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Abstract

In Chung–Lu random graphs, a classic model for real-world networks, each vertex is
equipped with a weight drawn from a power-law distribution, and two vertices form
an edge independently with probability proportional to the product of their weights.
Chung–Lu graphs have average distance O( log log n) and thus reproduce the small-
world phenomenon, a key property of real-world networks. Modern, more realistic
variants of this model also equip each vertex with a random position in a specific
underlying geometry. The edge probability of two vertices then depends, say, inversely
polynomially on their distance.
In this paper we study a generic augmented version of Chung–Lu random graphs. We
analyze a model where the edge probability of two vertices can depend arbitrarily on
their positions, as long as the marginal probability of forming an edge (for two vertices
with fixed weights, one fixed position, and one random position) is as in a Chung–Lu ran-
dom graph. The resulting class contains Chung–Lu random graphs, hyperbolic random
graphs, and geometric inhomogeneous random graphs as special cases.
Our main result is that every random graph model in this general class has the same
average distance as a Chung–Lu random graph, up to a factor of 1 + o(1). This shows in
particular that specific choices, such as taking the underlying geometry to be Euclidean,
do not significantly influence the average distance. The proof also shows that every ran-
dom graph model in our class has a giant component and polylogarithmic diameter with
high probability.
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1. Introduction

Many large real-world networks, such as social networks or the internet infrastructure, are
scale-free, i.e., their degree distribution follows a power law with parameter 2 < β < 3 [22].

Received 28 February 2022; accepted 6 June 2024.
∗ Postal address: Saarland Informatics Campus E1 3, Raum 414, 66123 Saarbrücken, Germany.
∗∗ Postal address: Andreasstrasse 5, OAT Z14.1, ETH Zürich, 8050 Zürich, Switzerland.
∗∗∗ Email address: johannes.lengler@inf.ethz.ch

© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

1

https://doi.org/10.1017/apr.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.43
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/apr.2024.43&domain=pdf
https://doi.org/10.1017/apr.2024.43


2 K. BRINGMANN ET AL.

Such networks have been studied in detail since the 1960s. One of the key findings concerning
them is the small-world phenomenon, which is the observation that two nodes in a network typ-
ically have very small graph-theoretic distance. In the nineties, this phenomenon was explained
by theoretical models of random graphs. Since then, random graph models have been the basis
for the statistical study of real-world networks, as they provide a macroscopic perspective
and reproduce structural properties observed in real data. In this line of research, one studies
the diameter of a graph, i.e., the largest distance between any pair of vertices in the largest
component, and its average distance, i.e., the expected distance between two random nodes
of the largest component. A random graph model is said to be small-world if its diameter is
bounded by (log n)O(1) or even O(log n), and ultra-small-world if its average distance is only
O(log log n).

Chung–Lu random graphs are a prominent model of scale-free networks [15, 16]. In this
model, every vertex v is equipped with a weight wv, and two vertices u,v are connected
independently with probability min{1, wuwv/W}, where W is the sum over all weights wv.
The weights are typically assumed to follow a power-law distribution with power-law expo-
nent β > 2. Chung–Lu random graphs have the ultra-small-world property, since in the range
2 < β < 3 the average distance is (2 ± o(1)) log log (n)

| log (β−2)| [15, 16].
However, Chung–Lu random graphs fail to capture other important features of real-world

networks, such as high clustering or navigability. This is why dozens of papers have pro-
posed more realistic models which also possess some local structure, many of which combine
Chung–Lu random graphs (or other classic models such as preferential attachment [3]) with
an underlying geometry; see, e.g., hyperbolic random graphs [8, 28, 40], geometric inhomo-
geneous random graphs [12–14, 26, 30, 33], and many others [2, 9–11, 19, 20, 29, 42]. In
these models, each vertex is additionally equipped with a random position in some underlying
geometric space, and the edge probability of two vertices depends on their weights as well as
the geometric distance between their positions. Typical choices for the geometric space are
the unit square, circle, and torus, and typical choices for the dependence on the distance are
inverse polynomial, exponential, and threshold functions. Such models can naturally yield a
large clustering coefficient, since there are many edges among geometrically close vertices.
For some of these models the average distance has been studied and shown to be the same as
in Chung–Lu graphs, up to a factor 1 + o(1); see, e.g., [1, 9, 19, 27].

It is unclear how much these results depend on the particular choice of the underlying
geometry. In particular, it is not known whether any of the important properties of Chung–
Lu random graphs transfer to versions with a non-metric underlying space. Such spaces are
well motivated in the context of social networks, where two persons are likely to know each
other if they share a feature (e.g., they are in the same sports club) regardless of their dif-
ferences in other features (e.g., their profession), which gives rise to a non-metric distance
(see Section 3).

Our contribution: As the main result of this paper, we prove that in the regime 2 <

β < 3, all geometric variants of Chung–Lu random graphs have the same average distance
(2 ± o(1)) log log (n)

| log (β−2)| , showing universality of the ultra-small-world property.
We do this by analyzing a generic augmented and very general version of Chung–Lu ran-

dom graphs. Here, each vertex is equipped with a power-law weight wv and an independently
random position xv in some ground space X . Two vertices u,v form an edge independently
with probability puv that only depends on the positions xu, xv (and u,v as well as model
parameters like the weight sequence). The dependence on xu, xv may be arbitrary, as long
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Average distances in a general class of scale-free networks 3

as the edge probability has the same marginal probabilities as in Chung–Lu random graphs.
Specifically, for fixed xu and random xv we require that the marginal edge probability
Exv[puv|xu] is within a constant factor of the Chung–Lu edge probability min{1, wuwv/W}.
This is a natural property for any augmented version of Chung–Lu random graphs. Note that
our model is stripped of any geometric specifics. In fact, the ground space is not even required
to be metric. We retain only the most important features, namely power-law weights and the
right marginal edge probabilities. Hence the main result also demonstrates that there exist ran-
dom graph models with non-metric underlying geometry that still satisfy the ultra-small-world
property.

Beyond the average distance, we establish that this general model is scale-free and has a
giant component and polylogarithmic diameter. Thus all instantiations of augmented Chung–
Lu random graphs share some basic properties that are considered important for models of
real-world networks.

It it quite surprising that the average distance can be computed so precisely in this generality.
For example, the clustering coefficient varies drastically between different instantiations of
the model, as it encompasses the classic Chung–Lu random graphs, which have clustering
coefficient n−�(1), as well as geometric variants that have constant clustering coefficient [14].
Therefore, our results hold on graphs with very different local structure. Note that by the scale-
free property, all variants of the model contain �(n) edges. If an instance has high clustering,
many edges are local edges inside well-connected subgraphs, and therefore useless for finding
short paths between far vertices. Nevertheless, our main result implies that in such graphs the
average distance is asymptotically the same as in Chung–Lu random graphs, where we have
no clustering and every edge is potentially helpful when searching for short paths.

We also remark that our statements fail to hold for β > 3. Indeed, graphs in this regime can
look rather diverse depending on the model. For example, some instantiations in this regime
do not even have a giant component; the largest component is of polynomial size n1−�(1) [7].
On the other hand, it is also not hard to construct models for β > 3 which do have a giant
component, but still have polynomially large average distance; see Remark 1. This variety for
β > 3 makes it even more surprising that in the regime 2 < β < 3 the average distance can be
determined precisely for all instances at once. Moreover, models in which the marginal edge
probability between u and v is not a function of the product wuwv as in the Chung–Lu model
also look rather diverse; see [27] for a systematic exploration.

A common property of all models in our general class is that for a set S of vertices whose
weights sum to WS (often called volume in the literature), the expected number of half-edges
going out from S is �(WS). For the classic Chung–Lu random graphs without geometry, the
targets of these half-edges are independent of each other. Thus, the quantity WS is essentially
sufficient to determine the size and the volume of the neighborhood �(S) of S, and the analyses
of Chung–Lu random graphs are based on this property. However, for non-trivial geometries
the size of the neighborhood crucially depends on the geometric position of the vertices in
S. For example, if the clustering coefficient is constant, then even if S consists of only two
adjacent vertices there is already a non-negligible probability that they share some neighbors.

Note that this problem only affects the upper bound on the average distance, and indeed
the lower bound carries over trivially from the analysis of Chung–Lu graphs: it is based on a
first-moment method for counting the number of self-avoiding paths of length (2 − ε) log log (n)

| log (β−2)|
with prescribed weight profile, and shows that the expected number of such paths between two
random vertices is o(1) [21]. The expected number of such paths depends on the marginal
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4 K. BRINGMANN ET AL.

probabilities Exv [puv|xu], which we assume to be independent of xu up to constant factors; see
Section 7 for details. It is thus not surprising that the lower bound was already known.

However, the upper-bound proofs for classic Chung–Lu random graphs do not carry over
to our general setting. Similarly, existing proofs for geometric scale-free networks [1, 19]
cannot be transferred to our geometry-agnostic setting either, since they rely rather heavily
on the specifics of the underlying geometry. Thus we need to develop new methods. Our
key ingredient is the ‘bulk lemma’ (Lemma 9), which shows that it is unlikely that a ver-
tex has a k-neighborhood of size at least k without having any vertex of high weight in this
k-neighborhood. For Chung–Lu graphs, this statement is rather trivial, since each of the ver-
tices in the k-neighborhood independently has a certain chance of connecting to a vertex of
large weight. However, in geometric settings, these events are not independent: in an extreme
case, all vertices in the k-neighborhood could occupy the same position x ∈X , and a high-
weight vertex might connect either to all of them or to none of them (cf. the threshold model
in Example 3). So a priori it is not clear that increasing the size of the k-neighborhood will
increase the chances that the k-neighborhood connects to a high-weight vertex. In previously
studied geometric scale-free settings such as hyperbolic geometric graphs [1] or scale-free per-
colation [19], this problem can be avoided because vertices in these geometries do not cluster
with arbitrary density. However, we do not have any such restrictions in our model. Instead, we
prove Lemma 9 by a delicate and subtle analysis of the tail bounds of the degree distribution
of vertices that would hold if the lemma were false; see the beginning of the proof of Lemma 9
for a more detailed proof sketch.

Once we have established the bulk lemma, the rest of the proof is more similar to previous
proofs. By the bulk lemma, a vertex in the giant component can reach a vertex of polylogarith-
mic weight within k steps, with failure probability decaying in k. Then we use a ‘greedy path’
argument (Lemma 7), which constructs a path by always choosing the neighbor of highest
weight. In this way, any vertex of polylogarithmic weight can be connected by an ultra-short
path to the ‘heavy core’, which is well-connected and contains the vertices of highest weight.
The length of this greedy path is so concentrated that it can be estimated by a worst-case esti-
mate. For the initial part of the path, we bound its average length by applying the bulk lemma
repeatedly for different values of k and carefully summing up the resulting terms.

Organization of the paper: In Section 2 we present the details and a precise definition of the
model, and we formally state the results. In Section 2.3 we introduce some notation that we use
throughout the paper. Then we discuss several special cases of the model in Section 3, includ-
ing geometric inhomogeneous random graphs (GIRGs), the distance model with minimum
component distance, and the threshold version of GIRGs, which includes threshold hyperbolic
random graphs. We conclude this part of the paper with some remarks in Section 4.

The rest of the paper is dedicated to the proof of our main results. In Section 5 we prove a
concentration inequality which will be used later in the proofs. After some basic and prelimi-
nary results in Section 6, we prove the connectivity properties and the main result in Section 7,
and determine the degree distribution of our model in Section 8. Finally, we prove in Section 9
that the examples from Section 3 are indeed covered by our model.

2. Model and results

2.1. Definition of the model

In this paper we study the properties of a very general random graph model, where both
the set of vertices V and the set of edges E are random. Each vertex v comes with a weight
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wv, which will essentially be the expected degree of v, and with a random position xv in a
geometric space X . We now give the full definition, first for the weight sequence and then for
the resulting random graph. In the discussion below and throughout the paper, we assume that
the model parameters α, β, d, c1, c2, wmin are constants while n → ∞, and the hidden factors
in Landau notation O(·), �(·), . . . are universal for all vertices, edges, random variables, and
non-constant parameters; see Section 2.3 for more detail.

Power-law weights: For every n ∈N let w = (w1, . . . , wn) be a non-increasing sequence of
positive weights. We call W := ∑n

v=1 wv the total weight. Throughout this paper we will
assume that the weights follow a power law: the fraction of vertices with weight at least w
is ≈ w1−β for some β > 2 (the power-law exponent of w). More precisely, we assume that for
some w = w(n) with nω(1/ log log n) ≤ w ≤ n(1−�(1))/(β−1), the sequence w satisfies the following
conditions:

(PL1) The minimum weight is bounded by constants, i.e.,

wmin := min{wv | 1 ≤ v ≤ n} = �(1).

(PL2) For all η > 0 there exist constants c1, c2 > 0 such that

c1
n

wβ−1+η
≤ #{1 ≤ v ≤ n | wv ≥ w} ≤ c2

n

wβ−1−η
,

where the first inequality holds for all wmin ≤ w ≤ w and the second for all w ≥ wmin.
We remark that these are standard assumptions for power-law graphs with average degree

�(1). Note that since w ≤ (1 − �(1))/(β − 1), there are n�(1) vertices with weight at least w.
On the other hand, no vertex has weight larger than (c2n)1/(β−1−η).

Random graph model: Let X be a non-empty set, and assume we have a measure μ on X that
allows us to sample elements from X . We call X the ground space of the model and the ele-
ments of X positions. The random graph G(n,X , w, p) has vertex set V = [n] = {1, . . . , n}.
For any vertex v we independently draw a position xv ∈X according to the measure μ.
Conditional on x1, . . . , xn, we connect any two vertices u 	= v independently with probability

puv := puv(xu, xv) := puv(xu, xv; n,X , w),

where p = (puv)u,v∈V,u 	=v is a collection of measurable functions X ×X → [0, 1] that is
symmetric in in u,v (i.e. puv(xu, xv) = pvu(xv, xu)) and satisfies the following condition:

(EP1) For any u,v, if we fix position xu ∈X and draw position xv from X according to μ,
then the marginal edge probability is

Exv [puv(xu, xv) | xu] = �
(

min
{

1,
wuwv

W

})
,

where the hidden constants are uniform over all u, v and xu.
Note that the function puv does not depends on xv′ for v′ 	= u, v.
For most of our results we also need an additional condition, to ensure the existence of a

unique giant component:
(EP2) There exist η > 0 and a function ρ = ρ(n) ≥ ω(1) such that for any u,v with wu, wv ≥

w, and any fixed positions xu, xv ∈X , we have

puv(xu, xv) ≥
( n

wβ−1+η

)−1+ρ(n)/ log log n
.
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Discussion of the conditions (EP1) and (EP2): Let us first argue why (EP1) alone is not
sufficient to yield a unique giant component. Suppose we have an instantiation of our model G
on a space X . We will see in this paper that with high probability G has a giant component that
contains all high-degree vertices. Now make a copy X ′ of X , and consider a graph where all
vertices draw geometric positions from X ∪X ′. Vertices in X are never connected to vertices
in X ′, but within X and X ′ we use the same connection probabilities as for G. Then the
resulting graph will satisfy all properties of our model except for (EP2), but it will have two
giant components, one in X and one in X ′. Consequently, in general our result on average
distances cannot hold without a condition like (EP2).

To see another property that can go wrong without the condition (EP2), let us slightly vary
the above construction so that between any vertex in X and any vertex in X ′ there is an edge
with probability 1/n2. (This probability is so small that it does not affect (EP1).) Then with
probability �(1) we get no connecting edge and two giants components, while with probability
�(1) we get a single edge connecting the two parts, and thus a single giant component. In the
former case, the two giant components have internally the same average distances as a Chung–
Lu random graph, up to a factor 1 ± o(1). However, in the latter case the average distance in
the unique giant component is larger by a factor of 1.5 than that in Chung–Lu random graphs
(twice as large for vertices in different copies, equally large for vertices in the same copy).
Thus, without the condition (EP2), the average distance is not even concentrated around a
single value in general.

As we will see, (EP2) ensures that the high-weight vertices form a single dense network, so
that the graph indeed has a unique giant component. Now let us turn to the condition (EP1).
Since its right-hand side is the edge probability of Chung–Lu graphs, (EP1) is a natural con-
dition for any augmented version of Chung–Lu graphs. In particular, (EP1) ensures that the
expected degree of a vertex v with weight wv is indeed �(wv). For reasons similar to those
discussed for (EP2), we cannot further relax (EP1) to a condition on the marginal probability
over random positions xu and xv, i.e, a condition like Exu,xv[puv(xu, xv)] = �

(
min

{
1, wuwv

W

})
.

Indeed, consider the same setup as above, with G, X , and copy X ′. For two vertices of weight
at most w̄, connect them only if they are in the same copy of X . For two vertices of weight
larger than w̄, always treat them as if they came from the same copy (then the condition (EP2)
is satisfied). For a vertex u of weight at most w̄ and v of weight larger than w̄, connect them only
if u is in X ′. Then the high-weight vertices form a unique component, but it is only connected
to vertices in X ′, while the low-weight vertices in X may form a second giant component.
Thus, in (EP1) it is necessary to allow any fixed xu.

Sampling the weights: In the definition we assume that the weight sequence w is fixed.
However, if we sample the weights according to an appropriate distribution, then the sampled
weights will follow a power law with probability 1 − n−�(1), so that a model with sampled
weights is almost surely included in our model. For the precise statement, see Lemma 5.

Examples: We regain the Chung–Lu model as a special case by setting X = {x} (the trivial
ground space) and puv = min

{
1, wuwv

W

}
, since then (EP1) is trivially satisfied and (EP2) is

satisfied for 2 < β < 3.
We discuss more examples in Sections 3. In particular, the model includes geometric

inhomogeneous random graphs (GIRGs), which were introduced in [13, 14]. Consider the
d-dimensional ground space X = [0, 1]d with the standard (Lebesgue) measure, where d ≥ 1
is a (constant) parameter of the model. Let α 	= 1 be a second parameter that determines how
strongly the geometry influences edge probabilities. Finally, let ‖.‖ be the Euclidean distance
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on [0, 1]d, where we identify 0 and 1 in each coordinate (i.e., we take the distance on the torus).
We show in Theorem 4 that every edge probability function p satisfying

puv = �
(

min
{

1, (‖xu − xv‖)−dα ·
(wuwv

W

)max{α,1}})
(1)

follows (EP1) and (EP2), so it is a special case of our model. As was shown in [14], an instance
of hyperbolic random graphs satisfies (1) asymptotically almost surely (over the choice of
random weights w). Thus, hyperbolic random graphs, which have attracted considerable theo-
retical and experimental interest during the last few years (see, e.g., [6, 8, 28, 36]), are also a
special case of our general model.

In Section 3 we will see that GIRGs can be varied as follows. As before, let X = [0, 1]d. For
x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈X , we define the minimum component distance ‖x −
y‖min := min{|xi − yi| | 1 ≤ i ≤ d}, where the differences xi − yi ∈ [−1/2, 1/2) are computed
modulo 1, or, equivalently, on the circle. This distance reflects the property of social networks
that two individuals may know each other because they are similar in only one feature (e.g.,
they share a hobby), regardless of their differences in other features. Note that the minimum
component distance is not a metric, since there are x, y, z ∈X such that x and y are close in
one component, y and z are close in one (different) component, but x and z are not close in
any component. Let V(r) be the volume of the ball Br(0) := {x ∈X | ‖x‖min ≤ r}. Then any p
satisfying

puv = �
(

min
{

1, V(‖xu − xv‖)−α ·
(wuwv

W

)max{α,1}})
satisfies the conditions (EP1) and (EP2), so it is a special case of our model.

These examples also show that our model is incomparable to the (also very general)
model of inhomogeneous random graphs studied by Bollobás, Janson, and Riordan [9]. Their
model requires sufficiently many long-range edges, so that setting α > 1 in (1) yields an edge
probability that is not supported by their model. Similarly, the example with the minimum
component distance is also not supported by their model.

2.2. Results of this paper

Our results generalize and improve the understanding of Chung–Lu random graphs, hyper-
bolic random graphs, and other models, as they are special cases of our fairly general model.
We study the following fundamental structural questions.

Scale-freeness: Since we plug in power-law weights w, it is not surprising that our model is
scale-free. More precisely, the degrees follow a power law with exponent β. We say that an
event holds with high probability (w.h.p.) if it holds with probability 1 − n−ω(1).

Theorem 1. (Section 8.) Consider a random instance of our model that satisfies (EP1), but not
necessarily (EP2). Then for all η > 0, w.h.p., we have

�
(
nd1−β−η

) ≤ #{v ∈ V | deg (v) ≥ d} ≤ O
(
nd1−β+η

)
,

where the first inequality holds for all 1 ≤ d ≤ w and the second inequality holds for all d ≥ 1.
Moreover, w.h.p. the average degree is �(1).

Giant component and diameter: The connectivity properties of the model for β > 3 are not
very well behaved, in particular since in this case even threshold hyperbolic random graphs do
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not possess a giant component of linear size [7]. Hence, for connectivity properties we restrict
our attention to the regime 2 < β < 3, which holds for most real-world networks [22].

Theorem 2. (Section 7.) Let 2 < β < 3. W.h.p. the largest component of our random graph
model has linear size, while all other components have size at most logO(1) n. Moreover, w.h.p.
the diameter is at most logO(1) n.

A better bound of �(log n) holds for the diameter of Chung–Lu graphs [17] and for hyper-
bolic random graphs [25, 39]. It remains an open question whether the upper bound O(log n)
holds in general for our model.

Average distance: As our main result, we determine the average distance between two ran-
domly chosen nodes in the giant component to be the same as in Chung–Lu random graphs
up to a factor 1 + o(1), showing that the underlying geometry is negligible for this graph
parameter.

Theorem 3. (Section 7.) Let 2 < β < 3. Then the average distance of our random graph model
is (2 ± o(1)) log log n

| log (β−2)| in expectation and with probability 1 − o(1).

2.3. Notation

In this section we collect the notation that we will use throughout the paper. For w, w′ ∈
R≥0, w ≤ w′, we use the notation V≥w := {v ∈ V | wv ≥ w} and V≤w := {v ∈ V | wv ≤ w} and
V[w,w′] := V≥w ∩ V≤w′ . Similarly, we write W≥w := ∑

v∈V≥w
wv, W≤w := ∑

v∈V≤w
wv, and

W[w,w′] := ∑
v∈V[w,w′] wv for sums of weights. Recall that wmin = min{wv | 1 ≤ v ≤ n}; sim-

ilarly we put wmax := max{wv | 1 ≤ v ≤ n} for the maximum weight. For u, v ∈ V we write
u ∼ v if u and v are adjacent, and for A, B ⊆ V we write A ∼ v if there exists u ∈ A such
that u ∼ v; we write A ∼ B if there exists v ∈ B such that A ∼ v. For a vertex v ∈ V , we
denote its neighborhood by �(v), i.e. �(v) := {u ∈ V | u ∼ v}. For A, B ⊆ V , we denote by
E(A, B) := {uv ∈ E | u ∈ A, v ∈ B} the set of edges from A to B.

Throughout the paper we assume that n → ∞, while the model parameters α, β, d, c1,
c2, wmin are constants. (The parameters α and d only appear in examples.) In particular,
Landau notation O(·), o(·), �(·), ω(·), �(·) may hide any factor that depends on these con-
stants, but these factors must be universal for all vertices and edges of the graph, for all values
of (xv)v∈V , and for all values of non-constant parameters in the statement (such as w or k,
which will occur in some lemmas and theorems). For example, (EP1) can be rephrased as
follows: there exist C, C′ > 0 and n0 > 0 such that for all n ≥ n0, all u, v ∈ V = [n], and all
xu ∈X ,

C · min
{

1,
wuwv

W

}
≤Exv[puv(xu, xv) | xu] ≤ C′ · min

{
1,

wuwv

W

}
.

As previously stated, we say that an event holds with high probability (w.h.p.) if it holds with
probability 1 − n−ω(1).

In the model, note that w and puv are parameters and thus fixed, while the probability
space is over the positions xu and the coin flips for the edges (with probability puv(xu, xv) for
edge uv). Sometimes we make statements where we condition on part of the search space to be
fixed. In such cases, we emphasize this restricted probability space by including the random
components as subscripts on the symbols E and P. For example, we write Exv[puv(xu, xv) | xu]
if xu is fixed and xv is random.
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3. Example: GIRGs and generalizations

In this section, we further discuss the special cases of our model mentioned in Section 2.1.
Mainly, we study a class which is still fairly general, the so-called distance model. We show
that the GIRG model introduced in [14] is a special case, and we also discuss a non-metric
example. In addition, with the threshold model we consider a variation which includes in
particular threshold hyperbolic random graphs.

The distance model:
We consider the following situation, which will cover both GIRGs and the non-metric exam-

ple. As our underlying geometry we specify the ground space X = [0, 1]d, where d ≥ 1 is a
(constant) parameter of the model. We sample uniformly from this set according to the standard
(Lebesgue) measure. This is in the spirit of the classical random geometric graphs [41].

To describe the distance between two points x, y ∈X , assume we have some mea-
surable function ‖.‖:[−1/2, 1/2)d →R≥0 such that ‖0‖ = 0 and ‖ − x‖ = ‖x‖ for all x ∈
[−1/2, 1/2)d. Note that ‖.‖ does not need to be a norm or seminorm. We extend ‖.‖ to R

d

via ‖z‖ := ‖z − u‖, where u ∈Z
d is the unique lattice point such that z − u ∈ [−1/2, 1/2)d.

For r ≥ 0 and x ∈X , we define the r-ball around x to be Br(x) := {x ∈X | ‖x − y‖ ≤ r}, and
we denote by V(r) the volume of the r-ball around 0. Intuitively, Br(x) is the ball around x in
[0, 1]d with the torus geometry, i.e., with 0 and 1 identified in each coordinate. Assume that
V : R≥0 → [0, 1] is surjective, i.e., for each V0 ∈ [0, 1] there exists r such that V(r) = V0.

Finally, let α ∈R>0 be a long-range parameter. Since the case α = 1 deviates slightly from
the general case, we assume α 	= 1. Let p be any edge probability function that satisfies, for all
u,v and xu, xv ∈X = [0, 1]d,

puv(xu, xv) = �
(

min
{

1, V(‖xu − xv‖)−α ·
(wuwv

W

)max{α,1}})
. (2)

Then, as we will prove later in Theorem 4, p satisfies the conditions (EP1) and (EP2), so it is a
special case of our model.

Example 1. If we choose ‖.‖ to be the Euclidean distance ‖.‖2 (or any equivalent norm, such
as ‖.‖∞) then we obtain the GIRG model introduced in [14, 42], where the distance between
two points x,y in [0, 1]d is given by their geometric distance on the torus. In [14] it was
shown that a graph from such a GIRG model w.h.p. has clustering coefficient �(1), that it
can be stored with O(n) bits in expectation, and that it can be sampled in expected time O(n).
Moreover, it was shown that hyperbolic random graphs are contained in the one-dimensional
GIRG model. These models have been intensively studied with respect to numerous proper-
ties, including component structure [32], clustering [14], diameter [25, 39], spectral gap [31],
separators [5, 14, 38], clique number [6], and treewidth [5], as well as processes such as
first-passage percolation [34, 35], bootstrap percolation [33], greedy routing [12], bidirec-
tional search [4], and infection processes [26, 30]. With appropriate scaling, their infinite limits
can also be defined [35, 45], and they are related to scale-free percolation [19]. In this latter
model, the vertices are placed on an infinite grid, so it is not covered by our results. However,
it behaves similarly to GIRGs in many respects [34, 35, 45], including average distances
[19, 44].

The next distance measure, the minimum component distance, is particularly useful for
modeling social networks, because it captures the following property: if two individuals share
one feature (e.g., they are in the same sports club), but are very different in many other features
(e.g., work, music), then they are still likely to know each other.
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Example 2. Let the minimum component distance be defined by

‖x‖min := min{xi | 1 ≤ i ≤ d} for x = (x1, . . . , xd) ∈ [−1/2, 1/2)d.

Note that the minimum component distance is not a metric for d ≥ 2, since there are x, y, z ∈X
such that x and y are close in one component, y and z are close in one (different) component, but
x and z are not close in any component. Thus the triangle inequality is not satisfied. However, it
still satisfies the requirements specified above, so the results of this paper apply. In subsequent
work, one of the authors has shown that the resulting graphs for d ≥ 2 have a giant component
which does not have any separators of sublinear size [38]. This is different from the case of
the GIRG model, where it is possible to split the giant component into two halves by removing
n1−�(1) edges [14].

Theorem 4. In the distance model described above, let p be any function that satisfies
Equation (2). Then the conditions (EP1) and (EP2) are satisfied, and we obtain an instance of
the general model.

The threshold model:
Finally, we discuss a variation of Example 1 where we let α → ∞ and thus obtain a

threshold function for p.

Example 3. Let ‖.‖ be the Euclidean distance ‖.‖2 and let p again satisfy (2), but this time we
assume that α = ∞. More precisely, we require

puv(xu, xv) =
{

�(1) if ‖xu − xv‖ ≤ O
((wuwv

W

)1/d)
,

0 if ‖xu − xv‖ ≥ �
((wuwv

W

)1/d)
,

(3)

where the constants hidden by O and � do not have to match, i.e., there can be an interval
[c1( wuwv

W )1/d, c2( wuwv
W )1/d] for ‖xu − xv‖ where the behavior of puv(xu, xv) is arbitrary. This

function p yields the case α = ∞ of the GIRG model introduced in [14]. In [14] it was shown
that threshold hyperbolic random graphs are contained in this class of models, and further-
more that the model w.h.p. has clustering coefficient �(1), it can be stored with O(n) bits in
expectation, and it can be sampled in expected time O(n).

Notice that the volume of a ball with radius r0 = �(( wuwv
W )

1
d ) around any fixed x ∈X is

�( min{1, wuwv
W }). Thus, by (3), for fixed xu it follows directly that

Exv [puv(xu, xv) | xu] = �
(
Pxv

[‖xu − xv‖ ≤ r | xu
]) = �

(
min

{
1, wuwv

W

})
.

Since (EP1) is satisfied, Theorem 1 for the degree sequence already applies. In order to also
fulfill (EP2), we additionally require that 2 < β < 3 and w = ω(n1/2). Then for all wu, wv ≥ w
we have wuwv

W = ω(1). For all positions xu, xv ∈X we thus obtain puv(xu, xv) = �(1) by (3).

Remark 1. It follows from the definition that the low-weight vertices in a GIRG contain
ordinary random geometric graphs as subgraphs, i.e., every pair of vertices connects with prob-
ability �(1) if the distance between the vertices is at most cn−1/d, where c is a constant that
depends on the minimal weight wmin. If wmin is sufficiently large, then these subgraphs are
supercritical, i.e., they have a giant component. On the other hand, in the threshold model
for β > 3 sufficiently large, all edges cover a polynomially small distance n−�(1). Thus, by
combining these conditions we get a random graph model in the regime β > 3 with giant
components where the average distance is polynomially large.
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4. Conclusion of first part

We have studied a class of random graphs that generically augment Chung–Lu random
graphs by an underlying ground space, i.e., every vertex has a random position in the ground
space and edge probabilities may depend arbitrarily on the vertex positions, as long as marginal
edge probabilities are preserved. Since our model is very general, it contains numerous
well-known models as special cases, including hyperbolic random graphs [8, 40] and geo-
metric inhomogeneous random graphs [14]. Beyond these well-studied models, our model
also includes graphs with non-metric ground spaces, which are motivated by social networks,
where, for example, two persons are likely to know each other if they share one hobby,
regardless of their other hobbies.

Despite its generality, we show that all instantiations of our model have similar connectiv-
ity properties, assuming that vertex weights follow a power law with exponent 2 < β < 3. In
particular, there exists a unique giant component of linear size, and the diameter is polyloga-
rithmic. Surprisingly, for all instantiations of our model the average distance is the same as in
Chung–Lu random graphs, namely (2 ± o(1)) log log n

| log (β−2)| . In some sense, this shows universality
of ultra-small worlds.

We leave it as an open problem to determine whether the diameter of our model is O(log n)
for 2 < β < 3.

5. Concentration inequalities

The rest of the paper is dedicated to proofs. We will use the following concentration
inequalities.

Theorem 5. (Chernoff–Hoeffding bound [24, Theorem 1.1].) Let X := ∑
i∈[n] Xi, where, for

all i ∈ [n], the random variables Xi are independently distributed in [0, 1]. Then the following
hold:

(i) P[X > (1 + ε)E[X]] ≤ exp
(
− ε2

3 E[X]
)

for all 0 < ε < 1,

(ii) P[X < (1 − ε)E[X]] ≤ exp
(
− ε2

2 E[X]
)

for all 0 < ε < 1, and

(iii) P[X > t] ≤ 2−t for all t > 2eE[X].

We will need a concentration inequality which bounds large deviations taking into account
some bad event B. We start with the following variant of McDiarmid’s inequality as given in
[37].

Theorem 6. (Theorem 3.6 in [37], slightly simplified.) Let X1, . . . , Xm be independent ran-
dom variables over �1, . . . , �m. Let X = (X1, . . . , Xm), � = ∏m

k=1 �k, and let f : � →R be
measurable with 0 ≤ f (ω) ≤ M for all ω ∈ �. Let B ⊆ � be such that, for some c > 0 and
for all ω ∈B, ω′ ∈ � that differ in only one component, we have |f (ω) − f (ω′)| ≤ c. Then for
all t > 0,

P[|f (X) −E[f (X)]| ≥ t] ≤ 2e
− t2

8mc2 + 2 mM
c P[B]. (4)

Our improved version of this theorem is the following, where in the Lipschitz condition
both ω and ω′ come from the good set B, but we have to consider changes of two components
at once. A similar inequality has recently been proven by Combes [18]; see also [46].
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Theorem 7. Let X1, . . . , Xm be independent random variables over �1, . . . , �m. Let X =
(X1, . . . , Xm), � = ∏m

k=1 �k, and let f : � →R be measurable with 0 ≤ f (ω) ≤ M for all
ω ∈ �. Let B ⊆ � be such that, for some c > 0 and for all ω ∈B, ω′ ∈B that differ in at most
two components, we have

|f (ω) − f (ω′)| ≤ c. (5)

Then for all t ≥ 2MP[B]

P
[|f (X) −E[f (X)]| ≥ t

] ≤ 2e
− t2

32mc2 + (2 mM
c + 1)P[B].

Proof. We say that ω, ω′ ∈ � are neighbors if they differ in exactly one component �k.
Given a function f as in the statement, we define a function f ’ as follows. On B the functions
f and f ’ coincide. Let ω ∈B. If ω has a neighbor ω′ ∈B, then choose any such ω′ and set
f ′(ω) := f (ω′). Otherwise set f ′(ω) := f (ω). �

The constructed function f ’ satisfies the precondition of Theorem 6. Indeed, let ω ∈B and
ω′ ∈ � differ in only one position. If ω′ ∈B, then since f ′(ω) = f (ω) and f ′(ω′) = f (ω′), and by
the assumption on f , we obtain |f ′(ω) − f ′(ω′)| ≤ c. Otherwise we have ω′ ∈B, and since ω′
has at least one neighbor in B, namely ω, we have f ′(ω′) = f (ω′′) for some neighbor ω′′ ∈B of
ω′. Note that both ω and ω′′ are in B, and as they are both neighbors of ω′ they differ in at most
two components. Thus, by the assumption on f we have |f ′(ω) − f ′(ω′)| = |f (ω) − f (ω′′)| ≤ c.
Hence, we can use Theorem 6 on f ’ and obtain concentration of f ’(X). Specifically, since
P[f (X) 	= f ′(X)] ≤ P[B], and thus |E[f (X)] −E[f ′(X)]| ≤ MP[B], we obtain

P[|f (X) −E[f (X)]| ≥ t] ≤ P[B] + P[|f ′(X) −E[f ′(X)]| ≥ t − MP[B]]

≤ P[B] + P[|f ′(X) −E[f ′(X)]| ≥ t/2],

since t ≥ 2MP[B], which together with Theorem 6 proves the claim.

6. Basic properties

In this section, we prove some basic properties of our random graph model which occur
repeatedly in our proofs. In particular we calculate the expected degree of a vertex and the
marginal probability that an edge between two vertices with given weights is present. Let us
start by calculating the partial weight sums W≤w and W≥w. The values of these sums will
follow from the assumptions on power-law weights in Section 2.1.

Lemma 1. The total weight satisfies W = �(n). Moreover, for all sufficiently small η > 0,

(i) W≥w = O(nw2−β+η) for all w ≥ wmin,

(ii) W≥w = �(nw2−β−η) for all wmin ≤ w ≤ w,

(iii) W≤w = O(n) for all w, and

(iv) W≤w = �(n) for all w = ω(1).

Proof. Let w1 ≥ w0 ≥ 0 be two fixed weights. We start by summing up all vertex-weights
between w0 and w1. By Fubini’s theorem, we can rewrite this sum as
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∑
v∈V,w0≤wv≤w1

wv =
∫ ∞

0
|V≥max{w0,x} \ V>w1 |dx (6)

= w0 · |V≥w0 | +
∫ w1

w0

|V≥x|dx − w1 · |V>w1 |.

We start with (i) and apply (6) with w0 = w and w1 = wmax. Then the set V>w1 is empty, and we
have W≥w = w · |V≥w| + ∫ wmax

w |V≥x|dx; thus the assumption (PL2) implies that W≥w equals

|V≥w| · w +
∫ ∞

w
|V≥x|dx = O

(
nw2−β+η +

∫ ∞

w
nx1−β+ηdx

)
= O

(
nw2−β+η

)
.

For (ii) we similarly obtain

W≥w = �
(

nw2−β−η +
∫ wmax

w
nx1−β−ηdx

)
= �

(
nw2−β−η

)
.

For (iii), we see that if w < wmin, then clearly W≤w = 0. Otherwise, Equation (6) with w0 =
wmin and w1 = w implies

W≤w = |V≥wmin | · wmin +
∫ w

wmin

|V≥x|dx − |V>w| · w

≤ nwmin + O
( ∫ w

wmin

nx1−β+ηdx
)

= O(n).

For (iv) we obtain

W≤w ≥
∫ w

wmin

|V≥x|dx − |V>w| · w = �
( ∫ w

wmin

nx1−β−ηdx
)

− O
(

nw2−β+η
)

= �(n) − o(n) = �(n).

In particular, with the choice w = wmax, the property W = �(n) follows from (iii) and (iv). �
Next we consider the marginal edge probability P[u ∼ v] of two vertices u, v with weights

wu, wv. For a fixed position xu ∈X , we already know this probability by (EP1).

Lemma 2. Let u ∈ [n] and let xu ∈X be any fixed position. Then all edges {u, v}, u 	= v, are
independently present, and we have

Pxu,xv [u ∼ v] = �
(
Pxv [u ∼ v | xu]

) = �
(

min
{

1,
wuwv

W

})
.

Proof. Let u, v ∈ [n]. Then, from (EP1), it follows directly that

P[u ∼ v] =Exu

[
Pxv[u ∼ v | xu]

] =Exu

[
�

(
min

{
1,

wuwv

W

})]
= �

(
min

{
1,

wuwv

W

})
.

�
Furthermore, for every fixed xu ∈X the edges incident to u are independently present with

probability Pxv[u ∼ v | xu], as the event ‘u ∼ v’ only depends on xv and an independent random
choice for the edge uv (after fixing xv).

Remark 2. We will often use Lemma 2 in the following form. Let S, T ⊆ [n], S ∩ T = ∅, and
let E be any event of non-zero probability that is determined (i.e., measurable) by (xv)v∈S.
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Moreover, let v0 ∈ S. Then conditional on xv0 , the events ‘u ∼ v0’ for u ∈ T are independent
of each other, and have probability �( min{1, wuwv0/W}) respectively. Since these bounds are
independent of xv0 , they also hold conditional on E . In particular, using 1 − x ≤ e−x for all
x ∈R,

P[∃u ∈ T:u ∼ v0 | E] = 1 −
∏
u∈T

(
1 − �

(
min

{
1,

wuwv

W

}))
(7)

≥ 1 − exp

{
−�

( ∑
u∈T

min
{

1,
wuwv

W

})}
, (8)

where we can exchange the sum and �-notation in the last step because the hidden constants
are uniform over all u. We express this by saying that the lower bounds �( min{1, wuwv0/W})
hold independently, even after conditioning on E .

The following lemma shows that the expected degree of a vertex is of the same order as
the weight of the vertex; thus we can interpret a given weight sequence w as a sequence of
expected degrees.

Lemma 3. For any v ∈ [n] and any xv ∈X we have E[ deg (v) | xv] = �(E[ deg (v)]) = �(wv).

Proof. Let v be any vertex and xv ∈X . We show first that E[ deg (v) | xv] = �(wv) by esti-
mating the expected degree both from below and from above. By Lemma 2, the expected
degree of v is at most

∑
u 	=v

P[u ∼ v | xv] = �
( ∑

u 	=v

min
{

1,
wuwv

W

})
= O

( ∑
u∈V

wuwv

W

)

= O
(wv

W

∑
u∈V

wu

)
= O(wv).

For the lower bound, P[u ∼ v | xv] = �( wuwv
W ) holds for all wu ≤ W

wv
. We set w′ := W

wv
and

observe that w′ = ω(1) by (PL2). Using Lemma 1(iv), we obtain

E[ deg (v)] ≥
∑

u 	=v,u∈V≤w′
P[u ∼ v] = �

(wv

W
W≤w′

)
= �(wv).

The formula E[ deg (v)] = �(wv) follows from an analogous computation, or by observing that
minxv E[ deg (v) | xv] ≤E[ deg (v)] ≤ maxxv E[ deg (v) | xv].

As the expected degree of a vertex is roughly the same as its weight, it is no surprise that
w.h.p. the degrees of all vertices with sufficiently large weight are concentrated around the
expected value. The following lemma gives a precise statement.

Lemma 4. The following properties hold w.h.p.:

(i) deg (v) = O(wv + log2 n) for all v ∈ [n];

(ii) deg (v) = (1 + o(1))E[ deg (v)] = �(wv) for all v ∈ V≥ω( log2 n);

(iii)
∑

v∈V≥w
deg (v) = �(W≥w) for all w = ω( log2 n). �
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Proof. Let v ∈ V with fixed position xv ∈X and let μ := E[ deg (v) | xv] = �(wv), where
the last equation holds by Lemma 3. In particular, there exists a constant C such that
2eμ < C log2 n holds for all vertices v ∈ V≤log2 n and all positions xv ∈X . Moreover, by the
definition of the model, conditioned on the position xv, the degree of v is a sum of inde-
pendent Bernoulli random variables. Thus, if v ∈ V≤log2 n, we may apply a Chernoff bound

(Theorem 5(iii)) and obtain P[ deg (v) > C log2 n] ≤ 2−C log2 n = n−ω(1). If v ∈ V≥log2 n, we

similarly obtain P[ deg (v) > 3μ/2] ≤ e−�(μ) = n−ω(1) and μ = �(wv) by Lemma 3. Then
(i) follows from applying a union bound over all vertices.

For (ii), let v ∈ V such that wv = ω( log2 n), let μ be as defined above and put ε = log n√
μ

=
o(1). Thus by the Chernoff bound,

P
[| deg (v) − μ| > ε · μ] ≤ e−�(ε2·μ) = n−ω(1),

and we obtain (ii) by applying Lemma 3 and a union bound over all such vertices. Finally,
from (ii) we infer

∑
v∈V≥w

deg (v) = ∑
v∈V≥w

�(wv) = �(W≥w) for all w = ω( log2 n), which
shows (iii). �

We conclude this section by proving that if we sample the weights randomly from an appro-
priate distribution, then with probability 1 − o(1) the resulting weights satisfy our conditions
on power-law weights.

Lemma 5. Let wmin, C1, C2 > 0 be constants, let F : R→ [0, 1] be non-decreasing such that
F(z) = 0 for all z ≤ wmin, and assume C1z1−β ≤ 1 − F(z) ≤ C2z1−β for all z ≥ wmin. Suppose
that for every vertex v ∈ [n] we choose the weight wv independently according to the cumu-
lative probability distribution F. Then with w = (n/ log2 n)1/(β−1), the resulting weight vector
w satisfies (PL1) deterministically, the lower bound of (PL2) w.h.p., and the upper bound of
(PL2) with probability 1 − n−�(η) for all η = η(n) = ω( log log n/ log n).

In particular, this lemma proves that for all small constants η > 0, with probability
1 − n−�(1), (PL1) and (PL2) are fulfilled for weights sampled according to F(·). Moreover,
it follows that any property which holds with probability 1 − q for weights satisfying (PL1)
and (PL2) also holds in a model of sampled weights with probability at least 1 − q − n−�(1).

Proof of Lemma 5. The condition (PL1) is fulfilled by definition of F, and we only need to
prove (PL2). For all z > wmin, denote by Yz the number of vertices with weight at least z and
observe that

E[Yz] = n(1 − F(z)) = �(nz1−β ). (9)

Let us first consider the case z ∈ [wmin, w]. For all z in this range we have E[Yz] = �( log2 n),
so for any z ∈ [wmin, w] the Chernoff bound (Theorem 5(i)–(ii)) yields

P[|Yz −E[Yz]| ≥ 0.5E[Yz]] ≤ exp (−�(E[Yz])) = n−�(log n).

We will argue in the following that we may use a union bound over a finite number of z to
deduce that with probability 1 − n−�(log n), the bound |Yz −E[Yz]| < 0.5E[Yz] holds for all
z ∈ [wmin, w], even though there are infinitely many such z. Consider the sets

S1 := {
inf{z ∈ [wmin, w]:0.5E[Yz] ≥ i} | i ∈ {0, . . . , n}},

S2 := {
sup{z ∈ [wmin, w]:1.5E[Yz] ≤ i} | i ∈ {0, . . . , n}},

S := {wmin, w} ∪ S1 ∪ S2,
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where we discard any infimum or supremum taken over the empty set. By construction, the set
S has at most 2n + 4 = O(n) elements. Thus, by a union bound, with probability 1 − n−�(log n),
the bound |Yz −E[Yz]| < 0.5E[Yz] holds for all z ∈ S. Assume that this event occurs. We want
to show that then deterministically the same bound also holds for all other z ∈ [wmin, w]. To
this end, let z ∈ [wmin, w] \ S, and let z− := max{z′ ∈ S | z′ < z} and z+ := min{z′ ∈ S | z′ > z}
be its closest lower and upper neighbors in S. Then Yz+ > 0.5E[Yz+ ] since z+ ∈ S. Since Yz+
is an integer, we can strengthen this to Yz+ ≥ i := min{j ∈N | j > 0.5E[Yz+ ]}, and note that
0.5E[Yz+ ] < i. By the definition of S, we have 0.5E[Yz′ ] < i for all z′ ∈ (z−, z+), since otherwise
S would need to contain another point in (z−, z+) where 0.5E[Yz′ ] crosses the integer i. Since
Yz is non-increasing in z, we may conclude that Yz ≥ Yz+ ≥ i > 0.5E[Yz], which is half of the
claim. The other inequality Yz ≤ 1.5E[Yz] follows analogously from considering z−.

Summarizing, we have shown that with probability 1 − n−ω(1), Yz = �(nz1−β ) holds for all
z ∈ [wmin, w]. In this case, all z in our range satisfy both the lower and the upper bound of (PL2)
even for η = 0. In particular, this proves that with probability 1 − n−ω(1), the lower bound of
(PL2) holds for all η ≥ 0.

It only remains to prove the upper bound of (PL2) for z ≥ w. Let z ≥ w and η = η(n) =
ω( log log n/ log n). By Markov’s inequality and (9),

P[Yz ≥ nz1−β+η] ≤ P[Yz ≥ �(zη)E[Yz]] ≤ O(z−η) ≤ n−�(η). (10)

By the same argument as above, we can restrict z to w and values where the intended bound
�(zη)E[Yz] is integral, which happens only for O( log2 n) values of z above w. Hence we can
use the union bound to obtain error probability

O(n−�(η) log2 n) = n−�(η),

since η(n) = ω( log log n/ log n). In particular it also follows that with probability 1 − n−�(η),
the maximum weight satisfies wmax ≤ n1/(β−1−η). �

7. Giant component, diameter, and average distance

Under the assumption 2 < β < 3, we prove that w.h.p. the general model has a giant
component with diameter at most (log n)O(1), and that all other components are only of polylog-
arithmic size. We further show that the average distance between any two vertices in the giant
component is (2 + o(1)) log log n/| log (β − 2)| in expectation and with probability 1 − o(1).
The same formula has been shown to hold for various graph models, including Chung–Lu ran-
dom graphs [17] and hyperbolic random graphs [1]. The lower bound follows from using the
first-moment method on the number of paths of different types. Note that the probability that
a fixed path P = (v1, . . . , vk) exists in our model is the same as in Chung–Lu random graphs,
since the marginal probability of the event vi ∼ vi+1 conditioned on the positions of v1, . . . , vi

is �( min{1, wviwvi+1/W}), as in the Chung–Lu model. In particular, the expected number of
paths coincides for the two models (save the factors coming from the �(·)-notation). Not sur-
prisingly, the lower bound for the expected average distance follows from general statements on
power-law graphs, bounding the expected number of too-short paths by o(1) [21, Theorem 2];
see also Section 6.2 in [43]. The main contribution of this section is to prove a matching upper
bound for the average distance.

The proof strategy is as follows. We first prove that, w.h.p., for every vertex of weight at least
(log n)C there exists an ultra-short path to the ‘heavy core’, which has diameter o( log log n)
and contains the vertices of highest weight. Afterwards, we show that a random low-weight
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vertex has a large probability of connecting to a vertex of weight at least (log n)C within a
small number of steps. The statement is formalized below as the ‘bulk lemma’ (Lemma 9).
This lemma is the crucial step of the main proof, and it is new relative to previous studies
of Chung–Lu random graphs and similar models. It contains a delicate analysis of the k-hop
neighborhood of a random vertex, restricted to small weights. Thus, the underlying geometry
is used implicitly in order to make the argument applicable for the fairly general model that we
study.

Throughout this section, let G be a graph sampled from our model. For the result on the
heavy core and for the bulk lemma, we do not need the condition β < 3. This is only needed
for the greedy paths. We start by considering the subgraph induced by the heavy vertices V̄ :=
V≥w, where w is given by the definition of power-law weights; see the condition (PL2). In
particular, recall that nω(1/ log log n) ≤ w ≤ n(1−�(1))/(β−1). We call the induced subgraph Ḡ :=
G[V̄] the heavy core.

Lemma 6. (Heavy core) W.h.p. Ḡ is connected and has diameter o( log log n).

Proof. Let n̄ be the number of vertices in the heavy core, and let η > 0 be small enough.
Since w ≤ n(1−�(1))/(β−1), we may bound n̄ = �(nw1−β−η) = n�(1). By (EP2), if η is suffi-
ciently small, the connection probability for any heavy vertices u,v, regardless of their position,
is at least

puv(xu, xv) ≥
( n

wβ−1+η

)−1+ω(1/ log log n) ≥ n̄−1+ω(1/ log log n).

Therefore, the diameter of the heavy core is at most the diameter of an Erdös–Rényi random
graph G(n̄, p), with p = n̄−1+ω(1/ log log n). However, with probability 1 − n̄−ω(1) this diameter
is �( log n̄/ log (pn̄)) = o( log log n) [23], and in particular the graph is connected in this case.
Since n̄ = n�(1), this proves the lemma. �

Next we show that if we start at a vertex of weight w, going greedily to the neighbors of
largest weight yields a short path to the heavy core with a probability that approaches 1 as w
increases.

Lemma 7. (Greedy path) Let 2 < β < 3.

(i) Let 0 < ε < 1 be constant and let v be a vertex of weight 2 ≤ w < w. Then with probabil-
ity at least 1 − O

(
exp

(−w�(ε)
))

there exists a weight-increasing path of length at most

(1 + ε) log log n
| log (β−2)| from v to the heavy core.

(ii) For every constant ε > 0 there exists a constant C = C(ε) > 0 such that w.h.p. for all
v ∈ V≥(log n)C there exists a weight-increasing path of length at most (1 + ε) log log n

| log (β−2)|
from v to the heavy core.

Proof. Let 0 < ε < 1, let v be a vertex of weight 2 ≤ w ≤ w, and let

τ = τ (ε) := (β − 2)−1/(1+ε/2).

Note that 1 < τ < 1/(β − 2), and that 1/ log τ = (1 + ε/2)/| log (β − 2)|. Moreover, we define
an increasing weight sequence w0, w1, . . . , wimax := w such that for all 1 ≤ i ≤ imax it
holds that wi := wτ

i−1, and such that w0 ≤ wv < w1. For all i < imax we put Vi := V≥wi \
V≥wi+1 . Furthermore, we put Vimax := V̄ = V≥w and v0 := v. We will show that with suffi-
ciently high probability, for all 0 ≤ i < imax the vertex vi has at least one neighbor vi+1 ∈
Vi+1. By picking such a vi+1, we iteratively define a weight-increasing path. Note that
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imax = �logτ (log w/ log wv)�, so this implies that there is a path from v to the heavy core
of length at most

imax ≤ (1 + ε/2)
log log n

| log (β − 2)| + 1 ≤ (1 + ε)
log log n

| log (β − 2)| ,

for sufficiently large n, and thus proves the statement (i). �
Let 0 ≤ i < imax and assume that there exists a weight-increasing path from v0 to some

vertex vi ∈ Vi. Note that this event only depends on the random graph induced by the vertex set
V<wi+1 . We want to verify that vi connects to at least one vertex vi+1 ∈ Vi+1. First, observe that

by the condition (PL2), each layer Vi contains at least �(nw1−β−η
i ) and at most O(nw1−β+η

i )
vertices. Next, by the condition (EP1), for any position xvi the edges from vi to vertices v
with v ∈ Vi+1, are independently present with probability �( min{wvwi/W, 1}), respectively;
see also Lemma 2. Note that this bound is independent of xvi and thus holds for any realization
of V<wi+1 ; see also Remark 2. If wiwi+1 ≥ W, this probability is �(1). However, then wi ≥
n1/(1+τ ) and we deduce |Vi+1| = n�(1). In this case, the probability that vi connects to at least
one vertex of the next weight layer is 1 − exp (−n�(1)) = 1 − exp (−w�(ε)

i ), where the second
step is a trivial upper bound that holds since ε is constant and wi ≤ w ≤ nO(1). So assume
wiwi+1 < W, where we can lower-bound the edge probability by �(wiwi+1/W). Thus, for any
η > 0 the probability that vi does not connect to a vertex in Vi+1 is at most

pi :=
∏

v∈V, wv≥wi+1

(
1 − �

(wiwi+1

W

))
≤ exp (−�

(wiwi+1

W
· |Vi+1|

))

≤ exp
(
−�

(
wiw

2−β−η

i+1

))
,

where we used Lemma 1 in the last step. Since wi+1 ≤ wτ
i , we obtain

pi ≤ exp
(−�

(
w1−τ (β−2+η)

i

))
.

Note that as τ < 1/(β − 2), the exponent of wi in this expression is positive for sufficiently
small η > 0. More precisely, we have

1 − τ (β − 2) = 1 − (β − 2)ε/(2+ε) = �(ε),

and thus for η > 0 sufficiently small compared to ε,

pi ≤ exp
(−w�(ε)

i

)
. (11)

By induction and a union bound, for 0 ≤ j ≤ imax it follows that there is a weight-increasing
path from v0 to Vj of length j with probability at least 1 − ∑j−1

i=0 exp (−w�(ε)
i ) = 1 −

exp (−w�(ε)). With j = imax this proves the first claim. For the following step, let us denote the
hidden constant in the last expression by C’, so that the probability is at least 1 − exp (−wC′ε).

For the second statement, let C = C(ε) := 2/(C′ε)). If a vertex v has weight at least (log n)C,
then the error probability estimated above is at least 1 − e−(log n)2 = 1 − n−ω(1). The claim now
follows from a union bound over all vertices of weight at least (log n)C.

Lemma 7(i) implies that any vertex of sufficiently large constant weight has probabil-
ity �(1) of being connected to the heavy core by a weight-increasing path. In particular,
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this means that the connected component of the heavy core has size �(n) in expectation. In
the following lemma, we show that the same holds w.h.p., which is less obvious, and requires
our improved variant of McDiarmid’s inequality in Theorem 7.

Lemma 8. (Giant component.) Let 2 < β < 3. W.h.p. there are �(n) vertices in the same
component as the heavy core.

Proof. Let ε > 0 be a sufficiently small constant, let η > 0 be a constant that is sufficiently
small compared to ε, and let τ := (β − 2)−1/(1+ε/2). We use a system of weight layers as in the
proof of Lemma 7(i), starting with w0 := 2, so let wi := 2τ i

and Vi := V≥wi \ V≥wi+1 for all
i ≥ 0. We remark already here that we will only need to study indices i for which wi ≤ (log n)C,
where C = C(ε) is the constant from Lemma 7(ii), since we already know by Lemma 7(ii) that
otherwise all vertices in Vi are in the same component as the heavy core, w.h.p. Moreover, by
(PL2), if we choose i0 = O(1) sufficiently large, then for all i ≥ i0 with wi ≤ (log n)C we have
|V≥wi+1 | ≤ |V≥wi |/2, and hence |Vi| ≥ |V≥wi |/2. In particular, again by (PL2) we have |Vi| ≥
n/(log n)O(1) for all i ≥ i0 with wi ≤ (log n)C, and we have |Vi0 | = �(n) since we assumed i0 =
O(1). We will increase i0 further in the proof, but maintain i0 = O(1). �

As already mentioned, the tricky part of the lemma is that it should hold w.h.p. The general
strategy will be to define recursively for each i two sets Bi, B′

i of ‘bad’ vertices, such that the
following hold:

• Deterministically, every vertex in Vi \ (Bi ∪ B′
i) has a weight-increasing path to a vertex

of weight at least (log n)C.

• W.h.p., Bi and B′
i are small. (This is made precise in Claim 1 and Equation (12) below.)

In particular, if i0 = O(1) is sufficiently large then w.h.p. |Bi ∪ B′
i| ≤ |Vi|/2.

It then follows that w.h.p., at least half of the vertices in Vi0 are connected to the heavy core.
Since |Vi0 | = �(n), this proves the lemma.

So let i ≥ i0 be such that wi ≤ (log n)C. For every v ∈ Vi, let �i(v) := {u ∈ Vi+1 | v ∼ u}, and
let Ei(v) := E[|�i(v)|]. Moreover, let γ := τ (2 − β − η) + 1 > 0. Then for every v ∈ Vi, by
(EP1) and Lemma 2,

Ei(v) ≥ �
(

nw1−β−η

i+1 · wiwi+1

W

)
≥ �(w2−β−η

i+1 wi) ≥ �(wτ (2−β−η)+1
i ) ≥ �(wγ

i ).

As this lower bound is independent of v, we also have

Ei := min
v∈Vi

Ei(v) = �(wγ
i ).

Let λ := min{γ, 1
2Cτ

}. Furthermore put Bi := {v ∈ Vi | |�i(v)| ≤ Ei/2}. This is the first set of
‘bad’ vertices.

Claim 1. There is a constant c > 0 such that w.h.p., for all i ≥ i0 with wi ≤ (log n)C, it holds
that |Bi| ≤ 2 exp (−cwλ

i ) · |Vi|.
We postpone the proof of Claim 1 (and Claim 2 below) until we have finished the main

argument. We uncover the sets Vi one by one, starting with the largest weights. Let δ > 0
be so small that τ (λ − δ) > λ. We will show by downwards induction in i that w.h.p., for all
i ≥ i0 the fraction of vertices in Vi with a weight-increasing path to the heavy core is at least
1 − exp (−cwλ−δ

i ). Recall that if wi ≥ (log n)C then we already know that w.h.p. all vertices in
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Vi are connected to the heavy core with weight-increasing paths, which gives the base case of
the induction. For the remaining values i ≥ i0,

(a) denote by V ′
i the set of vertices in Vi for which there is no weight-increasing path to the

heavy core that uses exactly one vertex per layer;

(b) let �i ⊆ Vi be the subset Vi of size exp (−cwλ−δ
i−1 )|Vi| consisting of the vertices in Vi with

the smallest number of neighbors in Vi+1 \ V ′
i+1 (where we break ties according to some

previously fixed order).

Recall that E(Vi, �i) denotes the set of edges from Vi to �i. We then use the following
claim (whose proof we also postpone).

Claim 2. There exists D > 0 such that w.h.p., for all i ≥ i0 with wi ≤ (log n)C, it holds that

|E(Vi, �i+1)| ≤ exp (−cwλ−δ
i+1 ) · |Vi| · Ei · wD

i .

The induction now runs as follows. Consider some i ≥ i0 such that wi ≤ (log n)C, and
assume by induction that for sufficiently many vertices of Vi+1 there is a weight-increasing
path to the heavy core; that is, assume |V ′

i+1| ≤ exp (−cwλ−δ
i+1 ) · |Vi+1|. By the construction of

�i+1, this implies V ′
i+1 ⊆ �i+1. Now we consider B′

i := {v ∈ Vi | |E({v}, V ′
i+1)| ≥ Ei/2}. If the

low-probability event of Claim 2 does not occur, using wλ−δ
i+1 = wλ+�(1)

i and increasing i0 if
necessary, we find that

|B′
i| ≤

2|E(Vi, V ′
i+1)|

Ei
≤ 2 exp (−cwλ−δ

i+1 ) · |Vi| · wD
i ≤ 2 exp (−cwλ

i ) · |Vi|, (12)

provided that i0 = i0(c, D) (and thus wi0 ) is a sufficiently large constant. Note that we may
increase i0 because Claims 1 and 2 become weaker as i0 increases. It remains to observe that
every vertex in Vi \ (Bi ∪ B′

i) has at least one edge into Vi+1 \ V ′
i+1. Since the latter vertices are

all connected to the heavy core, we have at least |Vi| − |Bi| − |B′
i| vertices in Vi that are con-

nected to the heavy core. By Claim 1 and Equation (12), w.h.p. Bi and B′
i both have size at most

2 exp (−cwλ
i )|Vi|. So, together they have size at most 4 exp (−cwλ

i )|Vi| ≤ exp (−cwλ−δ
i )|Vi|,

where the last step holds for all i ≥ i0 if i0 (and thus wi ≥ wi0 ) is sufficiently large. This proves
the induction hypothesis and thus concludes the induction modulo Claims 1 and 2. To conclude
the proof, if i0 = O(1) is sufficiently large then exp (−cwλ−δ

i0
) ≤ 1/2. The existence of the giant

component now follows since |Vi0 \ (Bi0 ∪ B′
i0

)| ≥ (1 − exp (−cwλ−δ
i0

))|Vi0 | ≥ |Vi0 |/2. Hence,
w.h.p. at least half of Vi0 is connected to the heavy core, where |Vi0 | = �(n).

Proof of Claim 1. Let i ≥ i0 be such that wi ≤ (log n)C, and recall that |Vi| = n/(log n)O(1).
For a single v ∈ Vi with given location, the events ‘v ∼ u’ are independent for all u ∈ Vi+1 by
Lemma 2. So by the Chernoff bound (Theorem 5), there is a constant c > 0 such that P[v ∈
Bi] ≤ exp (−cwγ

i ) and E[|Bi|] ≤ exp (−cwγ
i )|Vi|. Let Gi be the subgraph induced by Vi and

Vi+1, and observe that the size of Bi only depends on Gi. In order to prove concentration of
|Bi| we will use Theorem 7. For this, we need to argue that we can write the distribution of Gi

as a product probability space, i.e., we need to describe it via independent random variables.
Recall that two different random processes are applied to create the geometric graph. First,
we choose the positions xv ∈X independently at random. Afterwards, every edge {u, v} is
inserted with some probability puv. So far, these random variables are not independent, so this
description does not yield a product probability space.
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Without loss of generality, let us assume that the vertices are sorted by weights in
decreasing order. For every vertex u ∈ Vi ∪ Vi+1 we first have the random variable xu for its
position. Now, for each u ∈ Vi ∪ Vi+1 we introduce a second, independent random variable
Yu := (Y1

u , . . . , Yu−1
u ) (which is the empty tuple for u = 1), where each Yv

u is a real number
chosen independently and uniformly at random from the interval [0, 1]. Then for v < u, we
include the edge {u, v} in the graph if and only if

puv > Yv
u .

We observe that indeed this implies P[u ∼ v | xu, xv] = puv(xu, xv), as desired. Moreover, con-
ditional on the vertex positions, the events u ∼ v and u′ ∼ v′ are independent as long as
{u, v} 	= {u′, v′}. This matches exactly the definition of Gi as (induced subgraph of) a GIRG.
Thus, if we denote by � the product space of all random variables over all components in
(xu, Yu)u∈Vi∪Vi+1 , then the distribution of Gi is described by �: every ω ∈ � defines a graph
Gi(ω), and the probability distribution of Gi(ω) equals the probability distribution of Gi as sub-
graph of a GIRG. Note that in the definition of the product space �, the random variable Yu

is counted as a single coordinate, and the outcomes of this coordinate are vectors in [0, 1]u−1.
Thus � has 2(|Vi| + |Vi+1|) coordinates. This convention is useful since then � is a product
space of at most O(n) coordinates, rather than O(n2).

Our aim is to apply Theorem 7 to the function f (ω) := |Bi(ω)|, which depends on ω since
the graph Gi depends on ω. In particular, 0 ≤ f (ω) ≤ n =: M. We study the bad event B that
there exists a vertex v ∈ Vi ∪ Vi+1 with degree larger than (log n)2Cτ 2

in Gi. By Lemma 4(i) we
have P[B] = n−ω(1), since wi ≤ (log n)C and therefore wv ≤ (log n)Cτ 2

for all v ∈ Vi ∪ Vi+1. Let
ω, ω′ ∈B be elements that differ in at most two coordinates in our product probability space
�. We observe that changing one coordinate xu or Yu (the latter means changing a vector in
[0, 1]u−1) can only influence the neighborhoods of u itself and of the vertices that are neighbors
of u before or after the coordinate change. In formula, changing one coordinate xu or Yu can
add or remove at most

1 + degGi(ω) (u) + degGi(ω′) (u) ≤ 1 + 2(log n)2Cτ 2

vertices from Bi, where the latter inequality follows from ω, ω′ ∈B. Therefore,∣∣|Bi(ω)| − |Bi(ω
′)|∣∣ ≤ (log n)O(1).

We pick t = exp (−cwλ
i ) · (|Vi| + |Vi+1|) and observe that wλ

i ≤ (log n)1/2 by our choice of λ =
min{γ, 1

2Cτ
}. In particular, t ≥ 2MP[B] is satisfied for sufficiently large n, which allows us to

apply Theorem 7 with f (ω) = |Bi(ω)|, c = (log n)O(1), m = 2(|Vi| + |Vi+1|), and M = n and get

P[|Bi| −E[|Bi|] ≥ t] ≤ 2 exp
(
− t2

64(|Vi| + |Vi+1|)(log n)O(1)

)
+ nO(1)

P[B]

≤ 2 exp
(
−e−2cwλ

i (|Vi| + |Vi+1|
64(log n)O(1)

)
+ nO(1)

P[B] = n−ω(1),

where the first summand is 2 exp (−n1−o(1)) ≤ n−ω(1) because |Vi| + |Vi+1| ≥ n/(log n)O(1) and
e−2cwλ

i ≥ n−o(1).
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Hence, w.h.p. we have |Bi| ≤E[|Bi|] + t ≤ ( exp (−cwγ
i ) + exp (−cwλ

i )) · |Vi|. For fixed i ≥
i0, the statement now follows since λ < γ and wi > 1, and then the proof of the claim is finished
by a union bound over all O( log log n) choices of i. �

Proof of Claim 2. Let i ≥ i0 be such that wi ≤ (log n)C. We assume that the subgraph
induced by V≥wi+2 is given, and now we uncover Vi and Vi+1 to obtain the subgraph induced
by V≥wi . Similarly as in the proof of Claim 1, we can assume that this probability space � is
a product probability space with 2(|Vi| + |Vi+1|) coordinates. Recall that Gi denotes the sub-
graph induced by Vi ∪ Vi+1. We consider the same bad event B as in the proof of Claim 1, i.e.,
B denotes the event that the maximum degree in Gi is larger than (log n)2Cτ 2

. Note that B is
independent of V≥wi+2 , so indeed Lemma 4 can again be applied to deduce P[B] = n−ω(1).

Let Zi := |E(Vi, �i+1)|. We will apply Theorem 7 to the random variable f (ω) = Zi(ω), so
let ω, ω′ ∈B be such that they differ in at most two coordinates of �. If we change a coordi-
nate of � that stems from a vertex v ∈ Vi, under B the influence on Zi is at most (log n)O(1). If
a coordinate belonging to a vertex v ∈ Vi+1 is changed, this may result in a different set �i+1,
because either v might enter the set �i+1 and replace another vertex v’ in �i+1 (namely the
vertex with the largest number of neighbors in Vi+2 \ V ′

i+2; see (b) on page 19 for the defi-
nition of �i); or v might be removed from �i+1 and be replaced by some other vertex v’. In
either case, the symmetric difference between the old �i+1 and the new �i+1 is at most two,
and E(Vi, �i+1) can only change in edges incident to v or v’. Hence, under B changing the
coordinate of a vertex v ∈ Vi+1 can change Zi by at most c = (log n)O(1). Note that the same
is also true if the set �i+1 does not change. Since ω, ω′ differ in at most two coordinates, we
conclude that |Zi(ω) − Zi(ω′)| ≤ (log n)O(1).

Next, we want to upper-bound E[Zi]. First, we uncover Vi+1 to obtain the subgraph induced
by V≥wi+1 . Then the set �i+1 is determined. In a second step, we uncover Vi. By (EP1) and
linearity of expectation, we deduce that

E[Zi] ≤ |�i+1| · |Vi| · O
(w1+η

i+1 w1+η
i

W

)

= O
(

exp (−cwλ−δ
i+1 )nw1−β+η

i+1 · |Vi| ·
w1+η

i+1 w1+η
i

W

)
≤ exp (−cwλ−δ

i+1 ) · |Vi| · O
(
w2−β+2η

i+1 w1+η
i

)
≤ exp (−cwλ−δ

i+1 ) · |Vi| · O
(
wτ (2−β)+1+η(2τ+1)

i

)
≤ exp (−cwλ−δ

i+1 ) · |Vi| · Ei · O
(
wη(3τ+1)

i

)
.

Since we assumed wi ≥ 2, we may upper-bound the O(·)-term by 0.5wD
i for a sufficiently large

D > 0.
Now we can apply Theorem 7 with t = 0.5 exp (−cwλ−δ

i+1 ) · |Vi| · Ei · wD
i . It follows simi-

larly as in the proof of Claim 1 that P
[|Zi −E[Zi]| ≥ t

] = n−ω(1), and we conclude that with
probability 1 − n−ω(1) it holds that

|Zi| ≤E[|Zi|] + t ≤ exp (−cwλ−δ
i+1 ) · |Vi| · Ei · wD

i .

Now the claim follows by a union bound over all O( log log n) choices of i. �
By Lemma 7(ii), w.h.p. every vertex of weight at least (log n)C has small distance from the

heavy core. It remains to show that every vertex in the giant component has a large probability

https://doi.org/10.1017/apr.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.43


Average distances in a general class of scale-free networks 23

of connecting to such a high-weight vertex in a small number of steps. The next lemma shows
that the more vertices of small weight a vertex v is connected to, the more likely it is that v has
small distance to a vertex of large weight.

Lemma 9. (Bulk lemma). Let ε > 0. Let wmin ≤ w ≤ w be a weight such that there are �(n)
nodes with weight less than w, and let k ≥ max{2, wβ−1+ε} be an integer. For a vertex v ∈ V<w,
let Cv ⊆ V<w be the connected component of v in the graph G<w. Then for a random vertex
v ∈ V<w,

PG,v
[
dist(v, V≥w) ≤ k or |Cv| < k

] ≥ 1 − O
(
e−w�(1))

.

Proof. For any node v ∈ V<w, we define Nv ⊆ V<w to be the set of all vertices within dis-
tance less than k from v in the graph G<w. Observe that |Cv| < k holds if and only if |Nv| < k:
indeed, if |Cv| < k, then Cv contains no path of length k and thus all nodes in Cv have distance
less than k to v, i.e., Cv = Nv and thus |Nv| = |Cv| < k. If |Cv| ≥ k, then either Cv = Nv and thus
|Nv| = |Cv| ≥ k, or Cv contains some node u at distance at least k from v, but then the first k
nodes on a path from v to u are all contained in Nv and thus |Nv| ≥ k. �

It follows that proving the bulk lemma is equivalent to proving the following inequality:

PG,v
[
dist(v, V≥w) > k and |Nv| ≥ k

] ≤ O
(
e−w�(1))

. (13)

Before proving (13), let us sketch some of the ideas of the proof. We first uncover the graph
G<w induced by vertices of weight less than w. For a fixed realization of G<w, we consider the
probability Pv that a random node in V[w,w̃] has a neighbor in Nv, for an appropriately chosen
w̃ > w. We consider two cases: that Pv is large or that it is small.

If Pv is large, then it is very likely that there is at least one edge between Nv and V[w,w̃],
and thus it is very likely that dist(v, V≥w) ≤ k, which proves (13). In a geometric setting, e.g.
in hyperbolic random graphs or GIRGs (see Section 3), intuitively this case occurs if the nodes
in Nv are spread out in the geometric space. Note that this argument holds for every fixed
realization of G<w for which Pv is large.

The case of small Pv intuitively occurs if the nodes in Nv form a bulk, i.e., they are con-
centrated in a small geometric region. For this case, it suffices to bound the number of bad
nodes, i.e., the size of the set B = {v ∈ V<w | |Nk| ≥ k and Pv is small}. Note that B is a ran-
dom variable that is determined by G<w. In the most technical part of our proof, we show that
if |B| is large, then a node in V[w,w̃] has a significantly increased probability of having large
degree. Since node-degrees in our model are Chernoff-concentrated, this shows that |B| is very
unlikely to be large. So in contrast to the case of large Pv, we argue (indirectly) about the dis-
tribution of G<w, i.e., we show that G<w is unlikely to have the property that |B| is large. See
Claims 4, 5, and 6 for the technical details of this argument. We deduce that a random node v
is very unlikely to be bad, which proves the desired inequality (13).

For the formal proof, we let 0 < η ≤ ε/4 be sufficiently small. Then by the power-law
assumption (PL2) we may choose w̃ = O(w1+η) such that there are at least �(n/wβ−1+η) ver-
tices with weights between w and w̃. We denote by v∗ a node chosen uniformly at random from
V[w,w̃].

We first uncover the graph G<w induced by vertices of weight less than w, i.e., we uncover
the positions of these vertices and the edges in the induced subgraph. Note that uncovering
G<w in particular yields the sets Nv, v ∈ V<w. Once G<w is fixed, consider the probability Pv

that a random node v∗ ∈ V[w,w̃] is a neighbor of at least one node in Nv:

Pv := P[�(v∗) ∩ Nv 	= ∅ | G<w].
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Note that Pv depends on the choice of the node v, and it is a random variable depending on the
random choices in G<w, i.e., Pv is a number after uncovering the graph G<w. The probability
in the definition of Pv runs over the random choice of v∗ ∈ V[w,w̃], the positions of the nodes in
V≥w, and the edges in G excluding the induced subgraph G<w.

Now we choose a parameter τ := wβ−1+2η/n and split into two cases:

PG,v
[
dist(v,V≥w) > k and |Nv| ≥ k

]
= PG,v

[
dist(v, V≥w) > k and |Nv| ≥ k and Pv ≥ τ

]
(14)

+ PG,v
[
dist(v, V≥w) > k and |Nv| ≥ k and Pv < τ

]
Case 1: Large Pv. To bound the first summand, recall that the size of V[w,w̃] is at least

�(n/wβ−1+η). Since the probability that a random node in V[w,w̃] has a neighbor in Nv is equal
to Pv ≥ τ , we obtain

EG,v
[|{u ∈ V[w,w̃] | �(u) ∩ Nv 	= ∅}| | Pv ≥ τ

] ≥ �
( n

wβ−1+η
· τ

)
≥ �(wη),

where we used τ = wβ−1+2η/n. Since every u ∈ V[w,w̃] draws its position and its edges to V<w

independently from the other nodes in V[w,w̃], the Chernoff bound yields

PG,v
[∃u ∈ V[w,w̃] : �(u) ∩ Nv 	= ∅ | Pv ≥ τ

] ≥ 1 − O
(
e−�(wη)) ≥ 1 − O

(
e−w�(1))

. (15)

Since every node in Nv has distance less than k to v, if there exists a node u ∈ V[w,w̃] with
�(u) ∩ Nv 	= ∅ then the distance from v to V≥w ⊇ V[w,w̃] is at most k. Thus, (15) implies

PG,v
[
dist(v, V≥w) > k | Pv ≥ τ

] ≤ O
(
e−w�(1))

.

This allows us to bound the first summand of Equation (14) by

PG,v
[
dist(v, V≥w) > k and |Nv| ≥ k and Pv ≥ τ

]
≤ PG,v

[
dist(v, V≥w) > k and Pv ≥ τ

] ≤ PG,v
[
dist(v, V≥w) > k | Pv ≥ τ

] ≤ O
(
e−w�(1))

.

Case 2: Small Pv. For the second summand of Equation (14), we have the bound

PG,v
[
dist(v, V≥w) > k and |Nv| ≥ k and Pv < τ

]
≤ PG,v

[|Nv| ≥ k and Pv < τ
] = PG<w,v

[|Nv| ≥ k and Pv < τ
]
,

since Nv and Pv depend only on the random choices in G<w. Now we define the set of bad
nodes B as

B := {v ∈ V<w | |Nv| ≥ k and Pv < τ }.
Note that B is a random variable that depends only on the random choices in G<w. Since v is a
random node in V<w, and |V<w| = �(n) by assumption on w, we obtain

PG<w,v
[|Nv| ≥ k and Pv < τ

] =EG<w

[|B|/|V<w|] = O
( 1

n

) ·EG<w

[|B|].
It now remains to prove that EG<w [|B|] ≤ O(n · e−�(w)), which we will do in Claim 6 below.
Taken together, these considerations yield a bound of O(e−�(w)) on the second summand of
Equation (14).
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We have thus shown, modulo Claim 6, that both summands of (14) are O(e−w�(1)
). This

yields (13), which as discussed above is equivalent to the lemma statement.
To finish the proof of the bulk lemma it remains to prove EG<w [|B|] ≤ O(n · e−�(w)); see

Claim 6 below. We prove this through a series of claims.

Claim 3. Fix G<w (and thus the sets B and Nv for v ∈ V<w). There exist a set B̃ ⊆ B and sets
Ñv ⊆ Nv for all v ∈ B̃ such that the following hold:

(i) the sets Ñv for v ∈ B̃ are disjoint,

(ii)
∑

v∈B̃ |Ñv| ≥ |B|, and

(iii) |Ñv| ≥ k/2 for all v ∈ B̃.

Proof. We greedily construct B̃ as follows. Initially let L := B. While L is non-empty, pick
any v ∈ L, add v to B̃, and remove all nodes u ∈ Nv from L. �

After constructing B̃, assign each node u ∈ ⋃
v∈B̃ Nv to its closest node v ∈ B̃, i.e., to the node

v ∈ B̃ minimizing the distance from u to v in G<w (breaking ties arbitrarily). For any v ∈ B̃ let
Ñv be the set of all nodes u that were assigned to v.

This finishes the construction. We clearly have B̃ ⊆ B. Since each node u ∈ ⋃
v∈B̃ Nv is con-

tained in some set Nv and thus is at distance less than k from some v ∈ B̃, and since we assign
u to its closest node in B̃, each node u is assigned to a node within distance k. It follows that
Ñv ⊆ Nv. It remains to show the properties (i)–(iii).

The property (i) holds since we assign each node u ∈ ⋃
v∈B̃ Nv to a unique node v ∈ B̃.

For (ii), observe that B ⊆ ⋃
v∈B̃ Nv, since each b ∈ B is initially in L, and b is removed from

L only if we add b to B̃ or we add another node v to B̃ such that b ∈ Nv; in both cases b ends up
in

⋃
v∈B̃ Nv. Our assignment satisfies

⋃
v∈B̃ Nv = ⋃

v∈B̃ Ñv, and thus B ⊆ ⋃
v∈B̃ Ñv. Since the

latter is a disjoint union by (i), we obtain |B| ≤ ∑
v∈B̃ |Ñv|.

For (iii), fix a node v ∈ B̃ and recall that Nv = Nv(k, w) is the set of all nodes with distance
less than k to v in G<w. We similarly define N′

v as the set of all nodes with distance less than
k/2 to v in G<w. Note that by construction any two nodes in B̃ have distance at least k. Since
any node u ∈ N′

v is at distance less than k/2 from v, by the triangle inequality u has distance at
least k/2 from any other node in B̃, and thus u is assigned to v. This shows that N′

v ⊆ Ñv.
Now if N′

v = Nv, then we have |Ñv| ≥ |N′
v| = |Nv| ≥ k ≥ k/2, where we used the fact that

v ∈ B and the definition of B = {v ∈ V<w | |Nv| ≥ k and Pv < τ }. Otherwise there exists a node
u ∈ Nv \ N′

v. Consider any path from v to u in G<w. Since u 	∈ N′
v this path has length at least

k/2, and the first k/2 of the nodes on the path are contained in N′
v, so we obtain |Ñv| ≥ |N′

v| ≥
k/2. In both cases we arrive at |Ñv| ≥ k/2.

In what follows, for any outcome of G<w we fix sets B̃ and Ñv for all v ∈ B̃, as guaranteed by
the above claim. Let c > 0 be such that for every vertex v of weight at least w, every vertex u ∈
V , and every fixed position xu ∈X we have P[v ∼ u | xu] ≥ cw/n, i.e., c is the hidden constant
of the condition (EP1). Recall that v∗ is a random node in V[w,w̃]. We set

λ := c

2
w2−β−2η

and define the random variable

S :=
∑
v∈B̃

λ|Ñv| · 1
{|�(v∗) ∩ Ñv| ≥ λ|Ñv|

}
,
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where the indicator random variable 1{E} is 1 if the event E is true and 0 otherwise. In the
following we prove upper and lower bounds on E[S] and then we combine them to bound
E[|B|].
Claim 4. We have EG[S] ≤ O(e−�(w)).

Proof. We will first argue that

EG[S] =
∑
i≥1

iλ · PG[S = iλ] =
∑

i≥k/2

iλ · PG[S = iλ] ≤
∑

i≥k/2

iλ · PG[ deg (v∗) ≥ iλ].

Indeed, the first equation is true because S is an integer multiple of λ. For the second equation,
recall that by Claim 3(iii) we have |Ñv| ≥ k/2 for all v ∈ B̃. It follows that S > 0 implies S ≥
λk/2, so smaller summands are 0. For the last inequality, recall that by Claim 3(i) the sets Ñv

are disjoint. Thus, S is a lower bound on the degree of v∗. �
Now consider any node u ∈ V[w,w̃] and the random variable deg (u). Since u has weight at

most w̃, its expected degree is O(w̃). Moreover, even after conditioning on the position xu, the
expected degree of u is O(w̃), and it is the sum of independent random variables; see Lemmas 2
and 3. Therefore, by the Chernoff–Hoeffding bound (Theorem 5), there is a constant C > 0
(independent of wu and xu) such that PG[ deg (u) ≥ iλ] ≤ e−�(iλ) for all i ≥ Cw̃/λ. Since this
holds for all u ∈ V[w,w̃], for the random node v∗ ∈ V[w,w̃] we also have PG[ deg (v∗) ≥ iλ] ≤
e−�(iλ) for all i ≥ Cw̃/λ.

Recall that we assume k ≥ wβ−1+ε ≥ wβ−1+4η. Therefore, we have λk/2 = �(w2−β−2η ·
wβ−1+4η) = �(w1+2η) = �(w̃ · wη), since w̃ = O(w1+η). We first consider the case that w is at
least a sufficiently large constant c′ > 0. Then the wη factor is large enough to dominate any
constant factor, so we can conclude λk/2 ≥ Cw̃. This yields

EG[S] ≤
∑

i≥Cw̃/λ

iλ · PG[ deg (v∗) ≥ iλ] ≤
∑

i≥Cw̃/λ

iλ · e−�(iλ).

To estimate this further, for j ∈N consider the summands with j/λ ≤ i < (j + 1)/λ. There are
O(1 + 1/λ) such summands, each of them having value iλe−�(iλ) = O(je−�(j)). Hence, we may
continue as follows:

EG[S] ≤
∑

j≥Cw̃

O((1 + 1
λ

) · je−�(j)) ≤ O((1 + 1
λ

) · e−�(Cw̃)) ≤ O(e−�(w)),

where the last inequality uses w ≤ w̃ and 1/λ ≤ O(wO(1)).
It remains to consider the case that w < c′, meaning w is bounded by a constant. In this case

it suffices to show that EG[S] = O(1). This follows from the fact that EG[S] ≤EG[ deg (v∗)] ≤
O(w̃) ≤ O(w1+η) ≤ O(1), since w is bounded by a constant.

Claim 5. We have EG[S] ≥ �
( 1

nwO(1)

) ·EG<w [|B|].
Proof. Let X be a random variable taking values in [0, M], and let x ∈ [0, M]. Then

E[X] ≤ P[X ≥ x] · M + P[0 < X < x] · x ≤ P[X ≥ x] · M + P[X > 0] · x.

Rearranging this yields
P[X ≥ x] ≥ 1

M

(
E[X] − x · P[X > 0]

)
.
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We first uncover G<w, and then for any v ∈ B̃ we apply the above inequality on the random
variable X = |�(v∗) ∩ Ñv| given G<w, which takes values in [0, M] = [0, |Ñv|]. Setting x :=
λ|Ñv|, we obtain

P
[|�(v∗) ∩ Ñv| ≥ λ|Ñv| | G<w

]
≥ 1

|Ñv|
(
E

[|�(v∗) ∩ Ñv| | G<w
] − λ|Ñv| · P

[
�(v∗) ∩ Ñv 	= ∅ | G<w

])
.

Recall that we defined λ = c
2 w2−β−2η, where the constant c > 0 is such that for any node v

of weight at least w, any node u, and every fixed position xu we have P[v ∼ u | xu] ≥ cw/n.
It follows that even after fixing G<w, any node v∗ ∈ V[w,w̃] has probability at least cw/n of
connecting to any node in V<w. This gives us the bound

E
[|�(v∗) ∩ Ñv| | G<w

] ≥ |Ñv| · cw

n
.

Using the definition of Pv and the property Pv < τ of any v ∈ B̃ ⊆ B, we have

P
[
�(v∗) ∩ Ñv 	= ∅ | G<w

] ≤ P
[
�(v∗) ∩ Nv 	= ∅ | G<w

] = Pv < τ .

Combining the three inequalities above yields

P
[|�(v∗) ∩ Ñv| ≥ λ|Ñv| | G<w

] ≥ cw

n
− λτ .

Since we defined λ = c
2 w2−β−2η and τ = wβ−1+2η/n, we have λτ = cw

2n , and thus

P
[|�(v∗) ∩ Ñv| ≥ λ|Ñv| | G<w

] ≥ cw

2n
≥ �

(1

n

)
.

Now we have the bound

E[S | G<w] =
∑
v∈B̃

λ|Ñv| · P
[|�(v∗) ∩ Ñv| ≥ λ|Ñv| | G<w

] ≥ �
(λ

n

)
·
∑
v∈B̃

|Ñv|.

By Claim 3(ii), the last sum is at least |B|. Since we have λ ≥ �(1/wO(1)), we obtain

E[S | G<w] ≥ �
( 1

nwO(1)

)
· |B|.

So far we assumed that G<w is fixed. Taking the expectation over G<w finally yields

EG[S] =EG<w

[
E[S | G<w]

] ≥ �
( 1

nwO(1)

)
·EG<w [|B|].

�
We are now ready to prove the remaining claim needed in the proof of the bulk lemma.

Claim 6. We have EG<w [|B|] ≤ O(n · e−�(w)).

Proof. Combining Claims 4 and 5 and rearranging yields

EG<w [|B|] ≤ O
(
nwO(1)e−�(w)) ≤ O

(
ne−�(w)),

as required. �
The upper bounds on the diameter and the average distance now follow easily from the lem-

mas we have proved so far. We collect the results in the following theorem, which reformulates
and specifies Theorem 2 and Theorem 3.
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Theorem 8. (Components and distances). Let 2 < β < 3.

(i) W.h.p., there is a giant component, i.e., a connected component which contains �(n)
vertices.

(ii) W.h.p., all other components have at most polylogarithmic size.

(iii) W.h.p., the giant component has polylogarithmic diameter.

(iv) In expectation and with probability 1 − o(1), the average distance (i.e., the expected
distance between two uniformly random vertices in the largest component) is

2+o(1)
| log β−2| log log n.

(v) With probability 1 − o(1), a (1 − o(1))-fraction of all pairs of vertices in the giant
component have distance at most 2+o(1)

| log (β−2)| log log n.

Proof. (i). This was proved in Lemma 8 and is simply stated here for completeness.
(ii), (iii). We fix a sufficiently small constant ε > 0 and conclude from the same lemma that

w.h.p. the giant component contains all vertices of weight at least w := (log n)C, for a suitable
constant C > 0, and that w.h.p. all such vertices have distance at most 1+ε

| log (β−2)| log log n from

the heavy core V̄ . We apply Lemma 9 with k = wβ−1+ε. Then a random vertex in V<w has
probability at least 1 − e−w�(1)

of either being at distance at most k of V≥w, or being in a
component of size less than k. Note that for sufficiently large C this probability is at least
1 − n−ω(1). By the union bound, w.h.p. one of the two possibilities happens for all vertices
in V<w. This already shows that w.h.p. all non-giant components are of size less than k =
(log n)O(1). For the diameter of the giant component, recall that w.h.p. the heavy core has
diameter o( log log n) by Lemma 6. Therefore, w.h.p. the diameter of the giant component is
O(k + log log n) = (log n)O(1).

(iv). For the average distance, let ε > 0, and let v ∈ V be a vertex chosen uniformly at ran-
dom. Fix k ≥ 3, k = no(1), and let w := w(k) = k1/β so that Lemma 9 is applicable as k = wβ .
We sort the vertices by weight and uncover the graph vertex by vertex in increasing order,
until either (1) we see for the first time a vertex v′ ∈ V≥w such that in the subgraph induced by
V≤wv′ there exists a path of length at most k from v to v’, or (2) we have uncovered the full
graph and (1) never happened. If wv ≥ w, then (1) trivially occurs. Otherwise, by Lemma 9,
with probability 1 − O( exp (−w�(1))) either the event (1) happens or the connected compo-
nent of v in G has size less than k. In the latter case, v is not connected to the core and there is
nothing to show. Otherwise, we have uncovered only the vertices of weight at most wv′ , which
allows us to apply Lemma 7(i) since its statement only depends on vertices of higher weight.
By Lemma 7(i), with probability 1 − O( exp (−w�(ε))) there is a weight-increasing path from
v’ to the heavy core of length at most λε := (1 + ε) log log n

| log (β−2)| . Summarizing, we have shown

that for a random vertex v and every k ≥ 3 with k = no(1),

P
[∞ > dist(v, Vcore) ≥ k + λε

] ≤ e−�(w(k)�(ε)) = O
(
e−k�(ε))

. (16)

Let us first consider the expectation of the average distance; i.e., if u,u’ denote random
vertices in the largest component of a random graph G, then we consider EG[Eu,u′ [dist(u, u′)]].
Since dist(u, u′) ≤ n we can condition on any event happening with probability 1 − n−ω(1); in
particular we can condition on the event E that G has a giant component containing Vcore, all
other components have size (log n)O(1), G has diameter (log n)O(1), and finally the core has
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diameter dcore = o( log log n). Moreover, by the bound

dist(u, u′) ≤ dist(u, Vcore) + dist(u′, Vcore) + dcore,

it suffices to bound 2 ·EG[Eu[dist(u, Vcore)] | E] + dcore. Now we use the fact E[X] =∑
k>0 P[X ≥ k] for a random variable X taking values in N≥0 to obtain the bound

Eu[dist(u, Vcore)] ≤ λε +
(log n)O(1)∑

k=1

Pu
[
dist(u, Vcore) ≥ k + λε

]
.

Note that conditioned on E , since u is chosen uniformly at random from the giant component,
dist(u, Vcore) < ∞. Taking the expectation over G, conditioned on E , we may use (16) to bound
the probability that dist(v, Vcore) is too large for a vertex chosen uniformly at random from
V . Since the giant component has size �(n), this probability increases at most by a constant
factor if we instead choose v uniformly at random from the giant component. Hence, for every
constant ε > 0 we obtain

EG[Eu[dist(u, Vcore)] | E] ≤ λε +
(log n)O(1)∑

k=1

O(e−k�(ε)
) + n−ω(1). (17)

We now use the inequality

∞∑
k=1

e−kκ ≤
∫ ∞

x=0
e−xκ

dx = �(1 + 1/κ),

where � is Euler’s gamma function. Since �(x) is monotonically increasing on the real axis
for x ≥ 2 and �(1 + n) = n!, we have �(1 + 1/κ) ≤ �1/κ�! ≤ (1/κ)O(1/κ) for κ ≤ 1. Plugging
this into Equation (17) yields

EG
[
Eu[dist(u, Vcore)] | E] ≤ λε + O(1/ε)O(1/ε) + n−ω(1).

Note that for sufficiently slowly falling ε = ε(n) = o(1) we have

O(1/ε)O(1/ε) = o( log log n).

This yields the desired bound on the expected average distance of

2λo(1) + o( log log n) = 2 + o(1)

log |β − 2| log log n.

For the concentration, we want to show PG[Eu,u′ [dist(u, u′)] ≥ 2λε] = o(1), where
we choose the same ε(n) = o(1) as before. Similarly as before, we may upper-bound
PG[Eu,u′ [dist(u, u′)] ≥ 2λε] by

n−ω(1) + PG
[
2 ·Eu[dist(u, Vcore)] + dcore ≥ 2λε | E]

.

Let γ > 0 be a sufficiently small constant, and let

ρ = ρ(n) = ε

3| log (β − 2)| · log log n = o( log log n).
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We claim that for sufficiently large n, 2 ·Eu[dist(u, Vcore)] + dcore ≥ 2λε can only happen if for
some k > ρ we have

Pu[dist(u, Vcore) ≥ k + λε/3] ≥ e−2kγ ·ε
. (18)

Indeed, otherwise we have (conditioned on E), similarly as before,

Eu[dist(u, Vcore)] ≤ λε/3 + ρ +
(log n)O(1)∑

k=ρ

Pu
[
dist(u, Vcore) ≥ k + λε/3

]
≤ λ2ε/3 + O(1/ε)O(1/ε),

and thus, indeed Eu,u′ [dist(u, u′)] is at most

2 ·Eu[dist(u, Vcore)] + dcore ≤ 2λ2ε/3 + o( log log n) < 2λε = 2λo(1),

if ε = ε(n) = o(1) decreases sufficiently slowly. However, using the union bound over all ρ ≤
k ≤ (log n)O(1), we see that the probability that G is such that (18) holds for some k > ρ is
bounded from above by

(log n)O(1)∑
k=ρ

PG
[
Pu[dist(u, Vcore) ≥ k + λε/3] ≥ e−kγ ·ε ∣∣E]

.

By (16) it follows that

EG[Pu[∞ > dist(u, Vcore) ≥ k + λε/3]] ≤ O( exp (−2kγ ·ε)),

for γ > 0 sufficiently small. We apply Markov’s inequality and deduce that

PG
[
Pu[∞ > dist(u, Vcore) ≥ k + λε/3] > e−kγ ·ε ] ≤ O(e−k�(ε)

).

Because the giant component has linear size, this probability increases at most by a constant
factor if we instead draw v from the giant component (conditioned on E). Thus, the desired
probability is bounded by

(log n)O(1)∑
k=ρ

O(e−k�(ε)
), (19)

which is o(1), since ρ = ε · log log n grows sufficiently quickly compared to a sufficiently
slowly falling ε = o(1). This shows the concentration of the average distance and proves the
statement (iv).

(v). Regarding the last statement (v), (19) shows that with probability 1 − o(1) G is such that
(18) does not hold for any k > ρ. However, in this case the fraction of pairs {u, u′} of vertices
in the giant component that have distance at least 2k + 2λε/3 is at most e−4kγ ·ε

. Taking k = 2ρ

and assuming that ρ = ε log log n grows sufficiently quickly compared to ε = o(1), we see that
a (1 − o(1))-fraction of pairs {u, u′} have distance at most 2λo(1), given that ρ = ε · log log n
grows sufficiently fast compared to ε = o(1). This finishes the proof of Theorem 8.
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8. Degree sequence

By definition of the model, we are assuming that the weight sequence w follows a power
law. Since the expected degree of a vertex with weight wv is �(wv) by Lemma 3, it is not
surprising that the degree sequence of the random graph will also follow a power law. In this
section, we give details and prove Theorem 1, using Theorem 7 to show concentration. Some
of the ideas in our proof are based on [28]. We start with the maximum degree �(G), which is
a simple corollary of Lemma 4.

Corollary 1. W.h.p., �(G) = �(wmax), where wmax = max{wv | v ∈ V}. In particular, for all
η > 0, w.h.p., �(G) = �(w) and �(G) = O(n1/(β−1−η)).

Proof. We deduce from the model definition that ω( log2 n) ≤ w ≤ wmax = O(n1/(β−1−η)).
Then Lemma 4 directly implies the statement. �

Next, we calculate the expected number of vertices that have degree at least d.

Lemma 10. Let η > 0 be sufficiently small. Then for all d ≥ 1, d = d(n) = o(w), we have

�
(
nd1−β−η

) ≤E[#{v ∈ V | deg (v) ≥ d}] ≤ O
(
nd1−β+η

)
.

Proof. Let η > 0 be sufficiently small. Recall that by Lemma 3, it holds that E[ deg (v)] =
�(wv) for every vertex v ∈ V . Let 1 ≤ d � w and let v be any vertex with weight wv ≥ �(d)
large enough so that E[ deg (v)] ≥ 2d. Then by a Chernoff bound

P[ deg (v) < d] ≤ P[ deg (v) < 0.5E[ deg (v)]] ≤ e−E[ deg (v)]/8 ≤ e−d/4 ≤ e−1/4.

By the power-law assumption (PL2), there are �(nd1−β−η) vertices with weight �(d), and a
single vertex in this set has degree at least d with probability at least 1 − e−1/4. By linearity of
expectation, E[#{v ∈ V | deg (v) ≥ d}] = ∑

v∈[n] P[ deg (v) ≥ d] = �(nd1−β−η). �
Next let v be a vertex with weight wv ≤ O(d) small enough so that 2eE[ deg (v)] ≤ 3d/4. By

a Chernoff bound (Theorem 5(iii)), we obtain

P[ deg (v) ≥ d] ≤ P[ deg (v) > 3d/4] ≤ 2−3d/4.

Thus, for the upper bound it follows that

E[#{v ∈ V | deg (v) ≥ d}] =
∑
v∈[n]

P[ deg (v) ≥ d]

≤ |V≥O(d)| +
∑

v∈V≤O(d)

P[ deg (v) ≥ d]

≤ O(nd1−β+η) + n · 2−3d/4.

Note that d2 ≤ 3 · 23d/4 holds for all d ≥ 1. Hence n · 2−3d/4 ≤ 3nd−2 < 3nd1−β+η and indeed
it holds that E[#{v ∈ V | deg (v) ≥ d}] = O(nd1−β+η).

After these preparations we come to the main theorem of this section, which is a more
precise formulation of Theorem 1 and states that the degree sequence follows a power law
with the same exponent β as the weight sequence.

Theorem 9. For all η > 0, w.h.p. we have

�
(
nd1−β−η

) ≤ #{v ∈ V | deg (v) ≥ d} ≤ O
(
nd1−β+η

)
,
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where the first inequality holds for all 1 ≤ d ≤ w and the second inequality holds for all d ≥ 1.

Before we prove Theorem 9, we note that by combining it with the standard calculations
from Lemma 1 we immediately obtain the average degree in the graph.

Corollary 2. W.h.p., 1
n

∑
v∈V deg (v) = �(1) and thus |E| = �(n).

Proof of Theorem 9. We first consider the case where d is larger than log3 n = o(w). From
the condition (PL2) on the vertex weights and Lemma 3 it follows that

#{v ∈ V |E[ deg (v)] ≥ 1.5d} = �
(
nd1−β−η

)
holds for all log3 n ≤ d ≤ w. Then, by Lemma 4, w.h.p. every vertex v with E[ deg (v)] ≥ 1.5d
has degree at least (1 − o(1))1.5d ≥ d for n large enough. Hence w.h.p. there exist at least
�(nd1−β−η) vertices with degree at least d. Vice versa, by Lemma 3 we have

#{v ∈ V |E[ deg (v)] ≥ 0.5d} = O
(
nd1−β+η

)
.

By the same arguments as above, w.h.p. every vertex v with E[ deg (v)] < 0.5d has degree at
most (1 + o(1))0.5d < d. Thus in total there can be at most O(nd1−β+η) vertices with degree
at least d. This proves the theorem for d ≥ log3 n.

Let 1 ≤ d ≤ log3 n, let ε > 0 be sufficiently small, let V ′ := V≤nε be the set of small-
weight vertices, and let G′ := G[V ′]. First, we introduce some notation: define the two random
variables

gd := #{v ∈ V | deg (v) ≥ d} and fd := #{v ∈ V ′ | degG′ (v) ≥ d}.
Note that by Lemma 10, we already have

�
(
nd1−β−η

) ≤E[gd] ≤ O
(
nd1−β+η

)
,

and it remains to prove concentration. Clearly,

fd ≤ gd ≤ fd + 2
∑

v∈V\V ′
deg (v). (20)

Next we apply Lemma 4 together with Lemma 1 and see that w.h.p.,∑
v∈V\V ′

deg (v) = �
(
W≥nε

) = O
(
n1+(2−β+η)ε) = n1−�(1).

Recall that we assume d ≤ log3 n, so in particular

E[gd] = �(n/(log n)3(β−1+η)).

It follows that E
[ ∑

v∈V\V ′ deg (v)
] = o(E[gd]). The inequality (20) thus implies E[fd] = (1 +

o(1))E[gd]. Hence, it is sufficient to prove that the random variable fd is concentrated around
its expectation, because this will transfer immediately to gd.

We aim to show this concentration result via Theorem 7. Similarly as in the proof of Claim
1, we can assume that the probability space � under consideration is a product space of inde-
pendent random variables. More precisely, the n independent random variables x1, . . . , xn
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define the vertex set and the n − 1 independent random variables Y2, . . . , Yn define the edge
set, where each Yu has the form (Y1

u , . . . , Yu−1
u ), each Yv

u is a real number chosen uniformly at
random from [0, 1], and for v < u, the edge {u, v} is present in the graph if and only if puv > Yv

u .
The 2n − 1 random variables then define the product probability space �, i.e., for every ω ∈ �,
we denote by G(ω) the resulting graph, and similarly we use G′ = G′(ω) and fd = fd(ω). We
now consider the bad event:

B := {ω ∈ �: the maximum degree in G′(ω) is at least n2ε}. (21)

We observe that P[B] = n−ω(1), since by Lemma 4 w.h.p. every vertex v ∈ V ′ has degree at most
O(wv + log2 n) = o(n2ε). Let ω, ω′ ∈B be such that they differ in at most two coordinates. We
observe that changing one coordinate xi or Yi can influence only the degrees of i itself and of
the vertices which are neighbors of i either before or after the coordinate change. It follows
that |fd(ω) − fd(ω′)| ≤ 4n2ε =: c. Therefore, fd satisfies the Lipschitz condition of Theorem 7
with bad event B. Let t = n1−ε = o(E[fd]). Then since nP[B] = n−ω(1), Theorem 7 implies

P
[|fd −E[fd]| ≥ t

] ≤ 2e
− t2

64c2n + ( 4n2

c + 1)P[B]

= e−�(n1−4ε) + n−ω(1) = n−ω(1),

which proves concentration and concludes the proof. �

9. Proof of Theorem 4

In this section we prove Theorem 4, which states that for any connection function p satis-
fying Equation 2, the corresponding distance model satisfies the conditions (EP1) and (EP2),
and thus the results from Section 2.2 on degree sequences, component structure, and average
distances apply.

Proof of Theorem 4. Fix u,v, and also the position xu. Note that V(r) = Pxv(‖xu − xv‖ ≤ r),
so V(r) describes the cumulative probability distribution of the random variable ‖xu − xv‖. The
marginal edge probability is given by the Riemann–Stieltjes integral over r,

E := Exv[puv(xu, xv) | xu] = �
( ∫ ∞

0
�u,v(r)dV(r)

)
,

where

�u,v(r) := min
{

1, V(r)−α ·
(wuwv

W

)max{α,1}}
.

In particular, for every sequence of partitions r(t) = {0 = r(t)
0 < . . . < r(t)

�(t)} with meshes tending

to zero, the upper Darboux sum with respect to r(t) converges to the expectation,

E = �
(

lim
t→∞

�(t)∑
s=1

(
sup

r(t)
s−1≤r≤r(t)

s

�u,v(r)
)(

V(r(t)
s ) − V(r(t)

s−1)
))

.

Since V is surjective, we may refine the meshes r(t) if necessary so that the meshes of the
partitions V (t) = {V(r(t)

0 ), . . . , V(r(t)
�(t))} =: {V (t)

0 , . . . , V (t)
�(t)} also tend to zero. Hence,
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E = �
(

lim
t→∞

�(t)∑
s=1

min
{

1, (V (t)
s )−α ·

(wuwv

W

)max{α,1}}(
V (t)

s − V (t)
s−1

))

= �
( ∫ 1

0
min

{
1, V−α ·

(wuwv

W

)max{α,1}}
dV

)
,

where the latter integral is an ordinary Riemann integral. If wuwv/W ≥ 1, the integrand is 1
and we obtain E = �(1) = �

(
min

{
1, wuwv

W

})
. On the other hand, if wuwv/W < 1, then let

r0 := ( wuwv
W )max{α,1}/α < 1. Note that if r0 = �(1), then also r0 = �(wuwv/W). Therefore,

E = �

( ∫ r0

0
1dV +

(wuwv

W

)max{α,1} ∫ 1

r0

V−αdV

)

=

⎧⎪⎨
⎪⎩

�
(

r0 + wuwv
W (1 − r1−α

0 )
)

= �
(

wuwv
W

)
, if α < 1, and

�

(
r0 +

(
wuwv

W

)α

(r1−α
0 − 1)

)
= �

(
wuwv

W

)
, if α > 1,

as required.
It remains to show that p satisfies (EP2). Since V(‖xu − xv‖) ≤ 1, from Equation (2) we

obtain the lower bound

puv ≥ �
(

min
{

1,
(wuwv

W

)max{α,1}})
.

If wuwv/W ≥ 1 then there is nothing to show (since the right-hand side of (EP2) is o(1) by the
upper bound on w). Otherwise, if wuwv/W < 1, then

puv ≥ �
((wuwv

W

)max{α,1}) ≥ �
(w2

n

)
≥

( n

wβ−1+η

)−1+ω(1/ log log n)
,

where the last step follows from the lower bound on w. This concludes the proof. �
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