmr.2016.207


at all times is given by the sum of the plastic and
viscoelastic displacements, truncating Eq. (3) to

h ¼ hP þ hVE ; ð5aÞ

where the viscoelastic displacement, hVE, is now given
by the sum of the displacements of two quadratic Kelvin
elements in series, Fig. 1,

hVE ¼ hVE1 þ hVE2 : ð5bÞ
The plastic displacement is as before, Eq. (1).

The displacement for each quadratic Kelvin element
is described by a differential equation [see Appendix,
Eq. (A4)],

dhVEi
dt

þ hVEi
si

¼ P tð Þ
a2Mis2i

� �1=2

; ð6Þ

where i 5 1 or 2, and (for each element) Mi is the
viscoelastic resistance, and si is the time constant for
viscoelastic deformation. [In the limit of si .. dt/dln
hVEi, Eq. (6) reverts to the form of Eq. (3).]

At the end of the triangular segment (i), the displace-
ment consists of the sum of plastic deformation given by
Eq. (1) and viscoelastic deformation given by an expres-
sion similar to Eqs. (A10a) and (A10b), but the relative
proportions are not known. At the end of the recovery
segment (ii), the viscoelastic deformation has decayed
to near zero, if the segment is long enough, similar to
Eq. (A11), such that only displacement associated with
plastic deformation remains:

hPT ¼ PT=a1H½ �1=2 : ð7Þ
The “T” subscript in hPT indicates that the plastic dis-

placement is set by the maximum load attained, PT (Fig. 2)
and remains invariant thereafter. Equation (7) allows a1H
to be determined for the material from the measured values
of hPT and PT.

As PR , PT in the trapezoidal segment (iii), there is no
further plastic deformation and the additional displacement
is completely viscoelastic and described by an expression
similar to Eq. (A9). In particular, during the hold of the
trapezoidal segment, the viscoelastic displacement is given

by solving the differential equation for each quadratic
Kelvin element for fixed load to gain

hVE ¼ hRþ PR

a2M1

� �1=2

� hR1

" #
1� exp � t � tRð Þ

s1

� �� �

þ PR

a2M2

� �1=2

� hR2

" #
1� exp � t � tRð Þ

s2

� �� �
:

(8)

hR is the total displacement at the end of the ramp of
the trapezoidal segment, and thus the displacement at
the beginning of the hold segment; hR1 and hR2 are the
contributions of each viscoelastic element to the total,
hR 5 hR1 1 hR2. Fitting Eq. (8) to the measured hVE(t)
response enables the time constants s1 and s2 to be
determined, along with the amplitudes characterizing each
exponential term. An example fit for PMMA1 is shown in
Fig. 2(c), using the natural creep coordinates from Eq. (8)
of t – tR and hVE – hR. During the ramp of the trapezoidal
segment, the viscoelastic displacement is given by solving
the differential equation for each quadratic Kelvin element
for linearly increasing load, such that at peak ramp load,
PR, the displacement hR is given by

hR ¼ PR

a2M1

� �1=2

1�
ffiffiffi
p

p
2

s1=tRð Þ1=2 exp �tR=s1ð Þerf tR=s1ð Þ1=2
� �

þ PR

a2M2

� �1=2

1�
ffiffiffi
p

p
2

s2=tRð Þ1=2 exp �tR=s2ð Þerf tR=s2ð Þ1=2
� �

:

(9)

Combining Eqs. (8) and (9) allows the contributions to
the amplitude terms, a2M1 and a2M2 and hR1 and hR2, to
be separated and determined for the material from the
measured values of hR, PR, and tR.

Once the material parameters are determined, it is
then possible to predict the load–displacement–time
response for an arbitrary load spectrum. Comparison of
such predictions with measured responses is a test of
the range of validity of the parameters and of the model.
Here, for simplicity, the material parameters are used
to predict the response to a linear load ramp to peak
load PU in time tU. The full displacement response is
given by

h tð Þ ¼ PUt=tUa1Hð Þ1=2 þ PU

a2M1

� �1=2

t=tUð Þ1=2 �
ffiffiffi
p

p
2

s1=tUð Þ1=2 exp �t=s1ð Þerf t=s1ð Þ1=2
� �

þ PU

a2M2

� �1=2

t=tUð Þ1=2 �
ffiffiffi
p

p
2

s2=tUð Þ1=2 exp �t=s2ð Þerf t=s2ð Þ1=2
� �

:

ð10Þ
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In practice, it was more convenient to carry out the
fitting and prediction in the normalized coordinates of
t/tR, h/hR, and P/PR referenced to the parameters char-
acterizing the ramp at the beginning of the trapezoidal
segment (iii). Equations (8)–(10) then took on simpler
forms and the normalized loads and displacements were of
order unity, greatly simplifying fitting. More importantly,
on normalization a2M1 and a2M2 were then determined
as explicit fitting parameters from Eqs. (8) and (9). This
determination enabled predictions from Eq. (10) to be
expressed entirely in terms of the dimensionless exper-
imental ratios tU/tR and PU/PR without recourse to
explicit specification of the geometry terms a1 and a2
and thus of the material properties H, M1, and M2.

III. RESULTS

A. Model validation via single-point
measurements

Experimental displacement measurements for the
PMMA1 material, such as shown in Figs. 2(b) and 2(c),
gave parameters of a1H 5 (33.3 6 0.4) GPa,
a2M1 5 (13.4 6 0.1) GPa, a2M2 5 (470 6 8) GPa,
s1 5 (23.0 6 0.4) s, and s2 5 (547 6 14) s, where the
values represent the means and standard deviations of
best fits to Eqs. (7)–(9) from four separate three-segment
indentation experiments. Here and throughout, (s1, M1)
are taken to characterize the faster, short time constant
viscoelastic deformation process and (s2, M2) the slower,
long time constant process. Figure 3 shows as symbols
the load–displacement behavior of the PMMA1 material
during linear load ramps to 100 mN with rises times from
20 s to 2000 s. (For clarity, as in Figs. 2, 4 and 5, the
data are offset and not every measurement is shown.)
Inspection of Fig. 3 shows that the displacement at

peak load increased from about 4000 nm for a rise time
of 20 s to about 5000 nm for a rise time of 2000 s,
indicative of greater viscous flow as the test duration
increased over this time scale. The solid lines in Fig. 3
are predictions of the load–displacement responses using
Eq. (10) and the parameters given above. For rise times
comparable to the creep hold time used to determine the
viscoelastic parameters, 1000 s, the predictions are a very
good fit to the measurements. These fits reflect the fact that
the 1000 s hold was easily able to capture the viscoelastic
deformation processes associated with the longer s2 time
constant, � 500 s [see Fig. 2(c)]. As the rise times
decrease, the predictions do not fit the measurements as
well, particularly in the early part of the experiments.
These observations serve to place bounds on the validity
of the model, consistent with the idea that events shorter
than about two or three time constants for a modeled
process will not be well described. In this case, the
shorter s1 time constant places an upper bound on the
time scale for events to be well described of � (40–60) s,
in agreement with Fig. 3. The obvious remedy, at the cost
of model complexity, is to increase the number
of viscoelastic elements and time constants.16,18–20,38 As
the inferred properties and resulting maps here used
measurements deliberately not affected by the extreme
short rise times used for illustration in Fig. 3, additional
elements were not needed in this study.

Figure 4 shows as symbols the load–displacement
behavior of the PMMA1 material during linear load
ramps to (20–500) mN with a rise time of 500 s.
The solid lines in Fig. 4 are predictions of the load–
displacement responses using Eq. (10) and the param-
eters given above. In distinction to Fig. 3, the
predictions are a very good fit to the measurements
for all the peak loads. This latter observation is

FIG. 3. Load–displacement responses of the PMMA1 material during
linear load-time indentation ramps to the same peak load, but different
rise times, tU. Symbols indicate experimental observations (not all
shown) and the lines indicate predictions from measurements and
analyses of three segment (Fig. 2) tests. Data offset horizontally for
clarity.

FIG. 4. Load–displacement responses of the PMMA1 material during
linear load-time indentation ramps with the same rise time, but
different peak loads. Symbols indicate experimental observations
(not all shown) and the lines indicate predictions from measurements
and analyses of three segment (Fig. 2) tests. Data offset horizontally for
clarity.
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a consequence of the fact that the relative contributions to
total deformation from plastic and viscoelastic processes
remain fixed if the rise time is fixed even as the peak load
(and hence loading rate) changes [Eqs. (9) and (10)].
Inserting t 5 tU into Eq. (10) gives the displacement hU at
peak load of a ramp:

hU ¼ PU=a1Hð Þ1=2 þ PU=a2M1ð Þ1=2 1� f s1=tUð Þ½ �
þ PU=a2M2ð Þ1=2 1� f s2=tUð Þ½ � ;

ð10aÞ

where the functions f are defined by Eq. (9) or (10) and
depend only on the ratio of a material time constant and
the experimental rise time. If the latter is fixed the values
of the functions are fixed and hence the ratio of the first
and second terms (the ratio of plastic and viscoelastic
deformation) is also fixed. Equation (10a) also makes
clear that load and loading rate also do not affect this ratio
(providing material properties do not change with load).
As the rise time used in Fig. 4 was fixed and long enough
to capture the fast and slow viscoelastic processes, the
relative contributions to total displacement and thus
the shape of the load–displacement curves remained
invariant; consistent with Eq. (10a), the predictions scaled
simply with peak load over the load range used. (It is
possible that plastic deformation will not be initiated or
will be suppressed at very small loads, in which case H
would be load-dependent; this was not observed here.)

Figure 5 shows as symbols the load–displacement
behavior of all the monolithic materials during linear
load ramps with a rise time of 1000 s. The solid lines in
Fig. 5 are predictions of the load–displacement responses
using Eq. (10) and the fitted mechanical deformation
parameters, a1H, a2M1, a2M2, s1, and s2 for each material.
In all cases, the predictions are very good fits to the

measurements. It is clear that SLG is much more resistant
and HDPE much less resistant to indentation deforma-
tion under these conditions than the rest of the materials.
It is also clear from the fits in Fig. 5 that the form of the
analysis applies to a range of materials that exhibit
viscoelastic and plastic deformation during pyramidal
indentation. Comparison of the magnitudes of the fitted
parameters a1H and a2M1 with commonly used values
of hardness and Young’s modulus39,40 for each material
suggests that a very good approximation is that a1 and
a2 are constants, and that the group of materials is well
described by a1 5 100 and a2 5 6. Using these a
parameters, Table I gives the values of s1, M1, s2, M2,
and H determined for each material, where the values
represent the experimental means and standard devia-
tions of best–fit parameters from four separate experi-
ments. The H values are comparable to those determined
using quasi-static indentation40 and prior VEP meth-
ods.1,2,4,7,9,20 The time constants are also comparable to
those observed in indentation measurements in which a
two time-constant model was used: a few tens of seconds
for s1 and a few hundreds of seconds for s2.

3,9,18 The
viscoelastic resistance parameters are comparable to
those that can be inferred from a similar study,9 a few
gigapascals for M1 and a few tens of gigapascals for M2,
but the comparison is not direct as the prior study used
a slightly different indentation model. A final point of
comparison is that for SLG, which exhibited much
greater resistance to viscoelastic deformation than the
polymeric materials but similar time constants, in partic-
ular for the fast deformation process characterized by
s1 5 11 s. Such time dependence is consistent with
earlier observations of hysteretic cyclic indentation of
SLG at similar indentation time scales.41,42

B. Viscoelastic and plastic property mapping

Figure 6 shows property maps as color-fill contours
over the same area for an extreme example of a change in
properties at the Epoxy2-AlN interface; the interface is
vertical and is located 400 lm from the left edge of the
images. To accommodate the extreme range of prop-
erties, Figs. 6(a)–6(c) use logarithmic contour inter-
vals. Figure 6(a) is a map of the viscoelastic resistance
parameter M1. At this scale the epoxy appears uniform
and is weakly resistant to viscoelastic deformation. The
AlN ceramic is significantly more resistant to viscoelastic
deformation and exhibits some variability in resistance
(the weakening adjacent to the interface reflects the
large contour intervals). Figure 6(b) is a similar map of
the plastic resistance H; the appearance is similar to
Fig. 6(a). In this extreme example of material changes,
the interface between the epoxy and the ceramic appears
sharp in both viscoelastic and plastic properties maps.
Figure 6(c) is a map of the viscoelastic time constant s1;

FIG. 5. Load–displacement responses of silicate glass and polymer
materials during linear load-time indentation ramps. Symbols indicate
experimental observations (not all shown) and the lines indicate
predictions from measurements and analyses of three segment
(Fig. 2) tests. Data offset horizontally for clarity.
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although the interface is less distinct, there is still a
significant difference between the epoxy and the AlN,
and there appears to be a correlation between M1 and s1
in the ceramic (in some regions there is more resistance
to viscoelastic deformation and it is slower). Variability
in the properties of the epoxy can be observed by changing
the contour scale and this is shown in Fig. 6(d), which is
a re-scaled map of H for the epoxy alone. The epoxy
plastic resistance varies by approximately615% relatively
but there does not seem to be an interface proximity effect
as observed in the ceramic, Fig. 6(b).

Figures 7 and 8 show the variations in properties along
line scans for the 1% and 5% CNT-epoxy composites,
respectively. The gray bands represent the mean 6 two

standard deviation limits (given in Table I) of the
properties determined for Epoxy1, the composite matrix.
The symbols represent individual measurements in each
of three separate scans; different symbols are used for
each scan and the lines are guides to the eye. The com-
posite materials exhibited both similarities and differ-
ences in comparison with the matrix material. For both
composites, the time constants and resistances for the fast
viscoelastic process, s1 and M1, top diagrams, were not
significantly different from those of the matrix. For both
composites, the time constants and resistances for the
slow viscoelastic process, s2 and M2, center diagrams,
were significantly greater than those of the matrix,
particularly so for the slow viscoelastic resistance, M2.

FIG. 6. Color-fill contour maps of mechanical properties variations at an epoxy-AlN interface; the epoxy extends 400 lm from the left of the maps
as indicated by the arrow. (a) The resistance to viscoelastic deformation, M1, for the fast process in the epoxy. (b) The resistance to plastic
deformation, H. (c) The viscoelastic deformation time constant, s1, for the fast process. (d) The resistance to plastic deformation, H, in the epoxy, re-
scaled to enhance variation.

TABLE I. Viscoelastic and plastic properties of materials.

Material
Viscoelastic time
constant, s1 (s)

Viscoelastic resistance,
M1 (GPa)

Viscoelastic time
constant, s2 (s)

Viscoelastic resistance,
M2 (GPa)

Plastic resistance,
H (GPa)

HDPE 26.3 6 0.5 1.12 6 0.07 494 6 8 11.5 6 0.5 0.052 6 0.004
PMMA1 23.0 6 0.4 2.23 6 0.02 547 6 14 78.3 6 1.3 0.333 6 0.004
PMMA2 21.3 6 0.1 2.07 6 0.05 499 6 10 52.3 6 2.0 0.330 6 0.010
PS 13.0 6 0.7 4.0 6 0.2 331 6 7 262.5 6 7.5 0.169 6 0.003
PC 9.2 6 0.4 2.80 6 0.03 310 6 18 666.7 6 21.7 0.148 6 0.009
Epoxy1 18.9 6 0.4 2.27 6 0.07 481 6 10 89.7 6 4.3 0.171 6 0.007
Epoxy2 19.8 6 0.4 1.69 6 0.12 560 6 20 98.7 6 9.5 0.273 6 0.015
SLG 11 6 2 103 6 1 1080 6 610 (2.7 6 1.8) � 105 3.70 6 0.04
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Similarly, for both composites, the resistances to plastic
deformation, H, bottom diagrams, were significantly
greater than that of the matrix. A significant difference
between the composites was the variability in properties
along the line scan. The 5% composite exhibited much
greater variability in all properties than the 1% composite,
particularly so for M2 and H.

Figures 9 and 10 show property maps for the 1% and
5% CNT-epoxy composites, respectively. These maps
provide pictorial illustrations of the above similarities
and differences, as well as allowing an assessment of the
composite microstructures and the characteristic length
scales for variability or heterogeneity. For ease of

comparison, the maps are given as color-filled contours
of relative properties, X*:

X� ¼ Xcomposite � Xmatrix

Xmatrix

ð11Þ

such that X* 5 0 corresponds to no difference from
the matrix; the properties considered were X 5 s2, M2,
and H and the same contour intervals were used for each
material. Figures 9(a) and 10(a) show maps of the
relative time constants s�2 for the 1% and 5% compo-
sites, respectively. In both cases, the “slow” process in
the composite is even slower than that in the matrix
(s�2 > 0) and the variability and average of the time
constant is greater in the 5% material. Figures 9(b) and
10(b) show maps of the relative viscoelastic resistance
M�

2 for the 1% and 5% composites. In both cases, resis-
tance to the slow deformation process is greater than that

FIG. 7. Variations in mechanical properties of 1% CNT-epoxy
composite along line scans. The gray bands indicate the properties of
the epoxy matrix. (Upper) Time constant and resistance to deformation
for the fast viscoelastic deformation process, (s1, M1). (Central) Time
constant and resistance to deformation for the slow viscoelastic
deformation process, (s2, M2). (Lower) Resistance to plastic deforma-
tion, H.

FIG. 8. Variations in mechanical properties of 5% CNT-epoxy
composite along line scans. Notation as in Fig. 7.
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in the matrix, particularly so for the 5% material. Finally,
Figs. 9(c) and 10(c) show maps of the relative plastic
resistance H* for the 1% and 5% composites. In this case,
although the resistance to plastic deformation is mostly
greater than that of the matrix, there are local “soft” spots
(H* , 0). The maps of Figs. 9 and 10 are of course
consistent with the graphs of Figs. 7 and 8 with regard to
values and variability, but they provide two additional

features. The first is that the form and length scales of the
microstructures can easily be observed. The maps suggest
that the microstructures are “clumped” with localized
regions that are more resistant to deformation, and that
these regions are approximately 200 lm in size in 1%
material and about 500 lm in size in 5% material. The
second is that correlations between properties can easily
be observed. The maps suggest that there is a strong
correlation between the resistances to viscoelastic and
plastic deformation [maps (b) and (c)] and a weaker
correlation between the viscoelastic time constant and
resistance [maps (a) and (b)].

FIG. 9. Color-fill contour maps of mechanical properties variations in
1% CNT-epoxy composite. The properties are plotted relative to the
epoxy matrix using Eq. (11). (a) The viscoelastic time constant, s2, for
the slow deformation process. (b) The resistance to viscoelastic
deformation, M2, for the slow process. (c) The resistance to plastic
deformation, H.

FIG. 10. Color-fill contour maps of mechanical properties variations
in 5% CNT-epoxy composite. Notation as in Fig. 9.
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IV. DISCUSSION AND CONCLUSIONS

The results presented here have demonstrated two-
dimensional mapping of viscoelastic and plastic proper-
ties of polymeric-based materials, extending the mapping
capabilities to time-dependent deformation from those
demonstrated previously32–37 using an elastic–plastic
analysis.41 The previous studies all used indentation
spacings smaller than the 100 lm used here, ranging
from 0.5 lm32

–20 lm,35 allowing most maps to be
presented with properties as individual pixels32,34–36

rather than as contours33,37 as in Figs. 6, 9 and 10. In
both the viscoelastic-plastic mapping here and in the pre-
vious elastic–plastic maps, the indentation spacing was
matched to the scale of the microstructure and as a con-
sequence there are many similarities between the pre-
vious maps and those obtained here: In previous maps of
dense WC polycrystals,32 tooth enamel,33 lamellar
bone,34 quartzite,35 brass,36 and titanium,37 there were
factors of two or three variation in modulus and hardness
observed over the maps. These variations were associated
with microstructural variations such as grain orientation
or small variations in composition and are analogous
to the variations in properties observed within the AlN
ceramic and epoxy, Fig. 6. In some cases, much greater
variations in properties were observed and were associated
with abrupt changes in microstructure, such as decreases
of factors of four in modulus and hardness associated
with Co binder in WC–Co composites,32 decreases of
factors of ten associated with graphite flakes in cast
iron,36 and much greater decreases associated with
porosity in bone34 and cement.35 These latter variations
are analogous to the variations in properties observed
between the AlN and epoxy, Fig. 6.

The above observations and those of prior CNT-epoxy
dispersion studies28,31 and reviews29,30 enable interpreta-
tion of the line scans and maps of Figs. 7–10 in terms of
the CNT composite microstructures. Figures 7 and 8 show
that in both composites the time constant and deformation
resistance of the fast viscoelastic process (s1, M1) are no
different from that of the epoxy matrix. This observation
suggests that the CNTs do not influence this deformation
mechanism at all and that it is entirely associated with the
epoxy and probably molecular in scale. Conversely, Figs. 7
and 8 show that for the slow viscoelastic process (s2, M2)
in both composites the time constant is increased some-
what and the deformation resistance is increased sub-
stantially from that of the epoxy. The implication here is
that the incorporated CNTs are slowing this deformation
process and making it more difficult, probably over length
scales comparable to the indentation size, about 5 lm
(Fig. 5). Figures 7 and 8 also show that the resistance to
plastic deformation, H, is increased substantially from that
of the epoxy for both composites, consistent with the idea
that the CNTs impeded both slow, time-dependent and

irreversible, time-independent-deformation on length
scales comparable to the indentation field. Figures 9 and
10 highlight, however, that the increases in M2 and H are
not uniform: some areas exhibit less than average de-
formation resistance, e.g., in Fig. 9, and some areas exhibit
greater than average deformation resistance, e.g., in
Fig. 10, with strong correlation between M2 and H. These
areas probably reflect localized increased concentrations
of CNTs and are comparable in size to the hundreds of
micrometer-31 to millimeter-scale28 agglomerates observed
previously. Removal of such entangled agglomerates
is a major focus of the many methods29,30 used to dis-
perse CNTs in polymer matrices, as the agglomerates are
only weakly infiltrated by the polymer and thereby degrade
the composite properties relative to those that might be
achieved by well-dispersed CNTs bound to the matrix.
This degradation is probably the case in Fig. 9, which
shows local “soft” spots. Counter to this is Fig. 10, which
shows local “hard” spots possibly reflecting enhanced
areas of CNT concentration with adequate polymer in-
filtration. The advantage of maps such as Figs. 9 and 10 is
that local variations in properties are assessed directly and
do not have to be inferred from measurements of entire
composite components.31 An implication from Figs. 7–10
is that the CNTs in the 5% material were less uniformly
dispersed than in the 1% material. Imaging spectroscopy
methods, e.g., Raman spectroscopy as applied to single-
wall CNT composites,43 could possibly be used to directly
assess CNT dispersion for comparison with the mechanical
measurements.

Application of the method developed here to prediction
of properties for a particular material requires a few addi-
tional steps. First, to establish accuracy (how close a mea-
surement represents a true or known value), independent
measurements of properties should be performed so as to
fix the geometry terms a1 and a2 for the materials class
under consideration. The material-invariant approximation
used here returns reasonable property values (Sec. III.A
and Table I) for a range of materials, but does not
necessarily apply in detail to a specific material. Such
independent measurements should be viscoelastic experi-
ments, noting that the M values used here are viscoelastic
resistances and include elastic moduli as lower bounds.
Second, to establish precision (how close a measurement
represents a mean value) sufficient measurements should
be performed to place statistical bounds on the determined
s1, M1, s2, M2, and H parameters. Table I suggests that
four measurements provide sufficient precision for homo-
geneous materials at the indentation scale used here, but
indentations at smaller scales, particularly in materials
with heterogeneous microstructures, will lead to less
precision (e.g., as in the elastic–plastic indentation
studies above32,36,37) and require greater numbers of
indentations. This last point pertains particularly to
composite materials: If globally averaged properties
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are required for a composite, say to predict the overall
response of a component, sufficient numbers of inden-
tations over a large enough area are required so as to
assess the characteristic length scales of the microstruc-
ture. This in turn sets the “representative volume ele-
ment” for the material that is the minimum component
scale that can be regarded as possessing average proper-
ties. Third, to validate the assumed constitutive law and
measured deformation parameters, predictions should be
made and tested against loading protocols close to those
expected in component operation, or at least different
from those used to determine the parameters. Here, pre-
dictions from the three-segment measurements (Fig. 2)
were tested against ramp loading protocols (Figs. 3–5) for
which closed-form solutions [Eq. (10)] were developed.
Similar validations are often performed,1,2,4,8,18–20 but
often not, especially when viscoelastic correspondence
methods are used to analyze measurements.3,9,12,13,16,17

In this regard, it is to be noted that for nonsimple loading
protocols or those with multiple stages, the integrand
of the general displacement integral [Eq. (A5)] will
usually not be too pathological and therefore amenable
to straightforward numerical integration. It is also to be
noted that the viscoelastic correspondence methods23–27

do not allow for unloading of the indenter (formally, they
only allow monotonically increasing contact radius),
which is not an inherent limitation of the VEP approach
and which can be tested experimentally.4,9,12 Extension to
arbitrary, multiple-stage loading protocols including unload-
ing and numerical prediction of load–displacement–time
responses will be the subject of future work.

Finally, practical considerations for indentation-based
mapping of the mechanical properties of polymeric
systems are that time will nearly always be an inherent
part of the measurement procedure and that the inden-
tations will invariably be large. Hence, maps that involve
viscoelastic properties will always take longer to generate
than those that only involve elastic–plastic properties, and
maps of “soft” materials will always require indentation
spacing greater than that of hard materials. As noted
above, matching the indentation spacing and size to the
length scale of the microstructure is important such that
maps do not over- or under-sample. In polymeric com-
posite systems with microstructural scales smaller than that
examined here, finely spaced line scans about three
indentation dimensions apart might provide a compromise
between generating an accurate assessment of the hetero-
geneity of time-dependent mechanical responses and
maintaining reasonable test durations.
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APPENDIX: VEP MODEL DEVELOPMENT

The starting point for the quadratic viscoelastic Kelvin
element is the linear Kelvin element load–displacement
function:38

P ¼ khþ g
dh

dt
; ðA1Þ

where k is interpreted as a stiffness, g is interpreted as a
viscosity, and the load is interpreted as the sum of the loads
supported by an elastic element (k) and a viscous element
(g) in parallel. Equation (A1) can be re-written as

P ¼ g
h

s
þ dh

dt

� �
; ðA2aÞ

where

s ¼ g
k

ðA2bÞ

is a characteristic time constant. By analogy with the
quadratic viscous element described by Eq. (3), the
quadratic viscoelastic Kelvin element is described by
squaring the right side of Eq. (A2a),

P ¼ a2Ms2
h

s
þ dh

dt

� �2

; ðA3Þ

where the term a2Ms2 is here an effective or lumped qua-
dratic viscoelastic resistance. The first term in the parentheses
in Eq. (A3) represents the elastic contribution to the resis-
tance and the second term the viscous contribution. Inverting
Eq. (A3) leads to a differential equation for the viscoelastic
displacement resulting from an imposed load spectrum:

dh

dt
þ h

s
¼ 1

s
P tð Þ
a2M

� �1=2

: ðA4Þ

This is a differential equation of the form

_hþ hR ¼ Q

with R and Q defined by Eq. (A4) that can be solved with
use of an integrating factor

q ¼ exp

Z
Rdt

� �
¼ exp t=sð Þ ;

A.J. Gayle et al.: Mapping viscoelastic and plastic properties of polymers and polymer-nanotube composites

J. Mater. Res., Vol. 31, No. 15, Aug 15, 2016 2359

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/jm

r.
20

16
.2

07
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1557/jmr.2016.207


with solution

qh ¼
Z

qQdt þ C ;

where C is a constant of integration. Hence, the visco-
elastic displacement can be written as

h ¼ e�t=s
Z

e�t=s

s
P tð Þ
a2M

� �1=2
dt þ Ce�t=s : ðA5Þ

The time spectra of interest here are linear, of the form

P tð Þ ¼ A þ Bt : ðA6Þ
In particular, for a ramp load from zero to a peak
of PR in a time of tR, A 5 0 and B 5 PR/tR in
Eq. (A6), and the solution to Eq. (A5) is, using
Mathematica,44

h ¼ btð Þ1=2 �
ffiffiffi
p

p
2

btð Þ1=2 exp �t=sð Þerfi t=sð Þ1=2
h i

þ Ce�t=s ;

ðA7aÞ

where

b ¼ PR

tRa2M
: ðA7bÞ

The function erfi(z) is the complex error function given
by erfi(z) 5 �ierf(z), where erf(z) is the general error
function, z is complex, and i2 5 �1. It is easy to show
that if the argument z5 x is real that erfi(x)5 erf(x). This
is case here, Eq. (A7a), such that

h ¼ btð Þ1=2 �
ffiffiffi
p

p
2

btð Þ1=2 exp �t=sð Þerf t=sð Þ1=2; t # tR

ðA8Þ
using h 5 0 at t 5 0 to show that C 5 0, and where the
notation for erf(x)1/2 in Eq. (A8) follows directly from
Eq. (A7a). The first term on the right side of Eq. (A8)
represents the displacement of a free elastic element
and the second term represents the modification by the
viscous element. Setting t 5 tR in Eq. (A8) gives
h(tR) 5 hR, the viscoelastic displacement at the peak of
the ramp load.

For a load hold at the peak value, after a ramp, A 5 PR

and B 5 0 in Eq. (A6), and the solution to Eq. (A5) is,
using separation of variables,

h ¼ hR þ a1=2 � hR
� �

1� exp � t � tRð Þ
s

� �� �
; t$ tR ;

ðA9aÞ

where

a ¼ PR

a2M
: ðA9bÞ

The term hR appears in both additive and multiplicative
roles on the right side of Eq. (A9a), modifying the creep
response [Eq. (A9)] by displacement accrued during the
prior ramp [Eq. (A8)]. In this sense, hR acts as a “ramp
correction factor” used earlier in a linear viscoelastic
context.18,19 Eq. (A9) contains an essential result of the
analysis: For (t � tR) .. s the creep displacement
approaches a bounded value of h ! PR=a2Mð Þ1=2 in a
nonlinear manner.

Alternatively, for a ramp unload from the peak of
PR to zero in a time of tR, A 5 2 PR and B 5 �PR/tR in
Eq. (A6), and the solution to Eq. (A5) is, using
Mathematica,44

h ¼ aþ btð Þ1=2 �
ffiffiffi
p

p
2

bsð Þ1=2 exp aþ bt

bs

� �
erf

aþ bt

bs

� �1=2

þ hF exp
aþ bt

bs

� �
; tR # t # 2tR ;

ðA10aÞ

where now

a ¼ 2PR

a2M
; b ¼ � PR

tRa2M
: ðA10bÞ

Setting t 5 2tR in Eqs. (A10a) and (A10b) gives
h(2tR)5 hF, the displacement at the end of the triangular
load spectrum. Noting that both Eqs. (A8), (A10a) and
(A10b) must pertain at t 5 tR, hF can be determined
in terms of hR and thus in terms of test and material
parameters.

Combining Eqs. (A8), (A10a) and (A10b) generates
load–displacement responses that are indistinguishable
from those observed in experiments and determined using
the earlier Maxwell-like VEP model during triangle-wave
loading.1,4 In particular, for slow tests the current model
exhibits the initial negative unloading slope and unloading
“nose.” The explicit behavior described by Eqs. (A10a)
and (A10b) will not be used here, but it is noted that in a
zero-load recovery segment after a triangular load spec-
trum, such that A5 B5 0, the viscoelastic displacement is
given by the last term in Eq. (A5) alone, such that

h ¼ hF exp � t � 2tRð Þ
s

� �
; t $ 2tR : ðA11Þ

Equation (A11) contains another essential result of the
analysis: For (t � 2tR) .. s in a recovery segment, the
viscoelastic displacement h ! 0 in a nonlinear manner.
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