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ABSTRACT

The UK Biobank project is a proposed large-scale investigation of the com-
bined effects of genotype and environmental exposures on the risk of common
diseases. It is intended to recruit 500,000 subjects aged 40-69, to obtain med-
ical histories and blood samples at outset, and to follow them up for at least
10 years. This will have a major impact on our knowledge of multifactorial
genetic disorders, rather than the rare but severe single-gene disorders that have
been studied to date. What use may insurance companies make of this knowledge,
particularly if genetic tests can identify persons at different risk? We describe
here a simulation study of the UK Biobank project. We specify a simple hypo-
thetical model of genetic and environmental influences on the risk of heart attack.
A single simulation of UK Biobank consists of 500,000 life histories over
10 years; we suppose that case-control studies are carried out to estimate age-
specific odds ratios, and that an actuary uses these odds ratios to parameterise
a model of critical illness insurance. From a large number of such simulations
we obtain sampling distributions of premium rates in different strata defined
by genotype and environmental exposure. We conclude that the ability of such
a study reliably to discriminate between different underwriting classes is limited,
and depends on large numbers of cases being analysed.
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1. INTRODUCTION

1.1. Objective

Much of human genetics is concerned with studying the genetic contribution
to diseases, and this leads to a profound distinction between the single-gene dis-
orders and the multifactorial disorders.
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(a) Single-gene disorders are caused, as their name suggests, by a defect  in a
single gene. Because most genes are inherited in a simple way according
to Mendel’s laws, these diseases show characteristic patterns of inheritance
from one generation to the next, known to geneticists and underwriters alike
as a ‘family history’. Single-gene disorders are quite rare but often severe.

(b) Multifactorial disorders are (mostly) common diseases, such as coronary
heart disease and cancers, whose onset or progression may be influenced
by variations in several genes, acting in concert with environmental differ-
ences. The effect is likely to be quite slight, conferring an altered predis-
position to the disease rather than a radically different risk.

Most genetic epidemiology has, until now, concentrated on single-gene disorders.
One reason is that the clear patterns of Mendelian inheritance identified
affected families long before molecular genetics came along. When these tools
emerged in the 1990s, geneticists knew where to look; affected families were
studied, genes were identified, and the key epidemiological parameters were esti-
mated. The parameter of most interest to actuaries is the age-related pene-
trance, which is the probability that a person who carries a risky version of the
gene will have suffered onset of the disease by age x. It is entirely analogous
to the life table probability xq0. (Often, the risky versions of the gene are called
‘mutations’, and a person carrying one is called a ‘mutation carrier’ or just
‘carrier’.)

Studies of affected families are by definition retrospective; families are
studied because they are known to be affected. This introduces uncontrolled sources
of bias, so such studies are, if possible, avoided in favour of prospective studies,
in which a properly randomised sample of healthy subjects is followed forwards
in time. Despite this health warning, retrospective studies of single-gene dis-
orders have been carried out for reasons of convenience, cost and necessity:
the ready availability of known affected families was convenient and made
data collection relatively cheap; and the rarity of single-gene disorders made
prospective studies impractical. Moreover, a prospective study would take many
years to yield results. Another consequence of the rarity of most single-gene
disorders is that most studies have had quite small sample sizes, but if the pen-
etrance is high enough this is tolerable. These studies have successfully led to
many gene discoveries and a lot of progress has been made in understanding
single-gene disorders.

Multifactorial disorders are not so well-studied, and are much harder to
study. The clear patterns of Mendelian inheritance are lost, and any familial
clustering of disease that may be observed could just as easily be the result of
shared environment as of shared genes. Therefore, there is no pool of known
affected families that can be studied straightaway. And, because the influence
of genetic variation may be slight (low penetrance) large samples will be needed
to detect such influence with any reliability.

At the risk of oversimplifying a little, single-gene disorders represent the genet-
ical research of the past, and multifactorial disorders represent the genetical
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research of the future. Progress will need studies that are large-scale, prospec-
tive, and long-term (therefore very expensive) and that capture both genetic and
environmental variation and the incidence of common diseases. This is very
ambitious.

The proposed UK Biobank project aims to achieve this. UK Biobank will
recruit 500,000 individuals aged 40 to 69, chosen as randomly as possible from
the UK population, and collect data on them over 10 years. We will discuss
its main features in Section 1.2. A key point is that UK Biobank aims only to
collect data, not to analyse it. Its data will, in due course, be made available
to researchers interested in particular genes and particular diseases, who will
have to obtain separate funding for their studies. This is sensible because it is
impossible to predict at outset just what combinations of genes, environment and
disease it will be most fruitful to study. Nevertheless, it is necessary to have in
mind the kinds of statistical studies most likely to be carried out, so that UK
Biobank can be set up to capture data of the correct form. The presumption is
that most studies will be case-control studies. We outline these in the Appendix.

Given its size and significance, it is important to study the kind of results
we might expect to emerge out of UK Biobank. Our particular interest is in
the implications of UK Biobank for insurance. We need not rehearse the debate,
often heated, that has surrounded genetics and insurance in the past 10 years,
except to note that it has mainly focussed on single-gene disorders. Daykin et al.
(2003) or Macdonald (2004) are sources. It seems plausible that awareness of
genetic issues will be heightened by enrolling 500,000 people into a genetic study.
If insurance questions arise, answers obtained from past actuarial research
into single-gene disorders may be wholly inapplicable. But, since the single-
gene disorders provide all the easily grasped examples and paradigms, there is
a risk that these examples and paradigms will be grafted onto UK Biobank,
however inappropriately, by the media if not by the genetics community. It will
then be unfortunate that UK Biobank will not provide the evidence to refute
such errors for 5-10 years.

Our plan, therefore, is to model UK Biobank itself, so that before a single
person has been recruited, or gene sequenced, we may quantify the implications
of its outcomes for insurance. We choose critical illness (CI) insurance as the
simplest type of coverage, because the insured event is generally disease onset.
We choose heart attack (myocardial infarction) as the disease of interest,
because this will certainly be a major target of studies using UK Biobank data.
Our approach is simple: simulate 500,000 random life histories, given an assumed
model of genetic and environmental influences on the hazard rate of heart
attack. Then we may analyse these simulated data just as an epidemiologist or
an actuary may be expected to.

At this stage a further complication appears, very familiar to actuarial
researchers who have modelled single-gene disorders. Actuaries almost never have
access to the original data upon which genetic studies are based. Section 5.2 of
the UK Biobank draft protocol (www.ukbiobank.ac.uk/docs/draft/protocol.pdf)
says: ‘‘Data from the project will not be accessible to the insurance industry
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or any other similar body.’’ This means that actuarial researchers will have to rely
on the published outcomes of medical or epidemiological research projects that
use the UK Biobank data, in particular case-control studies. The ideal, given
the models actuaries typically use for pricing and reserving, would be age-
dependent onset rates or penetrances, corresponding to mx or qx in a life table.
Unfortunately, this far exceeds what is usually published, because the questions
asked in a medical study can often be answered by much simpler statistics. And,
it must be said, the estimation of mx or qx is very demanding of the data. So we
may not, realistically, assume that the actuary can analyse directly the 500,000
simulated life histories. Instead, an epidemiologist must first carry out a case-
control study and publish the results, probably in the form of odds ratios (see
the Appendix). Then the actuary must take these odds ratios and, using what-
ever approximate methods come to hand, estimate onset rates or penetrances suit-
able for use in an actuarial model. We will model this process, with two results:

(a) We will be able to estimate the impact on CI insurance premiums of rep-
resentative multifactorial modifiers of heart attack risk.

(b) Having simulated the data from a known model of our own choosing, we
can assess the seriousness of the errors that must be made, in parameter-
ising an actuarial model from published odds ratios rather than from the
raw data. As mentioned before, previous actuarial studies have done exactly
that (see Macdonald & Pritchard (2000) for an example), but only in the
context of relatively high penetrances. We will be interested to see if robust
actuarial modelling of relatively low-penetrance disorders is possible using
published case-control studies.

The plan of the paper is as follows. In the remainder of this section we describe
the main features of UK Biobank and our general approach. A model repre-
senting heart attack will be introduced and parameterised in Section 2, including
a simple hypothetical 2 ≈ 2 gene-environment interaction model affecting heart
attack risk.

In Section 3, we present (in summary form) and analyse a set of simulated
UK Biobank data, namely 500,000 life histories. A model epidemiologist carries
out a case-control study, then our model actuary uses these ‘published’ figures
to find critical illness premium rates allowing for genetic variability and environ-
mental exposures.

Despite its great size, UK Biobank is essentially an unrepeatable single sam-
ple. Any estimated quantity based upon its data is subject to the usual sam-
pling error — and a premium rate is just such an estimated quantity. We can
assess directly the sampling properties of estimates based on UK Biobank
data, simply by repeating the simulation of 500,000 life histories as many times
as necessary, and constructing the empirical distributions of the odds ratios and
premium rates. This is in Section 4. This is directly relevant to the criteria
established in the UK by the Genetics and Insurance Committee (GAIC) for
assessing the reliability of premium rates based on genetic information.

Conclusions and suggestions for further work are in Section 5.
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1.2. The UK Biobank Project

The website http://www.ukbiobank.ac.uk/ is the main source of information on UK
Biobank. In particular, it provides a draft protocol, which states (Section 1.2) that:

‘‘The main aim of the study is to collect data to enable the investigation of the
separate and combined effects of genetic and environmental factors (including
lifestyle, physiological and environmental exposures) on the risk of common
multifactorial disorders of adult life.’’

UK Biobank is a cohort study, meaning that a large number of people will be
recruited, as randomly as possible, and then followed over time. The main fea-
tures of the study design are as follows:

(a) The cohort will consist of at least 500,000 men and women recruited from
the UK general population.

(b) The chosen age range is 40 to 69 (note that earlier versions, including the
draft protocol referred to above, proposed an age range 45 to 69).

(c) The initial follow-up period is 10 years.
(d) Participants will be recruited through their local general practitioners.

Participants are expected to come from a broad range of socio-economic
backgrounds and regions throughout the UK, with a wide range of exposures
to factors of interest.

(e) The project will be conducted through the UK National Health Service.
(f) UK Biobank is funded by the Department of Health, the Medical Research

Council, the Scottish Executive and The Wellcome Trust, and will cost
approximately £40 million.

People registered with participating general practices will be requested to join
the study by completing a self-administered questionnaire, attending an inter-
view, undergoing examination by a research nurse and giving a blood sample,
to enable DNA extraction at a later date, as and when genotyping is required.

The Office of National Statistics will provide routine follow-up data regard-
ing cause-specific mortality and cancer incidence. Hospitalisation and general
practice records will provide data regarding incident morbidity. Every two
years a subset of 2,000 participants and every five years the entire cohort will
be re-surveyed by postal questionnaire to update exposure data and to ascertain
self-reported incident morbidity.

It is envisaged that the main study design for later analysis will be a case-
control study (see the Appendix) nested within the cohort. UK Biobank will
only collect and store the data, its analysis will require further funding.

1.3. A UK Biobank Simulation Model

In this section we outline how we will simulate the UK Biobank project.
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We suppose that the study population is subdivided (or stratified) into sub-
groups with respect to: (a) genotype; (b) level of environmental exposure;
and (c) other relevant factors such as sex. Genotype defines discrete categories,
and we suppose that environmental exposures or other factors defined on a
continuous scale are grouped into discrete categories. Thus, we always have a
small number of discrete subgroups (or strata).

The life history of each participant, including the occurrence of a heart attack,
will be represented by the multiple-state model shown in Figure 1. It is para-
meterised by intensities denoted ls

ij (x) or ls
ij (x, t), functions of age x and pos-

sibly also duration t since entering state i. The superscript ‘s ’ indicates stratum,
and the intensities representing heart attacks will be stratum-dependent. These
intensities are the key to the whole UK Biobank project, as well as our study.

(a) The real-life epidemiologist wants to estimate them (or in practice, odds ratios)
from UK Biobank data, given a hypothesis about the effect of measured
exposures on the disease.

(b) The real-life actuary wants to take the estimated intensities (or in practice,
approximate them from published odds ratios) and use them in pricing and
reserving.

(c) We want to specify hypothetical but plausible dependencies of these inten-
sities on genotype and other exposures, so that we can observe our model
epidemiologist and model actuary at work.

1.4. Simulating UK Biobank

The steps in simulating UK Biobank are then as follows.

(a) We choose the number of genotypes and the number of levels of environ-
mental exposure, and also the frequencies with which each appears in the
population. Thus we can model simple or complex genotypes and envi-
ronmental exposures, and allow them to be more or less common or rare.
These define the subgroups or strata. The simplest example (used in the UK
Biobank draft protocol) is to have two genotypes and two levels of envi-
ronmental exposure. We also choose the intensities of onset of heart attack
in each stratum (ls

12(x) in Figure 1).

(b) We randomly ‘create’ 500,000 individuals, each equally likely to be male
or female, and with ages uniformly distributed in the range 40 to 70, and
allocated to strata at random according to the chosen frequencies.

(c) The life history of each individual is modelled by simulating the times of
any transitions between states in the model, as governed by the intensities.
We record the times of any transitions taking place within the 10-year fol-
low-up period of UK Biobank.

We assume that the 500,000 participants are independent in the statistical sense,
which is unlikely to be true. The sample is so large that some related individuals
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are likely to be recruited by chance, but also the method of recruitment
(through general practices) guarantees some level of familial and geographical
clustering.

2. A MODEL FOR HEART ATTACK

2.1. Specification of the Model

In this section we will parameterise the heart attack model of Figure 1. Every-
one is assumed to start in the Healthy state. We are interested in first heart
attacks only, because this will trigger a claim under a CI policy, so any subse-
quent heart attacks are ignored, and the only exit from the Heart Attack state
is death. It is convenient to distinguish deaths occurring after a heart attack,
so states 3 and 4 are separate.

2.2. The Population Heart Attack Transition Intensity

Let l12(x) denote the heart attack transition intensity in the general popula-
tion, separately for males and females. We take l12(x) from Gutiérrez & Mac-
donald (2003). For males, it is given by:

. .
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and for females, it is given by:
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These intensities are shown in Figure 2.
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FIGURE 2: The transition intensity of all first heart attacks, by gender.

2.3. Mortality After First Heart Attacks

Many journal articles describe prognosis following heart attacks. Capewell et
al. (2000) describe a retrospective cohort study in Scotland involving 117,718
patients admitted to hospital with first heart attacks between 1986 and 1995.
This is one of the largest population-based studies describing both short and
long-term prognoses.

The paper presents case-fatality rates for age-groups (at first heart attack)
<55, 55-64, 65-74, 75-84 and ≥ 85, and for durations 30 days, 1 year, 5 years
and 10 years following first heart attack. The age-adjusted case-fatality rates
did not depend on sex. The age-specific case-fatality rates can be transformed
into survival rates and parametric functions can be fitted to these. The following
parametric form fits the survival functions well:

P a
22(t) =

a t c t1
1

# #+ +b d
(3)

where a denotes the age group (see above), t denotes the duration after the first
heart attack and Pa

22(t) denotes the conditional probability that the individual
is still in State 2 t years after the first heart attack. The parameters a, b, c and d
depend on the age group. We will represent the five age groups by single rep-
resentative ages, namely, 50, 60, 70, 80 and 90. We summarise the parameters
in Table 1.

From the parametric form of the survival rates, the transition intensities
are given as la

24(t) = – d (logPa
22(t)) /dt. Graphs of la

24(t) are given in Figure 3,
assigning each to its representative age. Also shown is the force of mortality
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FIGURE 3: Graphs of la
24(t), assigned to representative ages for each age group,

and the force of mortality of the ELT15 life tables.

of the ELT15 life tables for males and females. Note that in some cases l24(x,t)
falls below the ELT15 force of mortality. This could be because survival beyond
a certain duration after a first heart attack signifies better than average over-
all health thereafter.

To extend the definition of the transition intensity to all ages x and dura-
tions 0 ≤ t ≤ 10, we first suppose that survival rates are the same for all strata
or subgroups, so we write l24(x, t) instead of ls

24(x, t). Then we assign each
la

24(t) to its representative age, so l24(50,t) = l24
(<55)(t) for all t, and so on. Then

define l24(x, t) = l24(50, t) for x < 50, l24(x, t) = l24(90, t) for x > 90, and inter-
polate linearly in x between the given values for 50 < x < 90. Capewell et al.
(2000) do not give survival rates more than 10 years after the first heart attack,
but since the follow-up period of UK Biobank is 10 years this does not matter.
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TABLE 1.

PARAMETER ESTIMATES OF THE SURVIVAL FUNCTION AFTER A FIRST HEART ATTACK.

Age Representative
Range Age a b c d 

<55 50 0.0684 0.1040 0.0174 1.1919
55-64 60 0.1686 0.0911 0.0406 1.2280
65-74 70 0.4001 0.1237 0.0770 1.3370
75-84 80 0.8564 0.1732 0.1476 1.5504
≥ 85 90 1.5181 0.2431 0.3309 1.6727
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2.4. Mortality Before First Heart Attacks

The mortality intensity for persons aged x in stratum s, who do not experience
a heart attack, is given by ls

13(x). Again, we assume that this is the same in all
strata, so we just write l13(x). Let Pij(y, z) denote the conditional probability
that a person is in state j at age z, given that he or she was in state i at age y.
Then we have:

, ,

, , , ,

P x P x

P z z P y y P y z y z y dy dzl l l

0 0

0 0
zx

13 14

11 13 11 12 22 24
00

+ =

+ -##

] ]
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g g

g g h h h h; E

(4)

, expP z y y dyl l0
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11 12 13
0

= - +#] ^ ^^g h hh; E (5)

, , .expP y z y z y dyl
z y

22 24
0

= - -
-

#^ ^h h; E (6)

Further, if we assume that the overall mortality is given by the ELT15 table
(for each sex) we have:

, , .expP x P x dym0 0 1 y
ELTx

13 14
0

+ = - - #] ]g g ; E (7)

Using these, we can solve Equation (4) numerically to obtain l13(x). The tran-
sition intensities are given in Figure 4. For comparison, we have included the
forces of mortality of the ELT15 tables.

2.5. Definition of Strata: A Simple Example

The parameters of the heart attack model estimated above are supposed to
apply to the general population. However, the general population is divided into
strata according to genotype, environmental exposures and other factors, and
we suppose that the intensity of heart attack ls

12(x) depends on the stratum s.
In this section, we will introduce the simplest possible gene-environment

interactions into our model. We suppose that there is a single genetic locus
with two genotypes, denoted G and g. Also, there are just two levels of envi-
ronmental exposures, denoted E and e (an example might be E = ‘smoker’ and
e = ‘non-smoker’). This simple model can be used as a stepping stone to study
higher-dimensional multifactorial models. Note that the UK Biobank draft
protocol used the same assumptions in its examples, despite the fact that the
project aims to study complex multifactorial disorders. We will suppose that G
and E are adverse exposures, while g and e are beneficial. Therefore, we have four
strata for each sex — ge, gE, Ge and GE — and eight in total.

We must choose plausible values for the frequencies with which each stratum
is present in the population, and the stratum-specific heart attack intensities.
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FIGURE 4: Transition intensities of non-heart-attack deaths plotted along with ELT15
for both males and females.

Since, unlike the study of single-gene disorders, we are considering common
risk factors for common diseases, let us assume that the probability that a per-
son possesses genotype G is 0.1, and the probability that a person has envi-
ronmental exposure E is also 0.1. Assuming independence, the four strata (for
each sex) ge, gE, Ge and GE occur with frequencies 0.81, 0.09, 0.09 and 0.01
respectively. Strictly speaking, these frequencies ought to be defined at a specific
age (age 40 would be an obvious choice) and slowly change thereafter in the
population of healthy persons, as higher-risk strata are depleted faster. However,
given the relatively small differences we will assume, in the risk of heart attack
in respect of different strata, the effect is negligible.
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We will suppose that the heart attack intensity in each stratum is propor-
tional to the population average intensity. For stratum s, set :

ls
12(x) = k ≈ rs ≈ l12(x) (8)

where l12(x) is the population intensity given in Section 2.2. We suppose, for
clarity, that rs does not depend on sex, but the constant k does. Noting that
our interest is in genotypes of modest penetrance, we choose the values of rs

given in Table 2. Then, we choose k so that the strata-specific heart attack
intensities are consistent, in aggregate, with the population heart attack inten-
sities, for males and females separately. Let the proportion of the healthy pop-
ulation in stratum s at age x be ws(x). Then:
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Substituting Equation (8) in Equation (10), we get:
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From Equation (11) we see that k ought to depend on a specific choice of age x
and duration t. However, to keep the model simple we will assume that k is con-
stant and calculate it from Equation (11) for a representative choice of age
and duration. Given that the UK Biobank protocol proposes an age range of
40 to 69 and a follow-up period of 10 years, we have chosen x = 60 and t = 5.
If we assume that the weights ws(x) are equal to the population frequencies of
each stratum, then for males k = 1.317274 and for females k = 1.316406. The
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TABLE 2

THE FACTOR rs, IN EQUATION (8), FOR EACH GENE-ENVIRONMENT COMBINATION.

G g

E 1.3 0.9
e 1.1 0.7
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constants of proportionality (k ≈ rs) in Equation (8) are given in Table 3 for
future reference.

We can now calculate the true values of the quantities likely to be estimated
by epidemiologists, namely relative risks and odds ratios (see the Appendix, or
Woodward (1999) or Breslow & Day (1980)). From now on, we define the base-
line population to be the most common stratum, namely ge.

(a) The relative risk in stratum s, with respect to stratum ge, is denoted rs and
is:

s .r k
k

r
r

r
r

ge

s

ge

s

#

#
= = (12)

The values of rs are given in Table 4

(b) The odds ratio at age x in stratum s, with respect to stratum ge, based on
1-year probabilities, is denoted cs(x) and is given by:
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(13)

where P s
12(x,x + 1) is the conditional probability that a person in stratum s

who was healthy at age x will suffer a heart attack before age x + 1.

We have verified (not shown here) that the odds ratios do not vary significantly
with age and are approximately equal to the corresponding relative risks. The
latter is not surprising, as we have used 1-year probabilities to calculate the odds
ratios.
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TABLE 3

THE MULTIPLIERS k ≈ rs FOR EACH STRATUM.

Stratum ge gE Ge GE

Male 0.922 1.186 1.449 1.712
Female 0.921 1.185 1.448 1.711

TABLE 4

THE TRUE RELATIVE RISKS FOR EACH STRATUM,
RELATIVE TO THE BASELINE ge STRATUM.

Stratum ge gE Ge GE

Male 1.000 1.286 1.571 1.857
Female 1.000 1.286 1.571 1.857

9130-06_Astin_36/2_01  06-12-2006  11:54  Pagina 323

https://doi.org/10.2143/AST.36.2.2017924 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.2.2017924


324 A. MACDONALD, D. PRITCHARD AND P. TAPADAR

TABLE 5

THE SIMULATED LIFE HISTORIES OF THE FIRST 20 (OF 500,000) INDIVIDUALS SHOWING THEIR GENDERS,
EXPOSURE TO ENVIRONMENTAL FACTORS, GENOTYPES AND THE TIMES AND TYPES OF ALL TRANSITIONS

MADE WITHIN 10 YEARS.

ID Sex E/e G/g Age State Age State Age State

1 M e g 41.10 1

2 M e G 58.74 1 63.89 2 63.94 4

3 M e g 52.27 1

4 M e g 68.39 1

5 F e G 60.94 1 63.81 2

6 M e g 62.49 1 68.18 3

7 M e g 55.50 1 61.57 3

8 F e G 58.95 1

9 M e g 65.67 1 69.58 3

10 M e g 49.79 1

11 F E g 45.43 1

12 F e g 57.58 1

13 F e g 59.68 1

14 F E g 55.14 1

15 F e g 42.93 1

16 M e g 56.23 1

17 F e g 62.84 1

18 M e g 62.29 1

19 F e g 43.69 1

20 M e g 45.16 1

TABLE 6

NUMBER OF INDIVIDUALS IN EACH STATE AT THE END

OF THE 10-YEAR FOLLOW-UP PERIOD.

Sex G/g E/e State 1 State 2 State 3 State 4 Total

G E 1,871 126 356 115 2,468

G e 17,579 928 3,219 934 22,660

Male g E 17,588 775 3,236 702 22,301

g e 162,474 5,426 29,610 5,002 202,512

G E 2,178 70 214 52 2,514

G e 19,746 397 2,021 408 22,572

Female g E 19,811 367 2,095 330 22,603

g e 178,718 2,320 18,891 2,441 202,370

Total 419,965 10,409 59,642 9,984 500,000
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3. ANALYSIS

3.1. A Sample Realisation of UK Biobank

With the parameterised model, we simulated the life histories of 500,000 peo-
ple recruited to UK Biobank and followed up for 10 years. Their ages at entry
are uniformly distributed between 40 and 70. This is a much simplified repre-
sentation of the true UK Biobank sampling protocol (www.ukbiobank.ac.uk/
docs/draft_protocol.pdf, Section 2.3). In principle sampling should be without
replacement from the UK population at these ages, whereas we effectively sam-
ple with replacement. In practice recruitment will be via participating medical
practices, and there may be attempts (not defined very precisely) to select these
so as to obtain a more uniform sample of different ages. Our simple assumption
should adequately represent the UK Biobank sample; we doubt it would be
worthwhile to go further in trying to reproduce it.

3.2. Epidemiological Analysis

The life histories of the first 20 people are shown in Table 5. Consider person
No. 2. He is a male with the adverse allele G, exposed to the beneficial envi-
ronment e. He entered the study healthy (State 1) at age 58.74. He had a heart
attack (moved to State 2) at age 63.89 and died (moved to State 4) at age 63.94.
The numbers of people in each state at the end of the 10-year follow-up period
are given in Table 6.

Apart from the 500,000 life histories, the following information is available
to the epidemiologist to carry out a matched case-control study:

(a) the framework of the UK Biobank project;
(b) the structure of the 4-state heart attack model given in Section 2.1;
(c) the transition intensities given in Sections 2.2 to 2.4;
(d) the stratum to which each person is allocated; and
(e) the proportion ws(x) of individuals in each stratum at a particular age x,

say 60.

The first step is to define the cases and controls. Here, clearly, the cases are per-
sons who had first heart attacks during the study period.

In real studies, epidemiologists will face problems such as missing data and
cost constraints, and in most circumstances they will use only a subset of all
cases for their analysis. Here, we have no such problems, unless we choose to
model them. So, in the first instance, we will include all cases in the analysis.
Later, we will consider the more realistic possibility that a subset of all cases
is used.

An appropriate matching strategy is particularly important for a matched
case-control study. Firstly, we match controls with cases by age. Suppose, for
example, that we are comparing stratum s with the baseline stratum ge, and that
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a case entered the study at age x last birthday and had a heart attack at age
x + t last birthday. A matched control is a person chosen randomly from per-
sons in these two strata who also entered the study at age x last birthday and
remained healthy at least until age x + t + 1 last birthday. Once chosen as a
control, that person cannot be chosen as a control again. As controls are plen-
tiful compared with cases, we will match 5 controls to each case, called a 1:5
matching strategy. In Section 1.2, we mentioned that the genotyping of indi-
viduals will be done as and when it is required. So, it might be necessary to
genotype a large number of people to ensure that enough controls are available
for a 1:5 case-control study. Other matching strategies with fewer controls per
case will obviously be cheaper to implement.

To calculate odds ratios, we need to group ages sensibly. Note that epidemi-
ological studies often use quite wide age groups, much wider than actuaries
are accustomed to using. We will use 5-year age bands as a reasonable com-
promise between accuracy and sample size. The results are given in Table 7. We
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TABLE 7

ODDS RATIOS WITH RESPECT TO THE ge STRATUM AS BASELINE, BASED ON A 1:5 MATCHING STRATEGY

USING ALL CASES AND 5-YEAR AGE GROUPS. APPROXIMATE 95% CONFIDENCE INTERVALS ARE SHOWN

IN BRACKETS. THERE WERE NO CASES AMONG FEMALES AGE 45-49 IN STRATUM GE.

MALES

Age gE Ge GE

40-44 1.043 (0.527,2.065) 2.628 (1.561,4.423) 2.375 (0.712,7.917)
45-49 1.069 (0.816,1.400) 1.670 (1.317,2.118) 1.929 (0.940,3.959)
50-54 1.330 (1.117,1.583) 1.578 (1.336,1.865) 1.725 (1.121,2.654)
55-59 1.358 (1.168,1.579) 1.665 (1.448,1.914) 2.133 (1.486,3.062)
60-64 1.175 (1.020,1.352) 1.708 (1.507,1.935) 1.976 (1.417,2.753)
65-69 1.267 (1.116,1.438) 1.592 (1.416,1.789) 1.721 (1.251,2.368)
70-74 1.362 (1.179,1.574) 1.542 (1.348,1.764) 1.907 (1.334,2.726)
75-79 1.487 (1.160,1.907) 1.534 (1.187,1.983) 1.667 (0.910,3.052)

FEMALES

Age gE Ge GE

40-44 1.167 (0.301,4.520) 1.333 (0.463,3.836) 5.000 (0.313,79.942)
45-49 0.944 (0.523,1.702) 1.869 (1.139,3.067) —
50-54 0.947 (0.659,1.361) 1.298 (0.929,1.814) 4.167 (1.800,9.644)
55-59 1.243 (0.967,1.597) 1.280 (0.999,1.641) 2.324 (1.282,4.211)
60-64 1.634 (1.343,1.988) 1.867 (1.538,2.267) 1.842 (1.112,3.053)
65-69 1.321 (1.111,1.571) 1.601 (1.359,1.887) 2.457 (1.637,3.689)
70-74 1.257 (1.045,1.511) 1.538 (1.296,1.825) 2.354 (1.528,3.626)
75-79 1.203 (0.893,1.620) 1.220 (0.896,1.659) 1.773 (0.788,3.986)
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can see no particular trend with respect to age, so we calculate the age-adjusted
odds ratio for each stratum (a weighted average of the age-specific odds ratios, using
the Mantel-Haenszel method described in Woodward (1999)), which are shown
in Table 8. Comparing these with the true odds ratios in Table 4 the estimates
are better for strata gE and Ge (with more cases) than for stratum GE. How-
ever all the true odds ratios lie within the 95% confidence intervals in Table 8.

3.3. An Actuarial Investigation

The actuary starts with the model of Figure 1 in mind, and wishes to estimate
the intensity ls

12(x) for each stratum. We assume, realistically, that the best
available data are the published odds ratios. The ‘estimation’ procedure, there-
fore, consists of finding a reasonably robust way to estimate transition inten-
sities from odds ratios. There is no simple mathematical relationship, so approxi-
mations must be made.

Supposing that the actuary knows the rates of heart attack in the general
population l12(x) (separately for males and females) a simple assumption is
that the heart attack intensity for each stratum is proportional to l12(x). In stra-
tum s, define:

g s
12(x) = cs(x) ≈ l12(x) (14)

where g s
12(x) is the actuary’s ‘estimate’ of ls

12(x). Assuming that the odds ratios
(denoted cs(x)) are good approximations of the relative risks, which is rea-
sonable as long as the age groups are not too broad, we have:
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which leads to:

cs(x) = cs(x) ≈ cge(x). (16)

As observed from Table 7, the odds ratios do not appear to depend strongly
on age. So we further assume that cs(x) is a constant cs (hence also cs(x) is a
constant cs), so:

cs = cs ≈ cge (17)
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TABLE 8

THE AGE-ADJUSTED ODDS RATIOS CALCULATED FOR BOTH MALES AND FEMALES.

Strata gE Ge GE

Male 1.285 (1.209,1.365) 1.625 (1.536,1.719) 1.880 (1.620,2.182)
Female 1.298 (1.188,1.418) 1.538 (1.413,1.674) 2.250 (1.814,2.790)
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where cs is the age-adjusted odds ratio. Thus Equation (14) becomes:

g s
12(x) = cge ≈ cs ≈ l12(x). (18)

Now Equation (11) can be written:
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Let us assume that at age x = 60, the ws(x) are given by the population fre-
quencies of the respective strata. Now we can solve Equation (19) for the mul-
tiplier cge for a particular choice of age x and any duration t. Then we can use
Equation (17) to obtain cs for s = gE, Ge and GE. We find (not shown here)
that the results are very similar for different values of t. In Table 9, we show
the ‘estimated’ cs for representative age x = 60 and duration t = 5, based on the
age-adjusted odds ratios in Table 8. These values can be compared with the true
values given in Table 3. They are in good agreement for strata s = ge, gE and
Ge. The agreement for stratum s = GE is not so good, but it was based on a
small number of cases, 241 males and 122 females.

3.4. Premium Rating for Critical Illness Insurance

The actuary will use the intensities g s
12(x) ‘estimated’ in Section 3.3 to calcu-

late CI insurance premiums. We use the CI insurance model from Gutiérrez &
Macdonald (2003), assuming that all intensities except those for heart attack
are as given there. For heart attack, we use the intensities g s

12(x). We compute
expected present values by solving Thiele’s differential equations numerically,
with a force of interest of d = 0.044017 (see Norberg (1995)).

Table 10 shows the true premiums for the strata s = ge, Ge and GE, as a per-
centage of the premiums for stratum ge, for males and females and for different
ages and terms. Here, ‘true’ means that they have been computed using the
intensities ls

12(x), not the actuary’s estimates. Table 11 then shows the corre-
sponding premiums, as a percentage of those charged for stratum ge, using
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TABLE 9

THE ESTIMATED MULTIPLIERS cs FOR EACH STRATUM.

Stratum ge gE Ge GE

Male 0.918 1.179 1.492 1.726
Female 0.920 1.194 1.415 2.070
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TABLE 10

THE TRUE CRITICAL ILLNESS INSURANCE PREMIUMS FOR DIFFERENT STRATA

AS A PERCENTAGE OF THOSE FOR STRATUM ge.

Stratum Males Females

Term Term

Age 5 15 25 35 Age 5 15 25 35

45 112% 111% 109% 107% 45 103% 103% 104% 104%

gE
55 110% 108% 107% 55 104% 105% 105%
65 107% 106% 65 105% 106%
75 106% 75 106%

45 124% 121% 117% 115% 45 105% 107% 108% 108% 

Ge
55 119% 116% 114% 55 109% 110% 110%
65 114% 112% 65 111% 111%
75 111% 75 111%

45 136% 131% 126% 122% 45 108% 110% 112% 112% 

GE
55 129% 124% 121% 55 113% 115% 115%
65 120% 118% 65 116% 117%
75 117% 75 117%

TABLE 11

THE ACTUARY’S ESTIMATED CRITICAL ILLNESS INSURANCE PREMIUMS FOR DIFFERENT STRATA

AS A PERCENTAGE OF THOSE FOR STRATUM ge.

Stratum Males Females

Term Term

Age 5 15 25 35 Age 5 15 25 35

45 112% 110% 109% 107% 45 103% 104% 104% 104%

gE
55 110% 108% 107% 55 105% 105% 105%
65 107% 106% 65 106% 106%
75 106% 75 106%

45 126% 123% 119% 116% 45 105% 106% 108% 108%

Ge
55 121% 117% 115% 55 108% 109% 109%
65 115% 113% 65 110% 110%
75 112% 75 111%

45 137% 132% 126% 123% 45 111% 115% 118% 118%

GE
55 129% 124% 121% 55 119% 121% 121%
65 121% 119% 65 124% 124%
75 117% 75 125%
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the actuary’s estimates g s
12(x). The results are similar to those in Table 10. The

estimates are good for strata gE and Ge, but not as accurate for females in stra-
tum GE. As mentioned before, this stratum had relatively few cases.

4. SIMULATION RESULTS

4.1. Varying the Genetic and Environment Model

In the last section, we estimated parameters of a heart attack model and the
resulting CI insurance premiums, based on a simulated realisation of UK Bio-
bank. The underlying ‘true’ model (chosen by us) was particularly simple — two
genotypes, two environmental exposures and proportional hazards of heart
attack — and by great good luck, our model epidemiologist hit upon exactly
the correct hypotheses in fitting his/her model. So it is not surprising that
he/she obtained good parameter estimates, with the possible exception of those
in respect of the smallest stratum, GE.

In reality, the epidemiologist faces more difficult problems:

(a) There is likely to be more than one gene, many with more than two variants,
as candidates for influencing the disease.

(b) Similarly, there are likely to be several environmental exposures of interest.
(c) Model mis-specification is always possible (indeed, it may be the norm).
(d) On grounds of cost, the number of cases and the number of controls per case

may be limited.
(e) As mentioned earlier, UK Biobank will be a single unrepeatable sample, hence

sampling error will be present. Although 500,000 seems like a huge sample,
it may not be when smaller numbers of cases are sampled from within it.

In a simulation study, we are in a position to explore these problems. In par-
ticular, we can address (d) and (e) above, because we can replicate the entire
UK Biobank dataset many times, and repeat the epidemiological and actuarial
analyses using each realisation. Thus we can estimate the sampling distributions
of parameter estimates and premium rates, while the analysis of the single
realization in Section 3 only gave us point estimates of the latter. (We did give
approximate confidence intervals of the estimated odds ratios, because they
can be derived on theoretical grounds. This is not possible for such a complicated
function of the model parameters as a premium rate, and simulation is one of
the few practical approaches.) We concentrate on this question in the rest of
this paper, because it is directly relevant to the approach adopted by GAIC in
the UK, and likely to be adopted by similar bodies elsewhere, which demands
that the reliability of prognoses based on genetic information must be demon-
strated if they are to be used in any way. In the case of multifactorial disorders,
we assume that this requirement is to be interpreted in the statistical sense rather
than as applying to individual applicants. Our exploration of (a), (b) and (c)
above will be the subject of a future paper.
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In addition to simulating many replications of UK Biobank, we will
consider the effect of stronger or weaker genetic and environmental effects,
and of more common and less common adverse genotypes. We call each such
variant of the underlying model a ‘scenario’, which should not be confused with
the simulation procedure discussed above. We will hold each scenario fixed, and
then simulate outcomes of UK Biobank under those assumptions.

We have already introduced one set of assumptions in Section 2, which we
will refer to as our Base scenario. The details of all the scenarios are given in
Table 12. The parameters that must be specified are:

(a) The population frequency of each stratum (the same for males and females).
(b) The parameters k for each sex and rs for each stratum. Although rs does

not depend on sex, for convenience Table 12 shows the combined con-
stants of proportionality k ≈ rs for each sex.
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TABLE 12

THE MODEL PARAMETERS FOR DIFFERENT SCENARIOS. ODDS RATIOS ARE ALSO SHOWN.

Penetrance Frequency
Parameters Stratum Base

Low High Low High

ge 0.81 0.81 0.81 0.9025 0.64
Population gE 0.09 0.09 0.09 0.0475 0.16
Frequency Ge 0.09 0.09 0.09 0.0475 0.16

GE 0.01 0.01 0.01 0.0025 0.04

ge 0.70 0.85 0.55 0.70 0.70

rs
gE 0.90 0.95 0.85 0.90 0.90
Ge 1.10 1.05 1.15 1.10 1.10
GE 1.30 1.15 1.45 1.30 1.30 

k (Male) All 1.317274 1.136603 1.568090 1.370745 1.221620
k (Female) All 1.316406 1.136463 1.564821 1.370230 1.220385

ge 0.922 0.966 0.862 0.960 0.855
k ≈ rs gE 1.186 1.080 1.333 1.234 1.099
(Male) Ge 1.449 1.193 1.803 1.508 1.344

GE 1.712 1.307 2.274 1.782 1.588

ge 0.921 0.966 0.861 0.959 0.854
k ≈ rs gE 1.185 1.080 1.330 1.233 1.098
(Female) Ge 1.448 1.193 1.800 1.507 1.342

GE 1.711 1.307 2.269 1.781 1.587

ge 1.000 1.000 1.000 1.000 1.000
gE 1.286 1.118 1.545 1.286 1.286

Odds Ratio
Ge 1.571 1.235 2.091 1.571 1.571
GE 1.857 1.353 2.636 1.857 1.857
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FIGURE 5: Scatter plots of CI insurance premium rates for strata gE, Ge and GE versus that of ge
under the Base scenario for males aged 45 and policy term 15 years.

Although the odds ratios are derived quantities rather than parameters, they
are also shown in Table 12 for convenience.

The Low and High Penetrance scenarios assume smaller and larger differ-
ences, respectively, between the effects of the different strata, governed by rs.
The Low and High Frequency scenarios assume that disadvantageous G geno-
type and E environment have population frequencies half (0.05) or double (0.2)
those in the baseline scenario (0.1), respectively.

In Section 3.2, we noted that problems like missing values and cost constraints
might limit the number of cases that can be used for analysis. So we will
also examine the effect of limiting the number of cases used in the analysis.
From Table 6, around 20,000 individuals were eligible to be considered as cases
(in that particular realisation). For each scenario, we will show results based
on 1,000, 2,500, 5,000 and 10,000 cases as well as those based on all cases.

4.2. Outcomes of 1,000 Simulations: The Base Scenario

We will make 1,000 simulations of UK Biobank. The outcomes will be the empir-
ical distributions of the parameters of the epidemiologist’s model, and of CI
insurance premium rates. Let us first consider the Base scenario, all cases included,
for males aged 45 taking out a CI insurance policy with term 15 years. Figure 5
shows scatter plots of the CI insurance premium rates per unit sum assured
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for strata gE, Ge and GE versus those of ge. More precisely, the outcome of
the i th simulation is a drawing pi = (pi

ge, pi
gE, pi

Ge, pi
GE) from the sampling distri-

bution of the 4-dimensional random variable P = (Pge, PgE, PGe, PGE), where Ps

is the premium rate in stratum s.
The scatter plots show clearly that the premium rate pairs (Pge,PgE ) and

(Pge, PGe) are more strongly correlated than the pair (Pge, PGE ). This is true,
as the correlation matrix given in Table 13 shows, but note that the scale of the
x-axis is greatly compressed compared with that of the y-axis. The reason they
are correlated is that, as outlined in Section 3.3, the actuary uses the three
odds ratios published by the epidemiologist, plus the overall population inten-
sity of heart attack, to obtain the heart attack intensities for the four strata,
so the four premium estimates are not independent. The reason that the cor-
relations are negative is that the overall level of the four intensities is adjusted
so that their aggregate effect is consistent with the general population. So, if the
intensities in any of the strata are high, the intensities in the others will tend
to fall to restore consistency with the aggregate intensity.

We also consider the premium rates for strata gE, Ge and GE as a propor-
tion of those for stratum ge, namely PgE/Pge,PGe/Pge and PGE/Pge. These corre-
spond to premium ratings, if we take the standard premium rate to be that of
stratum ge, and we will refer to them as such. For brevity, define Rs = Ps/Pge to
be the premium rating for stratum s with respect to stratum ge. The correla-
tion matrix of these premium ratings is given in Table 14 and the corresponding
scatter plots are given in Figure 6. Both suggest correlations are small enough
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TABLE 13

THE CORRELATION MATRIX OF THE STRATA-SPECIFIC PREMIUM RATES FOR MALES AGED 45
AND POLICY TERM 15 YEARS UNDER THE BASE SCENARIO, ALL CASES INCLUDED.

Stratum ge gE Ge GE

ge 1.000
gE –0.604 1.000
Ge –0.656 –0.123 1.000
GE –0.194 –0.057 –0.095 1.000

TABLE 14

THE CORRELATION MATRIX OF THE PREMIUM RATINGS FOR MALES AGED 45
AND POLICY TERM 15 YEARS UNDER THE BASE SCENARIO, ALL CASES INCLUDED.

Rating RgE RGe RGE

RgE 1.000
RGe 0.095 1.000
RGE 0.013 –0.018 1.000

9130-06_Astin_36/2_01  06-12-2006  11:55  Pagina 333

https://doi.org/10.2143/AST.36.2.2017924 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.2.2017924


FIGURE 6: The scatter plots of the premium ratings Ge/ge and GE/ge versus gE/ge and the corresponding
density plots for males aged 45 and policy term 15 years under the Base scenario, all cases included.
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to neglect, which means that instead of always considering the full joint dis-
tribution of the premiums P, we can obtain all the information of interest by
separate examination of the marginal distributions of the premium ratings.
The densities of these marginal distributions are given in Figure 6. This imme-
diately suggests a simple approach to the questions that GAIC must ask, because
the reliability of the premium rating in each stratum — in terms of its distin-
guishability from the premium ratings in the other strata — is revealed by the
degree to which its marginal density overlaps the marginal densities of the others.
Presented with Figure 6, we might expect GAIC to agree that strata Ge and
GE had premium ratings distinct from that of stratum gE, but to ask whether
or not they had premium ratings reliably distinct from each other.

4.3. A Measure of Confidence

Our precise formulation of the question that GAIC might now ask is: are
the marginal empirical distributions of premium ratings in different strata
sufficiently different to support charging different premiums (when doing so
is allowed)? In this section, we suggest a simple measure to address this.

Let X and Y be two continuous random variables with cumulative distribu-
tion functions FX and FY respectively. We can find u such that FX(u) + FY(u) = 1.
If the ranges of X and Y overlap, u lies in both and is unique, otherwise any
u that lies between their ranges will do. This can be rewritten as FX(u) = 1 – FY(u),
or P[X ≤ u ] = P[Y > u ].

Without loss of generality, let us also assume that FX(u) ≥ FY(u). Define
our measure of confidence to be 2 ≈ FX (u) – 1, which gives a measure of the
overlap of FX and FY. Denote this O (X,Y ), or just O if the context is clear. If
FX(u) = FY(u) = 0.5, then we are as unsure as we can be that FX and FY are dis-
tinct, and O = 0. As FX(u) increases to 1, the area of overlap decreases. If the
ranges of X and Y do not overlap at all, FX(u) = 1 and we have high confidence
in deciding that FX and FY are distinct; in this case O = 1.

4.4. Results

In this section, we simulate 1,000 realisations of UK Biobank under each sce-
nario outlined in Table 12. Our aim is to examine how reliably UK Biobank
might identify differences in premium ratings, as a body like GAIC might
require. This is measured by the three quantities O (RgE,RGe), O (RGe,RGE) and
O (RgE,RGE). We have verified (not shown here) that these do not vary significantly
by age or policy term, so in Table 15, we present results for a representative
policy for males aged 45 and policy term 15 years.

Note that it is impossible to calculate an odds ratio for a given age group
unless there is at least one case in that age group in each stratum. A few of the
1,000 simulations failed this criterion, and these were omitted from the results
in Table 15. Those affected were the Base and the Low Penetrance scenarios
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with 1,000 cases (1 simulation omitted in each case) and the Low Frequency
scenarios with 2,500 and 1,000 cases (10 and 238 simulations omitted, respec-
tively). We omit the last of these from the table as being possibly misleading.
We make the following comments on Table 15:

(a) We saw in Section 4.3 that under the Base Scenario, all cases included, the
densities of RGe and RGE overlap over a small region. This qualitative obser-
vation is made more concrete by Table 15, which shows that O (RGe,RGE) =
0.924 in this case. By definition, this means that there exists x such that
P[RGe< x] = P[RGE > x] = 0.962, and we (or GAIC) may have high confidence
in assigning these strata to different underwriting groups.

(b) Stratum GE is always the smallest, so the distribution of RGE is always the
most spread out. This is also evident from the scatter plots in Figure 6.
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TABLE 15

THE MEASURE OF OVERLAP O FOR CI INSURANCE PREMIUM RATINGS FOR MALES AGED 45,
WITH POLICY TERM 15 YEARS, FOR DIFFERENT SCENARIOS.

Scenario Cases O (RgE,RGe) O (RgE,RGE) O (RGe,RGE)

All 1.000 1.000 0.924
10,000 0.968 0.962 0.632

Base 5,000 0.872 0.850 0.484
2,500 0.718 0.698 0.356
1,000 0.490 0.416 0.176

All 0.918 0.904 0.572
10,000 0.662 0.658 0.346

Low Penetrance 5,000 0.528 0.472 0.216
2,500 0.412 0.360 0.148
1,000 0.250 0.222 0.076

All 1.000 1.000 0.992
10,000 1.000 0.998 0.844

High Penetrance 5,000 0.984 0.970 0.692
2,500 0.906 0.886 0.540
1,000 0.688 0.658 0.354

All 0.996 0.948 0.658
10,000 0.892 0.706 0.352

Low Frequency 5,000 0.712 0.516 0.208
2,500 0.566 0.322 0.060
1,000 — — —

All 1.000 1.000 0.994
10,000 0.988 1.000 0.896

High Frequency 5,000 0.932 0.986 0.744
2,500 0.806 0.902 0.546
1,000 0.594 0.716 0.358
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(c) We expect real case-control studies to use only a subset of cases, and Table 15
shows that the effect of this is very great. For example, in the Base scenario,
O (RGe,RGE) falls from 0.924 to 0.176 as the number of cases used falls
from ‘All’ to 1,000. Figure 7 shows, for the Base scenario, the marginal
densities with different numbers of cases. The densities overlap consider-
ably if the number of cases is small (and bear in mind that 1,000 cases is
not a very small investigation by normal standards).

(d) Figure 8 shows the empirical distribution functions of the premium rat-
ings for males under the Base scenario. For each premium rating, we show
the effect of using different numbers of cases. For example, if only 1,000
cases were used, there is about a 30% chance that underwriters would
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TABLE 16

THE MEASURE OF OVERLAP O FOR CI INSURANCE PREMIUM RATINGS FOR FEMALES AGED 45
WITH POLICY TERM 15 YEARS, FOR DIFFERENT SCENARIOS.

Scenario Cases O (RgE,RGe) O (RgE,RGE) O (RGe,RGE)

All 0.990 0.990 0.734
10,000 0.958 0.948 0.626

Base 5,000 0.850 0.844 0.494
2,500 0.728 0.706 0.378
1,000 0.466 0.488 0.244

All 0.778 0.762 0.402
10,000 0.680 0.646 0.302

Low Penetrance 5,000 0.528 0.506 0.222
2,500 0.392 0.326 0.122
1,000 0.238 0.198 0.078

All 1.000 1.000 0.906
10,000 1.000 0.998 0.836

High Penetrance 5,000 0.992 0.984 0.696
2,500 0.914 0.884 0.484
1,000 0.716 0.656 0.320

All 0.932 0.800 0.436
10,000 0.896 0.676 0.298

Low Frequency 5,000 0.748 0.486 0.192
2,500 0.552 0.340 0.134
1,000 — — —

All 0.998 1.000 0.922
10,000 0.994 1.000 0.884

High Frequency 5,000 0.922 0.986 0.756
2,500 0.814 0.914 0.576
1,000 0.598 0.678 0.348
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TABLE 17

THE MEASURE OF OVERLAP O FOR CI INSURANCE PREMIUM RATINGS FOR MALES AGED 45,
WITH POLICY TERM 15 YEARS, FOR DIFFERENT SCENARIOS AND A 1:1 MATCHING STRATEGY.

Scenario Cases O (RgE,RGe) O (RgE,RGE) O (RGe,RGE)

All 0.990 0.990 0.774
10,000 0.886 0.872 0.454

Base 5,000 0.740 0.720 0.374
2,500 0.554 0.544 0.248
1,000 0.378 0.400 0.222

All 0.808 0.820 0.456
10,000 0.558 0.526 0.220

Low Penetrance 5,000 0.372 0.378 0.188
2,500 0.288 0.308 0.184
1,000 0.232 0.204 0.048

All 1.000 1.000 0.908
10,000 0.988 0.978 0.680

High Penetrance 5,000 0.898 0.902 0.494
2,500 0.762 0.742 0.366
1,000 0.548 0.480 0.222

All 0.954 0.856 0.474
Low Frequency 10,000 0.738 0.558 0.284

5,000 0.574 0.464 0.228
2,500 — — —
1,000 — — —

All 1.000 1.000 0.950
10,000 0.944 0.986 0.746

High Frequency 5,000 0.826 0.932 0.592
2,500 0.668 0.802 0.456
1,000 0.474 0.594 0.306

TABLE 18

THE NUMBER OF SIMULATIONS REJECTED DUE TO THE INABILITY TO CALCULATE THE ODDS RATIOS

FOR A 1:1 MATCHING STRATEGY.

Number of Cases
Scenario

All 10,000 5,000 2,500 1,000

Base 0 0 0 0 13
Low Penetrance 0 0 0 0 16
High Penetrance 0 0 0 0 36
Low Frequency 0 0 6 123 630
High Frequency 0 0 0 0 0
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incorrectly assume RGE to be 150% or higher. If instead 10,000 cases were
used the chance of making this error is very small.

(e) Figure 9 shows, for 5,000 cases, the effect of the different scenarios.
Reduced frequency of the adverse genetic and environmental exposures, or
reduced penetrance of the adverse genotype, both reduce the ability to dis-
criminate between different underwriting classes. Changes in the opposite
direction improve the discrimination. This qualitative observation is backed
up in a more quantitative way by Table 15.

Table 16 gives the corresponding results for females (again, we omit the results
for the Low Frequency scenario with 1,000 cases because of a large number
of simulations with undefined odds ratios). When a fixed number of cases is
used the results are very similar to those for males. This is as expected, as we
assumed that the effects of genotype and environmental exposures were the
same for males and females, albeit acting on different baseline risks of heart
attack. However, when all cases are included, the values of O are smaller than
those for males. This is because the lower incidence of heart attack among
females results in fewer cases, therefore estimates with higher variances.

Until now, we have used a 1:5 matching strategy for all case-control stud-
ies; that is, five controls per case. However, cost constraints might dictate the
use of fewer controls. In Table 17, we show the values of O for males if a 1:1
matching strategy is used. As expected these are decreased significantly under
all scenarios.

As we mentioned when discussing Table 15, we may find simulations under
which the odds ratios cannot be calculated because of a lack of cases. Also,
note that the odds ratio can only be calculated if there are enough exposed con-
trols. This is more demanding under a 1:1 matching strategy, as fewer controls
are available than in 1:5 matching strategy. (At first sight this is surprising; it
ought to be easier to find a smaller number of controls. This is true, but there
is also a higher chance that one of the cells in the 2 ≈ 2 table used to calculate
the odds ratio will be empty, see Table 19 in the Appendix.) Table 18 shows
the numbers of simulations rejected for this reason. The numbers are rather
high for the Low Frequency scenarios where 1,000 and 2,500 cases were used.
The results based on the remaining simulations may not be reliable and so
these are not given in Table 17.

5. CONCLUSIONS

In this paper we ask the question: how well may UK Biobank distinguish between
different levels of risk associated with the influence of genes, environment and
their interactions on a given multifactorial disorder?

On the basis of our simple model, we conclude that the ability of case-
control studies based on UK Biobank to identify distinct CI underwriting
classes was marginal. If a very large number of cases was used, quite reliable
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FIGURE 7: Marginal densities of premium ratings in the Base scenario (males) with different numbers of
cases in the case-control study.
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FIGURE 8: The empirical cumulative distribution function of the premium ratings gE /ge, Ge/ge and GE/ge
for males aged 45 and policy term 15 years under the Base scenario.

9130-06_Astin_36/2_01  06-12-2006  11:55  Pagina 341

https://doi.org/10.2143/AST.36.2.2017924 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.2.2017924


342 A. MACDONALD, D. PRITCHARD AND P. TAPADAR

FIGURE 9: Marginal densities of premium ratings in different scenarios (males),
with 5,000 cases in the case-control study.
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discrimination was achieved, but this is a very expensive option. If a more
realistic number of cases was used — a few thousands — the power to dis-
criminate quickly diminished. In particular, it was clear that if the effects of
the adverse genotype and adverse environment were any less than we had
assumed, the power to discriminate would be rather poor.

This conclusion ought to bring comfort to those who are worried about
insurers’ use of genetic information, and to insurers themselves. This is par-
ticularly important during the 5 to 10 years that must pass before UK Biobank
itself starts to yield results. We have found no support for the idea that very
large-scale genetic studies like UK Biobank will lead to significant changes in
underwriting practice.

Our study has been very simple and idealised in several respects mentioned
above. Most obviously, our genetic model is not truly multifactorial, although
it does allow for a basic environmental interaction. Further research is in hand
to extend the model to a more realistic, though still hypothetical, representation
of a multifactorial genetic contribution to heart attack. Our aim will be to find
out whether this will strengthen or weaken the discriminatory power of genetic
tests, along the lines that GAIC has pioneered for single-gene disorders. Another
point that will repay further study is the possibility of model mis-specification.
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APPENDIX

A BRIEF INTRODUCTION TO CASE-CONTROL STUDIES

This appendix describes the main features of a case-control study, one of the
main tools in epidemiology, but which is not well-known to actuaries. Standard
references for this material are Woodward (1999) and Breslow & Day (1980).
The question asked is: how do genetic and environmental risk factors interact
to affect the risk of a disease or other outcome?

We usually want answers that are valid for the general population. The best
way to proceed is to carry out a prospective cohort study — recruit a properly
randomised sample of healthy people, observe them over time, and see how
the suspected risk factors correlate with cases of the disease. Such a study
should be free of any selection biases. However, it will be time consuming and
(especially for rare diseases) prohibitively expensive. It is much quicker and
cheaper to select a sample of people who already have the disease of interest,
and a sample of people who do not have the disease, and see if the suspected
risk factor turns up more often in the diseased sample. This is a case-control
study; the two samples are known as cases and controls, respectively. But,
because the cases are chosen retrospectively from known sufferers of the dis-
ease, the sampling may be biased. The statistical question, therefore, is what
inferences can be drawn about the general population, from a case-control study
whose cases have been selected retrospectively?

Controls should be a representative sample of disease-free individuals, who
had exactly the same chances as the cases of become diseased, except in respect
of the risk factors of interest. For example, suppose we are studying the effect
of smoking on lung cancer. If all the cases are over 60 years old, and all the
controls are under 30 years old, we can hardly compare their respective risks
of lung cancer. Therefore we would match controls to cases: given as a case a
man age 65 who had had lung cancer, a suitable control might be a man age 65
who had not. The general approach would be to match in respect of as many
factors as possible that might affect the risk of lung cancer, except smoking
habits. Then the proportions of smokers among cases and controls ought to
be informative.

Matching reduces confounding when comparing cases and controls, but
not within each of the two groups. For example, if age is thought to affect the
risk of lung cancer, we would not want to analyse as a single unit a sample of
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FIGURE 10: A 2-state model of a disease, in respect of a person in stratum s.

1 = Healthy 2 = Diseased
ls
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cases whose ages ranged from 20 to 80: to do so would be to assume, implicitly,
that risk was unaffected by age. The usual approach would be to stratify the
sample by age, say into 5-year or 10-year age groups. We would stratify both
cases and controls with respect to risk factors other than that being studied,
ensuring that matched cases and controls are in corresponding strata.

We will look at the simplest situation, a risk factor with two levels: an indi-
vidual either is exposed to it or is not (for example, smokers and non-smokers).
We introduce a simple model with two states, ‘Healthy’ and ‘Diseased’, see
Figure 10. The (constant) transition intensity ls governs the probability that a
healthy person in stratum s will become diseased, as follows: over a small time
dt this probability is approximately lsdt.

The ideal outcome of a study would be estimates of all the ls. However, a
retrospective study cannot, in general, provide unbiased estimates of the ls.
Next best (with actuarial models in mind) might be the relative risks: the relative
risk in stratum s, compared with stratum z, is rsz = ls/lz. Then, if we could just
establish lz in a single stratum, we could find ls in any stratum. Unfortunately,
a retrospective study cannot, in general, provide unbiased estimates of relative
risks either. Since the data are what they are, we have to seek relevant quantities
that can be estimated in an unbiased fashion from them. The main example is
the odds ratio.

Whenever we study the probabilities of events in epidemiology, a time inter-
val is involved, which we denote T. Expressions such as ‘the probability that X
occurred’ should be read as ‘the probability that X occurred during the inter-
val of length T ’. For example, T might be equal to the width of the age-groups
used to stratify the sample.

Let Ps be the probability that a person in stratum s suffered the disease (dur-
ing a period of length T ), and let Qs = 1 – Ps. Choose one stratum, z say, as the
baseline: the most common stratum is often chosen. Then the odds in strata s
and z are Ps /Qs and Pz/Qz respectively, and the odds ratio in stratum s relative
to the baseline is:

ƒsz = s

z
.z

s
Q P
P Q

Odds in stratum
Odds in stratum

s

z= (20)

Suppose, for simplicity, we are studying the effect of two genotypes, g and G,
on lung cancer. We can draw up the simple 2 ≈ 2 table in Table 19. Then ad/bc
is an unbiased estimate of the odds ratio ƒGg of genotype G with respect to
genotype g. This is true regardless of the retrospective sampling scheme, and
is the reason why odds ratio are normally reported in case-control studies (see
Woodward (1999, Chapter 6)).

If there is reason to believe that there is a common true odds ratio for all
strata, it can be estimated by the Mantel-Haenszel statistic:

ĉ = s s

s s

zza b b a

! !s z s z
N N! !f fp p (21)
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where the summation is over all strata s except the baseline stratum z, as and
bs are the numbers of cases and controls, respectively, in stratum s, and Ns =
as + bs + az + bz.

If controls are more plentiful than cases, more efficient estimates can be
obtained by matching c > 1 controls to each case, called 1:c matching. How-
ever, as c increases, the marginal increase in efficiency decreases, so c is rarely
greater than 5 in practice. For 1:c matching, the Mantel-Haenszel estimate of
the odds ratio is as follows:

ĉ =
u t m

c u m1

u uu

c
uu

c

1

1

-

+ -

=

=

!
!

^

]

h

g
(22)

where:

tu = the number of sets with u exposures
mu = the number of sets with u exposures in which the case is exposed.

The actuary’s problem is to ‘estimate’ intensities from published odds ratios,
plus some other information to provide a baseline, such as the intensity in one
stratum or (more often) the general population. If T is reasonably short, we have:
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Moreover if all the probabilities Ps are small, then Qs . 1 and then:

sz
z

s

z

s

s
s .Q P

P Q
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P

c z
z. .= r (24)
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TABLE 19

TWO-WAY TABLE OF NUMBERS OF CASES AND CONTROLS BY GENOTYPE.

Diseased Disease-free Total
(Cases) (Controls)

Genotype G a b a +b
Genotype g c d c +d
Total a + c b +d a +b +c +d
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