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Our objective, in this paper, is to gain some understanding of those groups which
arise as fundamental groups of compact Kähler manifolds, Zariski open subsets
of compact Kähler manifolds, or normal complex algebraic varieties. The groups
of the first type have come to be known as Kähler groups, and we will refer to
those of the second as quasi-Kähler . While the complete structure of these groups
seems rather intractable at the moment (see [2] for the state of of the art), the
structure of certain subclasses are becoming much clearer. Of specific interest for
us is the class of nilpotent groups. Many restrictions on, as well as interesting
examples of, nilpotent Kähler groups have been found by Campana [8] and Carlson
and Toledo [9]. Although nilpotent quasi-Kähler groups have not been studied
systematically, nontrivial constraints can be obtained from Morgan’s work [15].
The main conclusion of this paper, is that if one casts the net a little wider, then
no really interesting new examples are obtained. In particular, we will show that a
polycyclic quasi-Kähler group is virtually nilpotent, which is to say that it contains
a nilpotent subgroup of finite index. For algebraic varieties, we can make an even
stronger statement that the fundamental group of a normal variety must be virtually
nilpotent if it is solvable and possesses a faithful representation into GLn(Q)

The first two sections of this paper are purely group theoretic. We introduce
the class of solvable groups of finite rank, which contains the class of solvable
subgroups of GLn(Q) (and polycyclic groups in particular). Canonically attached
to every such group0 is an algebraic groupH(0) defined overQ, and a represent-
ation0 → H(0) with Zariski dense image. This generalizes earlier constructions
of Malcev [14] and Mostow [17] for nilpotent and polycyclic groups, respectively.
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174 DONU ARAPURA AND MADHAV NORI

The third section contains the first main theorem, that if the quotient0 of the
fundamental group of a normal variety by a term of the derived series has finite
rank, then0 contains an extension of a nilpotent group by a torsion group as a
subgroup of finite index. The basic idea is to choose a finitely generated field of
definition, and observe that the Galois group acts on the group ofQ l points ofH(0)
for almost all primesl. This together with certain arithmetic considerations, forces
the identity componentH(0)◦ to be unipotent, and the theorem follows easily from
this. The fourth section of the paper contains the second main theorem: Ifπ is a
quasi-Kähler group, with finitely generated derived group, such that the quotient0

of π by a term of the derived series has finite rank, then0 contains a nilpotent
by torsion subgroup of finite index. Once again the strategy is to establish the
unipotency ofH(0)◦. However, this time it is reduced to a homological statement
which is shown to be a consequence a generalization of a theorem of Beauville [5]
obtained by the first author [3].

The reader will certainly have noticed that the two theorems are very similar in
content, but quite different in methods of proof. This by itself should not come as a
surprise; a number of results in algebraic geometry, such as the quasiunipotence of
local monodromy, have been proved by both arithmetic and transcendental meth-
ods. In fact, the style of the first argument is quite similar to that of Grothendieck’s
proof this theorem. What does seem a bit curious is the slight disparity of the
results. There exists finitely presented solvable subgroups of GLn(Q) which are
not virtually nilpotent or even virtually polycylic. For example, for each primep,
the group
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]∗
has this property [1]. Such groups cannot be fundamental groups of normal vari-
eties by the first theorem, but the second theorem gives no information. We leave
open the question of whether such groups can be quasi-Kähler. It is worth noting
that a second proof that nonvirtually nilpotent solvable subgroups of GLn(Q) are
not fundamental groups of smooth projective varieties can be obtained by com-
bining the above arguments with those of Simpson [20]. Once again, Simpson’s
arguments are arithmetic in nature and do not apply to nonalgebraic Kähler mani-
folds.

1. Preliminaries on Algebraic Groups

A general reference for this section is (7). LetDG = D1G be the derived subgroup
of a groupG, and setDiG = DDi−1G. If F ⊂ E is an extension of fields, andG
is an algebraic group defined overF , letGE = G×specF specE. For the remainder
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of this section,G will denote an algebraic group over a fieldF of characteristic 0,
andU(G) will be its unipotent radical. We will make use of the following result of
Mostow [16]

THEOREM 1.1.If G is as above, then the exact sequence:

1→ U(G)→ G→ G/U(G)→ 1

is split, and any two splittings are conjugate by anF rational point ofU(G).

Let V be the centralizer ofU(G) in G, and letW = V ∩ U(G). ClearlyW
is the unipotent radical ofV . It follows that 1→ W → V → V/W → 1 has a
unique splittings:V/W → V , becauseW central inV . PutN(G) = s(V /W).
By constructionN(G) is reductive and invariant under all automorphisms ofG; in
particular, it is normal inG.

LEMMA 1.2 [17, Lemma 4.6].Every normal reductive algebraic subgroup ofG is
contained inN(G).

DEFINITION 1.3. An algebraic groupG is minimal ifN(G) is trivial. LetGmin =
G/N(G); then this is a minimal algebraic group. An algebraic groupG is minimal
if and only if the centralizer ofU(G) is contained inU(G), as we see from the
definition ofN(G).

LEMMA 1.4. Let f :G→ G′ be a homomorphism of algebraic groups for which
f (G) is normal inG′. Thenf (N(G)) ⊆ N(G′) and, consequently,f induces a
homomorphismfmin:Gmin → G′min. If f is an injection(respectively surjection),
thenfmin is also an injection(respectively, surjection).

Proof. As f (N(G)) is normal and reductive inf (G), we see thatf (N(G)) ⊆
N(f (G)). As N(f (G)) is invariant under all automorphisms off (G), and in
particular the restriction of inner automorphisms ofG′ to f (G), it follows that
N(f (G)) ⊆ N(G′). This proves the first assertion.

BecauseH = f (G)∩N(G′) is normal in the reductive groupN(G′), we see that
H is reductive. Also,H is normal inf (G), and this implies thatH = N(f (G)),
Thus ker(f ) = {1} implies ker(fmin) = {1}.
LEMMA 1.5. LetG be a minimal algebraic group defined over a fieldF of char-
acteristic0. There is an affine algebraic groupA, defined overF , that acts onG
so that for all fieldsE ⊇ F , A(E)→ Aut(GE) is an isomorphism.

Proof. If G = U(G), the automorphism ofG are just automorphisms of its Lie
algebra, and these evidently form an affine algebraic group, denoted by Aut(G).

In the general case, by 1.1 we can expressG as a semidirect product ofM and
U(G), whereM is reductive. The homomorphismρ:M → Aut(U(G)) is faithful,
becauseG is minimal. LetX be the normalizer ofρ(M) in AutU(G). ThusX is
an algebraic group, andX acts naturally onU(G) andM and, hence, onG, their
semidirect product. NowG acts on itself by conjugation. ThusY , the semidirect
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product ofX andG, acts onG. For any fieldE ⊃ F , we seeX(E) → AutGE

is one to one and its image equals{φ ∈ AutGE |φ(ME) = ME}. But, if φ ∈
Aut(GE), φ(ME) is a conjugate ofME, and we deduce thatY (E) → AutGE

is surjective for all fieldsE containingF . Finally, the coordinate ringR of G is
generated as anF -algebra by a finite-dimensionalY -stable subspaceV ⊂ R. Put
K = ker(Y → GL(V )) and letA = Y/K. We see thatA is the desired algebraic
group.

The algebraic groupA in the previous lemma will be henceforth denoted by
AutG.

LEMMA 1.6. If G is a solvable minimal algebraic group, then the action ofAut(G)o

onGo/U(G) is trivial.
Proof. This follows immediately from the fact that the action of a connected

algebraic group on a torus is trivial.

LEMMA 1.7. Let3 be a directed set, and{Gλ}λ∈3 a directed system of minimal
algebraic groups, such that for eachλ 6 µ, we haveGλ ⊆ Gµ andU(Gλ) =
U(Gµ). Then there is a minimal algebraic groupG and a monomorphismfλ:Gλ→
G for eachλ ∈ 3, so thatfλ = fµ|Gλ wheneverλ 6 µ.

Proof. Let U = U(Gλ) for all λ ∈ 3. Let Sλ be the set of closed subgroups
M ⊆ Gλ such thatM → Gλ/U is an isomorphism. ThenU acts transitively on
Sλ. AlsoM → M ∩ Gλ gives aU -equivariant morphism fromSµ to Sλ whenever
λ 6 µ. Now chooseλ0 ∈ 3 so that dimSλ0 > dimSλ for all λ ∈ 3. From the
above, we see thatSµ → Sµ0 is a bijection ifλ0 6 µ. It follows that there is a
collection{Mλ | λ ∈ 3} with Mλ ∈ Sλ, andMµ ∩Gλ = Mλ wheneverλ 6 µ.

If ρλ:Mλ → AutU denotes the conjugation action ofMλ onU , we have seen
thatρλ is one to one becauseGλ is minimal. Also, the inequalityλ 6 µ implies
thatρλ(Mλ) ⊆ ρµ(Mµ). LetM be the Zariski closure of∪{ρλ(Mλ) | λ ∈ 3}. This
is reductive. LetG be the semidirect product ofM andU , and definefλ:Gλ→ M

by fλ(u) = u for all u ∈ U , andfλ = ρλ onMλ. This completes the proof.

Let G be a connected solvable group defined overF . Let U = U(G) andT
a maximal torus. As noted previously, AutU is an algebraic group which coin-
cides with the group of automorphisms of the Lie algebraN of U . There is a
homomorphism of algebraic groupsT → AutU given by conjugation.G is the
semidirect product ofT with U .

LEMMA 1.8. With the previous notation, suppose thatT acts trivially (by conjug-
ation) onU/DU thenG is isomorphic to the product ofU andT , and is therefore
nilpotent.

Proof. We have to show thatT acts trivially onU . Let S be the subgroup of
Aut(N) of automorphismsσ satisfying(1− σ )(N) ⊆ [N,N]. The elements ofS
are unipotent. By assumption, the image of the homomorphismT → Aut(U) =
Aut(N) lies inS and so the map must be trivial.
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There is a homomorphism of algebraic groupsG/DG→ AutDG/D2G given
by conjugation.

LEMMA 1.9. With the previous notation, suppose that image ofG/DG in AutDG/
D2G is unipotent. ThenG is the product ofU with T .

Proof. Note thatG/DG is a product of a reductive group, which is isomorphic
to T , and a unipotent groupU ′, which is isomorphic to the image ofU under the
projectionG→ G/DG. The action ofT onU ′ by conjugation is of course trivial.
Consider the exact sequenceDG/D2G → U/DU → U ′ → 0. By assumption,
the image ofT ⊂ G/DG in AutDG/D2G is unipotent, and therefore trivial. Thus
T acts trivially on the image ofDG/D2G in U/DU as well as on it the cokernel.
ThereforeT acts trivially onU/DU , and the lemma follows from the previous one.

2. Solvable Groups of Finite Rank

In this section, we shall associate to a solvable group0 of finite rank, an algebraic
group ofH(0) defined overQ and a homomorphismi(0):0 → H(0)(Q) with
Zariski dense image and a torsion subgroup as kernel. While0 7→ H(0) is a not a
functor, automorphisms of0 will extend to automorphisms ofH(0). Furthermore,
when0 is finitely generated, automorphisms of its profinite completion0̂ extend
to automorphisms ofH(0)Ql for all but finitely many primesl. Our construction of
H(0) is identical to Mostow’s [17] in the case where0 is polycyclic, but our proof
that this construction works for solvable groups of finite rank is necessarily a bit
more complicated. Also the results on the profinite completion are used crucially
when Galois theory is applied. For these reasons, we have chosen to give all the
details of the proofs.

Let us recall the standard construction of the proalgebraic hull ofH(π, F )

associated to a topological groupπ and a topological fieldF . One considers the
categoryC(π, F ) where the objects are pairs(G, f ) with G an affine algebraic
group defined overF , and f : π → G(F) a continuous homomorphism with
Zariski dense image. A morphism(G, f ) → (G′, f ′) in our category is simply
a commutative diagram

G
φ - G′

oS
S
S �

�
�7

π

such thatφ is homomorphism of algebraic groups. Such aφ, if it exists is unique
and necessarily an epimorphism becausef andf ′ have Zariski dense images. In
particular, by Lemma 1.4,φmin: Gmin→ G′min is defined. Set

H(π, F ) = lim←−
(G,f )

G and H(π, F) = lim←−
(G,f )

Gmin.
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Some easy observations follow.

Remark2.1.π 7→ H(π, F ) is a functor, butπ 7→ H(π, F) is not. However,
if a: π → π ′ is a continuous homomorphism with the closure ofa(π) normal in
π ′, we deduce, from Lemma 1.4 thatH(a, F ):H(π, F) → H(π ′, F ) is defined.
In particular, if 0 is a discrete group andt : 0 → 0̂ is the homomorphism to
its profinite completion, we have a natural epimorphismH(t, F ):H(0,F) →
H(0̂, F ).

Remark2.2. If F → E is a continuous homomorphism of fields, we have
a functorC(π, F ) → C(π,E). And this induces an epimorphismH(π,E) →
H(π, F)E.

Remark2.3. By construction, we have a continuous homomorphismi(π, F )
from π to the group ofF -rational points ofH(π, F). With a: π → π ′ as in
Remark 2.1, we haveH(a, F ) ◦ i(π, F ) = i(π ′, F ) ◦ a.

DEFINITION 2.4. A solvable group0 has finite rank, if there is a decreasing
sequence0 = 00 ⊃ 01 ⊃ · · · ⊃ 0m+1 = {1} of subgroups, each normal in its
predecessor, such that0i/0i+1 is Abelian andQ⊗ (0i/0i+1) is finite dimensional
for all i. The rankrk(0) = ∑m

i=0 dim(Q ⊗ (0i/0i+1)) is clearly independent of
the choice of the sequence{0i}.

This is a weakening of the notion of a polycyclic group which, in the above
terms, amounts to requiring that each0i/0i+1 is finitely generated.

For the remainder of this section, all groups considered are solvable of finite
rank with discrete topology unless indicated otherwise. We endowQ with discrete
topology, and abbreviateH(π,Q), i(π,Q),H(a,Q) byH(π) etc. The only fields
F considered have characteristic zero.

THEOREM 2.5.Let 0 be a solvable group of finite rank with discrete topology.
Then

(A) H(0) is an algebraic group(and not just a proalgebraic group).

(B) rk(0) = dimU(H(0)).

(C) The kernel ofi(0):0→ H(0)(Q) is a torsion group.

(D) The image ofi(0) is Zariski dense.

Part (D) of the theorem is immediate from the construction. When0 is poly-
cyclic, the theorem is due to Mostow [17, 4.9]. As a corollary we obtain a natural
characterization of these groups.

COROLLARY 2.6.A solvable group0 has finite rank if and only if there exists a
torsion normal subgroupN ⊂ 0 such that0/N possesses an embedding into an
affine algebraic group defined overQ.
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Proof. One direction follows from the theorem. For the converse, suppose that
N ⊆ 0 is torsion subgroup andi:0 → G(Q) a homomorphism into an algebraic
group with kernelN . We can assume thatG is solvable, after replacing it by the
Zariski closure of0. Then the sequence0i = i−1(DiG(Q)) has the required
properties.

DEFINITION 2.7. n(0, F ) = sup{dimU(G) | (G, f ) ∈ ObjC(0, F )}. Thus
n(0, F ) ∈ N ∪ {∞}.
LEMMA 2.8. If 1 → 0′ → 0 → 0′′ → 1 is exact, n(0, F ) 6 n(0′, F ) +
n(0′′, F ).

Proof.Let (G, f ) be an object ofC(0, F ). Now letG′ be the Zariski closure of
f (0′) and letG′′ = G/G′. Thenf inducesf̄ :0′′ → G′′(F ) and both(G′, f |0′)
and (G′′, f̄ ) are inC(0′, F ) andC(0′′, F ) respectively. A short exact sequence
of algebraic groups induces a short exact sequence of unipotent radicals, so the
lemma follows.

LEMMA 2.9. n(0, F ) 6 rk(0), whereF is a field of characteristic zero.
Proof.From the previous lemma, by induction on the length of the derived series

of 0, we are reduced to the case where0 is Abelian. If(G, f ) ∈ ObjC(0, F ), then
the inclusionU(G) ↪→ G is split by a homomorphismp:G→ U(G). But in this
case,U(G) is a vector space, spanned byp(f (0)), and so evidentlyrk(Q⊗ 0) >
dimU(G).

LEMMA 2.10. If (G, f ) ∈ ObjC(0, F ) satisfiesn(0, F ) = dimU(G), then
H(0,F)→ Gmin is an isomorphism. In particular,H(0,F) is an algebraic group
anddimU(H(0, F )) = n(0, F ).

Proof. For the first assertion, we need to check that any morphismφ: (G′, f ′)→
(G, f ) induces an isomorphismφmin:G′min → Gmin. Now, φ being as epimor-
phism, restricts to an epimorphism of unipotent radicals. This givesn(0, F ) >
dimU(G′) > dimU(G) = n(0, F ).

Therefore,U(G′)→ U(G) gives an isomorphism of Lie algebras, and is itself
an isomorphism. Consequently, kerφ is reductive, andφmin is an isomorphism.

For the second assertion, we need to know that such a(G, f ) exists, and this is
assured by the previous lemma.

LEMMA 2.11. Let 1 → 0′ → 0 → 0′′ → 1 be exact. Assume thati(0′, F )
extends to a homomorphismj : 0 → G(F) whereG is an algebraic group that
containsH(0′, F ). Then

(A) H(0′, F )→ H(0,F) is a monomorphism,
(B) n(0, F ) = n(0′, F )+ n(0′′, F ),
(C) 1→ keri(0′, F )→ keri(0, F )→ keri(0′′, F ) is exact.

Proof. Let q:0′ → 0 andp:0′ → 0′′ denote the given homomorphisms. By
Remark 2.1, we haveH(q, F ):H(0′, F ) → H(0,F) andH(p,F):H(0,F) →
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H(0′′, F ). Now H(p,F) is an epimorphism whose kernel contains the normal
subgroup image(H(q, F )). Thus, if we assume (A), we obtain

n(0, F ) = dimU(H(0, F ))

> dimU(H(0′, F ))+ dimU(H(0′′, F ))

= n(0′, F )+ n(0′′, F )
from the previous lemma. But Lemma 2.8 gives the reverse inequality, and this
proves part (B). That (A) implies (C) is clear by Remark 2.3, for we have

H(p,F) ◦ i(0, F ) = i(0′′, F )
and

H(q, F ) ◦ i(0′, F ) = i(0, F ) ◦ q.
To check (A), replaceG in the lemma by the Zariski closure off (0), This

makes(G, j) an object ofC(0, F ); denote byk:H(0,F) → Gmin the natural
homomorphism. Thenk ◦H(q, F ) is the composite:H(0′, F )→ G→ Gmin. By
Lemma 1.4, this is an inclusion, This completes the proof of the lemma.

LEMMA 2.12. The(G, j) in the previous lemma exists if

(A) 0′′ ∼= Z, or
(B) 0′′ is a Abelian torsion group.

Proof. Case (A): Here0 is a semidirect product. Chooseγ ∈ 0 that maps to
a generator of0′′. Thenσ (δ) = γ δγ −1, for δ ∈ 0′ gives an automorphism of0′,
and induces therefore an automorphismH(σ, F ) of the algebraic groupH(0′, F ).
By Lemma 1.5,A = AutH(0,F) is an algebraic group. LetG be the semidirect
product ofA andH(0,F), and definej :0→ G(F) by j (δ) = i(0′)(δ) for δ ∈ 0′
andj (γ ) = H(σ, F ).

Case (B): First assume that0′′ is finite. Letρ:H(0′, F )→ GL(V ) be a faithful
representation whereV is finite-dimensional vector space defined overF . Consider
the induced representationW = F [0] ⊗F [0′] V . LetG = GL(W), andj :0 → G

be the action of0 onW . Clearly, there is a monomorphismk:H(0′, F )→ GL(W)
so thatk ◦ i(0′, F ) = j |0′, so the result follows.

In the general case, letS = {π ⊆ 0 |π ⊇ 0′, π/0′ is finite}. If π1, π2 ∈ S
andπ1 ⊆ π2, thenπ1/π2 is finite. Therefore, from the first part of the previous
lemma,H(π1, F )→ H(π2, F ) has no kernel. From Lemma 1.7, we get

0 = lim−→
π∈S

π → lim−→
π∈S

H(π, F )(F )→ G(F)

and this completes the proof.
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We can now prove Theorem 2.5.

Proof. Part (A) has already proved in Lemma 2.10. The theorem is certainly true
if 0 ∼= Z, it is also true if0 is a commutative torsion group by Lemma 2.9. For the
general case, we note that0 has a filtration:0 = 00 ⊃ 01 ⊃ · · · ⊃ 0m+1 = {1}
such that the successive quotients are either Abelian torsion groups or isomorphic
to Z. We proceed by induction onm, and so we can assume the theorem for01.
Now Lemmas 2.11, 2.12 give the theorem for0.

LEMMA 2.13. If 0 is solvable of finite rank, thenH(0,F) → H(0)F an iso-
morphism.

Proof. PutG = H(0)F and letf :0 → H(0)F (F ) be given byf (γ ) =
i(0)(0) for γ ∈ 0. Then(G, f ) ∈ ObjC(0, F ) and dimU(G) = dimU(H(0)) =
rk0 by the theorem. From Lemma 2.10,H(0,F) → Gmin = G is an isomorph-
ism, and so the lemma is proved.

THEOREM 2.14.Let0 be a finitely generated solvable group of finite rank. There
is a finite set of prime numbersS so thatH(0)Ql → H(0̂,Ql) is an isomorphism
for all primesl /∈ S.

Proof. We may regardH(0) as an algebraic subgroup of(GLn)Q. Because
0 is finitely generated,i(0)(0) ⊂ GLn(S−1Z) for some finite set of primesS.
If l is a prime not inS, then GLn(S−1Z) ⊂ GLn(Zl), and the latter is a pro-
finite group. This gives a continuous homomorphismfl: 0̂ → GLn(Zl). Because
image(i(0)) ⊂ H(0)(Q l) and the second group is closed in GLn(Q l), we see
thatfl(0̂) ⊂ H(0)(Q l). The object(H(0)Q l

, fl) of C(0̂,Q l) gives an epimor-
phismH(0̂,Q l) → H(0)Q l

. By the previous lemma and Remark 2.1, we have
H(0)Q l

→ H(0̂,Q l), and these arrows are inverses of each other.

LEMMA 2.15. If 0 is solvable of finite rank and ifH(0)◦ is unipotent, then there
are normal subgroups01 ⊇ 02 of 0 so that

(a) 0/01 is finite,
(b) 01/02 is nilpotent, and
(c) 02 is torsion.

Proof. We take01 = i(0)−1H(0)◦(Q) and02 = ker(i(0)). Then01/02 ⊂
H(0)◦(Q) and the latter is nilpotent. From Theorem 2.502 is torsion, and0/01 ⊂
H(0)/H(0)◦(Q) is finite.

3. Fundamental Groups of Varieties

LetY be a normal variety defined over a subfieldK ⊂ Cwith aK-rational pointy0.
For any field extensionK ′ ⊇ K, setYK ′ = Y ×spec KspecK ′. Let πalg

1 (X) denote
the algebraic fundamental group of a connected schemeX (with an unspecified
base point), and̂π the profinite completion of a groupπ . Then we have a split
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exact sequence 1→ π̂1(Y
an
C ) → π

alg
1 (YK) → Gal(K̄/K) → 1, (where the

splitting depends ony0) (13, IX 6.4, XII 5.2). Thus Gal(K̄/K) acts continuously
on π̂1(YC), and therefore also on the AbelianizationH1(Y

an
C ,Z) ⊗ Ẑ and its pro-l

partH1(Y
an
C ,Z)⊗ Zl.

LEMMA 3.1. Let Y be a normal variety defined over a finitely generated field
K ⊂ C. ThenH0(Gal(K̄/K),H1(Y

an
C ⊗ Zl)) is finite.

Proof. The groupH1(Y )/(torsion)⊗Zl is dual toH 1
et(YK̄,Zl) as a Gal(K̄/K)-

module, thus it suffices to prove that the second group has no invariants. Letp: Ỹ →
YK ′ be a desingularization defined over a finite extensionK ′ ⊇ K. By Zariski’s
main theorem the geometric fibers ofp are connected, thusH 1

et(YK̄,Zl) injects
into H 1

et(ỸK̄,Zl), and this is compatible with the Gal(K̄/K ′)-action.H 1(ỸK̄) has
no Gal(K̄/K ′)-invariants, because the eigenvalues of the Frobenius at any prime
of good reduction have absolute valueq1/2 or q by [11, Sect. 3.3].

Remark3.2. The argument can be simplified (and lengthened) in a couple of
ways. An appropriate Lefschetz type argument allows one to reduce to the case
whereY is a curve where the relevant estimate on eigenvalues of the Frobenius
goes back to Weil. Alternatively, whenY is curve, one can deduce the finiteness of
H0(Gal(K̄/K),H1(Y

an
C ⊗ Zl)) directly from class field theory.

THEOREM 3.3.LetX be a normal(not necessarily complete) algebraic variety
defined overC. Let π = D0π ⊇ D1π ⊇ · · · be the derived series ofπ =
π1(X, x0). If there is a natural numbern so thatπ/Dnπ is solvable of finite rank,
then there are normal subgroupsP ⊇ Q ⊇ Dnπ of π so that

(a) π/P is finite,
(b) P/Q is nilpotent, and
(c) Q/Dnπ is a torsion group.

Proof. Put 0 = π/Dnπ , andT = H(0)0/U(H(0)). By Lemma 2.15, the
theorem follows once it has been proved thatT is trivial. We may assume thatX
andx0 are defined over a finitely generated fieldK ⊂ C. There is an action of
Gal(K̄/K) on π̂ , and also on0̂, because this is a quotient ofπ̂ by the closure
of Dn(π̂). Choose a primel, so that0 → H(0)(Q) extends to a continuous
homomorphism0̂ → H(0)(Ql). For such a prime,H(0̂,Ql) = H(0)Ql by The-
orem 2.14. Thus the Galois action on0̂ yields a homomorphism from Gal(K̄/K)
to the group ofQl-rational points ofG = Aut (H(0)). After replacingK by a
finite extension, if necessary, we can assume image(ρ) ⊂ G0(Ql). By Lemma 1.6,
the action of Gal(K̄/K) onTQl is trivial. Letπ ′ = ker[π → (H(0)/H(0)0)(Q)].
Thenπ ′ = π1(Y, y0) whereY is an etale cover ofX. The compositêπ ′ ↪→ π̂ →
(H(0)/U(H(0))(Q l) factors throughH1(Y,Z) ⊗ Ẑ = π̂ ′ab → T (Q l), T (Q l)

contains an open pro-l-group, thusπ̂ ′ further factors through

h:H1(Y )⊗ Ẑ→ H1(Y )⊗ Zl ⊕ A→ T (Q l),

comp4296.tex; 12/03/1999; 15:18; p.10

https://doi.org/10.1023/A:1000879906578 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000879906578


SOLVABLE FUNDAMENTAL GROUPS OF ALGEBRAIC VARIETIES 183

whereA is a finite group. However,H0(Gal(K̄/K),H1(Y )⊗ Zl) is finite by Lem-
ma 3.1. So we deduce that the image ofH1(Y ) ⊗ Zl in T (Q l) is finite, because
Gal(K̄/K) acts trivially onT (Q l). However the imageh is Zariski dense. ThusT
is finite and connected, and therefore trivial. This proves the theorem.

COROLLARY 3.4.If the fundamental group of a normal complex variety is solv-
able and possesses a faithful representation intoGLn(Q), then it is virtually nilpo-
tent, i.e. it must contain a nilpotent subgroup of finite index.

Proof. We can assume that the fundamental group is torsion free after passing
to a subgroup of finite index [19, Lemma 8]. The theorem implies that this must
contain a nilpotent group of finite index.

4. Fundamental Groups of Kähler Manifolds

A group0 will be called quasi-Kähler if it there exists a connected compact Kähler
manifoldX, and a divisor with normal crossingsD ⊂ X, such that0 ∼= π1(X−D).
(Note that by resolution of singularities [4, 6], it is enough to assume thatD is an
analytic subset.)

The proof of the following lemma will be given in the appendix.

LEMMA 4.1. A subgroup of a quasi-Kähler group of finite index is quasi-Kähler.

LEMMA 4.2. LetA be a finitely generated Abelian group, andM a nontrivial one
dimensionalC[A]-module. ThenHi(A,M) = 0 for all i.

Proof.This is clear for cyclic groups by direct computation. In general, express
A as a product of cyclic groups

∏
i Ci andM as a tensor product ofCi-modules,

and apply the Künneth formula.
Set0ab = 0/D0.

LEMMA 4.3. Suppose that0 is a finitely generated group andA = 0/N an
abelian quotient. Suppose thatM is a nontrivial one-dimensionalA-module then

H 1(0,M) ∼= HomZ[A](Nab,M) ∼= HomQ[A](Nab⊗Q,M).
Proof. From the Hochschild–Serre spectral sequence associated to the extension

1→ N → 0→ A→ 0, we obtain an exact sequence

0→ H 1(A,M)→ H 1(0,M)→ H 0(A,H 1(N,M))→ H 2(A,M).

By the previous lemma, this gives an isomorphismH 1(0,M) ∼= H 0(A,H 1(N,M)).
Furthermore,H 1(N,M) ∼= Hom(N,M) = Hom(Nab,M) asA-modules. There-
foreH 0(A,H 1(N,M)) ∼= HomZ[A](Nab,M).

Given a characterρ ∈ Hom(0,C∗), letCρ denote the associated0-module. We
define61(0) to be the set of charactersρ ∈ Hom(0,C∗) such thatH 1(0,Cρ) is
nonzero. Let us say that a0-moduleV is quasi-unipotent if there is a subgroup
0′ ⊆ 0 of finite index whose elements act unipotently onV .
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LEMMA 4.4. LetA be a finitely generated Abelian group andV a finite dimen-
sionalC[A]-module. ThenA acts quasi-unipotently onV if and if the only charac-
tersρ ∈ Hom(A,C∗) for whichHomC[A](V ,Cρ) 6= 0 are torsion characters(i.e.
elements ofHom(0,C∗) of finite order).

Proof. DefineVρ to be the generalized eigenspace associated to a characterρ.
In other words,Vρ is the maximal subspace on whicha − ρ(a) is nilpotent for all
a ∈ A. V is a direct sum of these eigenspaces, thus we can assume thatV = Vρ 6=
0. To complete the proof, observe that Hom(Vρ,Cρ′) 6= 0 if and only if ρ = ρ ′,
and thatVρ is quasi-unipotent if and only ifρ is torsion.

LEMMA 4.5. Let0 be a finitely generated group and0′ ⊆ 0 a subgroup of finite
index such thatV = (0′ ∩ D0)ab ⊗ Q is finite-dimensional. Then0′ acts quasi-
unipotently onV if and only if61(0′) ∩ image(Hom(0,C∗) → Hom(0′,C∗))
consists of torsion characters.

Proof. SetN = 0′∩D0. Then0′/N is isomorphic to the image of0′ in 0ab and,
therefore, Hom(0′/N,C∗) is coincides with image(Hom(0,C∗)→ Hom(0′,C∗)).
Thus, Lemma 4.3 implies that

S = (61(0′)− {1}) ∩ image(Hom(0,C∗)→ Hom(0′,C∗))

is the set of nontrivial charactersρ ∈ Hom(0′/N,C∗) for which HomC[A](V ⊗
C,Cρ) 6= 0. Thus0′/N acts quasi-unipotently onV if and only if S consists
of torsion characters by the previous lemma. The0′ action onV factors through
0′/N , thus the lemma is proved.

LEMMA 4.6. Let K ⊇ Q be a finite extension, andOK the ring of integers
of K. Let {σ1, . . . σn} be the set of all embeddingsK into C. Then for any fi-
nitely generated group0, Hom(0,U(1))∩⋂i σi ◦Hom(0,O∗K) consists of torsion
characters.

Proof. This follows from Kronecker’s theorem that an algebraic integer is a root
of unity if and only if all its Galois conjugates have absolute value one.

THEOREM 4.7.Let0 be a quasi-Kähler group such thatD0 is a finitely gener-
ated. Then for any subgroup0′ ⊆ 0 of finite index,0′ acts quasi-unipotently on
the finite-dimensional vector space(0′ ∩D0)ab ⊗Q.

Proof. By Lemma 4.5, it is enough to show that the intersectionS of 61(0′)
and the image of Hom(0,C∗) consists of torsion characters. The subgroup0′ ∩
D0 ⊆ D0 has finite index, and is therefore finitely generated. Thus the set of
characters of0′ which correspond to one-dimensional quotients of(0′∩D0)ab⊗C
are defined over the ring of integers of a finite extensionK of Q. It then follows
from Lemma 4.3 thatS is a finite subset of Hom(0,O∗K). S is evidently stable
under Aut(C) and thus lies in∩σ :K↪→C σ ◦ Hom(0,O∗K).

Theorem V.1.6 of [3] implies that61(0′) is a finite union of translates of subtori
of Hom(0′) by unitary characters.S, which is the intersection of this set with the
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image(Hom(0,C∗)), must clearly inherit a similar structure. In particular, being
finite, it follows that S consists of unitary characters. Therefore, the theorem
follows from Lemma 4.6.

LEMMA 4.8. Let0 be a solvable group of finite rank. Suppose that every subgroup
0′ ⊆ 0 of finite index acts quasi-unipotently on the finite-dimensional vector space
(0′ ∩D0)ab ⊗Q. Then there exists normal subgroups01 ⊃ 02 of 0 so that

(a) 01 has finite index,
(b) 01/02 is nilpotent, and
(c) 02 is torsion.

Proof. It suffices to prove thatG = H(0)o is unipotent by Lemma 2.15 (then
01 can be be taken to bei(0)−1(G) and02 = keri(0)). The unipotency ofG will
follow from Lemma 1.9, once we show that the action ofG/DG onDG/D2G,
by conjugation, is unipotent. The map(01 ∩ D0)ab ⊗ Q → DG(Q)/D2G(Q) is
compatible with the01-actions, and is surjective, because the image of01 ∩ D0
is Zariski dense inDG(Q). By hypothesis,01 contains a finite index subgroup0′′
which acts unipotently on(01∩D0)ab⊗Q. As0′′ is Zariski dense inG, the lemma
follows.

THEOREM 4.9.Letπ be a quasi-Kähler group. Suppose thatDπ is finitely gen-
erated andπ/Dnπ is solvable of finite rank for some natural numbern. Then there
are normal subgroupsP ⊇ Q ⊇ Dnπ of π so that

(a) π/P is finite,
(b) P/Q is nilpotent, and
(c) Q/Dnπ is a torsion group.

Proof. The theorem follows from Theorem 4.7 and Lemma 4.8.

COROLLARY 4.10.A polycyclic quasi-Kähler group is virtually nilpotent.
Proof. By [18, 4.6], a polycyclic group contains a torsion free subgroupπ of

finite index. The theorem implies thatπ must contain a nilpotent subgroup of finite
index.

5. Appendix A. Construction of Kähler Metrics

Most of the results in this appendix are well known, but we indicate proofs for lack
of a suitable reference. The following is elementary, and left to the reader.

LEMMA A.1. LetW = U ⊕ V be a finite-dimensionalC-vector space. LetQi,t ,
i = 1,2 be two hermitian forms onW which depend continuously on a parametert

varying over a compact setT . Suppose thatQ1,t is positive semidefinite andQ1,t |U
andQ2,t |V are positive definite for allt . Then there exists a constantx > 0 such
thatxQ1,t +Q2,t is positive definite for allt .
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LEMMA A.2. Let V be a holomorphic vector bundle over a complex manifold
X. Then the hyperplane bundleO(1) onπ :P(V ) → X carries a Hermitian met-
ric which restricts to the Fubini-Study metric on every fiber. This metric will be
referred to as a Fubini-Study type metric.

Proof. The line bundleO(1) is a quotient ofπ∗V . Let h be a Hermitian metric
onV . Then the metric onO(1) induced fromπ∗h has the desired properties.

Given a Hermitian metrich on a line bundle, let̃c1(h) denote the first Chern
form, given locally by(i/2π)∂∂̄ log ||s||2h wheres is holomorphic section.

LEMMA A.3. LetX be compact complex manifold with a Kähler formω. If V is
a holomorphic vector bundle andh a Fubini-Study type metric onOP(V )(1), then
Cπ∗ω + c̃1(h) is a Kähler form onπ :P(V )→ X for all C � 0.

Proof. The formCπ∗ω + c̃1(h) is real(1,1), and positive ifC � 0 by A.1.

LEMMA A.4. The blow up of a compact Kähler manifold along a submanifold is
Kähler.

Proof. Let π : X̃ → X be the blowup ofX along a closed submanifoldS, and
let E be the exceptional divisor. By construction [12], there is an open tubular
neighbourhoodU of S, such that the preimagẽU embeds intoU × P(N), where
N is the normal bundle ofS. The restriction ofO(−E) to U coincides with the
pullback ofO(1).

Let h1 be the restriction of a Fubini-Study type metric toO(−E)|Ũ . Choose a
C∞ cutoff functionρ: X̃ → [0,1] which vanishes outsidẽU and is identically 1
on a neighbourhood ofV of E. Let h2 be a constant metric on the trivial bundle
O(−E)|X−V̄ . Thenh = ρh1 + (1 − ρ)h2 defines a metric onO(−E). If ω is
a Kähler metric onX, then Lemma A.1 shows thatCπ∗ω + c̃1(h) is Kähler for
C � 0.

PROPOSITION A.5.Suppose thatX is a compact Kähler manifold,D ⊂ X is a
divisor with normal crossings, andY ◦ → X − D is a finite sheeted unramified
cover. ThenY ◦ has a(nonsingular) Kähler compactificationY , such thatY − Y ◦
is a divisor with normal crossings.

Proof. LetX◦ = X − D and letn be the number of sheets ofY ◦ → X◦. Then
there exists a principalSn-bundleP , such thatY o is isomorphic toP ×Sn {1 . . . n}
Let Sn → GLn(C) be the permutation representation associated to the standard
basis{ei}. Then we obtain a holomorphic vector bundleV ◦ = P ×Sn Cn. There is
a holomorphic embeddingY ◦ 7→ V ◦ induced by the map{1 . . . n} → Cn given by
i 7→ ei . V ◦ is a flat vector bundle, so it has a natural flat connection∇. V ◦ extends
to a holomorphic bundleV onX with regular singularities with respect to∇ [10].
Let Y ′ be the closure ofY ◦ in V . It is easy to check thatY ′ is an analytic subset of
V . We can embedV into the projective space bundleP = P(V ⊕O). By resolution
of singularities [4, 6], there exists a commutative diagram
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Y ⊂ - P̃

Y ′
?
⊂ - P ,

?

whereP̃ → P is a composite of blow ups along smooth centers lying overD, Y
is nonsingular, andY − Y ◦ is a divisor with normal crossings.̃P is Kähler by the
previous lemmas, therefore the same is true ofY .

As an immediate corollary, we obtain

LEMMA A.6. A finite index subgroup of a quasi-Kähler group is quasi-Kähler.
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