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Abstract

We find sufficient conditions on explosion/non-explosion for continuous-state branch-
ing processes with competition in a Lévy random environment. In particular, we identify
the necessary and sufficient conditions on explosion/non-explosion when the compe-
tition function is a power function and the Lévy measure of the associated branching
mechanism is stable.
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1. Introduction

Continuous-state branching processes in a random environment arise as scaling limits of
Bienaymé–Galton–Watson processes, which were introduced in Smith [26] and Smith and
Wilkinson [27]; see Kurtz [13] for early work on diffusion approximations of branching
processes in a random environment. A recent study of the Feller branching processes in a
Brownian environment can be found in Böinghoff and Hutzenthaler [6], where the asymptotics
of the survival probability are studied for different regimes. The introduction of branching
processes under the continuous-state setting allows us to apply the stochastic differential equa-
tion (SDE) and Lévy process techniques in its study. We refer to Kyprianou [14] and Li [20]
for a comprehensive introduction to continuous-state branching processes and the associated
stochastic equations.

To understand the effect of a random environment on the demography of the branching
process, a continuous-state branching process with catastrophes was first proposed in Bansaye
et al. [3] as a continuous-state branching process in a Lévy environment (CBLE) where the
random environment is modelled by a Lévy process with sample paths of bounded variation.
More general CBLEs were introduced and studied in He et al. [12] and Palau and Pardo [24] as
unique non-negative strong solutions to certain SDEs driven by Brownian motions and Lévy
processes associated to both the branching mechanism and the random environment. We refer
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Explosion of CBLE with competition 69

to Bansaye et al. [2] for discussions on the convergence of discrete-state population models to
CBLEs.

The quenched Laplace transform for the branching process in a random environment can
be expressed using random cumulant semigroups conditional on the environment. He et al.
[12] showed a necessary and sufficient condition in terms of Grey’s condition for the CBLE to
become extinct. Bansaye et al. [4] also obtained the speed of extinction for CBLEs for which
the Lévy environment process fluctuates.

In another development on continuous-state branching processes, Lambert [15] introduced
a logistic branching process to incorporate competition among individuals in the continuous-
state branching process. Foucart [11] studied the boundary behaviour of continuous-state
branching processes with logistic competition and obtained an integral test on explosion/non-
explosion. A general competition mechanism was introduced in Ba and Pardoux [1] and Ma
[21]. Under the moment condition

∫ ∞
0 (z ∧ z2)μ(dz) < ∞ on the Lévy measure μ for the

branching mechanism, Ma [21] established the Lamperti transformation between continuous-
state branching processes with competition and strong solutions of stochastic equations
driven by Lévy processes without negative jumps; see also Berestycki et al. [5] for flows of
continuous-state branching processes with competition. We refer to Li et al. [18] for recent
work on ergodic results of continuous-state branching processes with immigration and com-
petition. The continuous-state branching process with immigration and competition in a Lévy
random environment was introduced in [24] with its long-term behaviours studied. The extinc-
tion and coming down from infinity behaviours have also been studied in Leman and Pardo
[16] for CBLEs with competition.

The explosion/non-explosion conditions for continuous-state branching processes are well
known: see Grey [10] for an integral test on the Laplace exponent of the associated branching
mechanism. An integral test on explosion/non-explosion was further proved in Leman and
Pardo [17] for a continuous-state branching process in a Brownian environment with a special
branching mechanism that is associated to the Laplace transform of a subordinator and with
logistic competition. It was also pointed out that a continuous-state branching process in a
Lévy environment is conservative, i.e. the explosion cannot happen, if the Lévy measure μ for
the branching mechanism satisfies the moment condition; see Lemma A.1 of [4]. On the other
hand, it is known that sufficiently large competition can prevent an explosion from happening;
see Foucart [11] and Li et al. [19]. Some sufficient conditions on explosion were found in [19]
for general continuous-state non-linear branching processes whose competition mechanism is
a general function and for which the Lévy measure μ for the branching mechanism satisfies
the moment condition. To the best of our knowledge, the explosion/non-explosion conditions
for CBLEs with general competition and with general Lévy measure μ have not been studied
systematically.

Integral tests on explosion/non-explosion are no longer available for the above-mentioned
branching processes with general competition, and as an effective alternative, an approach
initiated by Mufa Chen comes into play. Such an approach finds successful applications in
characterizing the boundary behaviours of SDEs related to the continuous-state branching
processes; see Li et al. [19] and Ma et al. [22]. In this paper, applying the above-mentioned
approach to suitable test functions, we find sufficient conditions on explosion/non-explosion
for CBLEs with general competition. In particular, we identify necessary and sufficient con-
ditions on explosion/non-explosion when the competition function is a power function and
the jump part of the branching mechanism is an α-stable process for α ∈ (0, 2), which helps
to determine the interplay between competition and large jumps of the branching on the
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explosion. As a corollary we also show that Neveu’s CBLE with competition cannot explode.
These results suggest that the random environment can neither cause the explosion nor prevent
the explosion from happening.

The rest of the paper is arranged as follows. In Section 2 we introduce the CBLE with
competition and the approach for showing explosion and non-explosion of CBLEs with
competition. Our main results are stated and proved in Section 3.

2. CBLEs with competition

Let (�, F , (Ft)t≥0, P) be a filtered probability space satisfying the usual hypotheses. Let
φ be a branching mechanism given by

φ(λ) = −b1λ + b2
2λ

2 +
∫ ∞

0
(e−λz − 1 + λz1{z<1})μ(dz), λ ≥ 0,

where b1, b2 ∈R and (1 ∧ z2)μ(dz) is a finite measure on (0, ∞). To model the mechanism of
a random environment, let (L(t))t≥0 be a Lévy process with Lévy–Itô decomposition

L(t) = βt + σB(e)(t) +
∫ t

0

∫
[−1,1]

(ez − 1)Ñ(e)(ds, dz)

+
∫ t

0

∫
[−1,1]c

(ez − 1)N(e)(ds, dz),

where β ∈R, σ ≥ 0, (B(e)(t))t≥0 is a Brownian motion, and N(e)(ds, dz) is a Poisson random
measure on R+ ×R with intensity dsν(dz) satisfying

∫
R

(1 ∧ z2)ν(dz) < ∞ and Ñ(e)(ds, dz) =
N(e)(ds, dz) − dsν(dz).

Let b0(y) be a competition mechanism, that is, y �→ b0(y) is a continuous non-decreasing
function on [0, ∞) with b0(0) = 0. A CBLE with competition can be constructed as the unique
strong solution of the following stochastic equation:

Yt = Y0 +
∫ t

0
(b1Ys − b0(Ys)) ds +

∫ t

0

√
2b2

2Ys dB(b)(s) +
∫ t

0

∫ 1

0

∫ Ys−

0
zÑ(b)(ds, dz, du)

+
∫ t

0

∫ ∞

1

∫ Ys−

0
zN(b)(ds, dz, du) +

∫ t

0
Ys− dL(s), (1)

where (B(b)(t))t≥0 is a Brownian motion, N(b)(ds, dz, du) is a Poisson random measure on
R

3+ with intensity dsμ(dz) du, and Ñ(b)(ds, dz, du) = N(b)(ds, dz, du) − dsμ(dz) du. We also
assume that (B(b)(t))t≥0, (B(e)(t))t≥0, N(b)(ds, dz, du) and N(e)(ds, dz) are independent of each
other.

For u ≥ 0, let

τ−
u := inf{t ≥ 0 : Y(t) ≤ u} and τ+

u := inf{t ≥ 0 : Y(t) ≥ u}
and

τ0 := τ−
0 and τ∞ := lim

u→∞ τ+
u

with the convention inf ∅ = ∞. Throughout this paper, we use the notation

Py0{ · } = P{ · | Y0 = y0} and Ey0 [·] =E[ · | Y0 = y0], y0 ≥ 0.
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A [0, ∞]-valued process (Yt)t≥0 with càdlàg path is a solution to SDE (1) if it satisfies (1)
up to explosion time τ∞ and Yt := ∞ for all t ≥ τ∞. It is known that SDE (1) has a unique
non-negative strong solution; see Theorem 1 of [24].

Let L be the generator of the process (Yt)t≥0. By Itô’s formula, we get for g ∈ C2(R)

Lg(y) = [βy + b1y − b0(y)]g′(y) +
(

1

2
σ 2y2 + b2

2y

)
g′′(y)

+ y
∫ 1

0
[g(y + z) − g(y) − g′(y)z]μ(dz) + y

∫ ∞

1
[g(y + z) − g(y)]μ(dz)

+
∫

[−1,1]
[g(yez) − g(y) − y(ez − 1)g′(y)]ν(dz)

+
∫

[−1,1]c
[g(yez) − g(y)]ν(dz). (2)

In this paper we adopt arguments that were first developed by Mufa Chen to classify the
boundaries for Markov jump processes via conditions on the generators; see Chen [7, 8] and
Theorems 2.25 and 2.27 of Chen [9]. Also see Meyn and Tweedie [23] for more recent results.
These techniques are applied in Li et al. [19], Ma et al. [22], and Ren et al. [25] to study
the boundary behaviours for SDEs associated to continuous-state branching processes. By a
simple modification of the proof of Proposition 2.1 in [25], we have the following proposition
on solution Y to SDE (1).

Proposition 1. If there exist a sequence of strictly positive constants (dn)n≥1 and non-negative
functions gn ∈ C2((0, ∞)) satisfying, for all large enough n ≥ 1,

(i) limy→∞ gn(y) = ∞,

(ii) Lgn(y) ≤ dngn(y) for all y ∈ [1/n, ∞),

then Py0{τ∞ < ∞} = 0 for any y0 > 0.

Proposition 2. If there exist a non-negative bounded and strictly increasing function g ∈
C2((0, ∞)) and positive constants d0, ȳ > 0 satisfying

Lg(y) ≥ d0g(y) for all y ≥ ȳ,

then Py0{τ∞ < ∞} > 0 for any y0 > ȳ.

Proof. Taking Xt = t and g̃(x, y) = g(y) e−d0x in Proposition 2.2 in Ren et al. [25], we have,
for any m > ȳ,

t �→ Mt := g(Yt∧τ+
m ∧τ−

ȳ
) e−d0t − g(Y0) +

∫ t

0
g(Ys∧τ+

m ∧τ−
ȳ

)d0 e−d0s ds

−
∫ t

0
e−d0sLg(Ys)1{s≤τ+

m ∧τ−
ȳ } ds
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is a local martingale. Then, for any m > y0 > ȳ,

Ey0

[
g
(
Yt∧τ+

m ∧τ−
ȳ

)
e−d0t] +

∫ t

0
Ey0

[
d0 e−d0sg

(
Ys∧τ+

m ∧τ−
ȳ

)]
ds

= g(y0) +
∫ t

0
Ey0

[
e−d0sLg(Ys)1{s≤τ+

m ∧τ−
ȳ }

]
ds.

Letting t → ∞, by the assumptions and the dominated convergence theorem we have

∫ ∞

0
Ey0

[
d0 e−d0sg

(
Ys∧τ+

m ∧τ−
ȳ

)]
ds = g(y0) +

∫ ∞

0
Ey0

[
e−d0sLg(Ys)1{s≤τ+

m ∧τ−
ȳ }

]
ds

≥ g(y0) +
∫ ∞

0
Ey0

[
e−d0sd0g(Ys)1{s≤τ+

m ∧τ−
ȳ }

]
ds,

which implies

g(y0) ≤Ey0

[∫ ∞

τ+
m ∧τ−

ȳ

d0 e−d0sg
(
Yτ+

m ∧τ−
ȳ

)
ds

]

=Ey0

[
g
(
Yτ+

m ∧τ−
ȳ

)
e−d0(τ+

m ∧τ−
ȳ )]

=Ey0

[
g
(
Yτ+

m

)
e−d0τ

+
m 1{τ+

m <τ−
ȳ }

] +Ey0

[
g
(
Yτ−

ȳ

)
e−d0τ

−
ȳ 1{τ+

m >τ−
ȳ }

]
.

Since t �→ Yt is right continuous, then Yτ−
ȳ

≤ ȳ < y0 < m ≤ Yτ+
m

. Notice that g is non-negative

bounded and strictly increasing. Then

g(y0) ≤ ḡEy0

[
1{τ+

m <τ−
ȳ } e−d0τ

+
m
] + g(ȳ),

where ḡ := supy g(y) < ∞. Letting m → ∞, we get

g(y0) ≤ ḡEy0

[
1{τ∞≤τ−

ȳ } e−d0τ∞] + g(ȳ).

That is,

ḡEy0

[
1{τ∞≤τ−

ȳ }1{τ∞<∞}
] ≥ g(y0) − g(ȳ),

which implies

Py0{τ∞ < ∞} ≥ g(y0) − g(ȳ)

ḡ
> 0.

This proves the desired result. �
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3. Main results

In this section we provide the sufficient conditions for explosion and non-explosion of the
CBLE with competition. Let (Yt)t≥0 be the unique strong solution of (1).

Let B(p, q) denote the Beta function with parameters p, q > 0. By integration by parts and
L’Hôpital’s rule, it is not hard to see the following.

Lemma 1. For any δ, y > 0 and α ∈ (0, 1), we have

∫ ∞

0
[(y + z)−δ − y−δ]z−1−α dz = −δcα,δy−α−δ (3)

and
∫ ∞

0
[ln(y + z) − ln y]z−1−α dz = cα,0y−α, (4)

where cα,δ := α−1B(α + δ, 1 − α).

Remark 1. Note that cα,0 = π/(α sin(απ )).

For two σ -finite measures μ1 and μ2 on (0, ∞), we write μ1(dz) ≤ μ2(dz) if μ1(B) ≤ μ2(B)
for any Borel set B in (0, ∞). We first present a sufficient condition on explosion of the solution
Y to SDE (1).

Theorem 1. Suppose that there exist constants b0 ≥ 0, q0 ∈R, ā, A > 0, and α ∈ (0, 1) such
that

b0(y) ≤ b0yq0 for all y ≥ A and āz−1−α1{z≥A} dz ≤ 1{z≥A}μ(dz).

Then Py0{τ∞ < ∞} > 0 for large enough y0 > 0 if one of the following conditions holds:

(i) b0 = 0,

(ii) q0 < 2 − α and b0 > 0,

(iii) q0 = 2 − α and 0 < b0 < ācα,0.

Proof. Without loss of generality we can assume that A > 1. Given δ ∈ (0, ∞), let g(y) =
e−y−δ

for y ≥ 0. Then

g′(y) = δy−δ−1g(y) and g′′(y) = [δ2y−2δ−2 − δ(1 + δ)y−δ−2]g(y).

It follows that g′(y) > 0 and g′′(y) > −δ(1 + δ)y−δ−2g(y). By Taylor’s formula,

∫ 1

0
[g(y + z) − g(y) − zg′(y)]μ(dz) = 1

2

∫ 1

0
z2g′′(ξ1)μ(dz)

≥ −1

2
δ(1 + δ)y−δ−2g(y + 1)

∫ 1

0
z2μ(dz) (5)
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for some ξ1 ∈ [y, y + 1], and

∫ A

1
[g(y + z) − g(y)]μ(dz) ≥ 0. (6)

Moreover, by the assumptions and (3), we have

∫ ∞

A
[g(y + z) − g(y)]μ(dz)

≥ ā
∫ ∞

A
[g(y + z) − g(y)]z−1−α dz

= āg(y)
∫ ∞

A

[
e−(y+z)−δ+y−δ − 1

]
z−1−α dz

≥ āg(y)
∫ ∞

A
[−(y + z)−δ + y−δ]z−1−α dz

= āg(y)
∫ ∞

0
[−(y + z)−δ + y−δ]z−1−α dz − āg(y)

∫ A

0
[−(y + z)−δ + y−δ]z−1−α dz

= āg(y)δcα,δy−α−δ − āg(y)δξ−1−δ
2

∫ A

0
z−α dz

≥ g(y)δācα,δy−α−δ − g(y)δā(1 − α)−1A1−αy−1−δ, (7)

where we used the mean-value theorem for the last equality and ξ2 ∈ [y, y + A]. In view of
(5)–(7) we get

y
∫ 1

0
[g(y + z) − g(y) − zg′(y)]μ(dz) + y

∫ ∞

1
[g(y + z) − g(y)]μ(dz)

≥ g(y)δācα,δy1−α−δ − g(y)δā(1 − α)−1A1−αy−δ

− 1

2
g(y + 1)δ(1 + δ)y−δ−1

∫ 1

0
z2μ(dz). (8)

On the other hand, it is obvious that for any fixed δ > 0 there exists a large enough
yδ > 0 such that g′′(y) < 0 for all y > yδ . Since |ez − 1| ≤ 3|z| for z ∈ [−1, 1], then by Taylor’s
formula, for all y > eyδ ,

∫
[−1,1]

[g(yez) − g(y) − y(ez − 1)g′(y)]ν(dz)

≥ 9

2
y2

[
g′′(ξ3)

∫ 0

−1
z2ν(dz) + g′′(ξ4)

∫ 1

0
z2ν(dz)

]
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for some ξ3 ∈ [ye−1, y] and ξ4 ∈ [y, ye]. This together with g′′(y) > −δ(1 + δ)y−δ−2 yields, for
all y > eyδ , ∫

[−1,1]
[g(yez) − g(y) − y(ez − 1)g′(y)]ν(dz)

≥ −9

2
δ(1 + δ)y2

[
ξ−δ−2

3

∫ 0

−1
z2ν(dz) + ξ−δ−2

4

∫ 1

0
z2ν(dz)

]

≥ −9

2
δ(1 + δ)y−δ

[
eδ+2

∫ 0

−1
z2ν(dz) +

∫ 1

0
z2ν(dz)

]
. (9)

Moreover, since g is strictly increasing and takes values in [0, 1], we have∫ ∞

1
[g(yez) − g(y)]ν(dz) ≥ 0.

Indeed, ∫ ∞

1
[g(yez) − g(y)]ν(dz) =

∫ ∞

1
[e−(yez)−δ − e−y−δ

]ν(dz)

= g(y)
∫ ∞

1
[e−(y−δe−δz)+y−δ − 1]ν(dz)

= g(y)
∫ ∞

1
[ey−δ(1−e−δz) − 1]ν(dz)

→ 0 as y → ∞.

It follows that∫
[−1,1]c

[g(yez) − g(y)]ν(dz) ≥
∫ −1

−∞
[g(yez) − g(y)]ν(dz) ≥ −g(y)ν((−∞, −1]). (10)

Combining (2) and (8)–(10), we have, for all y large enough,

Lg(y) = [βy + b1y − b0(y)]δy−δ−1g(y) +
(

1

2
σ 2y2 + b2

2y

)[
δ2y−2δ−2 − δ(1 + δ)y−δ−2]g(y)

+ y
∫ 1

0
[g(y + z) − g(y) − g′(y)z]μ(dz) + y

∫ ∞

1
[g(y + z) − g(y)]μ(dz)

+
∫

[−1,1]
[g(yez) − g(y) − y(ez − 1)g′(y)]ν(dz) +

∫
[−1,1]c

[g(yez) − g(y)]ν(dz)

≥ g(y)δ

[
(β + b1)y−δ − b0yq0−1−δ − 1

2
σ 2(1 + δ)y−δ − b2

2(1 + δ)y−1−δ

+ ācα,δy1−α−δ − ā(1 − α)−1A1−αy−δ

− g(y)−1g(y + 1)(1 + δ)y−δ−1
∫ 1

0
z2μ(dz)

− δ−1ν((−∞, −1]) − 9

2
(1 + δ)y−δ ey−δ

eδ+2
∫ 1

−1
z2ν(dz)

]
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= g(y)δ
[
ācα,δy1−α−δ − b0yq0−1−δ − δ−1ν((−∞, −1]) − O(y−δ)

]
=: g(y)δGδ(y), (11)

where O(y−δ) → 0 as y → ∞ for any δ > 0.
Since α < 1, we can first choose δ small enough such that 1 − α − δ > 0. If condition (ii)

holds, then 1 − α − δ > q0 − 1 − δ. Therefore Gδ(y) → ∞ as y → ∞ under condition (i) or
(ii). If condition (iii) holds, we can choose δ small enough such that 1 − α − δ > 0 and b0 <

ācα,δ , then we also have Gδ(y) → ∞ as y → ∞. This together with (11) implies that there is
a ȳ large enough such that Lg(y) ≥ g(y) for all y ≥ ȳ. By Proposition 2 we obtain the desired
result. �

We next present a sufficient condition on non-explosion of process Y .

Theorem 2. Suppose that there exist constants b0 ≥ 0, q0 ∈R, ā, A > 0, and α ∈ (0, 2) such
that

b0(y)1{α<1} ≥ b0yq0 1{α<1} for all y ≥ A and 1{z≥A}μ(dz) ≤ āz−1−α1{z≥A} dz.

Then Py0{τ∞ < ∞} = 0 for any y0 > 0 if one of the following conditions holds:

(i) α ≥ 1,

(ii) q0 > 2 − α > 1 and b0 > 0,

(iii) q0 = 2 − α > 1 and b0 ≥ ācα,0.

Proof. For k ≥ 2, we consider the following stochastic equation:

Y (k)
t = Y (k)

0 +
∫ t

0

(
βY (k)

s + b1Y (k)
s − b0(Y (k)

s )
)

ds +
∫ t

0

√
2b2

2Y (k)
s dB(b)(s)

+
∫ t

0
σY (k)

s dB(e)(s) +
∫ t

0

∫ 1

0

∫ Y(k)
s−

0
zÑ(b)(ds, dz, du)

+
∫ t

0

∫ ∞

1

∫ Y(k)
s−

0
zN(b)(ds, dz, du) +

∫ t

0

∫
[−1,1]

Y (k)
s−(ez − 1)Ñ(e)(ds, dz)

+
∫ t

0

∫
(−∞,−1)∪(1,k]

Y (k)
s−(ez − 1)N(e)(ds, dz). (12)

By Theorem 1 in Palau and Pardo [24], for any k ≥ 2, equation (12) has a unique strong solution
(Y (k)

t )t≥0. Clearly, (Y (k)
t )t≥0 consists in truncation of large jumps due to environment. Let Lk be

the generator of (Y (k)
t )t≥0. Then

Lkg(y) = (βy + b1y − b0(y))g′(y) +
(

1

2
σ 2y2 + b2

2y

)
g′′(y)

+ y
∫ 1

0
[g(y + z) − g(y) − g′(y)z]μ(dz) + y

∫ ∞

1
[g(y + z) − g(y)]μ(dz)
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+
∫

[−1,1]
[g(yez) − g(y) − y(ez − 1)g′(y)]ν(dz)

+
∫

(−∞,−1)∪(1,k]
[g(yez) − g(y)]ν(dz). (13)

We first prove that for any fixed k ≥ 2, process (Y (k)
t )t≥0 does not explode. Without loss of

generality we assume A > 1.
For n ≥ 9, let gn ∈ C2((0, ∞)) be a non-decreasing function with gn(y) = ln ln (n2y) for y ≥

1/(ne) and gn(y) = 0 for y ≤ 1/(2ne). Then, for any y ≥ 1/n,

g′
n(y) = (ln n2y)−1y−1 > 0 and g′′

n(y) = −(ln n2y)−2y−2 − (ln n2y)−1y−2 < 0.

By Taylor’s formula and the above it follows that
∫ 1

0
[gn(y + z) − gn(y) − zg′

n(y)]μ(dz) ≤ 0 (14)

and ∫ A

1
[gn(y + z) − gn(y)]μ(dz) ≤ y−1(ln n2y)−1

∫ A

1
zμ(dz) (15)

for y ≥ 1/n. By the assumption on μ we have∫ ∞

A
[gn(y + z) − gn(y)]μ(dz) ≤ ā

∫ ∞

A
[gn(y + z) − gn(y)]z−1−α dz. (16)

If α ≥ 1, by integration by parts and L’Hôpital’s rule we get for y ≥ 1/n,∫ ∞

A
[gn(y + z) − gn(y)]z−1−α dz

≤
∫ ∞

A
[gn(y + z) − gn(y)]z−2 dz

= A−1[ln ln n2(y + A) − ln ln n2y
] +

∫ ∞

A

1

z(y + z) ln n2(y + z)
dz

≤ (y ln n2y)−1 + (ln n2y)−1
∫ ∞

A

1

z(y + z)
dz

= y−1(ln n2y)−1[1 + ln(1 + y/A)]. (17)

From (14)–(17) we get for y ≥ 1/n,

y
∫ 1

0
[gn(y + z) − gn(y) − zg′

n(y)]μ(dz) + y
∫ ∞

1
[gn(y + z) − gn(y)]μ(dz)

≤ y
∫ A

1
[gn(y + z) − gn(y)]μ(dz) + y

∫ ∞

A
[gn(y + z) − gn(y)]μ(dz)

≤ (ln n2y)−1
[∫ A

1
zμ(dz) + ā(1 + ln(1 + y/A))

]
. (18)
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On the other hand, since g′′
n(y) ≤ 0 for y ≥ 1/(ne),∫

[−1,1]
[gn(yez) − gn(y) − y(ez − 1)g′

n(y)]ν(dz) ≤ 0 (19)

for y ≥ 1/n. Set

γn(y, z) := ln (ln n2y + z) − ln (ln n2y) = ln

(
1 + z

ln n2y

)
.

Clearly, y �→ γn(y, z) is strictly decreasing and limy→∞ γn(y, z) = 0 for all z > 0. Then we can
use the monotone convergence to conclude∫

(−∞,−1)∪(1,k]
[gn(yez) − gn(y)]ν(dz)

≤
∫ k

1

[
ln (ln n2y + z) − ln (ln n2y)

]
ν(dz)

=
∫ k

1
γn(y, z)ν(dz) → 0 as y → ∞. (20)

For all y ≥ 1/n, by (13) and (18)–(20) and using b0 ≥ 0 and g′′ < 0, we see that if condition
(i) holds, then

Lkgn(y) ≤ (βy + b1y)(ln n2y)−1y−1 + (ln n2y)−1
[∫ A

1
zμ(dz) + ā(1 + ln(1 + y/A))

]

+
∫

(−∞,−1)∪(1,k]
[gn(yez) − gn(y)]ν(dz)

≤ (ln n2y)−1
[
β + b1 +

∫ A

1
zμ(dz) + ā(1 + ln(1 + y/A))

]
+

∫ k

1
γn(y, z)ν(dz)

=: Gn,k(y).

Clearly, for any n ≥ 9, Gn,k(y) converges to some constant as y → ∞ and then Gn,k(y) is
bounded on [1/n, ∞). Since gn(y) ≥ 1 on [1/n, ∞), then for all n ≥ 9 there exists a constant
dn such that Lkgn(y) ≤ dngn(y). By Proposition 1 we find that (Y (k)

t )t≥0 does not explode for all
k ≥ 2.

We now focus on the case α < 1. Write a = ln n2y and b = ln n2(y + z). We clearly have
0 < a < b for y ≥ 1/n and then ln b − ln a ≤ a−1(b − a) by the concaveness of the logarithm.
Thus

gn(y + z) − gn(y) ≤ (ln n2y)−1[ln (y + z) − ln y], y ≥ 1/n.

This combined with (4) implies
∫ ∞

A
[gn(y + z) − gn(y)]z−1−α dz ≤ (ln n2y)−1

∫ ∞

0
[ln(y + z) − ln y]z−1−α dz

= (ln n2y)−1cα,0y−α . (21)
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By (14)–(16) and (21) we get

y
∫ 1

0
[gn(y + z) − gn(y) − zg′

n(y)]μ(dz) + y
∫ ∞

1
[gn(y + z) − gn(y)]μ(dz)

≤ (ln n2y)−1
[∫ A

1
zμ(dz) + ācα,0y1−α

]
. (22)

For all y ≥ 1/n, one can use (13), (19), (20), and (22) to see that

Lkgn(y) ≤ [βy + b1y − b0(y)](ln n2y)−1y−1 + (ln n2y)−1
[∫ A

1
zμ(dz) + ācα,0y1−α

]

+
∫

(−∞,−1)∪(1,k]
[gn(yez) − gn(y)]ν(dz)

≤ (ln n2y)−1
[
β + b1 − b0(y)y−1 + ācα,0y1−α +

∫ A

1
zμ(dz)

]
+

∫ k

1
γn(y, z)ν(dz)

=: Ḡn,k(y).

Under the assumption b0(y) ≥ b0yq0 for all y ≥ A, if either condition (ii) or condition (iii) holds,
it is not hard to show that for all k ≥ 2, y �→ Ḡn,k(y) is bounded above on [1/n, ∞), and hence
(Y (k)

t )t≥0 does not explode by Proposition 1.
Now, let (Yt)t≥0 be the unique strong solution of (1). We proceed to show that (Yt)t≥0 does

not explode. Clearly, equation (1) can be rewritten as

Yt = Y0 +
∫ t

0
(βYs + b1Ys − b0(Ys)) ds +

∫ t

0

√
2b2

2Ys dB(b)(s) +
∫ t

0
σYs dB(e)(s)

+
∫ t

0

∫ 1

0

∫ Ys−

0
zÑ(b)(ds, dz, du) +

∫ t

0

∫ ∞

1

∫ Ys−

0
zN(b)(ds, dz, du)

+
∫ t

0

∫
[−1,1]

Ys−(ez − 1)Ñ(e)(ds, dz) +
∫ t

0

∫
[−1,1]c

Ys−(ez − 1)N(e)(ds, dz).

Define

Z(t) :=
∫ t

0

∫ ∞

1
zN(e)(ds, dz)

and

σk := inf{t ≥ 0 : Z(t) − Z(t − ) ≥ k}.
Then {σk}k≥2 is non-decreasing and σk → ∞ almost surely as k → ∞. On the other hand, by
the definition of σk, it is easy to see that (Yt)t≥0 satisfies (12) on the interval [0, σk) for all k ≥ 2.
Then the uniqueness of the solution of (12) implies Yt = Y (k)

t for t < σk. Since (Y (k)
t )t≥0 does

not explode for all k ≥ 2, Py0{τ∞ ≥ σk} = 1 for all k ≥ 2, letting k → ∞ we have Py0{τ∞ =
∞} = 1. This gives the desired result. �

Remark 2. It follows from Theorems 1 and 2 that the Lévy environment does not seem to be
essential for the explosion to happen. Intuitively, this is due to the fact that, in contrast to the
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jumps corresponding to the branching mechanism in SDE (1), the jumps in the last terms of
(1) arrive at the same rate as the Lévy process for the environment and do not speed up when
the process Y takes large values.

In the following corollaries, we consider the special case

μ(dz) = āz−1−α dz for constants ā > 0, α ∈ (0, 2) and for all z > 0. (23)

Combining Theorems 1 and 2, we immediately have the following corollaries.

Corollary 1. Suppose that (23) holds for α ≥ 1. Then Py0{τ∞ < ∞} = 0 for all y0 > 0.

Remark 3. Note that the process with α = 1 corresponds to Neveu’s CBLE with competi-
tion whose Lévy measure μ for the branching mechanism does not satisfy the finite moment
condition, and the above non-explosion result is not covered in [4] for the CBLE (without
competition).

Corollary 2. Suppose that (23) holds for α < 1 and there exist constants q0 ∈R and b0, A ≥ 0
such that b0(y) = b0yq0 for y ≥ A. Then Py0{τ∞ < ∞} > 0 for large enough y0 > 0 if and only
if one of the following conditions holds:

(i) b0 = 0,

(ii) q0 < 2 − α and b0 > 0,

(iii) q0 = 2 − α and 0 < b0 < ācα,0.

Remark 4. Comparing with the integral test in Theorem 1.2 of [17], in which they only consid-
ered the special branching mechanism and Brownian environment and the logistic competition,
i.e. b0(y) = cy2 for some c ≥ 0, the model we consider is more general and our results agree
with that in [17]. For example, in the case that μ(dz) is α-stable with α ∈ (0, 1) and b0(y) = cy2,
we can immediately conclude from Corollary 2 that the process does not explode if c > 0
and the process explodes if c = 0, which recovers results for this case by the integral test
in [17].
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