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Abstract. Itis shown that if the fundamental group of a normal algebraic variety, respectively Zariski
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Our objective, in this paper, is to gain some understanding of those groups which
arise as fundamental groups of compact Kahler manifolds, Zariski open subsets
of compact Kéahler manifolds, or normal complex algebraic varieties. The groups
of the first type have come to be known as Kéhler groups, and we will refer to
those of the second as quasi-Kahler . While the complete structure of these groups
seems rather intractable at the moment (see [2] for the state of of the art), the
structure of certain subclasses are becoming much clearer. Of specific interest for
us is the class of nilpotent groups. Many restrictions on, as well as interesting
examples of, nilpotent Kahler groups have been found by Campana [8] and Carlson
and Toledo [9]. Although nilpotent quasi-K&hler groups have not been studied
systematically, nontrivial constraints can be obtained from Morgan’s work [15].
The main conclusion of this paper, is that if one casts the net a little wider, then
no really interesting new examples are obtained. In particular, we will show that a
polycyclic quasi-Kahler group is virtually nilpotent, which is to say that it contains
a nilpotent subgroup of finite index. For algebraic varieties, we can make an even
stronger statement that the fundamental group of a normal variety must be virtually
nilpotent if it is solvable and possesses a faithful representation inf¢@L

The first two sections of this paper are purely group theoretic. We introduce
the class of solvable groups of finite rank, which contains the class of solvable
subgroups of GJ(Q) (and polycyclic groups in particular). Canonically attached
to every such group is an algebraic group (I") defined overQ, and a represent-
ation' — H(I') with Zariski dense image. This generalizes earlier constructions
of Malcev [14] and Mostow [17] for nilpotent and polycyclic groups, respectively.
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The third section contains the first main theorem, that if the quofienf the
fundamental group of a normal variety by a term of the derived series has finite
rank, thenI” contains an extension of a nilpotent group by a torsion group as a
subgroup of finite index. The basic idea is to choose a finitely generated field of
definition, and observe that the Galois group acts on the groQp pbints of H (")

for almost all primeg. This together with certain arithmetic considerations, forces
the identity componentl (I')° to be unipotent, and the theorem follows easily from
this. The fourth section of the paper contains the second main theoreris l&
guasi-Kahler group, with finitely generated derived group, such that the qubtient
of = by a term of the derived series has finite rank, tfienontains a nilpotent

by torsion subgroup of finite index. Once again the strategy is to establish the
unipotency ofH (I')°. However, this time it is reduced to a homological statement
which is shown to be a consequence a generalization of a theorem of Beauville [5]
obtained by the first author [3].

The reader will certainly have noticed that the two theorems are very similar in
content, but quite different in methods of proof. This by itself should not come as a
surprise; a number of results in algebraic geometry, such as the quasiunipotence of
local monodromy, have been proved by both arithmetic and transcendental meth-
ods. In fact, the style of the first argument is quite similar to that of Grothendieck’s
proof this theorem. What does seem a bit curious is the slight disparity of the
results. There exists finitely presented solvable subgroups gf@Lwhich are
not virtually nilpotent or even virtually polycylic. For example, for each prime

the group
labc
0def beefnez| | agezt]
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0001

has this property [1]. Such groups cannot be fundamental groups of normal vari-
eties by the first theorem, but the second theorem gives no information. We leave
open the question of whether such groups can be quasi-Kahler. It is worth noting
that a second proof that nonvirtually nilpotent solvable subgroups gf @Lare

not fundamental groups of smooth projective varieties can be obtained by com-
bining the above arguments with those of Simpson [20]. Once again, Simpson’s
arguments are arithmetic in nature and do not apply to nonalgebraic Kahler mani-
folds.

1. Preliminaries on Algebraic Groups
A general reference for this section is (7). 6 = DG be the derived subgroup

of a groupG, and setD'G = DD'~'G. If F C E is an extension of fields, an@
is an algebraic group defined ovBrlet G = G xspecr SPECE . For the remainder
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of this sectionG will denote an algebraic group over a figitof characteristic O,
andU (G) will be its unipotent radical. We will make use of the following result of
Mostow [16]

THEOREM 1.1.If G is as above, then the exact sequence
1-UG)—>G—G/UG) —~1

is split, and any two splittings are conjugate by Arrational point of U (G).

Let V be the centralizer of/ (G) in G, and letW = V N U(G). Clearly W
is the unipotent radical o¥. It follows that1—- W — V — V/W — 1l has a
unique splittings: V/W — V, becauséW central inV. PutN(G) = s(V/W).
By constructionN (G) is reductive and invariant under all automorphisms;ofn
particular, it is normal irG.

LEMMA 1.2 [17, Lemma 4.6]Every normal reductive algebraic subgroup®@fis
contained inN (G).

DEFINITION 1.3. An algebraic grou is minimal if N (G) is trivial. Let Gpin =
G/N(G); then this is a minimal algebraic group. An algebraic gréuis minimal
if and only if the centralizer o/ (G) is contained inU(G), as we see from the
definition of N(G).

LEMMA 1.4. Let f: G — G’ be a homomorphism of algebraic groups for which
f(G) is normal inG’. Then f(N(G)) € N(G’) and, consequentlyf induces a
homomorphisnymin: Gmin — Gr,- If f IS an injection(respectively surjection
then fmin is also an injectior(respectively, surjectign

Proof. As f(N(G)) is normal and reductive irf (G), we see thayf (N(G)) €
N(f(G)). As N(f(G)) is invariant under all automorphisms ¢f(G), and in
particular the restriction of inner automorphisms@fto f(G), it follows that
N(f(G)) C N(G’). This proves the first assertion.

Becauseéd = f(G)NN(G’) is normal in the reductive groud(G’), we see that
H is reductive. AlsoH is normal in f(G), and this implies thatf = N(f(G)),
Thus ket f) = {1} implies ke fmin) = {1}.

LEMMA 1.5. Let G be a minimal algebraic group defined over a figldof char-
acteristic0. There is an affine algebraic group, defined ovel, that acts onG
so that for all fieldst © F, A(E) — Aut(Gg) is an isomorphism

Proof. If G = U(G), the automorphism aoff are just automorphisms of its Lie
algebra, and these evidently form an affine algebraic group, denoted b Aut

In the general case, by 1.1 we can expr@sss a semidirect product @f and
U (G), whereM is reductive. The homomorphism M — Aut(U (G)) is faithful,
becaused5 is minimal. LetX be the normalizer 0p (M) in AutU (G). ThusX is
an algebraic group, ani acts naturally o/ (G) and M and, hence, o, their
semidirect product. NowG acts on itself by conjugation. Thus, the semidirect
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product of X and G, acts onG. For any fieldE > F, we seeX(E) — AutGg

is one to one and its image equdis € AutGg |¢(Mg) = Mg}. But, if ¢ €
Aut(Gg), ¢(Mp) is a conjugate of\fg, and we deduce thdt(E) — AutGg

is surjective for all fieldsE containing F. Finally, the coordinate ringR of G is
generated as af-algebra by a finite-dimensiondl-stable subspacé c R. Put

K = kerY — GL(V)) and letA = Y/K. We see tha# is the desired algebraic
group.

The algebraic groupt in the previous lemma will be henceforth denoted by

AutG.

LEMMA 1.6. If G is a solvable minimal algebraic group, then the actio®af(G)?
onG?/U(G) is trivial.

Proof. This follows immediately from the fact that the action of a connected
algebraic group on a torus is trivial.

LEMMA 1.7. Let A be a directed set, anflG,},ca a directed system of minimal
algebraic groups, such that for each < u, we haveG, € G, andU(G,) =
U(G,). Thenthere is a minimal algebraic grodpand a monomorphisnf,: G, —
G for eachi € A, so thatf, = f,|g, wheneven < p.

Proof. LetU = U(G,) for all » € A. Let S, be the set of closed subgroups
M C G, such thatM — G, /U is an isomorphism. Thely acts transitively on
S,. AlsoM — M N G, gives aU -equivariant morphism fron§,, to S, whenever
A < u. Now chooselg € A so that dimS,, > dimS, for all A € A. From the
above, we see that, — S, is a bijection ifAq < u. It follows that there is a
collection{M, | » € A} with M, € S,, andM, N G, = M, wheneven < pu.

If py: M, — AutU denotes the conjugation action &f, on U, we have seen
that p, is one to one becaud&, is minimal. Also, the inequalitj. < u implies
that p, (M) € p,.(M,,). Let M be the Zariski closure ab{p, (M,) |1 € A}. This
is reductive. LetG be the semidirect product af andU, and definef,: G, —> M
by f,(w) =uforallu € U, and f;, = p; on M,. This completes the proof.

Let G be a connected solvable group defined okelLet U = U(G) andT
a maximal torus. As noted previously, Alitis an algebraic group which coin-
cides with the group of automorphisms of the Lie algebraof U. There is a
homomorphism of algebraic groufis — Aut U given by conjugationG is the
semidirect product of” with U.

LEMMA 1.8. With the previous notation, suppose thaacts trivially (by conjug-
ation) on U/ DU thenG is isomorphic to the product @ and T, and is therefore
nilpotent

Proof. We have to show thaf acts trivially onU. Let S be the subgroup of
Aut(N) of automorphismg satisfying(1 — o)(N) C [N, N]. The elements of
are unipotent. By assumption, the image of the homomorplism Aut(U) =
Aut(N) lies in S and so the map must be trivial.
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There is a homomorphism of algebraic groupsDG — Aut DG /D?G given
by conjugation.

LEMMA 1.9. With the previous notation, suppose thatimagépb G in Aut DG/
D?G is unipotent. Ther@ is the product of/ with T.

Proof. Note thatG/DG is a product of a reductive group, which is isomorphic
to T, and a unipotent groufy’, which is isomorphic to the image &f under the
projectionG — G/DG. The action ofl on U’ by conjugation is of course trivial.
Consider the exact sequentss/D°G — U/DU — U’ — 0. By assumption,
the image off ¢ G/DG in Aut DG/D?G is unipotent, and therefore trivial. Thus
T acts trivially on the image oD G/D?G in U/DU as well as on it the cokernel.
ThereforeT acts trivially onU/ DU, and the lemma follows from the previous one.

2. Solvable Groups of Finite Rank

In this section, we shall associate to a solvable g finite rank, an algebraic
group of H(I") defined over) and a homomorphism(T'): " — H (I')(Q) with
Zariski dense image and a torsion subgroup as kernel. While H(T") is a hot a
functor, automorphisms af will extend to automorphisms af (I"). Furthermore,
whenT is finitely generated, automorphisms of its profinite complefioextend

to automorphisms aoff (T")q, for all but finitely many primes. Our construction of

H (T") is identical to Mostow's [17] in the case whdrds polycyclic, but our proof

that this construction works for solvable groups of finite rank is necessarily a bit
more complicated. Also the results on the profinite completion are used crucially
when Galois theory is applied. For these reasons, we have chosen to give all the
details of the proofs.

Let us recall the standard construction of the proalgebraic hull¢¢t, F)
associated to a topological groupand a topological field®. One considers the
categoryC (rr, F) where the objects are pai(§;, f) with G an affine algebraic
group defined ovelF, and f: # — G(F) a continuous homomorphism with
Zariski dense image. A morphisk@, f) — (G’, f') in our category is simply
a commutative diagram

¢ G
VA
such thatp is homomorphism of algebraic groups. Such,af it exists is unique

and necessarily an epimorphism becaiisend ' have Zariski dense images. In
particular, by Lemma 1.4pmin: Gmin — G, is defined. Set

min

G

Hx, F)=I|lm G and H(mx, F) = lim Gmn.
(G, f) (G, f)
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Some easy observations follow.

Remark2.1.7 — #(m, F) is a functor, butt — H (, F) is not. However,
if a: 1 — n’ is a continuous homomorphism with the closurexGf) normal in
7', we deduce, from Lemma 1.4 thBt(a, F): H(x, F) — H(x', F) is defined.
In particular, ifI" is a discrete group and I' — I is the homomorphism to
its profinite completion, we have a natural epimorphighi, F): H(T', F) —
H(, F).

Remark2.2. If F — E is a continuous homomorphism of fields, we have
a functorC(m, F) — C(, E). And this induces an epimorphisi#d (r, E) —
H(T[, F)E

Remark2.3. By construction, we have a continuous homomorphiém F)
from 7 to the group ofF-rational points ofH (xr, F). With a: 7 — n’ as in
Remark 2.1, we havBl (a, F) oi(mr, F) = i(%’, F) o a.

DEFINITION 2.4. A solvable groud” has finite rank, if there is a decreasing
sequencd =Ty D I't D --- D Iy = {1} of subgroups, each normal in its
predecessor, such that/ T'; , 1 is Abelian andQ ® (T";/ I';41) is finite dimensional
for all i. The rankrk(I') = >"I", dim(Q ® (I';/ I';41)) is clearly independent of
the choice of the sequen¢E;}.

This is a weakening of the notion of a polycyclic group which, in the above
terms, amounts to requiring that edcfy ', is finitely generated.

For the remainder of this section, all groups considered are solvable of finite
rank with discrete topology unless indicated otherwise. We erf@awvith discrete
topology, and abbreviatH (i, Q), i (;r, Q), H(a, Q) by H(x) etc. The only fields
F considered have characteristic zero.

THEOREM 2.5.LetT" be a solvable group of finite rank with discrete topology.
Then

(A) H(T) is an algebraic grougand not just a proalgebraic grogp
(B) rk(I") = dimU (H (I")).

(C) The kernel of (I'): T — H(I')(Q) is a torsion group

(D) The image of(I") is Zariski dense

Part (D) of the theorem is immediate from the construction. Whes poly-
cyclic, the theorem is due to Mostow [17, 4.9]. As a corollary we obtain a natural
characterization of these groups.

COROLLARY 2.6.A solvable groud" has finite rank if and only if there exists a
torsion normal subgrougv C T' such thatl"/N possesses an embedding into an
affine algebraic group defined ové.
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Proof. One direction follows from the theorem. For the converse, suppose that
N C TI' is torsion subgroup andI" — G(Q) a homomorphism into an algebraic
group with kernelN. We can assume that is solvable, after replacing it by the
Zariski closure ofl". Then the sequencE; = i~*(D'G(Q)) has the required
properties.

DEFINITION 2.7. (I, F) = supdimU(G)| (G, f) € ObjC(T, F)}. Thus
n(T, F) € NU {oo}.

LEMMA28. If1 > T" > T - I - lisexactn(l', F) < n(I', F) +
n(l”, F).

Proof. Let (G, f) be an object o (T", F). Now let G’ be the Zariski closure of
f(I'") and letG” = G/G’'. Then f inducesf: T — G”(F) and both(G’, f|r)
and(G”, f) are inC(I”, F) and C(I'"”, F) respectively. A short exact sequence
of algebraic groups induces a short exact sequence of unipotent radicals, so the
lemma follows.

LEMMA 2.9. n(T', F) < rk(I'), whereF is a field of characteristic zero

Proof.From the previous lemma, by induction on the length of the derived series
of I', we are reduced to the case whEris Abelian. If (G, f) € ObjC(T, F), then
the inclusionU (G) — G is split by a homomorphismp: G — U (G). But in this
caseU (G) is a vector space, spanned pyf (")), and so evidentlyk(Q® I') >
dimU (G).

LEMMA 2.10. If (G, f) € ObjC(T, F) satisfiesn(T", F) = dimU(G), then
H(T', F) = Gninis an isomorphism. In particula#Z (I', F) is an algebraic group
anddimU (H (T, F)) = n(T, F).

Proof. For the first assertion, we need to check that any morphisi@@’, /') —
(G, f) induces an isomorphismmin: Gri, = Gmin. NOW, ¢ being as epimor-
phism, restricts to an epimorphism of unipotent radicals. This gings F) >
dmU(G") > dimU(G) = n(T, F).

Therefore,U (G') — U(G) gives an isomorphism of Lie algebras, and is itself
an isomorphism. Consequently, keis reductive, an@min is an isomorphism.

For the second assertion, we need to know that such &) exists, and this is
assured by the previous lemma.

LEMMA 2.11. Letl - IV - I' — I'” — 1 be exact. Assume thatl"’, F)
extends to a homomorphisjn ' — G(F) whereG is an algebraic group that
containsH (I'’, F). Then

(A) H(I'', F) — H(T, F) is a monomorphism
(B) n(I', F) = n(I"", F) +n(I'", F),
(C) 1— keri(I'", F) — keri(I', F) — keri(I'”, F) is exact

Proof. Letg:T" — I and p: T’ — I'” denote the given homomorphisms. By
Remark 2.1, we havél (¢, F): HI',F) - H(I,F) andH(p, F): HT', F) —
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H(T”, F). Now H(p, F) is an epimorphism whose kernel contains the normal
subgroup imagéeH (¢, F)). Thus, if we assume (A), we obtain

n(T, F) = dimU(H (T, F))
> dimU(H(, F)) + dimU(H (", F))
= nl,F)+nT" F)

from the previous lemma. But Lemma 2.8 gives the reverse inequality, and this
proves part (B). That (A) implies (C) is clear by Remark 2.3, for we have

H(p,F)oi(I',F) = i, F)
and
H(g,F)oi(I',F)=i(, F)ogq.

To check (A), replaces in the lemma by the Zariski closure gf(I"), This
makes(G, j) an object of C(T", F); denote byk: H(', F) — Gnin the natural
homomorphism. Thek o H(q, F) is the compositeH (I, F) - G — Gnin. By
Lemma 1.4, this is an inclusion, This completes the proof of the lemma.

LEMMA 2.12. The(G, j) in the previous lemma exists if

(A T"=2Z,o0r
(B) I'” is a Abelian torsion group

Proof. Case (A) HereT is a semidirect product. Choose € T that maps to
a generator of”. Theno (8) = y8y %, for § € I'” gives an automorphism af’,
and induces therefore an automorphigh, F) of the algebraic grougf (I"’, F).
By Lemma 1.5,A = Aut H(T', F) is an algebraic group. L&¥ be the semidirect
product ofA andH (T, F), and defingi: " — G(F) by j(8) = i(I'")(§) for§ e T
andj(y) = H(o, F).

Case (B)First assume thdt” is finite. Letp: H(I'/, F) — GL(V) be a faithful
representation wheré is finite-dimensional vector space defined ofeConsider
the induced representatidii = F[I'] @ V. LetG = GL(W), andj: ' — G
be the action of on W. Clearly, there is a monomorphistmH (I'’, F) — GL(W)
so thatk o i(I", F) = j|r, SO the result follows.

In the general case, &t = {x C T'|7x D I, 7/ T isfinite}. If 71,7, € §
andm, C my, thenny/m, is finite. Therefore, from the first part of the previous
lemma,H (1, F) — H(;2, F) has no kernel. From Lemma 1.7, we get

T =lim 7 — lim H(x, F)(F) — G(F)

Tes Tes

and this completes the proof.
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We can now prove Theorem 2.5.

Proof. Part (A) has already proved in Lemma 2.10. The theorem is certainly true
if [ = Z, itis also true ifl" is a commutative torsion group by Lemma 2.9. For the
general case, we note thathas a filtrationT' =T D 'y D -+« D Iy = {1)
such that the successive quotients are either Abelian torsion groups or isomorphic
to Z. We proceed by induction om, and so we can assume the theoremIfor
Now Lemmas 2.11, 2.12 give the theorem Far

LEMMA 2.13. If T is solvable of finite rank, the#/ (T", F) — H()y an iso-
morphism

Proof. PutG = HT)r and let f:T" — H(@)g(F) be given byf(y) =
()T fory e I'.Then(G, f) € ObjC(T", F) anddimU (G) = dimU (H(I')) =
rkI" by the theorem. From Lemma 2.18,T, F) — Gmin = G is an isomorph-
ism, and so the lemma is proved.

THEOREM 2.14 LetI" be a finitely generated solvable group of finite rank. There
is a finite set of prime numbessso thatH (I') g, — H(f, Qy) is an isomorphism
for all primes!] ¢ S.

Proof. We may regardH (I") as an algebraic subgroup ¢&L,)q. Because
I is finitely generated;(I")(I") ¢ GL,(S~'Z) for some finite set of primes.
If [ is a prime not inS, then GL,(S7'Z) c GL,(Z;), and the latter is a pro-
finite group. This gives a continuous homomorphigml" — GL,(Z,). Because
image(i(I')) C H(I')(Q)) and the second group is closed in GBQ;), we see
thatﬁ(l") C H(T)(Q)). The object(H(I")q,, fi) of c(I, Q) gives an epimor-
phism HI,Q) — H(T')q,. By the previous lemma and Remark 2.1, we have
H)q, — H ([, Q)), and these arrows are inverses of each other.

LEMMA 2.15. If T is solvable of finite rank and iff (I")° is unipotent, then there
are normal subgroup§'; 2 I', of I' so that

(@) I'/ 'y is finite,
(b) I'y/ T’z is nilpotent, and
(c) ', is torsion

Proof. We takel’; = i(I")"*H(I)°(Q) andI', = ker(i(T")). ThenT'y/ T, C
H(I')°(Q) and the latter is nilpotent. From Theorem Z&is torsion, and™/I"'; C
H(T)/H(@)°(Q) is finite.

3. Fundamental Groups of Varieties

LetY be a normal variety defined over a subfi&dc C with a K -rational pointyo.

For any field extensiok’ D K, setYx: = Y xgpeckSPecK’. Let 72%X) denote
the algebraic fundamental group of a connected schEnfeith an unspecified
base point), andr the profinite completion of a group. Then we have a split
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exact sequence > A (Y2 — 73%vy) — GalK/K) — 1, (where the
splitting depends o) (13, IX 6.4, Xl 5.2). Thus G4lK/K) acts continuously
on1(Yc), and therefore also on the Abelianizatigh(YE", Z) ® 7 and its prot
partHl(Y(g”, 7)) R 7.

LEMMA 3.1. Let Y be a normal variety defined over a finitely generated field
K C C.ThenHo(Gal(K /K), Hi(Y®" ® Zy)) is finite

Proof. The groupH,(Y)/(torsion) ®Z, is dual toHX(Yg, Z;) as a GalK /K)-
module, thus it suffices to prove that the second group has no invarianjs. ¥ et
Y be a desingularization defined over a finite extenston> K. By Zariski's
main theorem the geometric fibers pfare connected, thuB (Y, Z;) injects
into HX(Yz, Z;), and this is compatible with the Ga& /K’)-action. H(Y¢) has
no GalK /K’)-invariants, because the eigenvalues of the Frobenius at any prime
of good reduction have absolute val®? or g by [11, Sect. 3.3].

Remark3.2. The argument can be simplified (and lengthened) in a couple of
ways. An appropriate Lefschetz type argument allows one to reduce to the case
whereY is a curve where the relevant estimate on eigenvalues of the Frobenius
goes back to Weil. Alternatively, whenis curve, one can deduce the finiteness of
Ho(Gal(K /K), Hy(YE" ® Zy)) directly from class field theory.

THEOREM 3.3.Let X be a normal(not necessarily complétalgebraic variety
defined overC. Letw = D% D D'm O ... be the derived series of =
m1(X, xo). If there is a natural numbet so thatz/D"x is solvable of finite rank,
then there are normal subgrougs 2> Q 2 D"z of 7 so that

(@) 7/ P is finite
(b) P/Q is nilpotent, and
(c) Q/D"x is atorsion group

Proof. Putl' = n/D"n, andT = H(I)°/U(HT)). By Lemma 2.15, the
theorem follows once it has been proved tliais trivial. We may assume thaf
and xg are defined over a finitely generated figdd c C. There is an action of
Gal(K/K) on #, and also o, because this is a quotient &f by the closure
of D"(7). Choose a primé, so thatl’ — H(I')(Q) extends to a continuous
homomorphismi™ — H(I")(Q)). For such a primeH (I", Q) = H(I")q, by The-
orem 2.14. Thus the Galois action dryields a homomorphism from Gak /K)
to the group ofQ,-rational points ofG = Aut (H (I")). After replacingK by a
finite extension, if necessary, we can assume ifgage G°(Q;). By Lemma 1.6,
the action of GalK /K) on Ty, is trivial. Letz’ = keffr — (H(')/H ()% (Q)].
Thenn’ = m,1(Y, yo) WhereY is an etale cover ok. The compositer’ < 7 —
(H()/U(H(I)(Q)) factors throughHy(Y,Z) ® Z = #}, — T(Q), T(Q))
contains an open prbgroup, thust’ further factors through

hHi(Y)®7Z — Hi(Y)®Z, ® A — T(Q)),
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whereA is a finite group. HoweveHy(Gal(K /K), H,(Y) ® Z;) is finite by Lem-
ma 3.1. So we deduce that the imageHi{(Y) ® Z, in T(Q,) is finite, because
Gal(K /K) acts trivially onT (Q;). However the imagé is Zariski dense. Thug
is finite and connected, and therefore trivial. This proves the theorem.

COROLLARY 3.4.1f the fundamental group of a normal complex variety is solv-
able and possesses a faithful representation @tg (Q), then it is virtually nilpo-
tent, i.e. it must contain a nilpotent subgroup of finite index

Proof. We can assume that the fundamental group is torsion free after passing
to a subgroup of finite index [19, Lemma 8]. The theorem implies that this must
contain a nilpotent group of finite index.

4. Fundamental Groups of Kahler Manifolds

A groupT” will be called quasi-Kahler if it there exists a connected compact Kahler
manifold X, and a divisor with normal crossind® C X, such thal” = 7,(X— D).
(Note that by resolution of singularities [4, 6], it is enough to assumelhiatan
analytic subset.)

The proof of the following lemma will be given in the appendix.

LEMMA 4.1. A subgroup of a quasi-Kahler group of finite index is quasi-Kahler

LEMMA 4.2. Let A be a finitely generated Abelian group, ama nontrivial one
dimensionalC[A]-module. TherH (A, M) = Ofor all i.

Proof. This is clear for cyclic groups by direct computation. In general, express
A as a product of cyclic grougs]; C; and M as a tensor product @f;-modules,
and apply the Kinneth formula.

Setl' =TI/DT.

LEMMA 4.3. Suppose that" is a finitely generated group and = I'/N an
abelian quotient. Suppose that is a nontrivial one-dimensionad-module then

HY(T, M) = Homyg 4 (N®®, M) = Homg4)(N® ® Q, M).

Proof. From the Hochschild—Serre spectral sequence associated to the extension
1—- N—->T —- A— 0, we obtain an exact sequence

0— HYA, M) - HYT, M) > H°(A, HY(N, M)) - H?*(A, M).

By the previous lemma, this gives an isomorphi&hT, M) = H°(A, HX(N, M)).
Furthermore HY(N, M) = Hom(N, M) = Hom(N*, M) as A-modules. There-
fore HO(A, HY(N, M)) = Homy4;(N“?, M).

Given a charactes € Hom(I", C*), let C, denote the associatétdmodule. We
define=}(I") to be the set of characterse Hom(T", C*) such thatd(T", C,) is
nonzero. Let us say thatladmoduleV is quasi-unipotent if there is a subgroup
I C T of finite index whose elements act unipotently ¥n
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LEMMA 4.4. Let A be a finitely generated Abelian group afda finite dimen-
sional C[A]-module. Them acts quasi-unipotently oW if and if the only charac-
ters p € Hom(A, C*) for whichHomc4,(V, C,) # 0 are torsion charactergi.e.
elements oHom(T", C*) of finite orde).

Proof. DefineV, to be the generalized eigenspace associated to a chapacter
In other words)V, is the maximal subspace on whigh- p(a) is nilpotent for all
a € A.V is a direct sum of these eigenspaces, thus we can assunie that, #
0. To complete the proof, observe that Harp, C,/) # Oif and only if p = p/,
and thatV, is quasi-unipotent if and only j is torsion.

LEMMA 4.5. LetT be a finitely generated group add C I" a subgroup of finite
index such tha¥ = (I N DIN)* @ Q is finite-dimensional. TheR’ acts quasi-
unipotently onV if and only if Z(I'"") N imaggHom(I", C*) — Hom(I", C*))
consists of torsion characters

Proof. SetN = I'NDT. ThenI'/N is isomorphic to the image &f in I'*” and,
therefore, Homir’/ N, C*) is coincides with imagédom(I", C*) — Hom(I"’, C*)).
Thus, Lemma 4.3 implies that

S = (=X — {1}) nimaggHom(T", C*) — Hom(I"’, C*))

is the set of nontrivial charactegs € Hom(I"'/N, C*) for which Home4,(V ®
C,C,) # 0. ThusI'/N acts quasi-unipotently oW if and only if S consists
of torsion characters by the previous lemma. Theaction onV factors through
I''/N, thus the lemma is proved.

LEMMA 4.6. Let K 2 Q be a finite extension, an@g the ring of integers
of K. Let{o1,...0,} be the set of all embeddings into C. Then for any fi-
nitely generated group, Hom(I", U (1)) N[, o; oHom(T", O ) consists of torsion
characters

Proof. This follows from Kronecker’s theorem that an algebraic integer is a root
of unity if and only if all its Galois conjugates have absolute value one.

THEOREM 4.7.LetT" be a quasi-Kahler group such th@l" is a finitely gener-
ated. Then for any subgroup € T' of finite index,I"” acts quasi-unipotently on
the finite-dimensional vector spacg’ N DIN)* ® Q.

Proof. By Lemma 4.5, it is enough to show that the intersectfoof ©1(I"')
and the image of Hol", C*) consists of torsion characters. The subgroum
DI’ € DT has finite index, and is therefore finitely generated. Thus the set of
characters of’ which correspond to one-dimensional quotientsltf DI")2*® C
are defined over the ring of integers of a finite extengionf Q. It then follows
from Lemma 4.3 thatS is a finite subset of Holl', O%). S is evidently stable
under AutC) and thus lies imM,.x—.c o o Hom(I", O%).

Theorem V.1.6 of [3] implies that}(I"") is a finite union of translates of subtori
of Hom(I"") by unitary characterss, which is the intersection of this set with the

comp4296.tex; 12/03/1999; 15:18; p.12

https://doi.org/10.1023/A:1000879906578 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000879906578

SOLVABLE FUNDAMENTAL GROUPS OF ALGEBRAIC VARIETIES 185

image (Hom(T", C*)), must clearly inherit a similar structure. In particular, being
finite, it follows that S consists of unitary characters. Therefore, the theorem
follows from Lemma 4.6.

LEMMA 4.8. LetT be a solvable group of finite rank. Suppose that every subgroup
I'" C T of finite index acts quasi-unipotently on the finite-dimensional vector space
(I'" N DT)* ® Q. Then there exists normal subgroups > I'; of I" so that

(a) I'y has finite index
(b) I'y/ T’z is nilpotent, and
(c) ' is torsion

Proof. It suffices to prove thaG = H(I")? is unipotent by Lemma 2.15 (then
I'; can be be taken to b€l')~1(G) andT', = keri(I")). The unipotency o will
follow from Lemma 1.9, once we show that the action@®fDG on DG/D?G,
by conjugation, is unipotent. The m&p, N DIN* ® Q — DG(Q)/D*G(Q) is
compatible with thd™;-actions, and is surjective, because the imagg,afi DT’
is Zariski dense irDG (Q). By hypothesis'; contains a finite index subgroup’
which acts unipotently ofl";N DI ® Q. AsT'” is Zariski dense iiG, the lemma
follows.

THEOREM 4.9.Let 7 be a quasi-Ké&hler group. Suppose tHatr is finitely gen-
erated andr /D" is solvable of finite rank for some natural numleimhen there
are normal subgroup® 2 Q 2 D"n of r so that

() 7/ P is finite
(b) P/Q is nilpotent, and
(c) Q/D"n is atorsion group

Proof. The theorem follows from Theorem 4.7 and Lemma 4.8.

COROLLARY 4.10.A polycyclic quasi-Kéhler group is virtually nilpotent

Proof. By [18, 4.6], a polycyclic group contains a torsion free subgraupf
finite index. The theorem implies thatmust contain a nilpotent subgroup of finite
index.

5. Appendix A. Construction of Kahler Metrics

Most of the results in this appendix are well known, but we indicate proofs for lack
of a suitable reference. The following is elementary, and left to the reader.

LEMMA A.1. LetW = U & V be a finite-dimensionaC-vector space. Lep; ,,

i = 1, 2be two hermitian forms ol which depend continuously on a parameter
varying over a compact sét. Suppose tha@1 , is positive semidefinite and |y
and Q»,|y are positive definite for alt. Then there exists a constant> 0 such
thatxQ1, + Q2 is positive definite for alt.
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LEMMA A.2. Let V be a holomorphic vector bundle over a complex manifold
X. Then the hyperplane bund®(1) on7:P(V) — X carries a Hermitian met-
ric which restricts to the Fubini-Study metric on every fiber. This metric will be
referred to as a Fubini-Study type metric

Proof. The line bundleD (1) is a quotient ofr*V. Let h be a Hermitian metric
on V. Then the metric o0 (1) induced fromz*h has the desired properties.

Given a Hermitian metri& on a line bundle, le€,(k) denote the first Chern
form, given locally by(i /27)39 log |Is112 wheres is holomorphic section.

LEMMA A.3. Let X be compact complex manifold with a Kahler foamlf V is
a holomorphic vector bundle anda Fubini-Study type metric o@py)(1), then
Cr*w + ¢1(h) is a Kahler form ont:P(V) — X forall C > 0.

Proof. The formCn*w + ¢1(h) is real(1, 1), and positive ifC > 0 by A.1.

LEMMA A.4. The blow up of a compact Kéhler manifold along a submanifold is
Kahler.

Proof Letw: X — X be the blowup ofX along a closed submanifolsi, and
let E be the exceptional divisor. By construction [12], there is an open tubular
neighbourhood of S, such that the preimagé embeds intdJ x P(N), where
N is the normal bundle of. The restriction ofO(—E) to U coincides with the
pullback of O (1).

Let 2, be the restriction of a Fubini-Study type metric@q—E)|;. Choose a
C® cutoff function p: X — [0, 1] which vanishes outsid& and is identically 1
on a neighbourhood of of E. Let h, be a constant metric on the trivial bundle
O(—E)|x_y. Thenh = ph; + (1 — p)h, defines a metric o0 (—E). If w is
a Kahler metric onX, then Lemma A.1 shows th&ir*w + ¢;(h) is Kahler for
C > 0.

PROPOSITION A.5Suppose thak is a compact Kéahler manifold) c X is a
divisor with normal crossings, andi° — X — D is a finite sheeted unramified
cover. Thent° has a(nonsingulajy Kahler compactificatiort’, such thaty — Y°
is a divisor with normal crossings

Proof Let X° = X — D and letn be the number of sheets §f — X°. Then
there exists a principd,-bundle P, such thatr? is isomorphic toP xg, {1...n}
Let S, — GL,(C) be the permutation representation associated to the standard
basis{e;}. Then we obtain a holomorphic vector bundié = P x5, C". There is
a holomorphic embedding® — V° induced by the magl...n} — C" given by
i — ¢;. V°is aflat vector bundle, so it has a natural flat connectioy ° extends
to a holomorphic bundl& on X with regular singularities with respect ¥ [10].
Let Y’ be the closure of° in V. It is easy to check that’ is an analytic subset of
V. We can embedt into the projective space bundie= P(V @ O). By resolution
of singularities [4, 6], there exists a commutative diagram
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Y—— P

|

Y —» P,

whereP — P is a composite of blow ups along smooth centers lying dve¥
is nonsingular, and’ — Y° is a divisor with normal crossings is Kahler by the
previous lemmas, therefore the same is tru# of

As an immediate corollary, we obtain

LEMMA A.6. A finite index subgroup of a quasi-Kéahler group is quasi-Kahler
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