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Abstract

Date palm is a relatively salt- and drought-tolerant plant and more recent efforts have been
focused on recognizing genes and pathways that confer stress tolerance in this species. The
cDNA start codon targeted marker (cDNA–SCoT) technique is a novel, simple, fast and
effective method for differential gene expression investigation. In the present study, this tech-
nique was exploited to identify differentially expressed genes during several stress treatments
in date palm. A total of 12 SCoT primers combined with oligo-dT primers amplified differ-
entially expressed fragments among the stress treatments and control samples. Differentially
expressed fragments were highly homologous to known genes or encoded unclassified pro-
teins with unknown functions. The expression patterns of the genes that had direct or indirect
relationships with salinity and drought stress response were identified and their possible roles
were discussed. This study suggests that the cDNA-SCoT differential display method is a use-
ful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic
stresses and provide gene information for further study and application in genetic improve-
ment and breeding in date palm.

Introduction

Date palm (Phoenix dactylifera L.), belonging to the Arecaceae family, is the main crop of the
arid region of western Asia and North Africa (Munier, 1973; Barrow, 1998; Zohary et al.,
2012). It is the key species in the palm family, which consist of about 200 genera and more
than 2500 species (El Hadrami and El Hadrami, 2009; Jain et al., 2011). Throughout the pre-
vious three centuries, dates were introduced to Mexico, India, Pakistan, southern Africa,
Australia and United States (Zohary et al., 2012). It represents about 1,235,601 ha and a living
revenue of 10 million oases worldwide. In the oasis, date palm, just like other plants, is rou-
tinely exposed to an unpredictable combination of diverse stresses (Slama et al., 2015), which
is even worse in the circumstances of climate change, soil salinization and environmental pol-
lution. Plants commonly encounter severe growing conditions like low or high temperature,
deficient or excessive water, high salinity, heavy metals and ultraviolet radiation (He et al.,
2018). These abiotic stresses can affect plant growth, causes irreversible damage and drives
to death. They represent the main causes of crop yield penalty worldwide (Bray et al., 2000;
Agarwal and Jha, 2010).

Plants have to get around the stresses and develop powerful adaptive strategies to tolerate their
adverse effects allowing them to survive and thrive. Therefore, plants are able to adapt their
metabolism to diverse fluctuations in the environment throughout evolution (Maksymiec,
2007). Plant stress responses are dynamic and implicate cooperation amongst diverse regulatory
levels, comprising modification of metabolism and gene expression for physiological and mor-
phological adaptations; for instance, stress protein production, antioxidant up-regulation and
compatible solute accumulation (Xiong et al., 2002; Krasensky and Jonak, 2011). Plant species
vary in their tolerance to abiotic stress. Salt stress causes more than 50% yield losses in major
crops around the world depending on the crop (Al-taweel et al., 2019) and affects the many
metabolic and physiological processes of the plant, which can damage the cells.

Molecular techniques have been proposed to be appropriate powerful tools for the identi-
fication of some clonal variation, stress tolerance and establish genetic stability (Bennici et al.,
2004; Khaled et al., 2018). In recent times, many new promising alternative marker techniques,
refining developments in the field of molecular biology, have developed. In this context,
numerous approaches have been developed for the analysis of differential gene expression at
the mRNA level in various plants. Recently, a new marker has been developed for the assess-
ment of genetic diversity, called start codon targeted (SCoT) marker (Collard and Mackill,
2009). The start codon (ATG) and flanking sequences are highly conserved in the plant
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genes (Sawant et al., 1999). In SCoT marker profiling, a single pri-
mer is used as in ISSR and RAPD markers. Conversely, this
marker is more reproducible than the RAPD as it has a longer pri-
mer sequence (Mulpuri et al., 2013). The SCoT marker has been
used for the assessment of genetic diversity in P. dactylifera culti-
vars and gave reproducible results among the cultivars
(Al-Qurainy et al., 2015; Rhouma et al., 2020). SCoT markers
can be developed from the transcribed regions and might be
related to the gene function as proven in mango (Mangifera
indica L.) (Luo et al., 2014) and sugarcane (Saccharum offici-
narum) (Wu et al., 2013).

The cDNA-SCoT method is a new gene expression analysis
method developed by Wu et al. (2013), compared with all other
differential gene analysis methods available in the current
research fields. It is relatively more efficient, rapid, inexpensive
and simple to operate. Its data results are also easily reproducible
(Luo et al., 2014). For instance, even though the cDNA-AFLP and
cDNA-SRAP methods are also reliable methods for gene expres-
sion analysis, the cDNA-SCoT method is much simpler since it
needs fewer primer combinations to operate. This technique will
certainly play an essential role in studying differentially expressed
genes, finding new genes and exploring the molecular mechanism
of resistance (Wu et al., 2013).

The optimal environment is extremely variable for plant spe-
cies. Harsh environments may be damaging for one plant species,
however may possibly not be for another (Munns and Tester,
2008). These facts designate that plant response to the environ-
ment are complex and that specific sensitivities exist throughout
the multitude of plant species. Knowledge of molecular mechan-
isms in P. dactylifera L. under abiotic stress conditions is limited.
Yaish and Kumar (2015) suggest that P. dactylifera L. can accli-
mate to extreme drought, heat and moderately elevate the stages
of soil salinity. Therefore, in the present study, the experiments
were carried out using seedlings from the elite cultivar ‘Deglet
Noor’ to determine the performance for growth and yield-related
traits and gene expression profiling under different stress levels.

Material and methods

Plant material, growth and experimental design

Seeds of ‘Deglet Noor’ cultivar were collected from the oasis of
Tozeur in the South of Tunisia. The healthy seeds of P. dactylifera

were cleaned, scraped, soaked for 48 h in lukewarm water and
brushed to remove residues. Surfaces were sterilized with 75%
ethanol for 3 min and then with sodium hypochlorite solution
(12°) for 10 min and washed thoroughly four times with distilled
water. Subsequently, the seeds were removed into sterilized wet
Petri dishes and incubated at 37°C until germination, which
was then transplanted into 2 litre pots. The pots were filled
with a mixture of sand and peat moss (1:1). The sand was sieved,
washed successively with tap water and rinsed with distilled water.
The seeds were sown in plastic pots and watered at regular inter-
vals to maintain moisture for better germination. The pots were
maintained in the growth chamber at 26–27 °C, daylight and rela-
tive humidity of 72%.

The stress conditions were salt stress using 240 mM NaCl
(four samples), salt stress using 50 mM CaSO4 (four samples),
drought using polyethylene glycol (PEG, MW 6000) 82.5 g/l
(four samples) and drought due to no irrigation (four samples).
The experiment was carried out for 3 weeks along with four con-
trol samples (irrigated with distilled water) (Fig. 1). Leaves and
roots were collected after each treatment and stored at −80°C
for RNA isolation

Biomass and morphological traits

Fresh leaf and root weight and shoot and root length were mea-
sured after 3 weeks of treatment. Each treatment was compared
to control plants for the evaluation of their stress responses.
The statistical analysis of the morphometric parameters was car-
ried out using the software program IBM SPSS Statistics 20. The
difference in variance between the treated groups was compared
by an ANOVA test. The difference is significant at a p-value
≤0.05.

RNA extraction and differential gene expression analysis

Total RNA was extracted from the control and stressed plants
using the GF-1 Total RNA Extraction Kit (Vivantis, Malaysia)
according to the directives specified in the manual. The quantity
and quality were verified using the spectrophotometer (Gold
S54T, Shanghai). High-quality cDNA was prepared using the
PrimeScriptTM 1st strand cDNA Synthesis Kit (TaKaRa). The
PCR reaction was performed in a total volume of 25 μl using
the SCoT primers (Table 1) for the study of expression profiling.

Fig. 1. Different treatments on date palm seedlings in advance of transcriptomic analysis.
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These primers were selected for their effectiveness in revealing
polymorphism in date palms (Rhouma et al., 2020). The cDNA
was diluted in RNase-free water to a working concentration of
50 ng for PCR amplification with SCoT primer (20 picomoles
per reaction). PCR was performed in a 2720 thermal cycler
(Applied Biosystems). The cycling profile was 94°C for 3 min,
45 cycles at 94°C for 1 min, 44.5°C for 30 s, 72°C for 1 min and
a cycle of 72°C for 5 min. The amplified products were resolved
on 2% TBE agarose gel. The oligo-dT anchored cDNA-SCoT pat-
terns were compared for each stress treatment and control.

Isolation and sequencing of oligo-dT anchored cDNA-SCoT
fragments

According to the results of the amplification, differential frag-
ments were found based on their absence or differential intensity
on an agarose gel, and then the polymorphic expressed sequence
tags were cut from the agarose gel with a sharp scalpel. The target
products were purified by DNA extraction using an agarose gel kit
(EZ-10 Spin Column DNA Gel Extraction Kit, Bio Basic) and
sequenced. The sequences were analysed for their homology
with nucleotide sequences through BLASTX searches against
the GenBank non-redundant public sequence database (http://
www.ncbi.nlm.nih.gov/BLAST).

Results and discussion

Effect of stress on morphometric parameters:

In order to study the effect of salinity and drought on the mor-
phometric parameters, of treated and control seedlings, we mea-
sured the length and weight of the root and aerial parts. The
measures were carried out immediately after the date palm seed-
lings were removed from the culture bags and washed (Fig. 2).
Statistical analysis showed no significant difference in morpho-
logical parameters (mass and length) (Fig. 3). Indeed, the absence
of morphological differences between treated and untreated seed-
lings may be related to the short duration of stress and/or by the
capacity of adaptation to drought and salinity of P. dactylifera
which is superior to other plant species.

In fact, some cultivars of date palms have the capacity to grow
close to the seashore where they are often exposed to seawater
during tidal currents. Therefore, the date palm could be consid-
ered an exceptional halophyte plant and could possess a series
of mechanisms of tolerance to salinity. Our results are in agree-
ment with those described by Yiash et al. in 2017 where the cul-
tivar Khalas subjected to severe salt stress for 10 days did not
show morphological differences compared to the control seed-
lings. Moreover, Al Karusi et al. (2019) demonstrate that a saline
treatment for a longer period (6 weeks) showed a 20 and 27%
reduction in leaf area relative to the cultivars Umsila and Zabad
and a decrease in root length and surface area. Other studies
have shown that, under saline stress, other symptoms were visua-
lized such as leaf tip burning (Al Kharusi et al., 2017).

On the other hand, it has been described that, under drought
stress conditions, date palm develops several adaptation mechan-
isms including morphological changes in the aerial and/or root
part. In 2016, Elshibli et al. (2016) showed that a date palm seed-
ling displays multiple transformations in growth and morphology
under drought-stressed conditions of 10 and 25% of plant cap-
acity. In addition, a study of two cultivars developed in vitro
under PEG-induced water stress allowed the selection of the
most drought-tolerant cultivar (Djibril et al., 2005). The response
to water stress is genotype-specific, as it is possible to identify and
select the cultivars best adapted to improve yield in the most sen-
sitive areas. Other studies carried out on date palm in open fields
have shown the effect of water stress on different morphological
parameters. Actually, Gribaa et al. (2013) and Sabri et al.
(2017) reported a negative effect on date production in quantity
and quality, in addition to the adverse effect on the aerial and
root part.

Isolation and analyses of transcript-derived fragments (TDF)
and function predictions

Analysis of gene expression is a central aim in most studies of
molecular and cellular biology. It forms the basis for understand-
ing plant growth, development and adaptation and permits the
identification of precise regulator points of metabolism (Gupta
and Chakrabarty, 2013). In this context, Oligo-dT cDNA-SCoT

Table 1. SCoT primers used for PRC reactions

No. Primers code Sequence 5′-3′ %GC

1 SCoT 10 CAACAATGGCTACCAGCC 55.6

2 SCoT 45 ACAATGGCTACCACTGAC 50

3 SCoT 41 CAATGGCTACCACTGACA 50

4 SCoT 5 CAACAATGGCTACCACGA 50

5 SCoT 7 CAACAATGGCTACCACGG 55.6

6 SCoT 9 CAACAATGGCTACCAGCA 50

7 SCoT 23 CACCATGGCTACCACCAG 61.1

8 SCoT 26 ACCATGGCTACCACCGTC 61.1

9 SCoT 30 CCATGGCTACCACCGGCG 72.2

10 SCoT 35 CATGGCTACCACCGGCCC 72.2

11 SCoT 42 CAATGGCTACCATTAGCG 50

12 SCoT 44 CAATGGCTACCATTAGCC 50

Fig. 2. Seedling after 20 days of stress. (A) Drought stress; (B) saline stress.
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analysis was performed on RNA isolated from leaves and roots
collected to identify genes response to stress treatments in P. dac-
tylifera. A total of 12 SCoT primers were used for PCR amplifica-
tion. SCoT polymorphism is a gene-targeted marker that can
generate information correlated with biological traits compared
with random DNA markers (Collard and Mackill, 2009; Xiong
et al., 2009). Only those with stable amplification results and
clear bands were selected. By using these 12 single primers, 108
cDNA fragments with the length of 100–3000 bp were amplified.
Results show qualitative (presence or absence of bands) and
quantitative differences (variability in band intensity). These
results prove the effectiveness of the cDNA-SCoT technique. In
fact, Al-Qurainy et al. (2017) have shown its efficacy in the
study of differential expression between date palm plants under
salt stress induced by various concentrations of NaCl. In addition,
this technique has been used to study genes expressed at different
stages of development of sugar cane seedlings treated or not with
gibberellic acid (Wu et al., 2013) and results showed that a SCoT
primer could produce three to 15 differentially expressed bands.
Moreover, cDNA SCoT was equally used to study gene change
and to understand the allopolyploidy evolutionism and the gen-
etic mechanism of Arachis interspecific hybridization (He et al.,
2017). Due to high success rate, low false-positive rate, simple
operation and low cost, cDNA-SCoT techniques were appropriate
for analysing the variations of gene expression in those different
plant species.

Thirty-three clear, bright and differentially expressed bands
were selected and sequenced. After verification of the sequences
obtained, it results that some of them do not present any signifi-
cant homology. On the other hand, others present homologies

with certain species and whose presence may be strongly asso-
ciated with the stress applied. All of these sequences, their hom-
ologies and their possible functions are summarized in Table 2.
TDFs sharing high homology with genes in the NCBI database
could be divided into four types according to their functions,
including resistance-related genes, signal transduction factor,
transcription and translation factor-related genes and unknown
functional protein-related genes. TDFs, expressed under drought
or saline stress, are considered as not significant since they have
unknown functional protein-related or are not associated to either
biotic or abiotic stress tolerance.

Features of genes differentially expressed during drought
stress

Analysis of differentially expressed sequences, due to drought
stress, showed homology with genes whose expression could be
strongly associated with the applied treatment (Table 2). In fact,
TDF1, expressed within the PEG-stressed stem, has homology
with the sequence of P. dactylifera L. which codes for the protein
DNA ligase 1-like controlling the repair of broken DNA following
high levels of environmental stress (Waterworth et al., 2009). The
expression of this gene indicates its role in stress response, as
effective cellular response mechanisms have evolved to cope
with DNA damage caused by water stress, including delay or
arrest of the cell cycle and activation of repair pathways and
DNA ligase ligation. TDF2, a fragment expressed at the
PEG-stressed stem, has homology with the sequence of P. dacty-
lifera. L, which codes for the eukaryotic translation initiation fac-
tor 3. This factor, described in Arabidopsis thaliana, is responsible

Fig. 3. Fresh leaves and root weight and length in Phoenix dactylifera L. grown in the green house at different saline (A) and drought (B) treatments. Data represent
means of four replicates ± standard deviation.
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for initiating the translation of a subset of mRNAs involved in cell
proliferation. Stress has adverse effects on the growth of the seed-
ling, consequently on cell proliferation. The expression of this

factor aims to enhance cell proliferation in order to overcome
water stress. Moreover, TDF3 which is expressed at the level of
the stressed stem, due to the absence of irrigation, has a homology

Table 2. Function prediction of transcript-derived fragments (TDFs) by the cDNA start codon targeted polymorphism (cDNA-SCoT) technique

Origin of TDFs Homological gene
Accession
number Functional category

TDF1 PEG-stressed stem DNA ligase1-like XM_008792098.2 Reparation and ligation of DNA strand breaks

TDF2 PEG-stressed stem Eukaryotic translation initiation
factor 3

XM_008786463.3 Initiation of the translation of a subset of mRNA
involved in cell proliferation

TDF3 Absence of irrigation Serine/arginine repetitive
matrix protein 2 (Phoenix
dactylifera L)

Splicing factors; regulation of alternative splicing

TDF4 Absence of irrigation Late embryogenesis abundant
proteins (LEA)

CP046694.1 Involved in the response of plants to abiotic stress

TDF5 NaCl-stressed stem Nucléolin 1-like (Phoenix
dactylifera L.)

XM_026802420.1 Multifunctional nuclear phosphoprotein (Tuteja and
Tuteja, 1998) involved in adaptation to salt stress
(Boonchai et al., 2018) and signal transduction

TDF6 (2) NaCl-stressed stem –
absence of irrigation

Serine/arginine repetitive
matrix protein 2 (Phoenix
dactylifera L)

XM_008778408.3 Splicing factors; regulation of alternative splicing

TDF7 NaCl-stressed roots S-related kinase (Arabidopsis
lyrata)

AY186754.1 Protein kinase involved in ABA signalling pathways

TDF8 NaCl-stressed roots Element-binding protein 2-like
(Phoenix dactylifera L.)

XM_008797243.3 Transcription factor

TDF9 CaSO4-stressed stem Homeobox-leucine zipper
protein HAT5 (Capsicum
annuum)

XM_016692739.1 Transcription factor linked to DNA and an adjacent
leucine zipper motif (Henriksson et al., 2005)

TDF10–
TDF33

Drought/saline stress Unknown functional
protein-related genes

– –

Fig. 4. cDNA-SCoT marker profiling generated from individual plant leaves of Phoenix dactylifera L. at different stress treatments. Lane L: 100 bp ladder; Lane T-:
negative control of PCR, lane C: control (seedling without treatment); lanes 1, 2, 3, and 4: seedling with drought or saline treatment. The arrows indicate some
differentially expressed bands.
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with the sequence of P. dactylifera L. which codes for a repetitive
serine/arginine matrix protein 2. The latter interacts with other
factors involved in messenger RNA maturation to activate the
alternative splicing of numerous genes encoding factors involved
in signal transduction, cell cycle and transcription (Yoshimura
et al., 2011). These results suggest the existence of an important
transcriptome diversification under the effect of water stress.
Finally, Chen et al. (2019) showed that late embryogenesis abun-
dant protein (LEA) is a large and highly diverse family, and it
plays a role in normal plant growth and development and protects
cells from abiotic stress (drought, salt, heavy metals, heat and
cold). The genes that code for LEA proteins are located in clusters
on chromosomes 1, 2 and 10 of the Solanum tuberosum plant. In
our study, TDF4 shows a similarity with chromosome 10 of
Solanum tuberosum; we can deduce that our sequence corre-
sponds to a gene coding for one of the LEA proteins involved
in the response to water stress applied to the date palm seedling.

Features of genes differently expressed during saline stress

Plant salt tolerance depends on internal osmotic adjustment phe-
nomena to maintain water with tissue turgidity. Depending on
their response to saline conditions, plants can be divided into two
types: (1) halophytic plants that tolerate high concentrations of
salt (this tolerance is due to biochemical and molecular adaptation
mechanismsmainly the compartmentalization of salt in the vacuole
(Parida and Das, 2005)); and (2) glycophytic plants that are sensi-
tive to high salt concentrations. These concentrations cause ionic
toxicity and osmotic stress until the death of these plants.

Numerous regulatory genes are involved in different metabolic
pathways of date palm exposed to saline stress (Table 2). In fact,
analysis of differentially expressed genes under saline stress
showed variability in the transcript-derived fragments. Indeed,
TDF5 amplified by the SCoT 41 primer differentially expressed
at the stem treated with NaCl shows homology with the gene
encoding the Nucléolin 1-like protein (79.58%). This protein is
multifunctional and is located mainly in the nucleoli, nucleo-
plasm, cytoplasm and cell membrane. It is involved in cell prolif-
eration, ribosome biogenesis (rRNA synthesis), chromatin
stability, DNA and RNA metabolism, stress response and signal
transduction (Jia et al., 2017). Nucleolin overexpression has
enabled the adaptation of transgenic rice to saline stress
(Boonchai et al., 2018). Differential expression of this structural
gene, coding for a regulatory protein, in the stressed date palm
may confer tolerance to salinity. TDF6, amplified by the SCoT
41 primer on the NaCl-treated stem, has homology to a predicted
sequence of serine/arginine repetitive matrix protein expressed in
P. dactylifera L. This protein is involved in the regulation of alter-
native splicing and transcriptome diversity in Arabidopsis in
response to high light stress (Yoshimura et al., 2011) which
could be a key gene involved in the tolerance mechanism of
date palm to saline stress. Moreover, TDF7 is homologous to
the S-related kinase gene, actually observed in Arabidopsis lyrata.
It is well known that kinase proteins are rapidly activated by
osmotic stress and are involved in ABA signalling pathways
(Lin et al., 2020). The expressed sequence confirms the role of
these proteins in the osmoregulation of the date palm to maintain
its growth in the presence of environmental constraints. TDF8,
expressed differentially in roots stressed by NaCl, corresponds
to an element-binding protein 2-like sequence observed in
P. dactylifera L. These elements are transcription factors allowing
the activation of genes sensitive to heat stress and drought, which

induces a high tolerance to these constraints in A. thaliana (Mizoi
et al., 2019). The expression of these elements in date palm
increases the tolerance of the latter to saline stress. Finally,
TDF9 gene is expressed in stems stressed by CaSO4. This gene
is identical to the predicted Capsicum annum sequence of
homeobox-leucine zipper protein HAT5 (transcription factors
unique to the plant species) involved in plant growth, regulation
of responses to biotic and abiotic stresses, and modulation of hor-
mone action (Ribone et al., 2016). The expression of this gene in
date palm allows its adaptation to CaSO4-induced stress.

Conclusion

Date palm is one of the most popular fruit crops in arid, semiarid,
tropical and subtropical regions. It generally grows under hostile
climatic circumstances and has therefore developed stress toler-
ance throughout its evolution. It is known to subsist under drastic
drought, heat and high soil salinity rate (Yaish and Kumar, 2015).
Adaptation to these conditions includes evolutionary conse-
quences detectable in a wide range of morphological and molecu-
lar multifunctional responses (He et al., 2018). Genomic studies
of the date palm over the last decade have led to the identification
of several key genes associated with fruit colour and sugar accu-
mulation (Hazzouri et al., 2019). However, there is little under-
standing of the genetic aspects underlying different biotic and
abiotic stresses. Analysis of stress-induced differential gene
expression can provide valuable information on the adaptive
mechanisms of date palms.

Our results showed that rapid and considerable gene expres-
sion variations began as early as abiotic stress threatened the
date palm crop. Several types of gene expression changes were
observed, including quantitative and qualitative (novel gene
expression) variations. The cDNA-SCoT technique permitted us
to successfully investigate the variations of gene expression in
date palms. This study provides robust candidate genes for future
functional research and a basis for improving abiotic stress toler-
ance in P. dactylifera crop. Indeed, genome-wide investigation of
the structural diversity, phylogenetic relationships and functional
attributes of those gene families is required. Furthermore, the
expression of selected genes through quantitative real-time PCR
will provide new insights into understanding the mechanism of
salt and drought tolerance in date palm species.
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