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Abstract

We consider a hybrid switch which provides integrated packet (asynchronous) and
circuit (isochronous) switching. Queue size and delay distribution of the packet
switched traffic in the steady state are derived by modelling the packet queue as
a queue in a Markovian environment. The arrival process of the packets as well
as of the circuit allocation requests are both modelled by a Poisson process. The
analysis is performed for several circuit allocation policies, namely repacking, first-
fit (involving static or dynamic renumbering) and best-fit. Both exact results and
approximations are discussed. Numerical results are presented to demonstrate the
effect of increase in packet and circuit loading on the packet delay for each of the
policies.

1. Introduction

During the initial phases of the evolving Broadband Integrated Services Digi-
tal Networks (B-ISDN) era, based on Fast Packet Switching (FPS) technology,
delay sensitive services like video and voice may require special transmission
channels (e.g., isochronous) so that a required level of grade of service can
be provided.

As a result, hybrid systems which involve an isochronous mode (for delay
sensitive services like video and voice) as well as an asynchronous mode (for
high speed data communications) are considered. In fact, it is becoming
increasingly apparent that such systems will take the lead in providing B-
ISDN services before the pure FPS systems will be available. For example,
the current status of the IEEE 802.6 [15] evolving standard for Metropolitan
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Area Networks (MANs) or Local Area Networks (LANs) involves both modes
of transmission.

In this paper, we consider a model of a hybrid communications switch, that
provides integrated packet (asynchronous) and circuit (isochronous) switch-
ing. Its capacity is dynamically allocated to meet the demand of the syn-
chronous circuits and the remaining capacity is available for the packet
switched traffic.

Circuit requests are either accepted or rejected, whereas the packets may be
queued. We consider the wastage incurred when practical circuit allocation
policies are implemented. Models of hybrid switches in which such waste is
not considered have been extensively studied (see for example [17, 18, 27,
31, 32]). In Section 3 we describe several circuit allocation schemes, namely
repacking, first-fit (involving static and dynamic renumbering) and best-fit.
In [35, 36], we obtain exact results for the statistics of the packet capacity as
a function of circuit loading. In this paper, we analyse the packet queue by
modelling it as a queueing system in a Markovian environment.

During a heavy traffic period, it is possible (due to traffic burstiness and
fluctuations in the capacity made available for packets) that for certain time
intervals the service rate is lower than the arrival rate, although the average
service rate during the entire period is higher than the average arrival rate.
In this case, we can say that the queue is locally unstable [23], while it may be
at the same time globally stable. The periods in which the queue is unstable
are referred to as overload periods.

Avoiding overload periods is especially important in hybrid switching sys-
tems. This is due to be the fact that the duration of packet overload caused by
the excess capacity used by circuit switching is in the order of minutes, and
constitutes a very long time duration relative to the packet service and arrival
rates which are in the order of milliseconds. As a result, the packet queue
falls under the category of a queueing system with slowly varying service
rates [10, 33], where local instability causes low performance. The analysis
presented in this paper is used as a tool for design and dimensioning, and for
obtaining an optimal flow control policy aimed at avoiding local instability.

If overload modes are avoided, the packet queueing performance under
slowly varying service rates can be accurately evaluated by using the quasi-
static approach [20]. That is, the average performance measure is obtained by
a weighted average of measures obtained separately for each capacity mode,
where the weights are the steady state probabilities of the process for each
mode [18, 20]. Clearly, if overload modes exist (when the queue is locally
unstable), such an approach cannot be used.
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Under local instability, accurate results for the statistical characteristics of
the packet queue cannot be obtained within a reasonable time using simula-
tions. Notice that thousands of packet events are required for each circuit
event. Moreover, for a typical sized system with the framing structure dis-
cussed in this paper, millions of packet events are required for each change
in the packet capacity. Under such conditions, given the state of the art in
queueing theory, only matrix-geometric methods [22, 23, 24] may be success-
fully used; these methods are indeed implemented in Sections 5 and 6.

However, as will be discussed below, due to the 'curse of dimensionality'2,
these methods provide exact results for problems in which the state space
is relatively small. When the problem is of a larger size, approximations
are required. In Sections 7 and 8 we propose some approximations which
unfortunately can be tested only by actual experiment.

2. The framing structure

We consider the hybrid switching system described in [34, 35, 36, 37]
which is based on a position multiplexed framing structure as depicted in
Figure 1. Such a framing structure represents the framing structure in FDDI-
II [4, 19, 13] (a LAN proposed standard with ANSI X3T9.5) as well as in the
original proposal of QPSX [1, 2, 13, 25, 26] (with IEEE 802.6). Recently,
the 802.6 committee have decided to adopt slot label multiplexing instead
of position multiplexing [15]. However, since octets are still position multi-
plexed within a slot, the model analysed here may still be applicable as an
approximation.

Time is divided into intervals of length T (typically, T = 125 micro-
seconds), known as frames, each of which is comprised of M equal slots.
Within each frame, some of the slots are allocated to synchronous circuits.
These slots are designated isochronous. Since 8 bit PCM voice samples, ar-
riving once every frame, are usually much smaller than the amount of infor-
mation transmitted within a time slot are further subdivided into a header
plus L octets. In each way, each octet may be used for a 64 kbit voice chan-
nel. Hence, each isochronous slot can be used for L different synchronous
channels.

The slots which are not used for the isochronous traffic may be used for
transmission of packet switched traffic. These slots are designated asyn-
chronous. Each of the asynchronous slots is used for transmission of a portion
of a packet called a segment or a cell.

2 Richard Bellman.
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FIGURE 1. A position multiplexed framing structure.

A certain amount of capacity is always reserved for high priority asyn-
chronous traffic, e.g. signalling and control packets. Let MA be the number
of slots reserved for such traffic within a frame. Thus, only Mj = M - MA

slots per frame are available for circuit switching. Therefore, the total num-
ber of octets available for the isochronous traffic, denoted by K, is given by
K = LMi. The framing structure is illustrated in Figure 1, where H stands
for a header, I for an isochronous slot, and A for an asynchronous slot. The
L octets within an isochronous slot are represented by 1,2 L.

Even if only one octet, out of the L available in a slot, is allocated to circuit
switching, the entire slot is designated isochronous, thus becoming unavail-
able for the asynchronous (packet switched) traffic. The waste incurred due
to this framing structure may be significant, and demands that efficient circuit
allocation and overload control policies are adopted.

Consider all the octets and the slots within a frame (excluding overheads)
to be identified by sequentially allocating identification (id) numbers to them
in the natural order; i.e., slot number / is the slot that contains the octets
with id numbers (/ - \)L + 1 to iL. Let Om be the maximal id number of all
the busy isochronous octets within the mth frame. The wasted octets with id
number smaller than Om are called the holes (see [5]). Only part of the waste
is due to the holes; the rest is due to slot-remainder octets, i.e., the wasted
octets with id numbers higher than Om in the slot containing octet number

om.
In Figure 2, we present an example with M = 5 and L = 5 for bandwidth

allocation in which a header is again designated by H, b stands for a busy
isochronous octet, h for a hole, and r for a slot remainder octet.

In this example, we have circuit connections in octets numbered 1, 3, 4,
5, 6, 7, 8, 10, 11 and 12 (<9m = 12), holes in octets 2 and 9, and octets 13,
14 and 15 are classified as slot remainder octets.
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FIGURE 2. An example for bandwidth utilisation.
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3. Circuit allocation policies

In this section, we list and describe several circuit allocation policies for
which the packet queueing performance is evaluated in this paper.

We start by describing the scheme studied by Fischer and Harris [9] in
which only slot-remainder octets were considered. This occurs when no octet
is busy while another octet with a smaller id number is free. That is, the
number of holes is zero at all times. This can be achieved by reassigning
the busy isochronous octets at each termination of a circuit connection. This
idealistic circuit allocation policy will be called here repacking. Notice that
under repacking, the situation described in Figure 2 could not occur. The
circuit connection in octets numbered 11 and 12 would be reassigned to octets
2 and 9, and as a result, slot 3 would become asynchronous, thus increasing
the packet capacity by 50%. Unfortunately, this circuit allocation policy is
usually avoided due to its complexity and its excessive processing cost.

The most common circuit allocation policy, and the simplest to implement,
is First-Fit (FF) [16]. Under this policy, we assign for each incoming circuit
request the octet with the smallest id number among all the empty octets.
Octets are not reassigned following a termination of a circuit usage, and
therefore holes are created and the waste is increased. In [35, 36, 37] we have
considered two possible implementations of FF: FF with Static numbering
(FFS), and FF with Dynamic renumbering (FFD).

Under FFS, the id numbers assigned to slots stay fixed during the entire
operation. The movable boundary [17, 31], that is, the boundary between
the isochronous and the asynchronous bandwidth, is always located imme-
diately after the slot containing Om (assuming that the wth frame is under
consideration). In this case, it is theoretically possible that an isochronous
slot comprised of L consecutive holes is created. This event will henceforth
be the empty slot event. In practice, this is a very rare event in view of the
fact that the IEEE 802.6 has considered L to be large relative to M. (L = 64
and M depends on the networks transmission rate, which based on current
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technology is limited to 28 plus overheads.) However, for future implemen-
tations with higher M, or for implementations with a relatively small L, or
under extremely bursty isochronous traffic conditions, this event may occur.

It should be mentioned that the id numbers assigned to the different slots
do not have to be based on their position within the frame. In fact, in
order to reduce the variance of the packet delay, it is beneficial not to have
the isochronous bandwidth continuous in time as in Figure 2. By spreading
the isochronous slots all over the frame, we can avoid long packet service
interruptions, and improve the packet queueing performance. For example,
for the case of M = 5 as in Figure 2, we can assign the first slot for the first 5
incoming circuit requests. Then, when slot 1 is completely filled with circuit
connections, we assign new incoming circuit requests to slot 3. When both
slots 1 and 3 are filled with circuit connections, we assign new ones to slot 5,
and finally to slot 2. (Slot 4 is always reserved for the asynchronous traffic.)
This order of circuit allocation also falls under the category of FFS, as we
assign the numbers 1, 2, 3, 4, 5 to the slots positioned in places 1, 3, 5, 2, 4
within the frame. In fact, as long as the order assigned to isochronous slots
is consistent for all frames, such a circuit allocation mechanism falls under
FFS.

The empty slot event is avoided utilising FFD. Here again, the assignment
of octets to incoming circuit requests is based on FF. However, unlike FFS,
in this scheme, as soon as the empty slot event occurs, the relevant slots and
octets are renumbered to preclude this situation. In other words, the empty
isochronous slot becomes asynchronous, and it is logically considered to be
moved to the other side of the movable boundary. In this case, newly arriving
requests are assigned first to the empty octets within the isochronous slots so
that this slot continues to be asynchronous.

Another circuit allocation scheme, besides FFD, in which the empty slot
event is avoided is a scheme called Best-Fit (BF). Under this method (men-
tioned in [34]), for each incoming circuit request, we assign the octet with
the smallest identification number among all the empty octets within the
isochronous slot with the most busy octets. As soon as the last circuit request
is terminated within an isochronous slot, the slot becomes asynchronous.
Under this scheme, the bandwidth is utilised more efficiently than under FF
(FFS or FFD), and therefore it should be considered for implementation es-
pecially under certain extremely bursty isochronous traffic conditions, or in
cases in which L to small relative to M.

In this paper, we obtain exact results for the statistics of the packet queue
under repacking, FFS, FFD, and BF. As will be explained later, exact results
for FFS, FFD and BF can only be obtained for small sized problems, since the
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complexity of the solution grows exponentially, unlike the case of repacking
in which the growth is linear.

Notice that when the probability of the empty slot event is very small, as
is the case in practical applications with L > 30 [35], the results for FFS,
FFD and BF are similar. In such cases, the results for FFS could serve as a
very good approximation for FFD and BF. In cases where the probability of
the empty slot event is more significant, the results for FFS provide us with
an upper bound for certain performance measures, e.g., the average delay or
99th percentile of the delay under FFD. Notice that the results for repacking
can always serve as a lower bound for such performance measures. Thus
both bounds are available.

In [35], it is demonstrated that the wastage in packet capacity under repack-
ing, due to slot remainder waste, for a system with M = 8, MA = 1 and
L = 31, is within 6-12%. It is also demonstrated that an additional waste
of 4-14% is incurred under FF or BF due to holes. (Note that based on
[15], L in QPSX is increased to 64, in which case both types of wastage are
significantly increased.)

4. The model

The packet queue is modelled as a single server queue in a Markovian
environment with unlimited buffer size and fluctuating service rate based on
circuit loading.

It is assumed that packet interarrival times, circuit allocation request inter-
arrival times and circuit holding times are independent and exponentially
distributed with parameters XP,XC, and fic respectively.

Based on the description of the framing structure in Section 2, we have
the number of isochronous slots within the wth frame, denoted by Sm, is a
function of two components:

1. Nm == the number of busy isochronous octets, i.e., the number of octets
allocated and actually used within the /nth frame by the circuit switched
traffic.

2. Wm = the number of wasted octets within the wth frame, including
both holes and slot remainder octets.

As a result, Sm = (Nm + Wm)/L.
We now define, as in [35], the continuous time processes:

S, = Sm for ( m - 1 ) T < t<mx, m= 1,2,3,.. . ,

N, = Nm for (m- l)x < t < mx, m = 1 , 2 , 3 , . . . ,
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and their limits:
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Soo - lim St =
r-*oo

A'oo = lim N, =
1—»oo

lim Sm
m—>oo

= lim Nm.
m—»oo

[8]

Since the frame time, namely T, which is in the order of micro-seconds, is
very small in comparison wiih the circuit holding and interarrival times, the
processes St, t > 0 and N,, t > 0 can be modelled as continuous time Markov
chains. The packet queue is therefore modelled as a queue in a Markovian
environment [24].

The packet service time is a function of two elements: the size of the
packet, and the state of the Markovian environment (namely St) during the
service of the packet. We assume that packet service time is exponentially
distributed with fluctuating rate based on circuit loading. That is, under
St = i, the infinitesimal packet service rate is given by

Hp(i) = 64,000 x L x (M - i)/pe packets/sec, (1)

where pe represents the average effective packet size in bits.
Before we present the analysis, we find it appropriate to make some com-

ments regarding the simplifying assumptions of exponential service and in-
terarrival times. It has been established that in many actual packet switching
systems, the arrival process has the following characteristics: (1) it is of a
bursty nature, namely the variance of the interarrival times is high, and (2)
the interarrival times are correlated. It has also been established that the
exponential distribution does not always represent packet service time. Ac-
tually, there exists evidence that in some cases this service time is actually
bi-modal in nature [8, 30]. therefore, ideally, a more appropriate model for
the arrival process is the Switched Poisson Process (SPP) [11, 12, 21, 29, 38],
and for the service time a probability distribution of phase type [24]. The
method described in this paper can, in theory, be easily extended to such
a model, by considerably increasing the dimension of the Markovian envi-
ronment. Unfortunately, however, for the problem under consideration, as
will be discussed below, even under the simplifying assumptions of exponen-
tial service and interarrival times, due to the 'curse of dimensionality', exact
queueing results are limited to small problems (e.g. K < 20), and approxi-
mations are required for larger problems.

Therefore, we are faced with the problem of 'approximate now or ap-
proximate later' (even for small problems), and in this paper, we choose to
approximate now in order to keep the formulation simple, and to be able to
present exact results for small problems. Nevertheless, it will be the subject
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of future research to test the different options of approximations of a more
complex model by actual experiment.

5. Repacking

Under repacking, for any frame m, the value of Sm is directly obtained as
a function of Nm, by Sm = \Nm/L], where \x] represents the smallest integer
greater or equal to x. Therefore, the state of the Markovian environment (as
seen by the asynchronous traffic) under repacking can be described by the
state of the process {N,, t > 0}.

The infinitesimal generator of the Markovian environment, for the case of
repacking, denoted by the (K+ 1) x (K+ 1) matrix Q, is simply the generator
for an Erlang system, and its elements are given as follows:

(2(0,0) = -Xc

Q(i, i) = -{inc + Xc) for / = 1,2, . . . , # - 1

Q{i,i+l)=Xc fori = Q,l,...,K-l

Q{i,i-\) = iHc for i = l,2,....A"

Q(i,j) = 0 otherwise

where Q{i,j) is the i,j element in the matrix Q.
The steady state probability of the Markovian environment being in state

i is given by Erlang's first formula,

Prob(A'oo = /) = A'/ I /! Y^[An/n\] I for i = 0,1,2, . . . , k. (2)
I n=0 J

where A is the total offered circuit switched traffic in Erlangs, that is, A =
kc/fic.

Let II be the invariant vector of the Markovian environment, that is, n is a
(K+1 )-vector in which the rth element represents the distribution Prob(iVoo =
i) for i = 0 ,1 ,2 , . . . ,* .

This model leads to a Quasi Birth and Death process (QBD) [24] with the
state space F = {(i,j):i > 0,0 < j < Mt}. The index i is the number of
packets in the system and j represents the state of the Markovian environ-
ment, that is, the state of the process {iV,, t > 0}. The following is based
on Neuts [24], and describes how the statistics of the packet queue can be
obtained using matrix geometric solutions.

Denote by k a (K + l)-vector all of whose elements have the value kp. Let
y be a (K + l)-vector representing the service rates y, 0 < i < K. That is,
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y, is the infinitesimal packet service rate given that Nt = /, and is given by

Also, denote by A(A), A(y) and A(y+A) the three (K+1) x (K+ 1) diagonal
matrices in which the diagonals are X, y and y + X respectively.

The generator Q of the QBD under consideration, which represents the
packet queue, is then given as (6.2.1) in page 258 in [24].

Note that when the finite buffer case is under consideration, that is, when
the queue size is of limited size, then the matrix Q is finite, and if its di-
mension is not too large, the statistics of the asynchronous queue size can be
obtained using successive overrelaxation [6].

Base on (6.2.2) in [24], the stability condition of the packet queue is given
by

kP < UyT. (3)

Let xtj be the steady state probability of having / packets in the queue,
and the Markovian environment in state j (j = 0 , 1 , . . . , K). Also, define for
each i > 0 the vector Xj, of dimension K + 1, as X,> = [Xjo,xn,... , * , * ] •

Given that the queue is stable, the stationary probability vector X =
[XO,XU... ] is given by (6.2.5) in [24] as

Xt = U(I - R)Rl, for i > 0 (4)

where R is a (K + 1) x (K + 1) matrix obtained by a sequence of successive
substitutions (starting with R = 0) of the following matrix quadratic equation
[24].

R = [R2A(y) + A(A)][A(y + A) - Q]~l. (5)

Then the steady state probability of having / packets in the packet queue,
denoted by /*,, is simply the sum of the elements in the vector Xt, i.e.,

Xij. (6)

Let W(x) be the probability that a packet will wait longer than x seconds.
The value of W{x), obtained by Ramaswami and Lucantoni in [28], is given
by

dne-ex{6x)nln\ (7)
n=0

where: 6 = maxo<j<fc{-B(j, j)}, where B(j,j) is the {j,j)th element in the
matrix B which is given by B = Q-A(y+X)+A(X); and dn = XQ(I-R)-lRHne,
where the matrix Hn is obtained recursively by HQ = I, and Hn+i = HnU\ +
RHnU2 for n > 0, where C/, =B/6 + I and U2 = A(y)/0.

Now we present some numerical results obtained using the above described
method for the case of repacking, and compare them with approximations.

https://doi.org/10.1017/S0334270000006603 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006603


[11] Queueing performance evaluation 229

We consider a small example with pe = 4000.0, fic = 1.0/180 sec."1 (namely
circuit holding time of 3 minutes), M = 4, L = 3, Ma = 1; hence, Mt = 3
and k = 9. The packet service rate provided by a single slot is given by
64,000 x L/pe, and for this example is 48 packets/sec. Since mj = 1, namely
one slot is always reserved for the packets, the minimal packet service rate is
48 packets/sec. Since M = 4, the maximal packet service rate is 4 x 48 = 192
packets/sec. The average packet service rate (ASR) under repacking for this
example is given by ASR = £*= 0 YiP(N, = i) = 105.84 packets/sec.

In Table 1, we present results for the average delay in seconds as a function
of the packet arrival rate where the circuit request arrival rate stays fixed at
Xc = 1.5/60 arrivals/sec, (namely 1.5 per minute). We also present results for
two commonly used approximations. The first is the M/M/1 approximation,
in which the delay is computed assuming that the average service rate stays
constant during the entire operation and the average delay is computed by
the classical formula for the delay under M/M/l , namely,

mmi [D] = - Ap/ASR). (8)

The second is the above-mentioned quasi-static approximation, which can
be used only when local instability does not occur, namely y, > Xp, V7, i =
0,1,2, . . . , K, in which the average delay is computed by

EQSt[D] = p
/=0 - hhi

p(N' = 0 u n d e r t h e condition: minfy,} > kp. (9)

TABLE 1. Exact results, the M/M/l and the quasi-static approximations,
for the average packet delay, under repacking with Xc = 1.5/60 sec."1

for different packet arrival rates.

10.0

20.0

30.0

40.0

50.0

60.0

E[D]

0.01242

0.01484

0.01913

0.03127

0.53268

3.56244

EmmdD]

0.01043

0.01165

0.01318

0.01519

0.01791

0.02181

Eqs,[D]

0.01242

0.01484

0.01914

0.03151

local instability

local instability

The results in Table 1 demonstrate that the quasi-static approximation
provides accurate results for the cases in which local instability does not oc-
cur. (Note that in our example, local instability occurs for Xp > 48.0.) It is
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also demonstrated that the M/M/l approximation, which unfortunately, is
commonly used in practice, is not accurate, especially under local instabil-
ity. (It is only accurate in cases where an accurate evaluation is not needed,
namely, under low utilisation.)

In Table 2, we fix the packet arrival rate at kp = 60.0 packets/sec, and
present results for the average packet service rate and delay for different
values of the circuit arrival rate. We notice extremely high average delays
under local instability although the system is globally stable.

TABLE 2. The Average Service Rate (ASR) and the average delay, E[D],
for the asynchronous traffic, under repacking with Xp = 60.0 for different
circuit arrival rates.

Ac

0.5/60

1.0/60

1.5/60

2.0/60

2.5/60

ASR

151.51

127.94

105.84

87.82

75.07

E[D)

0.02162

0.52203

3.56243

11.65052

28.47007

6. First-fit and best-fit

For both FF and BF the state of the Markovian environment can be de-
scribed by an A/} dimensional vector m = [«i , / i2 , . . . ,%,! , where «, is the
number of busy isochronous octets within slot j .

The total number of states in the Markovian environment, denoted by K
and given by K = (L + \)M', grows exponentially with mj. Such a number of
states is very large even for a small practical application (e.g., M = 4, Mi = 3
and L = 64). In the next section we shall present an approximation in which
the number of states of the Markovian environment grows polynomially with
Mi.

For each state in the Markovian environment we define the following:
Let G be the set of all indices j e {1,..., A/}} such that ttj < L. That is, G

represents the set of slots which are not filled with circuit connections. Also,
let g be the minimal index in G.

Let U be the set of all indices j € { 1 , . . . , Mj} such that n, > 0. That is,
U represents the set of isochronous slots under FFD or BF. In addition, let
u and u be the minimal and the maximal index in U respectively.
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Define V = U n G and let v be the minimal index in V.
Let H be the set of all indices ; e C such that «y > n,, Vi e G, and let A

be the minimal element in H.
Then, for FFS, the capacity in terms of number of slots available for the

asynchronous traffic is given by Y(m) = M-u. For FFD and BF, this capacity
is given by Y(m) = M -\U\, where \X\ represents the number of elements in
the set X.

According to the description of FFS, FFD and BF, we have that a new
circuit request arrival will be assigned to slot numbers g,v and h for FFS,
FFD and BF respectively.

The infinitesimal generator of the Markovian environment, the matrix Q
for the case of FFS, is described in Table 3. (The set G and its minimal index
g in Table 3 are with respect to a.)

TABLE 3. The infinitesimal generator of the Markovian environment of FFS.

a

[«l> • • • " * > • • • " * / / ]

[nl,...rij,...nMl]

[n\,...,nMl]

b

[/I| , . . . flj — 1 , . . . Yljyf. ]

\fl\ y . . . , ft&fl ]

otherwise

<2(a,b)

0

Similarly, the infinitesimal generator of the Markovian environment, the
matrix Q for the case of FFD, is described in Table 4. (The set G and the
minimal index v of V in Table 4 are with respect to a.)

TABLE 4. The infinitesimal generator of the Markovian environment of FFD.

[H, , - .

[ H , , . .

[H.

[H,

a

• nv,.

• nt,.

• nMl]

• nMl]

tM,]

1M,]

[ H i , . . . Hu

[ H , , . . . H ;

[ H i , .

[ H i , .

otherwise

b

+ \,...nMl\

- l , . . . n M l ]

• ,nM,]

• ,nM,]

G(a,b)

Xc

njMc. 1 < J < M,

-fa + He Y.% n}) for |C| > 0

-He T.% nj for |C| = 0

0
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In a similar fashion, the infinitesimal generator of the Markovian environ-
ment for the case of BF is described in Table 5. (The set G and the minimal
index h in Table 5 are with respect to a.)

TABLE 5. The infinitesimal generator of the Markovian environment of BF.

a

[ri\,...nh,...nMl]

[n\,...n],...riMl]

[nu...,nMl]

[n\,...,nMl]

b

[nu...nh + \,...nMl]

[nu...nj- \,...nMl]

[n\,-..,nMl]

[n , % , ]

otherwise

^(.»»»)

HjMc, 1 < j < M,

-(Ac+//<££',«,) for |G|>0

0

It is convenient to write the states of the Markovian environment as a
one dimensional vector. Accordingly, we sequentially assign the numbers
0 through K to the states of the Markovian environment as follows. State
0 is [0,0,0, . . . ,0 ,0] , state 1 is [0,0,0,. . . ,0,1], state 2 is [0,0,0,. . . ,0,2]
and so on, until state L([0,0,0,..., 0, L]). Then state L + 1 corresponds to
[0,0,0, . . . , 1,0], state L + 2 to [0,0,0, . . . , 1,1], etc. The matrix Q is written
such that the above order of the states is kept.

Let y,- be the packet service rate, given that the environment is in state
number /. Let m(i) = [n\(i),ri2(i),...,riM,(i)], be the vector represented by
state number i. Then, y,- is given by

y,- = 64,000 xLx Y(m(i))/pe packets/sec. (10)

As in the previous section, we denote by A a .^-vector all of whose elements
have the value kp. Let y be a AT-vector representing the service rates y,,
0 < / < K. Accordingly, denote by A(A), A(y) and A(y + A) the three K x K
diagonal matrices in which the diagonals are A, y and y-\-X respectively. Then,
the statistics of the delay are obtained as described in the previous section.

Now we consider again the example presented in the previous section.
In Table 6, we present numerical results for the average packet delay under
FFS, FFD and BF for different values of Ap, where the circuit arrival rate
stays fixed at Ac = 1.5/60 sec."1.

In Table 7, we present results, for the same example, for the average packet
service rate and for the average packet delay under FFS, FFD and BF, for
different values of Ac, where the packet arrival rate stays fixed at kp = 60.0
packets/sec.
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TABLE 6. The average packet delay, under FFS, FFD and BF with
1.5/60 sec."1 for different packet arrival rates.

233

xp

10.0

20.0

30.0

40.0

50.0

60.0

FFS

0.01651

0.02088

0.02948

0.05726

3.44625

24.24321

FFD

0.01534

0.01913

0.02643

0.04946

2.11022

13.90689

BF

0.01525

0.01900

0.02619

0.04886

2.01517

13.12824

TABLE 7. The Average Service Rate (ASR) and the average delay, E[D],
for the asynchronous traffic, under FFS, FFD and BF, with Xp = 60.0
packets/sec, for different circuit arrival rates.

Xc

0.5/60.0

1.0/60.0

1.5/60.0

2.0/60.0

FFS

ASR

146.95

113.74

86.37

68.33

E[D)

0.20873

5.54747

24.24321

56.28569

FFD

ASR

148.28

117.51

91.34

72.86

E[D]

0.09461

2.78271

13.90689

34.60860

BF

ASR

148.32

117.73

91.75

73.34

E[D\

0.09269

2.66579

13.12824

32.33195

7. An approximation for FFS

The state of the Markovian environment in the case of FFS can be de-
scribed by a three dimensional vector (i,j, n), where n represents the number
of (possibly empty) isochronous slots, and i and j represent the number of
busy isochronous octets within the first n - 1 slots and within the nth slot
respectively.

Therefore, the total number of states of the Markovian environment is
given by

{L+l)+Lx(L+l)+Lx(2L+l)+Lx(3L+l)+- • +Lx[(M,-\)L+l] = l+K,

where K = K + \Mt(Aii - \)L2.
Notice that the number of states of the Markovian environment, although

it may be too large for large problems, exhibits polynomial growth.
The infinitesimal generator of the Markovian environment, namely the

matrix Q, is irreducible, and its elements are given as in Table 8.
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TABLE 8. The infinitesimal generator of the Markovian environment.

[16]

a

[i ,u, n]

[L(n-\),j,n]

VJ,n]

UJ,n]
[L(n-\),L,n]

[0,0,0]

[1,1, H]

UJ.n]

b

[i+ l.j.n]

[L(n-\),j+l,n]

[/-!,;,«]

VJ-Unl
[Ln,l,n+ 1]

[0,1,1]

l'-JJ,n-\]

[i,7,»]

G(a,b)

Ac

iHc

JMc

Xc

Ac

P(i,j,n- \)/ic

where Z» is the
set of all c such

thatg(a,c)
is defined above.

for

0<i<L(n- 1 ) - 1,
0 < j < L

and 2 < n < Mj

0<j<L-\
and 1 < « < A//

1 < i < L{n - 1),
0 < j < L

and 1 < n < M\

0<i<L{n- 1),
2 < j < L

and I < n < M/

\<n<MI-l

0 < / < L{n - 1),
0 <j < min{ i,L}
and \ <n < Mi

0< i<L(N- 1),
0 < j < L

and 1 < n < M;

and zero otherwise

Here P(i,j,n - 1) should be the conditional probability of having j busy
isochronous octets in slot n— 1 given that (1) there are i busy isochronous slots
within slots 1 through n — \, and (2) the number of busy isochronous slots has
just been reduced from n to n - 1. In order to avoid further increases in the
state space we shall eliminate the second conditon and we shall approximate
P(i,j,n - 1) by the steady state conditional probability of having j busy
isochronous octets in slot n - 1 given that there are i busy isochronous slots
within slots 1 through n — 1.

To compute the statistics of the delay, we again apply the matrix-geometric
solutions as described in Section 5. Accordingly, we sequentially assign the
numbers 0 through TC to the states of the Markovian environment. In partic-
ular, the states are ordered lexicographically (sorted first by n, then by /, and
then by j), i.e., state 0 is [0,0,0], states 1 to L are [0,1,1] to [0,L, 1]. Then,
states L + 1 to 2L are [0,1,2] to [0, L, 2], and states 2L+1 to (L + 2)L are
[1,1,2] to [L,L,2], and so on until state K is [(MT -
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This way we have a one dimensional state space and the matrix Q is written
such that the above order of the states is kept.

We denote by ym the service rate of the packets given that the environment
is in state number m. Then ym is given by

?o = MO)
ym = Mp(l) for 1 < m < L

ym = HP{n) for (l/2)(/i - \){n - 2)L2 + (n-\)L+l

<m< (l/2)n(« - 1)L2 + nL and 2 < n < Mi.

As in the previous sections, we denote by A a (K + l)-vector all of whose
elements have the value Ap. Let y denote a (K + l)-vector representing the
service rates y,, 0 < / < JK.

Also, denote by A(A),A(y) and A(y + A) the three ^x~K diagonal matrices
in which the diagonals are A, y and y + A respectively.

Then the statistics of the delay are obtained as described in Section 5.

8. Phase type fitting

Even utilising the approximation described in the previous section, it is
not practical to obtain numerical results for a large network (e.g., M = 28
and L = 64). In this section, we discuss further approximations which can
be utilised to obtain numerical results. The main idea behind these approx-
imations can be described as follows. Notice that the time that the process
{St, t > 0} spends in each state, namely service mode duration, is phase type
distributed [24]. Clearly, the number of phases of this distribution is very
large, causing the matrix R to be too large, which makes it impossible to use
a brute force application of matrix-geometric solutions. Therefore we shall
consider replacing the real phase type distribution of the service mode dura-
tion by an approximate one with fewer phases, preserving some of its most
important statistics. Then the implementation of matrix-geometric methods
is possible and numerical results are obtainable.

Denote by AD, and Ay,, for i = 1,2,...,A// - 1, the time the process
{St,t > 0} spends continuously in state i, given that the process {St,t > 0}
enters state / from state / - 1 and / + 1 respectively. In addition, we define
by AM, the time the process {St,t > 0} spends continuously in state Mi.
(Clearly, the process {St, t > 0} can enter state A// only from state Mi - 1.)

Notice that, A^, and Au,(i = 1,2,...,A// - 1), for both repacking and
FF, are the time until absorption for a birth and death process with a finite
number of states out of which the first and the last state are two absorbing
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barriers, therefore both AD, and A^ are phase type distributed, with the rep-
resentation (piD,, To,) and (au,,Tu,) respectively, for which the distribution
and the moments are given in pages 45 and 46 of Neuts [24].

For the case of repacking, we consider, for each mode /(/ = 1,2,..., Mi -1 )
of the process {S,, t > 0}, the Markov process {Nt, t > 0} between the barriers
L(i - 1) and Li + 1. In this case AD, and A^ are the absorption times
starting from states L(i - 1) + i and Li respectively. Ciearly, AM, is phase
type distributed and represents the time until absorption to a single barrier,
namely L(Mi — 1), starting from the state L(Mj - 1) + 1.

In the case of FFS, based on the approximation presented in Section 7, we
consider, for each mode I(I = 1,2,..., Mj - 1) of the process {S,, t > 0}, a
two dimensional continuous time Markov chain denoted by

{N[, Ni} = {Nl(t), Ni(t), t>0} for i = 1,2,...,MIf

where N[(t) and Ni^t) denote the number of busy isochronous octets within
the first / — 1 slots, and within octets L(i — 1) + 1 through Li + 1 at time t,
respectively.

The lower barrier for both AD, and Au,(i = 1,2,...,Mi - 1) under FF
is given by A^(f) = 0 and the upper barrier by N^(t) = L + 1. The random
variable AM, under FF is again phase type distributed and represents the time
until absorption to a single barrier, namely, N^'(t) = 0, starting always from
the state N^'(t) = (A// - \)L, N^'(t) = 1.

The initial probability vector (of the phase type distribution) is different
under FF for AD, and Ay, for / = 1,2,..., A/> — 1. By definition, the random
variable Aj, is the time until absorption given that the process {St,t > 0}
enters state i from state / - 1. Notice that under FF, entering state / from
state / - 1 will occur if and only if n\ = L(i — 1) and iVj = 0. Therefore,
the initial probability vector, namely <*#,, takes the value 1 for this state
and 0 for all the other states for the case of A^,. On the other hand, for
the case of Ay,, which is the time until absorption given that the process
{s - t, t > 0} enters state i from state / + 1, the initial probability vector,
namely au, corresponds to the joint steady state probability distribution of
the number of busy isochronous octets within slots 1 through i— 1 and within
slot /.

This joint steady state probability distribution can be obtained by a brute
force solution employing the successive overrelaxation method [6] of a set of
steady state equations which can be formulated as a special case (n = Mi - 1)
of equations 5 through 12 in Zukerman [34].

The matrix T (in the notation of Neuts [24]) is the same for A^, and
t (i.e., To, = TUt) and based on the infinitesimal generator of the process
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If L and M are small, the steady state probability distribution of the de-
lay and packet queue size are obtainable using the above described method.
Unfortunately, however, for practical situations where L is over 30 and M
is at least 4 (especially under FF where the number of phase states is large)
approximations are required. The approximation is performed by modelling
a phase type distribution of high order by a phase type distribution of lower
order using moment matching. Notice that the exponential system approx-
imation is a special case of this method where it is assumed that the time
spent in each capacity mode is exponentially distributed, and only the first
moment is matched. As mentioned in [22], in many cases it is essential, es-
pecially for the overload modes, to consider more than one moment, and a
phase type approximation of at least two phase states is required.
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