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Abstract. The main goal of the paper is to give explicit formulas for the fundamental classes of Schu-
bert subschemes in Lagrangian and orthogonal Grassmannians of maximal isotropic subbundles as
well as some globalizations of them. The used geometric tools overlap appropriate desingularizations
of such Schubert subschemes and Gysin maps for such Grassmannian bundles. The main algebraic
tools are provided by the families of eQ- and eP -polynomials introduced and investigated in the present
paper. The key technical result of the paper is the computation of the class of the (relative) diagonal in
isotropic Grassmannian bundles based on the orthogonality property of eQ- and eP -polynomials. Some
relationships with quaternionic Schubert varieties and Schubert polynomials for classical groups are
also discussed.
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Introduction

In this paper we give formulas for the fundamental classes of Schubert subschemes
in Lagrangian and orthogonal Grassmannians of maximal subbundles as well as
some globalizations of them. Our motivation to deal with this subject came essen-
tially from 3 examples where such degeneracy loci appear in algebraic geometry:
(1) The Brill–Noether loci for Prym varieties, as defined by Welters [W]; (2) The
loci of curves with sufficiently many theta characteristics, as considered by Har-
ris [Har]; (3) Some ‘higher’ Brill–Noether loci in the moduli spaces of higher
rank vector bundles over curves, considered by Bertram and Feinberg [B–F] and,
independently, by Mukai [Mu].

The common denominator of these 3 situations is a simple and beautiful con-
struction of Mumford [M]. With a vector bundle over a curve equipped with a
nondegenerate quadratic form with values in the sheaf of 1-differentials, Mum-
ford associates an even dimensional vector space endowed with a nondegenerate
quadratic form and 2 maximal isotropic subspaces such that the space of global
sections of the initial bundle is the intersection of the two isotropic subspaces. A
globalization of this construction allows one to present in a similar way the varieties
in (1) and (2) above as loci where two isotropic rank n subbundles of a certain rank
2n bundle equipped with a quadratic nondegenerate form, intersect in dimension
exceeding a given number. On the other hand, the locus in (3) admits locally this
kind of presentation using an appropriate symplectic form.

These varieties are particular cases of Schubert subschemes in Lagrangian and
orthogonal Grassmannian bundles and their globalizations. The formulas for such
loci are the main theme of this paper. More specifically, given a vector bundle V
on a variety X endowed with a nondegenerate symplectic or orthogonal form, we
pick E and F1 � F2 � � � � � Fn = F – isotropic subbundles of V (rankE =
n; rankFi = i), and for a given sequence a� = (1 6 a1 < � � � < ak 6 n), we look
at the locus

D(a�) := fx 2 X j dim(E \ Fap)x > p; p = 1; : : : ; kg:

We distinguish three cases:

(1) Lagrangian: rankV = 2n, the form is symplectic;
(2) Odd orthogonal: rankV = 2n+ 1, the form is orthogonal;
(3) Even orthogonal: rankV = 2n, the form is orthogonal.
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(In this last case the definition of D(a�) must be slightly modified – see
Section 9.)

Let us remark that the loci D(a�) (for the Lagrangian case) admit an important
specialization to the loci introduced by Ekedahl and Oort in the moduli space of
abelian varieties with fixed dimension and polarization, in characteristic p (see, e.g.
[O], the references therein and [E-vG]). This comes from certain filtrations on the
de Rham cohomology defined with the help of the Frobenius– and ‘Verschiebung’-
maps. The formulas of the present paper are well suited to computations of the
fundamental classes of such loci in the Chow groups of the moduli spaces – for
details see a forthcoming paper by T. Ekedahl and G. van der Geer [E-vG].

The goal of this paper is to give an algorithm for computing the fundamental
classes of D(a�) as polynomials in the Chern classes of E and Fi. Formulas given
here can be thought of as Lagrangian and orthogonal analogs of the formulas due
independently to Kempf–Laksov [K-L] and Lascoux [L1] (notice, however, that
the formulas given in [K-L] are proved under a weaker assumption of ‘expected’
dimension).

The method for computing the fundamental class of a subscheme of a giv-
en (smooth) scheme which we use here stems from a paper by the first author
[P3, Sect. 5]. It depends on a desingularization of the subscheme in question and
the knowledge of the class of the diagonal of the ambient space. It appears that
the diagonals in the fibre products of Lagrangian or orthogonal Grassmannian, and
flag bundles are not given as the subschemes of zeros of sections of bundles over
the corresponding products. This makes an additional difficulty (e.g. in compari-
son with [K-L]) which is overcomed here using again a result from [P3, Sect. 5]
allowing to compute the class on the diagonal with the help of an appropriate
‘orthogonality’ property of Gysin maps.

To establish formulas for the classes of these diagonals, we use essentially two
tools. The first one is Theorem 6.17 of [P2] interpreting (cohomology dual to) the
classes of Schubert subvarieties in Lagrangian and orthogonal Grassmannians as
Schur’s Q- and P -polynomials. The importance of these polynomials to algebraic
geometry was illuminated by the first author in [P1] and then developed in [P2]. In
fact in [P2, Sect. 6], a variant of these polynomials was used to give a full description
of Schubert Calculus on Grassmannians of maximal isotropic subspaces associated
with a nondegenerate symplectic or orthogonal form. These familes of symmetric
polynomials are called eQ- and eP -polynomials in the present paper. Perhaps the
‘orthogonality’ proved in Theorem 5.23 is their central property. This is, in fact,
the second tool in our computation of the classes of the diagonals in isotropic
Grassmannian bundles which allows us to apply the technique of [P3, Sect. 5].
The results of [P2, Sect. 6], recalled in Theorem 2.1 below, are a natural source
of the ubiquity of eQ- and eP -polynomials in various formulas of this paper. As
a general rule, these are eQ-polynomials that appear in the Lagrangian case andeP -polynomials that appear in the orthogonal cases.
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In general, our approach gives an efficient algorithm for computing formulas
for Lagrangian and orthogonal Schubert subschemes. In several cases, however,
we are able to give ‘closed’ expressions. At first, these are the cases of a single
Schubert condition and two Schubert conditions. The corresponding formulas are
given in Sections 6 and 7.

The derivation of those formulas uses a formula for the push-forward of eQ-
polynomials (Theorems 5.10, 5.14, 5.20) from isotropic Grassmannian bundles. For
instance, in the Lagrangian case, �:LGnV ! X with the tautological subbundle
R, the element eQIR

_ has a nonzero image under �� only if each number p,
1 6 p 6 n, appears as a part of I with an odd multiplicity mp. If this last condition
holds then

�� eQIR
_ =

nY
p=1

((�1)pc2pV )
(mp�1)=2:

We also give formulas for the push-forward of S-polynomials (Theorems 5.13,
5.15, 5.21) from isotropic Grassmannian bundles. For example, in the Lagrangian
case, the element sIR_ has a nonzero image under�� only if the partition I is of the
form 2J + �n for some partition J (here; �n = (n; n� 1; : : : ; 1)). If I = 2J + �n
then

��sIR
_ = s

[2]

J V;

where the right-hand side is defined as follows: if sJ = P (e:) is a unique presenta-
tion of sJ as a polynomial in the elementary symmetric functions ei, E� a vector
bundle, then s[2]J (E) := P with ei replaced by (�1)ic2iE; i = 1; 2; : : : :

Another case (corresponding to the Schubert condition a� = (n�k+1; : : : ; n))
that leads to closed formulas is the variety of maximal isotropic subbundles which
intersect a fixed maximal isotropic subbundle in dimension exceeding a given
number (Proposition 3.2 and its analogs). Thanks to the Cohen–Macaulayness
of Schubert subschemes in isotropic Grassmannians proved in [DC-L], one gets
globalizations of those formulas (as well as the other ones) to more general loci.
For instance, this last case a� = (n�k+1; : : : ; n) globalizes to the Mumford-type
locus discussed above where two maximal isotropic subbundlesE and F intersect
in dimension greater than or equal to k.?

Our formulas (see Theorems 9.1, 9.5 and 9.6) are quadratic expressions in eQ-
and eP -polynomials of the subbundles. More explicitly in the corresponding cases
we have

(1) Lagrangian:
P eQIE

_ � eQ(k;k�1;:::;1)rIF
_.

(2) Odd orthogonal:
P ePIE_ � eP(k;k�1;:::;1)rIF

_.

? It is mentioned in [F1, 2] that the problem of finding formulas for the classes in this case was
posed originally by Professor J. Harris several years ago.

comp3868.tex; 17/06/1997; 10:06; v.6; p.4

https://doi.org/10.1023/A:1000182205320 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000182205320


FORMULAS FOR LAGRANGIAN AND ORTHOGONAL DEGENERACY LOCI 15

(3) Even orthogonal:
P ePIE_ � eP(k�1;k�2;:::;1)rIF

_.

Here, in (1) and (2) the sum is over all subsequences I in (k; k � 1; : : : ; 1), in (3)
the sum is over all subsequences I in (k�1; k�2; : : : ; 1) and (k; k�1; : : : ; 1)rI
denotes the strict partition whose parts complements the ones of I in fk; k �
1; : : : ; 1g.

Formula (3) has been recently used by C. De Concini and the first named
author in [DC-P] to compute the fundamental classes of the Brill–Noether loci
V r for the Prym varieties (see [W]), thus solving a problem of Welters, left open
since 1985. The formula of [DC-P] asserts that if either V r is empty or of pure
codimension r(r + 1)=2 in the Prym variety then its fundamental class in the
numerical equivalence ring, or its cohomology class is equal to

2r(r�1)=2
rY
i=1

(i� 1)!
(2i� 1)!

[�]r(r+1)=2;

where � is the theta divisor on the Prym variety.

The paper is organized as follows.
Section 1 contains definitions and properties of Schubert varieties in Lagrangian

and orthogonal Grassmannian bundles. Also, some desingularizations of these
varieties, used in later sections, are described.

Section 2 contains some recollections of Schubert calculus for Lagrangian and
orthogonal Grassmannians from [P2, Sect. 6] and computation of the classes of the
diagonals in the Chow rings of Lagrangian and orthogonal Grassmannian bundles.
This computation relies on the Gysin maps technique from [P3, Sect. 5] and on the
orthogonality theorem 5.23 which is proved independently later.

Section 3 contains an explicit computation of Gysin maps needed to determine
the formulas for the fundamental classes of Schubert varieties 
(n�k+1; : : : ; n)
parametrizing subbundles intersecting an n-subbundle in dimension exceeding k.
This is done using an elementary Schubert-Calculus-type technique based on linear
algebra.

In Section 4 we introduce a family of symmetric polynomials called eQ-
polynomials which is modeled on Schur’s Q-polynomials (but is different from
the latter family). These polynomials are the basic algebraic tools of the present
paper. We prove several elementary but useful properties of eQ-polynomials and
give some examples.

In Section 5 we establish some new algebraic properties of eQ-polynomials
and S-polynomials; these are either certain determinantal identities like Proposi-
tions 5.2 and 5.11, or the computation of the values of these polynomials under
some divided difference operators. These algebraic results are then interpreted
using Gysin maps for Lagrangian and orthogonal Grassmannian bundles. Perhaps
the most important result of this section is the ‘orthogonality’ Theorem 5.23.
This theorem, interpreted geometrically (using a result of [P3, Sect. 5]), gives us
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the classes of the diagonals of Lagrangian and orthogonal Grassmannian bundles
which are crucial for our computations.

Sections 6, 7 and 8 have a supplementary character. They contain some examples
and a certain alternative (to the content of the previous sections) way of comput-
ing. Section 6 contains formulas for Schubert varieties defined by one Schubert
condition in Lagrangian and orthogonal cases. Section 7 contains similar compu-
tations for two Schubert conditions in the Lagrangian and odd orthogonal cases.
Section 8 contains another (purely algebraic) proof, using divided differences, of
Proposition 3.1 that describes the Gysin maps for some flag bundles.

In Section 9 we formulate previous results in the general setup of degeneracy
loci and give some examples. A special emphasis is put on formulas answering
J. Harris’ problem concerning the Mumford-type degeneracy loci described above.

In Appendix A we collect a number of useful results about Quaternionic Grass-
mannians. We use them to reprove some results proved earlier using different meth-
ods and to show how some problems concerning Grassmannians of nonmaximal
Lagrangian subspaces can be reduced to those of maximal Lagrangian subspaces;
this sort of applications we plan to develop elsewhere.

Finally, in Appendix B, we give an introduction to a theory of symplectic
Schubert polynomials which has grown up from the present work. This theory (see
[L-P-R]) seems to be well suited to the needs of algebraic geometry because it
generalizes in a natural way eQ-polynomials which govern the Schubert calculus
on Lagrangian Grassmannians.

In Sections 2, 3, 5, 6, 7, 8 and 9 we work in the Chow rings; all results therein,
however, are equally valid in the cohomology rings.

Some of the results of this paper were announced in [P-R0].
The paper is a revised version of the Max–Planck-Institut für Mathematik

Preprint MPI/94-132.

Background

Several results of this paper: e.g. Propositions 3.2, 3.4 and 3.6 as well as their
globalizations in Theorems 9.1, 9.5 and 9.6 were obtained already in Spring 1993
when we tried to deduce formulas for the loci D(a�) by combining the ideas of
the paper of Kempf and Laksov [K-L] with theQ-polynomial technique developed
in [P1, 2]. These results were announced together with outlines of their proofs in
[P-R0].

In summer 1993, we received an e-mail message from Professor W. Fulton
informing us about his (independent) work on the same subject and announcing
another expressions for the loci considered in Proposition 3.2, 3.4 and 3.6 of the
present paper. Responding, we informed Professor Fulton about our results of [P-
R0] mentioned above. In February 1994 we obtained from Professor W. Fulton his
preprints [F1, 2] containing details of his e-mail announcement. Both the form of
the formulas obtained as well as the approach used in [F1, 2] are totally different
from the content of our work and just a simple comparison of the results of [F1, 2]

comp3868.tex; 17/06/1997; 10:06; v.6; p.6

https://doi.org/10.1023/A:1000182205320 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000182205320


FORMULAS FOR LAGRANGIAN AND ORTHOGONAL DEGENERACY LOCI 17

with ours leads to very nontrivial new identities which are interesting in themselves.
It would be desirable to develop, in a systematic way, the comparison of formulas
given in [F1, 2] from one side with those in the present paper and [P-R0] – from
the other one.

Conventions

Partitions are weakly decreasing sequences of positive integers (as in [Mcd1] and
are denoted by capital Roman letters (as in [L-S1]). We identify partitions with
their Ferrers’ diagrams visualized as in [L-S1]. The relation ‘�’ for partitions is
induced from that for diagrams.

For a given partition I = (i1; i2; : : :) we denote by jIj (the weight of I) the
partitioned number (i.e. the sum of all parts of I) and by l(I) (the length of I)
the number of nonzero parts of I . Moreover, I� denotes the dual partition of
I , i.e. I� = (j1; j2; : : :) where jp = cardfh j ih > pg, and (i)k – the partition
(i; : : : ; i) (k-times).

Given sequences I = (i1; i2; : : :) and J = (j1; j2; : : :) we denote by I � J the
sequence (i1 � j1; i2 � j2; : : :).

By strict partitions we mean those whose (positive) parts are all different.
In this paper, we denote by si(E) the complete symmetric polynomial of degree

i with variables specialized to the Chern roots of a vector bundle E.
The reader should be careful with our notion of eQ-polynomials here. Namely,

since we are mainly interested in the polynomials in the Chern classes of vector
bundles, we introduce eQ-polynomials given by the Pfaffian of an antisymmetric
matrix whose entries are quadratic expressions in the elementary symmetric poly-
nomials rather than in the ‘one row’ Schur’sQ-polynomials. Therefore these poly-
nomials are different from the original Schur’s Q-polynomials. Note that nonzeroeQ-polynomials eQI(x1; : : : ; xn) are indexed by ‘usual’ partitions I but the parts of
these partitions cannot exceed the number of variables; on the contrary, nonzero
Schur’s Q-polynomials QI(x1; : : : ; xn) are indexed by strict partitions I only but
the parts of these partitions can be bigger than the number of variables.

Also, the specialization of eQI(x1; : : : ; xn)with (xi) equal to the sequence of the
Chern roots of a rank n vector bundleE, denoted here – accordingly – by eQIE, is a
different cohomology class than the one associated with E in [P1] and [P2, Sect. 3
and 5], and denoted by QIE therein. (Notice, however, that the eQ-polynomials
appeared already in an implicit way in [P2, Sect. 6].) The reader should make a
proper distinction between Schur’s Q-polynomials and eQ-polynomials that are
mainly used in the present paper.

For a vector bundle V , by GnV we denote the usual Grassmannian bundle
parametrizing rank n subbundles of V . Moreover, P(V ) = G1V . We follow mostly
[F] for the terminology in algebraic geometry. In many situations when the notation
starts to be too cumbersome, we omit some pullback-indices of the induced vector
bundles.

A good reference for ‘changes of alphabets’ in the �-ring sense is [L-S1].
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1. Schubert subschemes and their desingularizations

We start with the Lagrangian case. Let K be an arbitrary ground field.
Assume that V is a rank 2n vector bundle over a smooth scheme X over K

equipped with a nondegenerate symplectic form. Moreover, assume that a flag
V�:V1 � V2 � � � � � Vn of Lagrangian (i.e. isotropic) subbundles w.r.t. this form
is fixed, with rankVi = i. Let �:LGn(V ) ! X denote the Grassmannian bundle
parametrizing Lagrangian rank n subbundles of V . G = LGn(V ) is endowed with
the tautological Lagrangian bundle R � VG. Given a sequence a� = (1 6 a1 <

� � � < ak 6 n) we consider in G a closed subset


(a�) = 
(a�;V�) = fg 2 Gj dim(R \ Vai)g > i; i = 1; : : : ; kg:

The locus 
(a�), called a Schubert subscheme is endowed with a reduced scheme
structure induced from the reduced one of the corresponding Schubert subscheme
in the Grassmannian GnV – this is discussed in detail, e.g., in [L-Se].

The following desingularization of 
 = 
(a�) should be thought of as a
Lagrangian analogue of the construction used in [K-L]. LetF = F(a�) = F(Va1 �
� � � � Vak) be the scheme parametrizing flags A1 � A2 � � � � � Ak � Ak+1 such
that rankAi = i and Ai � Vai for i = 1; : : : ; k; rankAk+1 = n and Ak+1 is
Lagrangian. F is endowed with the tautological flag D1 � D2 � � � � Dk � Dk+1,
where rankDi = i; i = 1; : : : ; k and rankDk+1 = n. We will write D instead of
Dk+1.

We have a fibre square

G�X F
p2
- F

G

p1

?

- X

p

?

:

Let �:F ! G be the map defined by: (A1 � A2 � � � � � Ak+1) 7! Ak+1, in
other words � is a ‘classifying map’ such that ��R = D. It is easily verified that �
maps F onto 
 and � is an isomorphism over the open subset of 
 parametrizing
rank n Lagrangian subbundles A of V such that rank(A \ Vai) = i, i = 1; : : : ; k.
Moreover, � induces a section s of p2. Set Z := s(F) � G�X F . Alternatively,
we can describe Z as (1��)�1(�) where � is the diagonal in G�X G. The map
p1 restricted to Z is a desingularization of 
. Therefore [
] = (p1)�([Z]). On the
other hand, [Z] = (1��)�([�]) (see [K-L, Lemma 9]). Note thatF is obtained as a
composition of the following flag- and Grassmannian bundles. Let F l = F l(a�) =
F l(Va1 � � � � � Vak) be the ‘usual’ flag bundle parametrizing flagsA1 � � � � � Ak

where rankAi = i and Ai � Vai ; i = 1; : : : ; k. Let C1 � � � � � Ck be the
tautological flag on F l. We will write C instead of Ck. Then F is the Lagrangian
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Grassmannian bundle LGn�k(C
?=C) over F l, where C? is the subbundle of

VF l consisting of all v that are orthogonal to C w.r.t. the given symplectic form.
Note that C � C? because C is Lagrangian, rank(C?=C) = 2(n � k) and the
vector bundle C?=C is endowed with a nondegenerate symplectic form induced
from the one on V . Of course the tautological Lagrangian rank n � k subbundle
on LGn�k(C

?=C) is identified with D=CF . In other words, F is a composition
of a flag bundle (with the fiber being F l(Ka1 � � � � � Kak)) and a Lagrangian
Grassmanian bundle (with the fiber being LGn�k(K

2(n�k)). In particular

dim
 = dimF = dimZ

=
kX
i=1

(ai � i) + (n� k)(n� k + 1)=2 + dimX:

The following particular cases will be treated in a detailed way in this paper:
a� = (n� k + 1; n� k + 2; : : : ; n) (then 
(a�) parametrizes Lagrangian rank n
subbundles L of V such that rank(L\ Vn) > k); a� = (n+ 1� i), i.e. k = 1; and
a� = (n+ 1� i; n+ 1� j), i.e. k = 2.

Now consider the odd orthogonal case. LetK be a ground field of characteristic
different from 2. Assume, that V is a rank 2n + 1 vector bundle over a smooth
scheme X over K equipped with a nondegenerate orthogonal form. We assume
throughout this paper that the form restricts to a hyperbolic form on each fiber (i.e.
each fiber has ann-dimensional isotropic subspace; ifK is algebraically closed, this
is automatically satisfied.) Let OGnV be the Grassmannian bundle parametrizing
rank n isotropic subbundles of V . Whenever, in this paper, we speak aboutOGnV ,
we assume that there exists a rank n isotropic subbundle in V . All definitions,
notions and notation concerning Schubert subschemes and their desingularizations
are used mutatis mutandis (just instead of ‘symplectic’ use ‘orthogonal’ and instead
of ‘Lagrangian’ use ‘isotropic’). The formula for the dimension of 
(a�) in the
odd orthogonal case is the same as in the Lagrangian case. Of course, F is now
a composition of the same flag bundle F l and the odd orthogonal Grassmannian
bundle OGn�k(C

?=C), where C is the rank k tautological subbundle on F l.
Assume now that V is a rank 2n vector bundle over a smooth connected scheme

X over a field K of characteristic different from 2 equipped with a nondegenerate
orthogonal form. We assume throughout this paper that there exists an isotropic
rank n subbundle of V . The scheme parametrizing isotropic rank n subbundles
of V breaks up into two connected components denoted OG0

nV and OG00
nV . Let

Vn be a rank n isotropic subbundle of V fixed once and for all. Then OG0
nV

(resp.OG00
nV ) parametrizes rankn isotropic subbundlesE � V such that dim(E\

Vn)x � n(mod 2) (resp: dim(E \ Vn)x � n+ 1(mod 2)) for every x 2 X . Write
G0 := OG0

nV andG00 := OG00
nV . Two isotropic rankn subbundles are in the same

component if they intersect fiberwise in dimension congruent to n modulo 2.
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Let V�:V1 � V2 � � � � � Vn be a flag of isotropic subbundles of V with
rankVi = i. Given a sequence a� = (1 6 a1 < � � � < ak 6 n) such that
k � n (mod 2), we consider in G0 a Schubert subvariety


(a�) = 
(a�;V�) = fg 2 G0 j dim(R \ Vai)g > i; i = 1; : : : ; kg;

(R � VG0 is here the tautological bundle). Similarly, given a sequence a� = (1 6
a1 < � � � < ak 6 n) such that k � n + 1 (mod 2), we consider in G00 a Schubert
subvariety


(a�) = 
(a�;V�) = fg 2 G00 j dim(R \ Vai)g > i; i = 1; : : : ; kg:

(Over a point, say, the interiors of the 
(a�)’s form a cellular decomposition of G0

and respectively G00.) Here, the definition of the scheme structure is more delicate
than in the previous two cases (roughly speaking, instead of minors one should use
the Pfaffians of the ‘coordinate’ antisymmetric matrix of G0 and G00). We refer the
reader for details to [L-Se] and references therein.

The Schubert subvarieties 
(a�) in G0 (resp. 
(a�) in G00) are desingular-
ized using the same construction as above but instead of the scheme F one must
now use the following scheme F 0 (resp. F 00). Let F 0 = F 0(a�) = F 0(Va1 �
� � � � Vak) be a scheme parametrizing flags A1 � A2 � � � � � Ak � Ak+1

such that rankAi = i and Ai � Vai for i = 1; : : : ; k; rankAk+1 = n, Ak+1

is isotropic and rank(Ak+1 \ Vn)x � n (mod 2) for any x 2 X . The defini-
tion of F 00 = F 00(a�) is the same with the exception of the last condition now
replaced by: rank(Ak+1 \ Vn)x � n + 1 (mod 2) for any x 2 X . Let p0:F !
X (resp: p00:F ! X) denote the projection maps. Of course, F 0 (resp:F 00) now is
a composition of the same flag bundle F l and the even orthogonal Grassmannian
bundle OG0

n�k(C
?=C) (resp: OG00

n�k(C
?=C)), where C is the rank k tautologi-

cal subbundle on F l and Vn=C is the rank n � k isotropic bundle used to define
OG0

n�k(C
?=C) and OG00

n�k(C
?=C).

The formula for dimension now is different

dimF 0 = dimF 00 =
kX
i=1

(ai � i) + (n� k)(n� k � 1)=2 + dimX:

We finish this section with the following lemma which will be of constant use
in this paper.

LEMMA 1.1. Consider cases (1), (2), (3) of a vector bundle endowed with a
nondegenerate form � that are specified in the Introduction. Let C � V be an
isotropic subbundle and C? be the subbundle of V consisting of all v 2 V such
that �(v; c) = 0 for any c 2 C .

(i) Then one has an exact sequence

0 ! C? ! V
�
! C_ ! 0;
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where the map � is defined by v 7! �(v;�). In particular, in the Grothendieck
group, [V ] = [C?] + [C_]; [C?=C] = [V ]� [C]� [C_] and the Chern classes of
C?=C are the same as the ones of [V ]� [C � C_].

(ii) Assume now that C is a maximal isotropic subbundle of V . Then in cases
(1) and (3) we have C = C? and c(V ) = c(C � C_); in case (2) one has
rank(C?=C) = 1 and 2c(V ) = 2c(C � C_).

The latter equality of assertion (ii) in case (2) follows from the fact that the
form � induces an isomorphism (C?=C)
2 �= OX . This assertion will be used
in the proof of Theorem 5.14 and 5.15 and is well suited for this purpose because
of the appearance of the factor ‘2n’ on the right-hand side of the formulas of the
theorems.

2. Isotropic Schubert calculus and the class of the diagonal

Let us first recall the following result on Lagrangian and orthogonal Schubert
Calculus from [P1, 2].

We need two families of polynomials in the Chern classes of a vector bundle
E over a smooth variety X . Their construction is inspired by I. Schur’s paper [S].
The both families will be indexed by partitions (i.e. by sequences I = (i1 > � � � >
ik > 0) of integers). Set, in the Chow ring A�(X) of X , for i > j > 0

eQi;jE := ciE � cjE + 2
jX

p=1

(�1)pci+pE � cj�pE;

so, in particular eQiE := eQi;0E = ciE for i > 0. In general, for a partition
I = (i1; : : : ; ik), k-even (by putting ik = 0 if necessary), we set in A�(G)

eQIE := Pf( eQip;iqE)16p<q6k;

where Pf means the Pfaffian of the given antisymmetric matrix. For the definition
and basic properties of Pfaffians we send interested readers to [A], [Bou] and [B-
E, Chap. 2]. Also, we refer the reader to the beginning of Section 4 for an alternative
recurrent definition of eQIE: just replace the polynomial eQI(Xn) from Section 4
by the element eQIE.

The member of the second family, associated with a partition I , is defined by

ePIE := 2�l(I) eQIE:

Observe that in particular ePiE = ciE=2 (so here we must assume that ciE is
divisible by 2), and

ePi;jE = ePiE � ePjE + 2
j�1X
p=1

(�1)p ePi+pE � ePj�pE + (�1)j ePi+jE:
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It should be emphasized that eQ- and eP -polynomials are especially important
and useful for isotropic (sub)bundles.

The following result from [P1, (8.7)] and [P2, Sect. 6], gives a basic geometric
interpretation of eQ- and eP -polynomials. (It can be interpreted as a Giambelli-type
formula for isotropic Grassmannians; recall that a Pieri-type formula for these
Grassmannians was given in [H-B] – consult also [P-R1] for a simple proof of the
latter result.)

THEOREM 2.1 [P2, Sect. 6]. (i) LetV be a 2n-dimensional vector space over a field
K endowed with a nondegenerate symplectic form. Then, one has in A�(LGnV )

[
(a�)] = eQIR
_;

whereR is the tautological subbundle onLGnV and ip = n+1�ap; p = 1; : : : ; k.
(ii) Let V be a (2n+ 1)-dimensional vector space over a field K of char: 6= 2

endowed with a nondegenerate orthogonal form. Then, one has in A�(OGnV )

[
(a�)] = ePIR_;

whereR is the tautological subbundle onOGnV and ip = n+1�ap; p = 1; : : : ; k.
(iii) Let V be a 2n-dimensional vector space over a field K of char: 6= 2

endowed with a nondegenerate orthogonal form. Then one has in A�(OG0
nV )

(resp: A�(OG00
nV ))

[
(a�)] = ePIR_;

where R is the tautological subbundle on OG0
nV (resp: OG00

nV ) and ip = n� ap,
p = 1; : : : ; k. (Notice that the indexing family of I’s runs here over all strict
partitions contained in �n�1:)

Observe that by Lemma 1:1, R_ is the tautological quotient bundle on LGnV ,
OG0

nV andOG00
nV . Moreover, the Chern classes of the tautological quotient bundle

on OGnV and R_ are equal.

Note that this result has been reproved recently by S. Billey and M. Haiman in
[B-H].

Assume now that V is a vector bundle over a smooth variety X and V� is a
flag of isotropic bundles on X . Then, using Noetherian induction, one shows that
f eQIR

_gI��n , f ePIR_gI��n and f ePIR_gI��n�1 are A�(X)-bases respectively of
A�(LGnV ), A�(OGnV ) and A�(OG0

nV ) (resp: A�(OG00
nV )). Moreover, there is

an expression for 
(a�;V�) as a polynomial in the Chern classes of R_ and Vi.
(This follows, e.g., from the existence of desingularizations given in Section 1 and
formulas for Gysin push forwards – for ‘usual’ flag bundles they are obtained by
iterating a well known projective-bundle case; for isotropic Grassmannian bundles,
they are given for the first time in Section 5 of the present paper). Then the
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maximal degree term in the ci(R_)’s of this expression, in respective cases (i), (ii),
(iii), coincides with that in Theorem 2.1. We will call it the dominant term (w.r.t.
R).

Let G1; G2 be two copies of the Lagrangian Grassmannian bundle LGnV over
a smooth variety X , equipped with the tautological subbundles R1 and R2. Write
GG := G1 �X G2. Consider the following diagonal

� = f(g1; g2) 2 GG j ((R1)GG)(g1;g2) = ((R2)GG)(g1;g2)g:

Our goal is to write down a formula for the class of this diagonal. We first record:

LEMMA 2.2. Let G be a smooth complete variety such that the ‘�-map’ (cf. [F,
end of Sect. 1]) gives an isomorphismA�(G�G) �= A�(G)
A�(G). Assume that
there exists a family fb�g, b� 2 An�(G), such that A�(G) = �Zb�, and for every
� there is a unique �0 such that n� + n�0 = dimG and

R
X b� � b�0 6= 0. SupposeR

X b� � b�0 = 1. Then the class [�] in A�(G�G) is given by ��b� � b�0 .
Proof. It follows from the assumptions that in A�(G�G); [�] = �m��b��b� ,

for some integersm�� and n�+n� = dimG for all pairs (�; �) indexing the sum.
We have by a standard property of intersection theory for g; h 2 A�(G)Z

X�X
[�] � (g � h) =

Z
X
g � h:

Hence the coefficients m�� satisfy

m�� =

Z
X�X

[�] � (b�0 � b�0) =

Z
X
b�0 � b�0 :

The latter expression, according to our assumption is not zero only if �0 = (�0)0

i.e. � = �0, when it equals 1. This proves the lemma. 2

For a given positive integer k, put �k = (k; k�1; : : : ; 2; 1). For a strict partition
I � �k (i.e. i1 6 k; i2 6 k � 1; : : :) we denote by �k r I the strict partition whose
parts complement the parts of I in the set fk; k � 1; : : : ; 2; 1g.

The Lagrangian Grassmannian (over a point, say) satisfies the assumptions of
the lemma with f eQIR

_gstrict I��n playing the role of fb�g and for � = I we
have �0 = �n r I . This is a direct consequence the existence of a well-known
cellular decomposition of such a Grassmannian into Schubert cells and the results
of [P2] recalled in Theorem 2.1(i) together with a description of Poincaré duality
in A�(LGnV ) from loc. cit. Thus in this situation we get by the lemma:

LEMMA 2.3. The class of the diagonal� of the Lagrangian Grassmannian equals

[�] =
X eQI(R

_
1 )�

eQ�nrI(R
_
2 );
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24 P. PRAGACZ AND J. RATAJSKI

the sum over all strict I � �n.

We now want to show that the same formula holds true for an arbitrary smooth
base space X of a vector bundle V . Our argument is based on the following result
expressing the class of the (relative) diagonal in terms of Gysin maps. This result
was due to the first author in [P3, Sect. 5] and is accompanied here by its proof for
the reader’s convenience.

LEMMA 2.4 [P3]. Let �:G ! X be a proper morphism of smooth varieties
such that �� makes A�(G) a free A�(X)-module, A�(G) = ��2�A

�(X) � b�,
where b� 2 An�(G) and for any � there is a unique �0 such that n� + n�0 =
dimG�dimX and ��(b� �b�0) 6= 0; suppose��(b� �b�0) = 1. Moreover, denoting
by pi:G�XG! G (i = 1; 2) the projections, assume that, for a smoothG�XG,
the homomorphism A�(G) 
A�(X) A

�(G) ! A�(G �X G), defined by g 
 h 7!
p�1g � p

�
2h, is an isomorphism. Then

(i) The class of the diagonal� in G�XG equals [�] = ��;�m��b�
b�; where,
for any�; �,m�� = P��(f��(b� �b�)g) for some polynomialP�� 2 Z[fx��g].

(ii) If ��(b� � b�) 6= 0 iff � = �0, then the class of the diagonal � � G �X G

equals [�] = ��b� 
 b�0 .

Proof. Denote by �:G ! G �X G, �0:G ! G �K G (the Cartesian product)
the diagonal embeddings and by 
 the morphism � �X �:G �X G ! X . For
g; h 2 A�(G) we have

��(g � h) = ��((�
0)�(g � h)) = ��(�

�(g 
 h))

= 
���(�
�(g 
 h)) = 
�([�] � (g 
 h));

using � = 
 �� and standard properties of intersection theory ([F]). Hence, writing
[�] = �m��b� 
 b� , we get

��(b� � b�) = 
�([�] � (b� 
 b�))

= (�� 
 ��)
��X

m��b� 
 b�

�
� (b� 
 b�)

�
=
X
�;�

m����(b� � b�) � ��(b� � b�): (�)

(i) By the assumption and (�) with � replaced by �0 and � – by �0, we get

m�� = ��(b�0 � b�0)�
X

�6=�;� 6=�

m����(b� � b�0) � ��(b� � b�0); (��)

where the degree of m�� 2 A�(X) such that � 6= � or � 6= � and ��(b� � b�0) �
��(b� � b�0) 6= 0, is smaller than the degree of m�� . The assertion now follows by
induction on the degree of m�� .
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(ii) By virtue of the assumption, Equation (��) now reads ��(b�0 � b�0) = m��

and immediately implies the assertion. 2

Let us remark that in [DC-P, Proposition 2], where a weaker variant of Theo-
rem 9.6 of the present paper is used, already assertion (i) (plus results of Section 5)
are sufficient to conclude the proof.

Let now G = LGnV ! X denote a Lagrangian Grassmannian bundle.

PROPOSITION 2.5. The class of the diagonal of the Lagrangian Grassmannian
bundle in A�(G�X G) equals

[�] =
X eQI(R

_
1 )GG �

eQ�nrI(R
_
2 )GG;

the sum over all strict I � �n,GG = G�XG andRi, i = 1; 2, are the tautological
(sub)bundles on the corresponding factors.

Proof. The assertion follows from Lemma 2.4(ii) applied to bI = eQIR
_ (I strict

� �n) and Theorem 5.23(i) which will be proved (independently) later. 2

COROLLARY 2.6. With the notation of Section 1 and GF := G �X F , the
class of Z in A�(GF) (i.e. the image of the class of the diagonal of G �X G via
(1� �)�) equalsX

strict I��n

eQI(D
_
GF ) �

eQ�nrI(R
_
GF ):

Thus the problem of computing the classes of the 
(a�)’s is essentially that of
calculation p�( eQID

_) where p:F ! X is the projection map; then we use base
change.

Consider now the case of the orthogonal Grassmannian parametrizing rank n

subbundles ofV , where rankV = 2n+1. The results of Lemma 2.3, Proposition 2.5
and Corollary 2.6 translate mutatis mutandis to this case with eQ-polynomials
replaced by eP -polynomials (using essentially Theorem 5.23(ii)). Thus the problem
of computing the classes of the 
(a�)’s is essentially that of calculation p�( ePID_)
where p:F ! X is the projection.

Finally, consider the even orthogonal case. Supppose that V is a vector bundle
of rankV = 2n endowed with a nondegenerate orthogonal form. Let G = OG0

nV

or G = OG00
nV following the notation of Section 1. The even orthogonal analog of

Proposition 2.5 and Corollary 2.6 is obtained using Theorem 5.23(iii) and reads as
follows

PROPOSITION 2.7. The class of the diagonal of the Grassmannian bundle in
A�(G�X G) equals

[�] =
X ePI(R_

1 )GG �
eP�n�1rI(R

_
2 )GG;
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the sum over all strict I � �n�1,GG = G�XG andRi, i = 1; 2, are the tautologi-
cal (sub)bundles on the corresponding factors. WithGF := G�XF

0 (resp: GF :=
G�X F 00), the class of Z in A�(GF) (i.e. the image of the class of the diagonal
of G�X G via (1� �)�) equalsX

strict I��n�1

ePI(D_
GF ) �

eP�n�1rI(R
_
GF ):

Thus the problem of computing the classes of the 
(a�)’s is essentially that of
calculation p0�( ePID_) and p00�( ePID_) where p0:F 0 ! X and p00:F 00 ! X are the
projection maps.

3. Subbundles intersecting an n-subbundle in dim > k

We will now show an explicit computation in the case a� = (n � k + 1; n� k +
2; : : : ; n). This computation relies on a simple linear algebra argument. Another
proof of Proposition 3.1, using the algebra of divided differences, will be given in
Section 8.

We start with the Lagrangian case and follow the notation from Section 1.

PROPOSITION 3.1. Assume a� = (n � k + 1; : : : ; n). Let I � �n be a strict
partition. If (n; n � 1; : : : ; k + 1) 6� I , then p� eQID

_ = 0. In the opposite case,
write I = (n; n�1; : : : ; k+1; j1; : : : ; jl), where jl > 0 and l 6 k. Then p� eQID

_ =eQj1;:::;jlV
_
n .

Proof. It suffices to prove the formula for a vector bundle V ! B endowed
with a nondegenerate symplectic form, X equal to LGnV and Vn equal to the
tautological subbundle on LGnV . (Recall that 
(n � k + 1; : : : ; n;V�) depends
only on Vn; more precisely, it parametrizes Lagrangian rank n subbundles L of
V such that rank(L \ Vn) > k.) The variety F in this case parametrizes triples
(L;M;N) of vector bundles over B such that L and N are Lagrangian rank n

subbundles of V and M is a rank k subbundle of L \ N . Let W�:W1 � W2 �
� � � �Wn be a flag of Lagrangian subbundles of V with rankWi = i. For a partition
J = (j1 > � � � > jl > 0) � �k,

�J = 
(n+ 1� j1; : : : ; n+ 1� jl;W�)

= fL 2 X j rank(L \Wn+1�jh) > h; h = 1; : : : ; lg

defines a Schubert cycle whose class has the dominant term (w.r.t. Vn) equal toeQJV
_
n 2 A�(X). It is well known that �J is an irreducible subvariety of X

provided B is irreducible.
Similarly, for a partition I = (i1 > � � � > il > 0) � �n, q:F ! LGnV the

projection on the third factor,

AI = q�
(n+ 1� i1; : : : ; n+ 1� il;W�)

= f(L;M;N) 2 F j rank(N \Wn+1�ih) > h; h = 1; : : : ; lg
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defines a cycle whose class has the dominant term (w.r.t. D) equal to eQID
_ 2

A�(F). Also, AI is an irreducible subvariety of F provided B is irreducible.
We will show (the push-forward is taken on the level of cycles) that:

(1) If I 6� (n; n�1; : : : ; k+1) then p�AI = 0. Passing to the rational equivalence
classes, this implies p� eQID

_ = 0.
(2) If I � (n; n� 1; : : : ; k + 1) i.e. I = (n; n� 1; : : : ; k + 1; j1; : : : ; jl), where

jl > 0 and l 6 k, then p�AI = �J where J = (j1; : : : ; jl). Then, passing to
the rational equivalence classes (and using the projection formula), we get the
following equality involving the dominant terms: p� eQID

_ = eQJV
_
n .

Observe that (1) holds if l(I) 6 n�k because we then have codimFAI = jIj <
n+(n� 1)+ � � �+ (k+ 1), which is the dimension of the fiber of p. We will need
the following.

Claim. Let I � �n be a strict partition. Let l = cardfh j in�k+h 6= 0g. Assume
that l > 0. Then one has

p(AI) � �in�k+1;in�k+2;:::;in�k+l
: (�)

Indeed, for (L;�; N) 2 AI , since rank(L\N) > k, the inequality rank(N\Wr) >
h implies rank(L \Wr) > h� (n� k) for every h; r; this gives (�).

(1) To prove this assertion we first use (�) (by the above remark we can assume
that l(I) > n� k) and thus get

codimFAI � codimXp(AI) 6 (i1 + � � �+ in�k+l)

�(in�k+1 + � � � + in�k+l)

= i1 + � � �+ in�k:

Then, since I 6� (n; n� 1; : : : ; k + 1), we have

i1 + � � �+ in�k < n+ � � � + (k + 1);

where the last number is the dimension of the fiber of p. Hence comparison of the
latter inequality with the former yields p�AI = 0.

(2) To prove this, it suffices to show p(AI) � �J , dimAI = dim�J ; and if
p�AI = d � �J for some d 2 Z then d = 1. We have

p(AI) � �J : this is a direct consequence of (�):

dimAI = dim�J : this results from comparison of the following three formulas
dimF = dimX + k(n � k) + (n � k)(n � k + 1)=2; codimX�J = jJ j, and
codimFAI = n+ � � �+ (k + 1) + jJ j.

Therefore p�AI = d ��J for some integer d. To show d = 1 it suffices to find an
open subset U � �J such that pjp�1U : p�1U ! U is an isomorphism. We define
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the open subsetU in question as �J r
(n� k;W�). More explicitly, U is defined
by the conditions

rank(L \Wn+1�j1) > 1; : : : ; rank(L \Wn+1�jl) > l

and L \Wn�k = (0):

Observe that these conditions really define an open non-empty subset of�J because

(n + 1 � j1; : : : ; n + 1 � jl;W�) 6� 
(n + 1 � (k + 1);W�) for J � �k.
(Recall that for I = (i1 > � � � > il > 0); J = (j1 > � � � > jl0 > 0) one has

(n+1� i1; : : : ; n+1� il;W�) � 
(n+1� j1; : : : ; n+1� jl0;W�) iff I � J).

Since our problem of showing that d = 1 is of local nature, we can assume that
B is a point and deal with vector spaces instead of vector bundles. Let us choose a
basis e1; : : : ; en; f1; : : : ; fn such that, denoting the symplectic form by �, we have
�(ei; ej) = 0 = �(fi; fj) and �(ei; fj) = ��(fj; ei) = �i;j . Assume that Wi is
generated by the first i vectors of fejg. Let W i be the subspace generated by the
last i vectors of fejg. Moreover, let fWi be the subspace generated by the first i
vectors of ffjg and fW i be the subspace generated by the last i vectors of ffjg.

Observe that for a strict partition �n � I � (n; n � 1; : : : ; k + 1) a necessary
condition for ‘(�;�; N) 2 AI’ is ‘N � Wn�k’. (This corresponds to the first
(n � k) Schubert conditions defining AI .) On the other hand, if L 2 U then
L \ Wn�k = (0) and consequently L must contain fWn�k (from the rest, i.e.
W k � fW k, we can get at most k-dimensional isotropic subspace). Hence also
jL\ (W k�fW k)j = k (j� j denotes the dimension). We conclude that a necessary
choice for an n-dimensional Lagrangian subspace N such that (L;M;N) 2 AI

for some M , is

N :=Wn�k � (L \ (W k � fW k)):

It follows from the above discussion that N is really a Lagrangian subspace of
dimensionn and it satisfies the first (n�k)Schubert conditions definingAI .N also
satisfies the last l (6 k) Schubert conditions definingAI : since jL\Wn+1�jhj > h

and L \Wn�k = (0), we have jN \Wn+1�jhj = jWn�kj + h > n � k + h for
h = 1; : : : ; l.

Moreover, since jL \ N j = k, the subspace M above is determined uniquely:
M = L \N .

Summing up, we have shown that d = 1; this ends the proof of (2).
Thus the proposition has been proved. 2

PROPOSITION 3.2. One has in A�(G)

[
(n� k + 1; : : : ; n)] =
X

strict I��k

eQI(V
_
n )G �

eQ�krI(R
_):
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Proof. This formula is obtained directly by pushing forward via (p1)� the class
of Z in A�(GF) given byX

strict I��n

eQI(D
_
GF ) �

eQ�nrI(R
_
GF );

(see Corollary 2.6), with the help of Proposition 3.1. 2

EXAMPLE 3.3. For successive k (and any n) the formula reads (with D =
DGF ; R = RGF for brevity)

k = 1 eQ1D
_ + eQ1R

_;

k = 2 eQ21D
_ + eQ2D

_ � eQ1R
_ + eQ1D

_ � eQ2R
_ + eQ21R

_;

k = 3 eQ321D
_ + eQ32D

_ � eQ1R
_ + eQ31D

_ � eQ2R
_

+ eQ21D
_ � eQ3R

_ + eQ3D
_ � eQ21R

_

+ eQ2D
_ � eQ31R

_ + eQ1D
_ � eQ32R

_ + eQ321R
_:

In the odd orthogonal case, the analogs of Propositions 3.1 and 3.2 are obtained
by replacing eQ-polynomials by eP -polynomials.

PROPOSITION 3.4. (i) Assume a� = (n�k+ 1; n�k+ 2; : : : ; n). Let I � �n be
a strict partition. If (n; n� 1; : : : ; k + 1) 6� I , then p� ePID_ = 0. In the opposite
case, write I = (n; n � 1; : : : ; k + 1; j1; : : : ; jl), where jl > 0 and l 6 k. Then
p� ePID_ = ePj1;:::;jlV

_
n .

(ii) One has in A�(OGnV )

[
(n� k + 1; : : : ; n)] =
X

strict I��k

ePI(V _
n )G �

eP�krI(R_):

Assertion (ii) follows from (i) like Proposition 3.2 follows from Proposition 3.1.
The proof of (i) is essentially the same as the one of Proposition 3.1. More pre-
cisely, in the proof of (i), �J and AI are defined in the same way as in the
proof of this proposition. Also, the whole reasoning is the same, word by word,
except of the following one point. To prove that d = 1 one chooses now a basis
e1; : : : ; en; f1; : : : ; fn; g such that denoting the orthogonal form by �, we have
�(ei; ej) = �(fi; fj) = �(ei; g) = �(fj; g) = 0, �(ei; fj) = �(fj; ei) = �i;j

and �(g; g) = 1. Then Wi, W i, fWi and fW i defined like in the proof of Proposi-
tion 3.1 allow us to show that d = 1 exactly in the same way as in the proof of this
proposition.

Let us pass now to the even orthogonal case. So let V ! X (X is connected)
be a rank 2n vector bundle endowed with a nondegenerate quadratic form. Fix an
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isotropic rankn subbundle Vn of V . Recall that for k � n (mod 2) by p0:F 0 !
X we denote the flag bundles parametrizing flags A1 � A2 of subbundles of
V such that rankA1 = k, rankA2 = n, A1 � Vn and A2 is isotropic with
dim(A2 \ Vn)x � n (mod 2) for every x 2 X . Similarly, for k � n + 1 (mod 2)
by p00:F 00 ! X we denote the flag bundle parametrizing flags A1 � A2 of
subbundles of V such that rankA1 = k, rankA2 = n,A1 � Vn andA2 is isotropic
with dim(A2 \ Vn)x � n+ 1 (mod 2) for every x 2 X .

In the even orthogonal case the analog of Proposition 3.1 reads:

PROPOSITION 3.5. Let I � �n�1 be a strict partition. If (n�1; n�2; : : : ; k) 6� I

then p0� ePID_ = 0. In the opposite case, write I = (n�1; n�2; : : : ; k; j1; : : : ; jl),
where jl > 0 and l 6 k � 1. Then

p0�
ePID_ = ePj1;:::;jlV

_
n :

The same formula is valid for p00� .
Proof. We consider first the case of p0� i.e. k � n (mod 2). It suffices to prove

the formula for a rank 2n vector bundle V ! B (we assume that B is irreducible)
endowed with a nondegenerate orthogonal form, X equal to OG0

nV or OG00
nV and

Vn equal to the tautological subbundle on X . Then the variety F 0 parametrizes
triples (L;M;N) such that dim(L \ N)b � n (mod 2) for every b 2 B (i.e. L
and N either belong together to OG0

nV or together to OG00
nV ) and M is a rank k

subbundle of L \N .
We will now prove the proposition for X = OG0

nV . (Obvious modifications
lead to a proof in the case X = OG00

nV .) Since the strategy of proof is the same
as in the Lagrangian case, we will skip those parts of the reasoning which have
appeared already in the proof of Proposition 3.1. Let W�:W1 � W2 � � � � � Wn

be an isotropic flag in V .
For J = (j1 > � � � > jl > 0) � �k�1 we define

�J = 
(n� j1; : : : ; n� jl;W�) if l � n (mod 2) and

�J = 
(n� j1; : : : ; n� jl; n;W�) if l � n+ 1 (mod 2):

Similarly for I = (i1 > � � � > il > 0) � �n�1; q:F 0 ! OG0
nV the projection

on the third factor, we define

AI = q�
(n� i1; : : : ; n� il;W�) if l � n (mod 2) and

AI = q�
(n� i1; : : : ; n� il; n;W�) if l � n+ 1 (mod 2):

It is known that �J andAI are irreducible subvarieties providedB is. The dom-
inant terms of the classes of �J andAI are equal to ePJV _

n and ePID_ respectively.
The proposition now follows from
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(1) If I 6� (n� 1; n� 2; : : : ; k) then p0�AI = 0.
(2) If I � (n � 1; n � 2; : : : ; k) i.e I = (n � 1; n� 2; : : : ; k + 1; k; j1; : : : ; jl),

where jl > 0 and l 6 k � 1, then p0�AI = �J where J = (j1; : : : ; jl).

Assertion (1) (being obvious if l(I) < n� k) is a consequence of:
Claim. For every strict partition I � �n�1, let l = cardfh j in�k+h 6= 0g.

Assume that l > 0. Then one has

p0(AI) � �in�k+1;:::;in�k+l
: (�)

Inclusion (�) also implies p0(AI) � �J in (2). The equality dim p0(AI) =
dim�J now follows from: dimF 0 = dimX + k(n� k) + (n� k)(n� k � 1)=2,
codimX�J = jJ j and codimF 0AI = (n� 1) + � � �+ k + jJ j.

Therefore p0�AI = d��J for some integer d. To prove that d = 1 it is sufficient to
show an open subsetU � �J such that p0j(p0)�1U : (p0)�1U ! U is an isomorphism.
The open subset U in question parametrizes those L 2 �J for which L\Wn�k =
(0).

The problem being local, we can assume thatB is a point. Let e1; : : : ; en; f1; : : : ;

fn be a basis ofV such that denoting the form by�we have�(ei; ej) = �(fi; fj) =

0, �(ei; fj) = �(fj; ei) = �i;j and Wi is spanned by e1; : : : ; ei. Define W i;fWi

and fW i as in the proof of Proposition 3.1.
Now, given L 2 U , the unique N such that (L;M;N) 2 AI for some M , is

defined also as in the proof of Proposition 3.1: N := Wn�k � (L \ (W k � fW k)).
This N is isotropic and satisfies the first n � k Schubert conditions because

it contains Wn�k. Moreover, it satisfies the last l(6 k � 1) Schubert conditions
definingAI : since jL\Wn�jh j > h andL\Wn�k = (0), we have jN \Wn�jhj =
jWn�kj + h > n � k + h for h = 1; : : : ; l. Finally, the M above is determined
uniquely: M = L \N , and p0j(p0)�1U is an isomorphism.

We next consider the case of p00� , i.e. k � n+ 1 (mod 2). It suffices to prove the
formula for a rank 2n vector bundle V ! B (B is irreducible) endowed with a
nondegenerate orthogonal form, X equal to OG0

nV or OG00
nV and Vn equal to the

tautological subbundle on X . Then the variety F 00 parametrizes triples (L;M;N)
such that dim(L \N)b � n+ 1 (mod 2) for every b 2 B (i.e. L and N belong to
different components OG0

nV and OG00
nV ) and M is a rank k subbundle of L \N .

We will prove the proposition for X = OG00
nV . (Obvious modifications lead to

a proof in the case X = OG0
nV .) Let W�:W1 � W2 � � � � � Wn be an isotropic

flag in V . For J = (j1 > � � � > jl > 0) � �k�1 we define

�J = 
(n� j1; : : : ; n� jl;W�) if l � n+ 1 (mod 2) and

�J = 
(n� j1; : : : ; n� jl; n;W�) if l � n (mod 2):

Similarly for I = (i1 > � � � > il > 0) � �n�1; q:F 00 ! OG0
nV the projection on

the third factor, we define

AI = q�
(n� i1; : : : ; n� il; n;W�) if l � n+ 1 (mod 2) and
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AI = q�
(n� i1; : : : ; n� il;W�) if l � n (mod 2):

The dominant terms of the classes of �J and AI are equal to ePJV _
n and ePID_

respectively. The proposition now follows from

(1) If I 6� (n� 1; n� 2; : : : ; k) then p00�AI = 0.
(2) If I � (n� 1; n� 2; : : : ; k) i.e. I = (n� 1; n� 2; : : : ; k + 1; k; j1; : : : ; jl),

where jl > 0 and l 6 k � 1, then p00�AI = �J where J = (j1; : : : ; jl).

The proof of these assertions is analogous to the one above. For every strict
partition I � �n�1 and l = cardfh j in�k+h 6= 0g > 0, one has p00(AI) �
�in�k+1;:::;in�k+l

, which implies (1) and p00(AI) � �J in (2); moreover, for the
dimensions reasons we have p00�AI = d � �J for some integer d. One finishes the
proof like in the case of p0�, by showing that p00j(p00)�1U : (p00)�1U ! U is an iso-
morphism, where the open subset U � �J parametrizes those L 2 �J for which
L \Wn�k = (0). Hence d = 1 and the proof is complete. 2

PROPOSITION 3.6. If k � n (mod 2) (resp: k � n + 1 (mod 2)) then one has
in A�(OG0

nV ) (resp: in A�(OG00
nV ))

[
(n� k + 1; : : : ; n)] =
X

strict I��k�1

ePI(V _
n )G �

eP�k�1rI(R
_):

Proof. This formula is obtained directly by pushing forward via p0� (resp: p00�)
the class of Z in A�(GF) given byX

strict I��n�1

ePI(D_
GF ) �

eP�n�1rI(R
_
GF );

whereGF = G�X F
0 (resp: GF = G�X F

00), using Propositions 2.7 and 3.5.2

4. eQ-Polynomials and their properties

In this section we define a family of symmetric polynomials modeled on Schur’s
Q-polynomials. In Schur’s Pfaffian-definition (see [S]), we replace Qi by ei –
the i-th elementary symmetric polynomial. After this modification one gets an
interesting family of symmetric polynomials eQI (indexed by all partitions) whose
properties are studied in this section and then applied in the next ones. It turns
out that eQI is the Young dual (in sense of the involution ! of [Mcd1, I.2.(2.7)]
to the Hall–Littlewood polynomial eQI(Y ; q) where the alphabet Y is equal to
Xn=(1 � q) in the sense of �-rings, specialized with q = �1 ([L-L-T], [D-L-T]).
Though most of the properties of the eQI given in this section can be deduced from
the theory of Hall–Littlewood polynomials, we give here their proofs using the
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Pfaffian definition. The only exception is made for the Pieri-type formula which is
deduced from the one for Hall–Littlewood polynomials.

Let X = (x1; x2; : : :) be a sequence of independent variables. Denote by Xn

the subsequence (x1; : : : ; xn). We set eQi(Xn) := ei(Xn) – the i-th elementary
symmetric polynomial in Xn. Given two nonnegative integers i; j we define

eQi;j(Xn) = eQi(Xn) eQj(Xn) + 2
jX

p=1

(�1)p eQi+p(Xn) eQj�p(Xn):

Finally, for any (i.e. not necessary strict) partition I = (i1 > i2 > � � � > ik > 0),
with even k (by putting ik = 0 if necessary), we set

eQI(Xn) = Pf( eQip;iq(Xn))16p<q6k:

Equivalently (in full analogy to [S, pp. 224–225]), eQI(Xn) is defined recurrently
on l(I), by putting for odd l(I)

eQI(Xn) =

l(I)X
j=1

(�1)j�1 eQij (Xn) eQIrfijg(Xn); (�)

and for even l(I)

eQI(Xn) =

l(I)X
j=2

(�1)j eQi1;ij (Xn) eQIrfi1;ijg(Xn): (��)

The latter case, with l = l(I), can be rewritten as

eQI(Xn) =
l�1X
j=1

(�1)j�1 eQij ;il(Xn) eQIrfij ;ilg(Xn): (� � �)

Note that assuming formally il = 0, the relation (� � �) specializes to (�). We will
refer to the above equations as Laplace-type developments or simply recurrent for-
mulas. (Invoking the raising operatorsRij ([Mcd1,I], [D-L-T]) the above definition
is rewritten

eQI(Xn) =
Y
i<j

1�Rij

1 +Rij
eI(Xn);

where eI(Xn) is the product of the elementary symmetric polynomials in Xn

associated with the parts of I .)
We start with a useful linearity-type formula for eQ-polynomials.
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PROPOSITION 4.1. For any strict partition I one has

eQI(Xn) =

l(I)X
j=0

xjn

0@ X
jIj�jJj=j

eQJ(Xn�1)

1A ;

where the sum is over all (i.e. not necessary strict) partitions J � I such that
I=J has at most one box in every row. (Using the terminology of [Mcd1], this
is equivalent to saying that I=J is a vertical strip; note that I=J is here also a
horizontal strip.)

Proof. We use induction on l(I). (1) l(I) = 1. Since we have ei(Xn) =
ei(Xn�1) + xnei�1(Xn�1), the assertion follows.

(2) l(I) = 2. We have for i > j > 0 and with ei = ei(Xn), �ei = ei(Xn�1);
�e�1 = 0,

eQi;j(Xn) = eiej + 2
jX

p=1

(�1)pei+pej�p

= (�ei + xn�ei�1)(�ej + xn�ej�1)

+2
jX

p=1

(�1)p(�ei+p + xn�ei+p�1)(�ej�p + xn�ej�p�1)

=

0@�ei�ej + 2
jX

p=1

(�1)p�ei+p�ej�p

1A

+xn

240@�ei�1�ej + 2
jX

p=1

(�1)p�ei�1+p�ej�p

1A

+

0@�ei�ej�1 + 2
j�1X
p=1

(�1)p�ei+p�ej�1�p

1A35

+x2
n

0@�ei�1�ej�1 + 2
j�1X
p=1

(�1)p�ei�1+p�ej�1�p

1A
= eQi;j(Xn�1) + xn[ eQi�1;j(Xn�1) + eQi;j�1(Xn�1)]

+x2
n
eQi�1;j�1(Xn�1):

(3) By the remarks before the proposition, to prove the assertion in general it
suffices to show it by using the recurrent relation (� � �). (Note that the right-hand
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side of the formula of the proposition specializes after the formal replacement
il := 0 (l = l(I)) to the expression asserted for (i1 > i2 > � � � > il�1).

So, let us assume that l is even and set eQI := eQI(Xn); �QI = eQI(Xn�1).
Moreover, let P(I; j) be the set of all partitions J � I such that InJ has at most
one box in every row and jIj � jJ j = j. We have by induction on l

eQInfij ;ilg =
l�2X
r=0

xrn

0@ X
J2P(Infij ;ilg;r)

�QJ

1A :

Therefore, using (2) we have

eQI =
l�1X
j=1

(�1)j�1[ �Qjj ;il + xn( �Qij�1;il +
�Qij ;il�1) + x2

n
�Qij�1;il�1]

�

24 l�2X
r=0

xrn

0@ X
J2P(Infij ;ilg;r)

�QJ

1A35 :
On the other hand, apply the relation (� � �) to the right-hand side of the formula
in the proposition. One gets

lX
j=0

xjn

0@ X
J2P(I;j)

�QJ

1A

=
lX

j=0

xjn

24 X
J2P(I;j)

0@l�1X
q=1

(�1)q�1 �Qjq;jl �
�QJnfjq ;jlg

1A35 :
It is straightforward to verify that both these sums contain 2l(l � 1) terms of the
form

(�1)sxj �Qa;b
�Qc1;:::;cl�2;

and such a term appears in both sums if and only if

(c1; : : : ; cs; a; cs+1; : : : ; cl�2; b) 2 P(I; j):

Thus the assertion follows and the proof of the proposition is complete. 2

PROPOSITION 4.2. eQi;i(Xn) = ei(x
2
1; : : : ; x

2
n).

Proof. By definition we have (ei = ei(Xn))eQi;i(Xn) = eiei � 2ei+1ei�1 + 2ei+2ei�2 � � � �

=
2iX
p=0

(�1)p+iepe2i�p:
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On the other hand, with an indeterminate t, we have

(1 + x1t) : : : (1 + xnt)(1� x1t) : : : (1� xnt)

= (1� x2
1t

2) : : : (1 � x2
nt

2);

or equivalently,�X
ept

p
��X

(�1)qeqt
q
�
=
X

(�1)iei(x
2
1; : : : ; x

2
n)t

2i;

which implies

(�1)iei(x
2
1; : : : ; x

2
n) =

2iX
p=0

(�1)pepe2i�p:

Comparison of this last equation with the first one gives the assertion. 2

PROPOSITION 4.3. For partitions I 0 = (i1; i2; : : : ; j; j; : : : ; ik�1; ik) and I =
(i1; : : : ; ik), the following equality holds

eQI0(Xn) = eQj;j(Xn) eQI(Xn):

Proof. Write eQI for eQI(Xn). We use induction on k. For k = 0, the assertion is
obvious. For k = 1, we have eQi;j;j = eQi

eQj;j and eQj;j;i = eQj;j
eQi by the Laplace

type developments, so the assertion follows.
In general, it suffices to show the assertion inductively, using the relation (���),

if the marked ‘j’ does not appear on the last place; and independently, to prove it
(inductively) for I 0 = (i1; : : : ; ik; j; j). In both instances k is assumed to be even.

In the former case, using (� � �) we get

eQI0 = eQi1;ik
eQi2;:::;j;j;:::;ik�1 � � � � � eQj;ik

eQi1;i2;:::;j;:::;ik�1

� eQj;ik
eQi1;i2;:::;j;:::;ik�1 � � � � � eQik�1;ik

eQi1;:::;j;j;:::;ik�2;

and the assertion follows from the induction assumption by using the relation (���)
w.r.t. eQi1;:::;ik once again.

In the latter case we use the relation (��). We have

eQi1;:::;ik;j;j =
eQi1;i2

eQi3;:::;ik;j;j � � � �+ eQi1;ik
eQi2;:::;ik�1;j;j

� eQi1;j
eQi2;:::;ik;j +

eQi1;j
eQi2;:::;ik;j;

and the assertion follows from the induction assumption by using the relation (��)
w.r.t. eQi1;:::;ik once again. 2
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LEMMA 4.4. Let I = (i1; i2; : : : ; ik) be a partition. If i1 > n then eQI(Xn) = 0.
Proof. We use induction on l(I). For l(I) = 1; 2 the assertion is obvious because

ep(x1; : : : ; xn) = 0 for p > n. For bigger l(I) one uses induction on the length
and the recurrent formulas, which immediately imply the assertion. 2

EXAMPLE 4.5. The following equalities hold: (in (1) and (2) we set eQI := eQI(Xn)
for brevity)

(1) eQ5544441 = eQ55
eQ44441 = eQ55

eQ44
eQ441 = eQ55

eQ44
eQ44

eQ1 = eQ55
eQ4444

eQ1;

(2) eQ5554443331 = eQ55
eQ44

eQ33
eQ5431 = eQ554433

eQ5431;

(3) Here, we set �QI := eQI(x1; x2), �Q0
I := eQI(x1). Then

eQ321(x1; x2; x3) = x3 �Q221 + x2
3(
�Q211 + �Q22) + x3

3
�Q21

= x3 �Q22 �Q1 + x2
3(
�Q11 �Q2 + �Q22) + x3

3
�Q21

= x3e2(x
2
1; x

2
2)(x1 + x2) + x2

3[e1(x
2
1; x

2
2)x1x2 + e2(x

2
1; x

2
2)]

+x3
3(x2 �Q

0
11 + x2

2
�Q0

1)

= x3(x
2
1x

2
2)(x1 + x2) + x2

3[(x
2
1 + x2

2)x1x2 + x2
1x

2
2]

+x3
3(x2x

2
1 + x2

2x1).

By iterating the linearity formula for eQI(Xn) (Proposition 4.1), we get the
following algorithm for decomposition of eQI = eQI(Xn) into a sum of monomials

(1) If I is not strict, we factorize

eQI = eQk1;k1 �
eQk2;k2 � : : : �

eQkl;kl �
eQL;

where L is strict (we use Proposition 4.3).
(2) We apply the linearity formula to eQL(Xn) and xn. Also, we decompose

eQkp;kp(Xn) = ekp(x
2
1; : : : ; x

2
n)

= ekp(x
2
1; : : : ; x

2
n�1) + ekp�1(x

2
1; : : : ; x

2
n�1)x

2
n

= eQkp;kp(Xn�1) + eQkp�1;kp�1(Xn�1)x
2
n:

We then repeat (1) and (2) with the so obtained eQI(Xn�1)’s, thus extracting xn�1;
then, we proceed similarly with the so obtained eQI(Xn�2)’s etc.

Note that if we stop this procedure after extracting the variablesxn; xn�1; : : : ; xm+1

we get a development

eQI(Xn) =
X
J

eQJ(Xm)FJ (xm+1; : : : ; xn); (�)
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38 P. PRAGACZ AND J. RATAJSKI

where the sum is over J � I (this follows from the linearity formula; J are not
necessary strict).

It follows from the above algorithm that eQI(Xn) is a positive sum of monomials.
It is, in general, not a positive sum of Schur S-polynomials in Xn (we refer
the reader to [Mcd1, I] and [L-S1] for a definition and properties of Schur S-
polynomials). Here comes an example computed with the help of SYMMETRICA
[K-K-L].

EXAMPLE 4.6. Let n = 5, eQI = eQI(X5) and sJ = sJ(X5). We have

eQ54 = s22221; eQ53 = s22211; eQ52 = s22111; eQ51 = s21111;

eQ43 = s2221 � s22111; eQ42 = s2211 � s21111; eQ41 = s2111 � s11111;

eQ32 = s221 � s2111 + s11111; eQ31 = s211 � s1111;

eQ21 = s21 � s111:

eQ543 = s33321 � s33222; eQ542 = s33221 � s32222; eQ541 = s32221 � s22222;

eQ532 = s33211 � s32221 + s22222; eQ531 = s32211 � s22221;

eQ521 = s32111 � s22211;

eQ432 = s3321 � s3222 � s33111; eQ431 = s3221 � s32111 � s2222;

eQ421 = s3211 � s31111 � s2221;

eQ321 = s321 � s3111 � s222:

eQ5432 = s44321 � s44222 � s43331; eQ5431 = s43321 � s43222 � s33331;

eQ5421 = s43221 � s42222 � s33321;

eQ5321 = s43211 � s42221 � s33311;

eQ4321 = s4321 � s43111 � s4222 � s3331 + s32221 � 2s22222;

eQ54321 = s54321 � s54222 � s53331 � s44421 + s43332 � 2s33333:

We denote by SP(Xn) the ring of symmetric polynomials in Xn.

PROPOSITION 4.7. The set f eQI(Xn)g indexed by all partitions such that i1 6 n

forms an additive basis of SP(Xn). Moreover, for any commutative ring R, the
same set is a basis of the free R-module SP(Xn)
R.
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Proof. Let us compare the family f eQI(Xn)g with the R-basis feI(Xn)g of
SP(Xn)
R, where I runs over all partitions such that i1 6 n (and for a partition
I = (i1; : : : ; ik) we write eI(Xn) = ei1(Xn) � : : : � eik(Xn)). Consider the reverse
lexicographic ordering of [Mcd1, I] on the set of such partitions, inducing a linear
ordering on the above set feI(Xn)g. By the definition of eQI(Xn), one has

eQI(Xn) = eI(Xn) + (combination of earlier monomials in the ei(Xn)
0s):

Since feI(Xn)g is a R-basis of SP(Xn)
R, f eQI(Xn)g forms another R-basis
of SP(Xn)
R. 2

COROLLARY-DEFINITION 4.8. For every m 6 n and any partitions J � I ,
there exist uniquely defined polynomials eQI=J(xm+1; : : : ; xn) 2 SP(xm+1; : : : ;

xn) such that the following equality holds

eQI(Xn) =
X
J�I

eQJ(Xm) eQI=J(xm+1; : : : ; xn):

Proof. The existence of such polynomialsQI=J(xm+1; : : : ; xn) 2 Z[xm+1; : : : ;

xn] follows from the above discussion and (�); we put eQI=J := FJ .

Since SP(Xn) � SP(Xm)
 SP(xm+1; : : : ; xn) and f eQJ(Xm)jj1 6 mg is a
Z-basis of SP(Xm) (Proposition 4.7), we have the corresponding development

eQI(Xn) =
X
J

eQJ(Xm)GJ(xm+1; : : : ; xn):

Using Proposition 4.6 once again with n replaced bym andR = Z[xm+1; : : : ; xn],
we infer that FJ (= GJ) are symmetric in xm+1; : : : ; xn (and defined uniquely).2

We will need also a family of eP -polynomials in SP(Xn) 
 Z[1
2] defined byePI(Xn) := 2�l(I) eQI(Xn) for a partition I . Also, in analogy to the above, for

every m 6 n and any partitions J � I there exist uniquely defined polynomialsePI=J(xm+1; : : : ; xn) 2 SP(xm+1; : : : ; xn)
 Z[1
2] such that

ePI(Xn) =
X
J�I

ePI(Xm) ePI=J(xm+1; : : : ; xn):

eP -polynomials satisfy properties which can be automatically gotten from the above
established properties of eQ-polynomials. For instance, an analogue of Proposi-
tion 4.1 for eP -polynomials reads

ePI(Xn) =

l(I)X
j=0

xjn

0@ X
jIj�jJj=j

2l(J)�l(I) ePJ(Xn�1)

1A ;
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the sum as in Proposition 4.1.
Given a rankn vector bundleE with the Chern roots (r1; : : : ; rn)we set eQIE :=eQI(Xn) and ePIE := ePI(Xn) with xi specialized to ri. Note that this notation is

consistent with that used in Section 2 and 3. Similarly, given a subbundle E0 � E

with the Chern roots (rm+1; : : : ; rn), we define eQI=JE
0 = eQI=J(xm+1; : : : ; xn)

and ePI=JE0 = ePI=J(xm+1; : : : ; xn) with xi specialized to ri.

In the next section we will need the following Pieri-type formula for the eQI’s.

PROPOSITION 4.9. Let I = (i1; : : : ; ik) be a strict partition of length k. Then

eQI(Xn) eQr(Xn) =
X

2m(I;r;J) eQJ(Xn);

where the sum is over all partitions (i.e. not necessary strict) J � I such that
jJ j = jIj+ r and J=I is a horizontal strip. Moreover,m(I; r;J) = cardf1 6 p 6

k j jp+1 < ip < jpg or, equivalently, it is expressed as the number of connected
components of the strip J=I not meeting the first column.

(A skew diagram D is connected if each of the sets fi: 9j(i; j) 2 Dg and
fj: 9i(i; j) 2 Dg is an interval in Z.)

Proof. Let after [L-L-T], Q0
I(Xn; q) denote the Hall–Littlewood polynomial

QI(Y ; q) where the alphabet Y is equal to Xn=(1 � q) (in the sense of �-rings).
Using raising operators Rij ([Mcd1, I] we have (see, e.g., [D-L-T])

Q0
I(Xn; q) =

Y
i<j

(1� qRij)
�1sI(Xn):

Specialize q = �1 and invoke the well known Jacobi–Trudi formula

sI(Xn) =
Y
i<j

(1�Rij)hI(Xn);

where hI(Xn) is the product of complete homogeneous symmetric polynomials in
Xn associated with the parts of I . We have

Q0
I(Xn;�1) =

Y
i<j

1�Rij

1 +Rij
hI(Xn):

Therefore, denoting by ! the Young-duality-involution we get eQI(Xn) =
!(Q0

I(Xn;�1)).
The required assertion now follows by an appropriate specialization of the Pieri-

type formula for Hall–Littlewood polynomials ([Mo], [Mcd1, III.3.(3.8)]). 2
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5. Divided differences and isotropic Gysin maps; orthogonality ofeQ-polynomials

Let V ! X be a vector bundle of rank 2n endowed with a nondegenerate sym-
plectic form. Let �:LGn(V ) ! X and � :LFl(V ) ! X denote respectively
the Grassmannian bundle parametrizing Lagrangian subbundles of V and the flag
bundle parametrizing flags of rank 1, rank 2; : : : ; rankn Lagrangian subbundles of
V . We have � = � � ! where !:LFl(V ) ! LGn(V ) is the projection map.
The main goal of this section is to derive several formulas for the Gysin map
��:A�(LGn(V ))! A�(X).

We start by recalling the Weyl group Wn of type Cn. This group is isomorphic
to Sn n Z

n
2. We write a typical element of Wn as w = (�; �) where � 2 Sn

and � 2 Z
n
2; so that if w0 = (�0; � 0) is another element, their product in Wn

is w � w0 = (� � �0; �) where ‘�’ denotes the composition of permutations and
�i = ��0(i) � �

0
i . To represent elements of Wn we will use the standard ‘barred-

permutation’ notation, writing them as permutations equipped with bars in those
places (numbered with ‘i’) where �i = �1. Instead of using a standard system of
generators of Wn given by simple reflections si = (1; 2; : : : ; i + 1; i; : : : ; n); 1 6
i 6 n � 1, and sn = (1; 2; : : : ; n � 1; �n), we will use the following system of
generators S = fso = (�1; 2; : : : ; n); s1; : : : ; sn�1g corresponding to the basis:
(�2"1); "1 � "2; "2 � "3; : : : ; "n�1 � "n. It is easy to check that (Wn; S) is a
Coxeter system of type Cn. This ‘nonstandard’ system of generators has several
advantages over the standard one: it leads to easier reasonings by induction on n
and the divided differences associated with it produce ‘stable’ symplectic Schubert
type polynomials (for the details concerning this last topic – consult a recent work
of S. Billey and M. Haiman [B-H]). Let us record first the formula for the length
of an element w = (�; �) 2 Wn w.r.t. S. This formula can be proved by an easy
induction on l(w) and we leave this to the reader.

LEMMA 5.1.

l(w) =
nX
i=1

ai +
X

�j=�1

(2bj + 1);

where ai := cardfp j p > i and �p < �ig and bj := cardfp j p < j and �p < �jg.

In the sequel, whenever we will speak about the ‘length’ of an elementw 2Wn,
we will have in mind the length w.r.t. S.

Let Xn = (x1; : : : ; xn) be a sequence of indeterminates.
We now define symplectic divided differences@i:Z[Xn]! Z[Xn]; i = 0; 1; : : : ;

n� 1, setting
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@0(f) =
f � s0f

�2x1
;

@i(f) =
f � sif

xi � xi+1
; i = 1; : : : ; n� 1;

where s0 acts on Z[Xn] by sending x1 to �x1 and si – by exchanging xi with xi+1

and leaving the remaining variables invariant. For every w 2 Wn, l(w) = l, let
si1 � : : : � sil be a reduced decomposition w.r.t. S. Following the theory in [B-G-
G] and [D1, 2] we define @w := @si1 � : : : � @sil . By loc. cit. we get a well-defined
operator of degree�l(I) acting onZ[Xn] (here, ‘well-defined’ means: independent
of the reduced decomposition chosen).

We want first to study the operator @wo
wherewo = (�1; �2; : : : ; �n) is the maximal

length element of Wn. To this end we need some preliminary considerations.
Let QP(Xn) denote the ring of Schur’s Q-polynomials in Xn. We record the

following (apparently new) identity in this ring. In 5.2–5.4 below we will write:
ei = ei(Xn), sI = sI(Xn), QI = QI(Xn) and eQI = eQI(Xn) for brevity.

PROPOSITION 5.2. In QP(Xn)

Q�k = Det(ai;j)16i;j6k;

where ai;j = Qk+1+j�2i if k+1+ j�2i 6= 0 (with Qi = 0 for i < 0) and ai;j = 2
if k + 1+ j � 2i = 0.

Proof. We have from the theory of symmetric polynomials (see [P2] and the
references therein)

Q�k = 2ks�k = Det(2ek+1+j�2i)16i;j6k:

It follows from the Pieri formula (see [Mcd] and [LS1]) that0B@2
X

hooks I;
jIj=i�2

sI

1CA � s2 + 2ei = 2
X

hooks J;
jJj=i

sJ :

Hence, by multiplying the p-th row by s2 and adding it to the (p � 1)-th one
successively for p = k; k � 1; : : : ; 3; 2, the above determinant is rewritten in the
form

Det

0B@2
X

hooks I;
jIj=k+1+j�2i

sI

1CA
16i;j6k

:
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Notice that the degree 0 entries in this determinant are equal to 2 and the negative
degree entries vanish. Since

Qi = 2
X

hooks I;jIj=i

sI ;

the assertion follows. 2

Let J be the ideal in SP(Xn) generated by ei(x2
1; : : : ; x

2
n), 1 6 i 6 n. We now

invoke a corollary of [P2, Theorem 6.17] combined with [B-G-G, Theorem 5.5] and
[D2, 4.6(a)]: there is a ring isomorphism SP(Xn)=J ! QP(Xn)= � ZQI(Xn),
where I runs over all strict partitions I 6� �n, given by ei(Xn) 7! Qi(Xn) (see
the remark after Theorem 6.17 in [P2, pp. 181-182]). We thus get from the pro-
position:

COROLLARY 5.3. In SP(Xn), eQ�k is congruent to Det(bi;j)16i;j6k modulo J ,
where bi;j = ek+1+j�2i if k + 1+ j � 2i 6= 0 (with ei = 0 for i < 0) and bi;j = 2
if k + 1+ j � 2i = 0.

We now state

LEMMA 5.4. In SP(Xn); eQ�n � enen�1 : : : e1 � s�n (modJ ).
Proof. By the corollary it is sufficient to prove that Det(bi;j)16i;j6n � enen�1 : : :

e1 � s�n (modJ ). Recall that s�n = Det(ci;j)16i;j6n where ci;j = en+1+j�2i if
n+ 1 + j � 2i 6= 0 and ci;j = 1 if n+ 1+ j � 2i = 0, i.e. the matrices (bi;j) and
(ci;j) are the same modulo the degree 0 entries.

Let us write the determinants Det(bi;j) and Det(ci;j) as the sums of the standard
n! terms (some of them are zero). It is easy to see that apart from the ‘diago-
nal’ term enen�1 : : : e1; every other term appearing in both sums is divisible by
enen�1 : : : ep+1e

2
p for some p > 1. We claim that enen�1 : : : ep+1e

2
p 2 J : Indeed,

e2
n 2 J and suppose, by induction, that we have shown enen�1 : : : eq+1e

2
q 2 J for

q > p. Then

enen�1 : : : ep+1e
2
p = enen�1 : : : ep+1

" eQp;p + 2
pX
i=1

(�1)i�1ep+iep�i

#

belongs toJ by the induction assumption, because eQp;p 2 J (see Proposition 4.2).
This shows that

Det(bi;j) � enen�1 : : : e1 � Det(ci;j) (modJ ):

Thus the lemma is proved. 2
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The following known result (see, e.g., [D1] where the result is given also for
other root systems) is accompanied by a proof for the reader’s convenience.

PROPOSITION 5.5. One has for f 2 Z[Xn],

@wo
(f) = (�1)n(n+1)=2

0@2nx1 � : : : � xn
Y
i<j

(x2
i � x2

j)

1A�1

�
X

w2Wn

(�1)l(w)w(f):

Proof. By the definition of @wo
we infer that

@wo
=

X
w2Wn

�ww;

where the coefficients�w are rational functions in x1; : : : ; xn. Sincewo is the max-
imal length element in Wn, @i � @wo

= 0 for all i = 0; 1; : : : ; n� 1. Consequently
si@wo

= @wo
for i = 0; 1; : : : ; n � 1 and hence v@wo

= @wo
for all v 2 Wn. In

particular, for every v 2Wn,

@wo
=

X
w2Wn

v(�w)vw:

Thus �vw = v(�w) for all v; w 2 Wn, and we see that, e.g., �wo
determines

uniquely all the �w’s.

Claim.

�wo
= (�1)n(n�1)=2

0@2nx1 � : : : � xn
Y
i<j

(x2
i � x2

j)

1A�1

:

Proof of the claim. Denote now the maximal length element in Wn by w
(n)
o .

We argue by induction on n. For n = 1, we have �
w
(1)
o

= 1=2x1. We now record
the following equality

w(k+1)
o = sk � sk�1 � : : : � s1 � s0 � s1 � : : : � sk�1 � sk � w

(k)
o

that implies

@
w
(k+1)
o

= @k � @k�1 � � � � � @1 � @0 � @1 � � � � � @k�1 � @k � @w(k)

o

:

It follows easily from the latter equality that

�
w
(k+1)
o

= (�1)k

0@2xk+1

Y
i6k

(xi � xk+1)
Y
i6k

(xi + xk+1)

1A�1

�
w
(k)

o

:
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This allows us to perform the induction step n ! n + 1, thus proving the claim.
Finally, for arbitrary w 2Wn,

�w = wwo(�wo
) = (�1)n(n+1)=2+l(w)

0@2nx1 � : : : � xn
Y
i<j

(x2
i � x2

j)

1A�1

;

because, for w = (�; �), l(�; �) = �ai +��j=�1(2bj + 1) � l(�) + cardfpj �p =
�1g (mod 2) (see Lemma 5.1). 2

COROLLARY 5.6. (i)@wo
(x�1

1 x�2
2 : : : x�nn ) = 0 if�p is even for some p= 1; : : : ; n.

(ii) If all �p are odd then

@wo
(x�1

1 x�2
2 : : : x�nn ) = (�1)n(n+1)=2s�n(Xn)

�1@(x�1
1 x�2

2 : : : x�nn );

where here, and in the sequel, @ denotes the Jacobi symmetrizer0@X
�2Sn

(�1)l(�)�(�)

1A,Y
i<j

(xi � xj):

Proof. (i) Let us fix � 2 Sn and look at all elements of Wn of the form (�; �)
where � 2 Z

n
2. Then, writing x� for x�1

1 � : : : � x�nn , we haveX
�

(�1)l(�;�)(�; �)x�

= (�1)l(�)�(x�)
X
�

(�1)cardfp j �p=�1g��1
1 : : : ��nn ;

because l(�; �) � l(�) + cardfp j �p = �1g (mod 2). Suppose that some numbers
among �1; : : : ; �n are even. We will show that this impliesX

�

(�1)cardfp j �p=�1g��1
1 : : : ��nn = 0:

We can assume that �1; : : : ; �k are odd and �k+1; : : : ; �n are even for some k < n

(by permuting the �p’s if necessary). We haveX
�

(�1)cardfp j �p=�1g��1
1 : : : ��nn

=
X
�

(�1)cardfp j �p=�1g(�1)cardfp j �p=�1; p6kg

=
X
�

(�1)cardfp j �p=�1; p>kg
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= 2k
n�kX
i=0

(�1)i
 
n� k

i

!
= 2k(1� 1)n�k = 0:

(ii) Let us now compute @wo
(x�1

1 : : : x�nn ) where all �p are odd. ThenX
�

(�1)cardfj j �j=�1g��1
1 : : : ��nn = 2n; and

@wo
(x�) = (�1)n(n+1)=2

0@2nx1 : : : xn
Y
i<j

(x2
i � x2

j)

1A�1

�2n
X
�2Sn

(�1)l(�)�(x�)

= (�1)n(n+1)=2s�n(Xn)
�1@(x�): 2

We now record the following properties of the operator O = @(�n;:::;�2;�1). In the
following, let I = JZ[Xn].

LEMMA 5.7. (i) If f 2 SP(x2
1; : : : ; x

2
n) then O(f � g) = f � O(g).

(ii) O( eQ�n(Xn)) = (�1)n(n+1)=2.
Proof. (i) This assertion is clear because every polynomial in SP(x2

1; : : : ; x
2
n)

is Wn-invariant. Observe that it implies that if f � g (mod I) then O(f) �
O(g) (mod I).

(ii) (This can be also deduced from the Chow ring of the Lagrangian Grass-
mannian. We present here a direct algebraic argument.) In this part we will use the
following properties of the Jacobi symmetrizer @ (see [L-S2], [Mcd2])

(1) If f 2 SP(Xn), g 2 Z[Xn] then @(f � g) = f � @(g).
(2) For any � = (�1; : : : ; �n) 2 N

n , @(x�) = s���n�1(Xn). In particular, if
�i = �j for some i 6= j then @(x�) = 0.

(3) @ = @(n;n�1;:::;1):

Let ei = ei(Xn). Since eQ�n(Xn) � enen�1 : : : e1 (mod I) (by Lemma 5.4),
we have

O( eQ�n(Xn)) = O(enen�1 : : : e1) = (O � @)(x�n�1enen�1 : : : e1);

by properties (1) and (2) above. Since

(n; n� 1; : : : ; 1) � (n; n� 1; : : : ; 1) = w0;

this expression equals @w0(x
�n�1enen�1 : : : e1) by property 3. The degree of the

polynomial x�n�1enen�1 : : : e1 is n2. Assuming that �1 + � � �+�n = n2, we have
@w0(x

�) 6= 0 only if

x� = x2n�1
�(1) x

2n�3
�(2) : : : x�(n);
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for some � 2 Sn. Indeed, it follows from Corollary 5.6(i) that @w0(x
�) 6= 0 only if

all the�i’s are odd. Moreover, they must be all different; otherwise @(x�) = 0 (and
consequently@wo

(x�) = 0) by property 2. We conclude that f�1; : : : ; �ng = f2n�
1; 2n�3; : : : ; 1g. But there is only one such a monomial x� in x�n�1enen�1 : : : e1,
namely the one with (�1; : : : ; �n) = (2n� 1; 2n� 3; : : : ; 1). Therefore

@wo
(x�n�1enen�1 : : : e1) = @w0(x

2n�1
1 x2n�3

2 : : : xn) = (�1)n(n+1)=2;

by Corollary 5.6(ii) and property 2. 2

We now pass to a geometric interpretation of the operator O.

PROPOSITION 5.8. Specializing the variables x1; : : : ; xn to the Chern roots
r1; : : : ; rn of the tautological subbundle R on LGnV , one has the equality

��(f(r1; : : : ; rn)) = (@(n;n�1;:::;2;1)f)(r1; : : : ; rn);

where f(�) is a polynomial in n variables.

(A symmetrization-operator variant of this proposition follows also from a recent
paper by M. Brion [Br]. We give here a short proof using only divided-difference
interpretation of Gysin maps for complete (usual and Lagrangian) flag bundles.)

Proof. We invoke a result saying that the Gysin map associated with ! and � is
induced by the following divided-difference operators

��(f(r1; : : : ; rn)) = (@(1;2;:::;n)f)(r1; : : : ; rn) and

!�(f(r1; : : : ; rn)) = (@(n;n�1;:::;1)f)(r1; : : : ; rn):

As for the latter equality, see [P1, Sect. 2], as for the former compare [Br] where
the author gives a symmetrizing operator expression for G=B-fibrations (over a
point, say, this expression was given in [A-C]). The needed divided-difference
interpretation of those symmetrizing operators follows, e.g., from [D1].

Since

(1; 2; : : : ; n) = (n; n� 1; : : : ; 1) � (n; n� 1; : : : ; 1);

we get

@(1;2;:::;n) = @(n;n�1;:::;1) � @(n;n�1;:::;1):

Of course, �� = ���!�. Since!� is surjective, comparison of the latter equation
with the former implies the desired assertion about ��. 2
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We now show how to compute the images via �� of eQ-polynomials in the Chern
classes of R_. Let us write X_

n = (�x1; : : : ;�xn) for brevity.

PROPOSITION 5.9. One has O( eQI(X
_
n )) 6= 0 only if the set of parts of I is

equal to f1; 2; : : : ; ng and each number p (1 6 p 6 n) appears in I with an odd
multiplicity mp. Then, the following equality holds in Z[Xn]

O( eQI(X
_
n )) =

nY
p=1

ep(x
2
1; : : : ; x

2
n)

(mp�1)=2:

Proof. By Proposition 4.3 we can express eQI(X
_
n ) as

eQI(X
_
n ) =

eQj1;j1(X
_
n ) : : :

eQjl;jl(X
_
n )
eQL(X

_
n );

where L is a strict partition. (We divide the elements of the multiset I into pairs of
equal elements and the set L whose elements are all different.) Some of the jp’s
can be mutually equal.

By Proposition 4.2, eQj;j(X
_
n ) = ej(x

2
1; : : : ; x

2
n) is a scalar w.r.t. O.

By Lemma 4.4, eQL(X
_
n ) 6= 0 only if L � �n. On the other hand, for a strict

partition L � �n, O( eQL(X
_
n )) 6= 0 only if L = �n, when it is equal to 1 (see

Lemma 5.7(ii)).
Putting this information together, the assertion follows. 2

Consequently, specializing (xi) to the Chern roots (ri) of the tautological sub-
bundle on LGn(V ) we have

THEOREM 5.10. The element eQIR
_ has a nonzero image under��:A�(LGnV )!

A�(X) only if each number p, 1 6 p 6 n, appears as a part of I with an odd
multiplicity mp. If this last condition holds then

�� eQIR
_ =

nY
p=1

((�1)pc2pV )
(mp�1)=2:

Proof. This follows from Proposition 5.9 and the equality c2pV =
(�1)pep(r2

1 ; : : : ; r
2
n). 2

Our next goal will be to show how to compute the images via �� of S-
polynomials in the Chern classes of the tautological Lagrangian bundle. To this
end we record the following identity of symmetric polynomials. We have found
this simple and remarkable identity during our work on isotropic Gysin maps and
have not seen it in the literature.
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PROPOSITION 5.11. For every partition I = (i1; : : : ; in) and any positive integer
p, one has in SP(Xn),

sI(x
p
1; : : : ; x

p
n) � s(p�1)�n�1

(Xn) = spI+(p�1)�n�1
(Xn):

Here, given a partition I = (i1; i2; : : :), we write pI = (pi1; pi2; : : :).
Proof. We use the Jacobi presentation of a Schur polynomial as a ratio of two

alternants (see [Mcd1], [L-S1]). We have

sI(x
p
1; : : : ; x

p
n) =

Det(x(il+n�l)pk )16k;l6n

Det(xp(n�l)k )16k;l6n

=
Det(xpil+(n�l)(p�1)+(n�l)

k )16k;l6n

Det(xn�lk )16k;l6n �

�
Det(x(p�1)(n�l)+(n�l)

k
)16k;l6n

Det(xn�l

k
)16k;l6n

�

=
spI+(p�1)�n�1

(Xn)

s(p�1)�n�1
(Xn)

: 2

COROLLARY 5.12. For p = 2 we get

sI(x
2
1; : : : ; x

2
n) � s�n�1(Xn) = s2I+�n�1(Xn):

(For another derivation of this identity with the help of Quaternionic Grassmannians
see Appendix A.)

We now give a geometric translation of this last formula, or rather its conse-
quence

sI(x
2
1; : : : ; x

2
n) � s�n(Xn) = s�n+2I(Xn): (�)

THEOREM 5.13. The element sIR_ has a nonzero image under �� only if the
partition I is of the form 2J + �n for some partition J . If I = 2J + �n then

��sIR
_ = s

[2]

J V;

where the right-hand side is defined as follows: if sJ = P (e:) is a unique presen-
tation of sJ as a polynomial in the elementary symmetric functions ei; E – a vector
bundle, then s[2]J (E) := P with ei replaced by (�1)ic2iE (i = 1; 2; : : :).

Proof. Since sIR_ = !�(q
I+�n�1)where q = (q1; : : : ; qn) are the Chern roots of

R_ (this is a familiar Jacobi–Trudi formula restated using the Gysin map for the flag
bundle – see, e.g., [P3] and the references therein), we infer from Corollary 5.6(i)
that sIR_ has a nonzero image under �� only if all parts of I + �n�1 are odd. This
implies that l(I) = n and I is strict thus of the form I 0 + �n for some partition I 0.
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50 P. PRAGACZ AND J. RATAJSKI

Finally all parts of I 0 + �n + �n�1 are odd iff I 0 = 2J for some partition J , as
required.

Assume now that I = 2J + �n and specialize the identity (�) by replacing
the variables (xi) by the Chern roots (qi). The claimed formula now follows
since sI(q2

1; : : : ; q
2
n) is a scalar w.r.t. ��, ��s�n(q1; : : : ; qn) = 1 by Lemma 5.7(ii)

combined with Lemma 5.4; finally (�1)ic2iV = ei(q
2
1; : : : ; q

2
n) because of Lem-

ma 1.1(ii). 2

Observe that the theorem contains an explicit calculation of the ratio in Corol-
lary 5.6(ii).

We now pass to the odd orthogonal case. The Weyl group Wn of type Bn

is isomorphic to Sn n Z
n
2 and its elements are ‘barred-permutations’. We use

the following system of generators of Wn:S = fso = (1; 2; : : : ; n); s1; : : : ; sn�1g
corresponding to the basis (�"1); "1�"2; "2�"3; : : : ; "n�1�"n. Consequently, the
divided differences @i; i = 1; : : : ; n�1, are the same but@0(f) = (f�s0f)=(�x1).

The odd orthogonal analog of Proposition 5.5 reads

@w0(f) = (�1)n(n+1)=2

0@x1 � ::: � xn
Y
i<j

(x2
i � x2

j)

1A�1 X
w2Wn

(�1)l(w)w(f):

Arguing essentially as in the proof of Proposition 5.8 (with obvious modifica-
tions), one shows that the Gysin map associated with �:OGnV ! X is induced
by the orthogonal divided difference operator @(n;n�1;:::;1).

The odd orthogonal analog of Theorem 5.10 reads:

THEOREM 5.14. The element eQIR
_ has a nonzero image under��:A�(OGnV )!

A�(X) only if each number p; 1 6 p 6 n, appears as a part of I with an odd mul-
tiplicity mp. If this last condition holds then

�� eQIR
_ = 2n

nY
p=1

((�1)pc2pV )
(mp�1)=2:

This holds because the calculation in Proposition 5.9 now goes as follows: with
the notation from the proof of Proposition 5.9, the polynomial

eQI(X
_
n ) = 2n eQj1;j1(X

_
n ) : : :

eQjl;jl(X
_
n )
eP�n(X_

n );

is mapped via @(n;n�1;:::;1) to

2n
lY

h=1

ejh(x
2
1; : : : ; x

2
n);

comp3868.tex; 17/06/1997; 10:06; v.6; p.40

https://doi.org/10.1023/A:1000182205320 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000182205320


FORMULAS FOR LAGRANGIAN AND ORTHOGONAL DEGENERACY LOCI 51

since @(n;n�1;:::;1)(
eP�n(X_

n )) = 1. (The proof of the last statement is the same as
that of Lemma 5.7(ii)).

Finally, the odd orthogonal analog of Theorem 5.13 reads:

THEOREM 5.15. The element sIR_ has a nonzero image under �� only if the
partition I is of the form 2J + �n for some partition J . If I = 2J + �n then

��sIR
_ = 2ns[2]J V;

where s[2]J (�) is defined as in Theorem 5.13.

This holds because s�n(X
_
n ) is congruent to 2n eP�n(X_

n ) modulo J (Lemma
5.4) and �� eP�nR_ = 1. Also, we use Lemma 1.1(ii).

We now pass to the even orthogonal case.
In type Dn the Weyl group Wn is identified with the subgroup of the group

of ‘barred permutations’ (w1; : : : ; wn) whose elements have even numbers of bars
only. Consider a system S of generators of Wn consisting of s�1 = (2; 1; 3; : : : ; n)
and si = (1; 2; : : : ; i � 1; i + 1; i; i + 2; : : : ; n), i = 1; 2; : : : ; n� 1. (Wn; S) is a
Coxeter system of type Dn and the length function w.r.t. S is

l(w) =
nX
i=1

ai +
X

�j=�1

2bj;

where ai = cardfp j p > i and wp < wig and bj = cardfp j p < j and wp < wjg.
The longest elementw0 inWn is equal to (1; : : : ; n) if n is even and to (1; 2; : : : ; n)
if n is odd. Following [B-G-G] and [D1,2] one defines the operators @w:Z[Xn]!
Z[Xn] for w 2Wn. Here,

@�1f =
f � f(�x2;�x1; x3; : : : ; xn)

�x1 � x2
:

The even orthogonal analog of Proposition 5.5 reads

@w0(f) = (�1)n(n�1)=2
Y
i<j

(x2
i � x2

j)
�1

X
w2Wn

(�1)l(w)w(f):

The even orthogonal analog of Corollary 5.6 reads:

LEMMA 5.16. (i) @wo
(x�1

1 x�2
2 : : : x�nn ) = 0 if �p is odd for some p = 1; : : : ; n.

(ii) If all �p are even then

@wo
(x�) = (�1)n(n�1)=22n�1s�n�1(Xn)

�1@(x�);

where @ denotes the Jacobi symmetrizer.
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Proof. (i) Let us fix � 2 Sn and look at all elements of Wn of the form (�; �)
where � 2 f+1;�1gn and

Q
i �i = 1. We haveX

�

(�1)l(�;�)(�; �)x� = (�1)l(�)�(x�)
X
�

��1
1 : : : ��nn ;

because l(�; �) � l(�) (mod 2). Suppose that some numbers among �1; : : : ; �n
are odd. We can assume that �1; : : : ; �k are even and �k+1; : : : ; �n are odd for
some k < n (by permuting the �p’s if necessary). We have

X
�

��1
1 : : : ��nn =

X
�

(�1)cardfp j �p=�1; p>kg = 2k
n�kX
i=0

(�1)i
 
n� k

i

!
= 0:

(ii) Let us now compute @wo
(x�1

1 : : : x�nn ) where all �p are even. ThenX
�

��1
1 : : : ��nn = 2n�1;

and

@wo
(x�) = (�1)n(n�1)=2

Y
i<j

(x2
i � x2

j)
�12n�1

X
�2Sn

(�1)l(�)�(x�)

= (�1)n(n�1)=22n�1s�n�1(Xn)
�1@(x�): 2

Let us now denote byJ the ideal inSP(Xn)
Z[
1
2] generated by ei(x2

1; : : : ; x
2
n),

i = 1; : : : ; n� 1, and x1 � : : : � xn. In the following analog of Lemma 5.4 we write
ei = ei(Xn), sI = sI(Xn), PI = PI(Xn) and ePI = ePI(Xn) for brevity.

LEMMA 5.17. In SP(Xn)
 Z[ 1
2],

eP�n�1 � 2�(n�1)en�1en�2 : : : e1 � 2�(n�1)s�n�1(modJ ):

Proof. Proposition 5.2 implies that P�k = Det(ai;j)16i;j;6k where ai;j =
Pk+1+j�2i ifk+1+j�2i 6= 0 (withPi = 0 for i < 0) andPi;j = 1 ifk+1+j�2i =
0. Similarly as in Corollary 5.3, this implies that in SP(Xn)
Z[1

2],
eP�k is congru-

ent to Det(bi;j)16i;j6k modulo J , where bi;j = ePk+1+j�2i if k + 1 + j � 2i 6= 0
(with ePi = 0 for i < 0) and bi;j = 1 if k + 1 + j � 2i = 0. Thus it is suffi-
cient to prove that Det(2bi;j)16i;j6n�1 � en�1 : : : e1 � s�n�1(modJ ). Recall that
s�n�1 = Det(ci;j)16i;j6n�1 where ci;j = en+1+j�2i if n + 1 + j � 2i 6= 0 and
ci;j = 1 if n + 1 + j � 2i = 0, i.e. the matrices (2bi;j) and (ci;j) are the same
modulo the degree 0 entries.

Let us write the determinants Det(2bi;j) and Det(ci;j) as the sums of the standard
n! terms (some of them are zero). It is easy to see that apart from the ‘diagonal’ term
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en�1 : : : e1; every other term appearing in both the sums is divisible either by en or
by en�1en�2 : : : ep+1e

2
p for some p > 1. We claim that, en�1en�2 : : : ep+1e

2
p 2 J :

To this end, it suffices to show that e2
n�1 belongs to J and argue as in the proof of

Lemma 5.4. The needed claim follows from the fact that e2
n�1 � en�1(x

2
1; : : : ; x

2
n)

is divisible by en.
This shows that

Det(2bi;j) � en�1 : : : e1 � Det(ci;j) (modJ ):

Thus the lemma is proved. 2

The even orthogonal analog of Lemma 5.7 for the operator O = @(�n;:::;�2;�1) if n
is even and O = @(�n;:::;�2;1) if n is odd, reads as follows.

LENMMA 5.18. (i) If f 2 SP(x2
1; : : : ; x

2
n)[x1 � : : : � xn] then O(f � g) = f � O(g).

(ii) O( eP�n�1(Xn)) = (�1)n(n�1)=2.
Proof. (i) This assertion is clear because every polynomial in the ring

SP(x2
1; : : : ; x

2
n)[x1 � : : : � xn] is Wn-invariant.

(ii) In this part we will use the Jacobi symmetrizer @ (see the proof of Lem-
ma 5.7). In the following, I = JZ[Xn].

Let ei = ei(Xn). Since eP�n�1(Xn) � 2�(n�1)en�1 : : : e1 (mod I), we have

O( eP�n�1(Xn)) = O(2�(n�1)en�1 : : : e1)

= (O � @)(2�(n�1)x�n�1en�1 : : : e1)

= @w0(2
�(n�1)x�n�1en�1 : : : e1):

The degree of the polynomial x�n�1en�1 : : : e1 is n2�n. Assuming that �1+ � � �+
�n = n2 � n, we have @w0(x

�) 6= 0 only if

x� = x2n�2
�(1) x

2n�4
�(2) : : : x2

�(n�1)x
0
�(n);

for some � 2 Sn. Indeed, it follows from Lemma 5.16 that @w0(x
�) 6= 0 only if

all the �i’s are even. Moreover, they must be all different; otherwise @(x�) = 0
and consequently @wo

(x�) = 0. We conclude that f�1; : : : ; �ng = f2n� 2; 2n�
4; : : : ; 2; 0g. But there is only one such a monomial x� in x�n�1en�1 : : : e1, namely
the one with (�1; : : : ; �n) = (2n� 2; 2n� 4; : : : ; 2; 0). Therefore

@w0(2
�(n�1)x�n�1en�1 : : : e1)

= 2�(n�1)@w0(x
2n�2
1 x2n�4

2 : : : x2
n�1x

0
n)

= (�1)n(n�1)=2
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by Lemma 5.16. 2

The even orthogonal analog of Proposition 5.9 reads (since en(X_
n ) is a scalar

for O, it suffices to evaluate the images via O of PI(X_
n ), where all ip 6 n� 1):

PROPOSITION 5.19. Let I be a partition with all parts not greater than n � 1.
One has O( eQI(X

_
n )) 6= 0 only if the set of parts of I is equal to f1; 2; : : : ; n� 1g

and each number p (1 6 p 6 n � 1) appears in I with an odd multiplicity mp.
Then, the following equality holds in Z[Xn]

O( eQI(X
_
n )) = 2n�1

n�1Y
p=1

ep(x
2
1; : : : ; x

2
n)

(mp�1)=2:

Arguing as in the proof of Proposition 5.8 one shows that the Gysin maps ��
associated with �:OG0

nV ! X (resp. �:OG00
nV ! X), and applied to (sym-

metric) polynomials in the Chern roots of R, are induced by the operator O.
The role of LFl(V ) is played now by the flag bundle parametrizing flags of
rank 1; rank 2; : : : ; rankn isotropic subbundles of V whose rankn subbundle E

satisfies dim(E \ Vn)x � n (mod 2) (resp: dim(E \ Vn)x � n + 1 (mod 2)) for
every x 2 X . Consequently, the proposition whose proof is the same as the one of
Proposition 5.9, has as its consequence:

THEOREM 5.20. Let I be a partition with all parts not greater than n � 1. The
element eQIR

_ has a nonzero image under�� only if each number p, 1 6 p 6 n�1,
appears as a part of I with an odd multiplicity mp. If this last condition holds then

�� eQIR
_ = 2n�1

n�1Y
p=1

((�1)pc2pV )
(mp�1)=2:

THEOREM 5.21. The element sIR_ (l(I) 6 n� 1) has a nonzero image under ��
only if the partition I is of the form 2J+�n�1 for some partition J (l(J) 6 n�1).
If I = 2J + �n�1, then

��sIR
_ = 2n�1s

[2]
J V;

where s[2]J (�) is defined as in Theorem 5.13.
Proof. Since sIR_ = !�(q

I+�n�1) where q = (q1; : : : ; qn) are the Chern roots
of R_, we infer from Lemma 5.16 that sIR_ has a nonzero image under �� only if
all parts of I + �n�1 are even. This implies that l(I) = n � 1 and I is strict thus
of the form I 0 + �n�1 for some partition I 0. Finally, all parts of I 0 + �n�1 + �n�1

are even iff I 0 = 2J for some partition J , as required.
Assume now that I = 2J+�n�1 and specialize the identity from Corollary 5.12

by replacing the variables (xi) by the Chern roots (qi). The claimed formula now
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follows since: sI(q2
1 ; : : : ; q

2
n) is a scalar w.r.t. ��; ��s�n�1(q1; : : : ; qn) = 2n�1

by Lemmas 5.17 and 5.18; moreover 2(�1)ic2iV = 2ei(q2
1 ; : : : ; q

2
n) by Lem-

ma 1.1(ii). 2

REMARK 5.22. (1) Our desingularizations of Schubert subschemes are com-
positions of flag and isotropic Grassmannian bundles (see Section 1). Therefore
Corollary 2.6, the algebra of eQ-polynomials together with formulas for Gysin push
forwards (Theorem 5.10 for Lagrangian Grassmannians and a well-known formula
for projective bundles) give an explicit algorithm for calculation the fundamental
classes of Schubert subschemes in the Lagrangian Grassmannian bundles. One has
analogous algorithms in the orthogonal cases. Examples of such calculations are
given in Section 6 and 7. (2) In case X is singular, by interpreting polynomials
in Chern classes as operators acting on Chow groups (see [F]) or singular homol-
ogy groups, the same formulas hold (after their obvious adaptation to the operator
setup).

We finish this section with the following important ‘orthogonality’ property for
the Gysin maps associated with isotropic Grassmannian bundles.

THEOREM 5.23. (i) For �:LGnV ! X and any strict partitions I; J (� �n)

��( eQIR
_ � eQJR

_) = �I;�nrJ :

(ii) For �:OGnV ! X (dimV = 2n+ 1) and any strict partitions I; J (� �n)

��( ePIR_ � ePJR_) = �I;�nrJ :

(iii) For �:OG0
nV ! X (resp: OG00

nV ! X), and any strict partitions I; J (�
�n�1)

��( ePIR_ � ePJR_) = �I;�n�1rJ :

(Here, �:;: is the Kronecker delta.)

Proof. We will prove first the Lagrangian case (i). (In case (ii), the proof goes
mutatis mutandis using the divided-difference operator @(n;n�1;:::;1) for SO(2n+1)
instead of the operator O for Sp(2n). Case (iii) will be discussed separately at the
end of the proof.

Let Xn = (x1; : : : ; xn) be a sequence of variables. We show that the operator
O:Z[Xn]! Z[Xn], satisfies the following formula for any strict partitions I; J (�
�n)

O( eQI(X
_
n ) �

eQJ(X
_
n )) = �I;�nrJ :

Since �� is induced by O (Proposition 5.8), this implies the assertion. Observe that
for the degree reasons O( eQI � eQJ) = 0 for jIj + jJ j < n(n + 1)=2 (here and
in the rest of the proof, eQI = eQI(X

_
n )). Also, because of the universality of the
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formula for �� (see e.g. Theorem 5.10), we know (Lemmas 2.3, 2.4 and 5.8) that for
jIj+ jJ j = n(n+1)=2,O( eQI � eQJ) = 0 unless J = �nrI , when O( eQI � eQJ) = 1.
So it remains to show that for jIj+ jJ j > n(n+ 1)=2, O( eQI � eQJ) = 0. The proof
is by double induction whose first parameter is l(I) and the second one is il where
l = l(I) (i.e. the shortest part of I).

Assume first that I = (i) and use the Pieri-type formula from Proposition 4.9. A
general partition J 0 indexing the right-hand side of the formula from Proposition 4.9
stems from J by adding a horizontal strip of length i. Since jJ j+i > n(n+1)=2, the
only possibility for gettingO( eQJ 0) 6= 0 is the following (Theorem 5.10): there exist
two equal parts p in J 0 such that after factoring out eQp;p from eQJ 0 (Proposition 4.3)
we obtain eQ�n (recall that eQp;p is a scalar w.r.t.O). But l(J 0) 6 l(J)+1 6 n+1, so
after factoring out the length of the so-obtained partition is not greater than n� 1,
i.e. this partition is not �n.

To perform the induction step write I 0 = (i1; : : : ; il�1) and r = il where we
assume that l = l(I) > 2. Using the Pieri-type formula again, we have

eQI � eQJ = ( eQI0 � eQr) � eQJ �

 X
M

2m(I0;r;M) eQM

!
� eQJ

= eQI0 � ( eQJ � eQr)�

 X
M

2m(I0;r;M) eQM

!
� eQJ

= eQI0 �

 X
N

2m(J;r;N) eQN

!
�

 X
M

2m(I0;r;M) eQM

!
� eQJ :

Here M runs over all partitions different from I which contain I 0 with M=I 0 being
a horizontal strip of length r. Observe that either l(M) < l(I) or l(M) = l(I) but
ml < il = r, so we can apply the induction assumption to M . The partitions M
and N can have equal parts; if so, using the factorization property, we write

eQM = eQp1;p1 � : : : �
eQps;ps �

eQM1 and eQN = eQq1;q1 � : : : �
eQqt;qt �

eQN1 ;

where M1; N1 are strict partitions and p1 > � � � > ps, q1 > � � � > qt are positive
integers. Using the induction assumption or because of the degree reasons we see
that the only possibility to get in the first sum a summand (corresponding to N )
which is not anihilated by O is: after adding to J a horizontal strip of length r

and factoring out all pairs of equal rows, we obtain the partition N1 = �n r I 0.
Similarly, the only possibility to get in the second sum a summand (corresponding
to M ) which is not anihilated by O is: after adding to I 0 a horizontal strip of length
r and factoring out all pairs of equal rows, we obtain the partition M1 = �n r J .

Therefore to conclude the proof it is sufficient to define, for a fixed pair of
strict partitions I 0; J and fixed positive integers r and p: p1 > � � � > ps, a bijection
between the sets of partitions (with parts not exceeding n)
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N = fN jN � J ;N=J is a horizontal strip of length r; N has exactly s

parts occuring twice, equal to p:; after subtraction from N the parts p: one obtains
�n r I 0g;

and

M = fM jM � I 0;M=I 0 is a horizontal strip of length r; M has exactly s

parts occuring twice, equal to p:; after subtraction from M the parts p: one obtains
�n r Jg;

which preserves the cardinality of the connected components of the strip, not
meeting the first column (compare the Pieri–type formula used).

In order to define the bijection�:N!M we first invoke the diagrammatic pre-
sentation of the �n-complementary partition from [P2, p. 160]: for example n = 9,
I = (9; 6; 3; 2), �9 r I = (8; 7; 5; 4; 1),

Figure 1

(the collection of ‘�’ gives the shifted diagram of I (appropriately placed); the col-
lection of ‘�’ gives the shifted diagram of �9 r I). The map �:N!M is defined
as follows. Having an element N 2 N , i.e. a strict partition J with an added hori-
zontal strip of length r, e.g. J = (9; 6; 3; 2); r = 5; N = (9; 8; 3; 3; 2); s = 1; p:: 3
(and I 0 = (7; 6; 5; 4; 3; 1)):

Figure 2
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we remove the s bottom rows in all pairs of equal rows (in the example, the third
row) and place the shift of the so-obtained diagram as in Figure 1 to get the diagrambN , say. In our example we get the diagram in Figure 3

Figure 3 Figure 4

(We know, by the definition of N , that if we also remove from bN the remaining
parts of lengths p: then the resulting partition is �n r I 0. We preserve these parts,
however, because we need them for the construction of �(N).) Then we construct
the complement of the so-obtained diagram in �n. In our example, using ‘�’ to
visualize the complementary diagram we get the diagram in Figure 4. By reshifting
the so-obtained complementary diagram plus the same horizontal strip (now added
to this complementary diagram) – call it �(N)0, and inserting s rows of lengths
p:, we get the needed partition �(N). Observe that

(1) Since at the last stage we have inserted rows of lengths p:, �(N) consists of
the diagram I 0 with an added horizontal strip of length r.

(2) �(N) has exactly s parts occuring twice, equal to p: (apart from the parts
inserted at the last stage, the remaining s parts are the rows whose the rightmost
boxes are precisely the lowest boxes of the rows of length p: in bN ).

(3) After removing from �(N) the 2s parts equal to p:, we get �n r J (this is the
same as removing from �(N)0 the s parts equal to p: – but �(N)0 minus s
parts equal to p: complements precisely J in �n).

Therefore �(N) 2 M. Also, the cardinality of the connected components of
the strip not meeting the first column is preserved by �. In our example, we obtain

Figure 5
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i.e. �(N) = (8; 7; 5; 4; 3; 3; 1).
Let us now define, by reversing the roles of J and I 0, the map	:M!N . If we

define, by a complete analogy to the above, the partitions cM and 	(M)0, then we
have bN = 	(M)0 and �(N)0 = cM ; and clearly 	 � � = idN and � �	 = idM.

This proves the orthogonality theorem in the Lagrangian case.
Essentially the same proof, with eQ-polynomials replaced by eP -polynomials

(for which a Pieri-type formula is given below), works in the odd orthogonal
case (ii).

In the even orthogonal case the proof goes as follows. Let O:Z[Xn] ! Z[Xn]
be the even orthogonal divided-difference operator inducing ��.

We show that the operator O:Z[Xn] ! Z[Xn], satisfies the following formula
for any strict partitions I; J (� �n�1)

O( ePI(X_
n ) �

ePJ(X_
n )) = �I;�n�1rJ :

Since �� is induced by O, this implies the assertion. Observe that for the degree
reasons O( ePI � ePJ ) = 0 for jIj + jJ j < n(n � 1)=2 (here and in the rest of the
proof, ePI = ePI(X_

n )). Also, because of the universality of the formula for �� we
have that for jIj + jJ j = n(n � 1)=2, O( ePI � ePJ) = 0 unless J = �n�1 r I ,
when O( ePI � ePJ) = 1. So it remains to show that for jIj + jJ j > n(n � 1)=2,
O( ePI � ePJ ) = 0. The proof is by double induction whose first parameter is l(I) and
the second one is il where l = l(I) (i.e. the shortest part of I).

Assume first that I = (i) and use the Pieri-type formula for eP -polynomials (see
Proposition 4.9; a Pieri-type formula for eP -polynomials reads similarly

ePJ � ePi =X 2m
0(J;i;J 0) ePJ 0 ;

the only difference being the exponent m0(J; i;J 0) equal to m(J; i;J 0) if J 0=J
meets the first column and m(J; i;J 0)� 1 – if not.)

A general partition J 0 indexing the right-hand side of the Pieri formula stems
from J by adding a horizontal strip of length i. Since jJ j + i > n(n � 1)=2, the
only possibility for getting O( ePJ 0) 6= 0 is the following: there exists a (single) row
of length n or there exist two equal parts p in J 0 (1 6 p 6 n � 1) such that after
factoring out ePn and ePp;p from ePJ 0 (Proposition 4.3) we obtain eP�n�1 . As in the
proof of the Lagrangian case we see that it is impossible to get eP�n�1 after factoring
out ePp;p. Also, it is impossible to get eP�n�1 by factoring out ePn. Indeed, using the
Pieri-type formula, we should add one box to each of the first n columns which is
impossible because i 6 n� 1.

To perform the induction step write I 0 = (i1; : : : ; il�1) and r = il where we
assume that l = l(I) > 2. Using the Pieri-type formula, we have

ePI � ePJ = ePI0 �
 X

N

2m
0(J;r;N) ePN

!
�

 X
M

2m
0(I0;r;M) ePM

!
� ePJ :
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Here M runs over all partitions different from I which contain I 0 with M=I 0 being
a horizontal strip of length r. Observe that either l(M) < l(I) or l(M) = l(I) but
ml < il = r, so we can apply the induction assumption to M . The partitions M
and N can have equal parts; if so, using the factorization property, we write

ePM = ePp1;p1 � : : : �
ePps;ps � ePM1 and ePN = ePq1;q1 � : : : �

ePqt;qt � ePN1 ;

where M1; N1 are strict partitions and p1 > � � � > ps, q1 > � � � > qt are positive
integers. Moreover M and N can contain a single row of length n, and if so, then
the polynomial ePn can be factored out by a property of the operator O. Using
the induction assumption or because of the degree reasons we see that the only
possibility to get in the first sum a summand (corresponding to N ) which is not
anihilated by O is: after adding to J a horizontal strip of length r and factoring
out all pairs of equal rows and the row of length n (if any), we obtain the partition
N1 = �n�1rI

0. Similarly, the only possibility to get in the second sum a summand
(corresponding toM ) which is not anihilated byO is: after adding to I 0 a horizontal
strip of length r and factoring out all pairs of equal rows and the row of length n,
if any, we obtain the partition M1 = �n�1 r J .

Therefore to conclude the proof it is sufficient to give two bijections.
The data of the first bijection are: a pair of strict partitions I 0; J � �n�1 and

fixed positive integers r and p:: p1 > � � � > ps. One needs a bijection between the
sets of partitions (with parts not exceeding n� 1)

N = fN jN � J ;N=J is a horizontal strip of length r; N has exactly s

parts occuring twice, equal to p:; after subtraction from N the parts p: one obtains
�n�1 r I 0g;

and

M = fM j M � I 0;M=I 0 is a horizontal strip of length r; M has exactly s

parts occuring twice, equal to p:; after subtraction from M the parts p: one obtains
�n�1 r Jg;

which preserves the property that the strip meets or not the first column and
preserves the cardinality of the connected components of the strip, not meeting the
first column – compare the Pieri-type formula used).

Here the bijection �:N ! M from the proof of the Lagrangian case with n

replaced by n � 1 does the job (i.e. to construct �(N)0 for N 2 N we take the
complement in �n�1). Note that � preserves the property that the strip meets or
not the first column by the construction.

The data of the second bijection are also: a pair of strict partitions I 0; J � �n�1

and fixed positive integers r and p:: p1 > � � � > ps. One needs a bijection between
the sets of partitions (with parts not exceeding n)

N 0 = fN jN � J ;N=J is a horizontal strip of length r; N has a single part
equal to n; N has exactly s parts occuring twice, equal to p:; after subtraction from
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N the parts p: and n one obtains �n�1 r I 0g;

and

M0 = fM jM � I 0;M=I 0 is a horizontal strip of length r; M has a single part
equal to n;M has exactly s parts occuring twice, equal to p:; after subtraction from
M the parts p: and n one obtains �n�1 r Jg;

which preserves the property that the strip meets or not the first column and
preserves cardinality of the connected components of the strip, not meeting the
first column.

Here we also use the map � from the proof of case (i) (to construct �(N)0 for
N 2 N 0 we take the complement in �n). We illustrate the map � by the following
example.

Let n = 10; J = (8; 7; 4; 2); N = (10; 8; 4; 4; 2) and I 0 = (9; 7; 6; 5; 4; 3; 1).
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(N = f10; 8; 4; 4; 2g) r f10; 4; 4g

= f9; 8; 7; 6; 5; 4; 3; 2; 1g r (f9; 7; 6; 5; 4; 3; 1g = I 0);

(�(N) = f10; 9; 6; 5; 4; 4; 3; 1g) r f10; 4; 4g

= f9; 8; 7; 6; 5; 4; 3; 2; 1g r (f8; 7; 4; 2g = J):

We have �(N 0) �M0. Indeed, if N 2 N 0 then �(N) has a part equal to n by
the construction. Moreover, the equations

N r fn; p:g = �n�1 r I 0; �(N) r fn; p:g = �n�1 r J;

are equivalent to the equations

N r fp:g = �n r I 0; �(N) r fp:g = �n r J;

so the assertion follows from the proof in case (i) above.
By reversing the roles of J and I 0, one defines (as in the proof of case (i)) the

map 	:M0 ! N 0 which satisfies: 	 � � = idN 0 and � �	 = idM0 .
This ends the proof of the theorem. 2

6. Single Schubert condition

We consider first the Lagrangian case G = LGnV and follow the notation intro-
duced in Section 1.

PROPOSITION 6.1. The class of 
(a) in A�(G), where a = n+ 1� i, is given by
the formula

[
(a)] =
iX

p=0

cpR
_ � si�p(V

_
a ):

Proof. The desingularizationF of
(a) � G is given by the composition (recall
that F l(a�) from Section 1 is here P(Va) and C is the tautological line bundle on
it)

F = LGn�1(C
?=C)

�1�! P(Va)
�2�! G;

where �1 and �2 denote the corresponding projection maps. By Corollary 2.6 we
have

[Z] =
X

strict I��n

eQID
_ � eQ�nrIR

_: (�)
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Let S be the tautological rank n� 1 bundle on F ; S = D=CF . Let c = c1(C
_).

Then, by Proposition 4.1

eQID
_ =

nX
k=0

(��1c)
k �
X
J

eQJS
_; (��)

the sum over all partitions J � I of weight jJ j = jIj � k and I=J has at most one
box in each row. By Theorem 5.10 the only I’s in (�) for which (�1)� eQID

_ 6= 0,
are those containing �n�1, i.e. I must be equal to one of the partitions of the form
Ip = (n; n� 1; : : : ; p+ 1; p� 1; : : : ; 1) for some p = 0; 1; : : : ; n. For I = Ip the
only term in (��) which contributes after applying (�1)� is the one with J = �n�1

and k = n� p.
Since, by a well-known push forward formula for projective bundles, we have

(�2)�(c
n�p) = sn�p�(n�i)(V

_
a ) = si�p(V

_
a );

we infer that only p = 0; 1; : : : ; i give a nontrivial contribution from (��) (with
k = n� p). Finally, we get

[
(a)] = (�2�1)�[Z] =
iX

p=0

eQpR
_ � si�p(V

_
a ) =

iX
p=0

cpR
_ � si�p(V

_
a );

as asserted. 2

Essentially the same computation gives the following formula for G = OGnV

where dimV = 2n+ 1.

PROPOSITION 6.2. The class of 
(a) in A�(G), where a = n+ 1� i is given by
the formula

[
(a)] =
1
2
�

iX
p=0

cpR
_ si�p(V

_
a ):

?

Consider finally the even orthogonal case where the computation is slightly
different.

? Observe that though ‘ 1
2 ’ appears in the formula, the integrality property of the class obtained

holds true (i.e. we get the class in the Chow group with the integer coefficients). This follows
directly from our way of computing it. Indeed, the (odd) orthogonal version of Proposition 2.5 and
consequently also of Corollary 2.6 holds true over integers. Also, the integrality is preserved by the
Gysin maps in the odd orthogonal analogs of Propositions 3.1 and 3.2. The same remark applies to
Proposition 6.3 and Theorem 7.9 below.
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PROPOSITION 6.3. The class of 
(a) in A�(OG0
nV ) for odd n, or in A�(OG00

nV )
for even n, is given by the following expression where i = n� a

[
(a)] =
1
2
�

iX
p=0

(cpR
_ + cpVn) si�p(V

_
a ):

Proof. Suppose that n is odd. Then the desingularization F 0 of 
(a) � G =
OG0

nV is given by the composition

F 0 = OG0
n�1(C

?=C)
�1�! P(Va)

�2�! G;

where �1 and �2 denote the corresponding projection maps.
If n is even then the desingularization F 00 of 
(a) � G = OG00

nV is given by
the composition

F 00 = OG00
n�1(C

?=C)
�1�! P(Va)

�2�! G;

where �1 and �2 denote the corresponding projections. In the following we denote
by F both F 0 and F 00 for brevity.

By Proposition 2.7 we have in both the cases

[Z] =
X

strict I��n�1

ePID_ � eP�n�1rIR
_:

Let S be the tautological rank n � 1 bundle on F ;S = D=CF . Let c = c1C
_.

Then, by Proposition 4.1 interpreted now in terms of eP -polynomials we have

ePID_ =
nX

k=0

(��1c)
k �

 X
J

2l(J)�l(I) ePJS_
!
; (� � �)

the sum over all partitions J � I of weight jJ j = jIj � k and I=J has at most
one box in each row. By Theorem 5.20, if (�1)� eQID

_ 6= 0 then I � �n�2, so I
must be equal to the partition Ip = (n� 1; n� 2; : : : ; p+ 1; p� 1; : : : ; 1) for some
p = 0; 1; : : : ; n � 1. More precisely, the only terms in (� � �) which contribute
nontrivially after applying (�1)� correspond to the following two instances

(1) I = I0 = �n�1, k = 0 and J = �n�1 – this gives a difference between the
odd orthogonal case and the present one.

(2) I = Ip, k = n � p � 1 and J = �n�2; here p = 0; 1; : : : ; n � 1 but we will
see that only p = 0; 1; : : : ; i give a nontrivial contribution.

Let us first compute the contribution of (1). We claim that

(�1)�P�n�1S
_ = 1

2 � v;
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where v = cn�1(Vn=C). Indeed, if n is odd then

(�1)�P�n�1S
_ = 1

2 � (�1)�(cn�1S � P�n�2S
_)

= 1
2 � (�1)�(v � P�n�2S

_) = 1
2 � v;

by Lemma 5.18 and a theorem of Edidin–Graham [E-G] asserting, in this case, the
equality cn�1S = v.

If n is even then

(�1)�P�n�1S
_ = �1

2 � (�1)�(cn�1S � P�n�2S
_)

= �1
2 � (�1)�(�v � P�n�2S

_) = 1
2 � v;

because the theorem of Edidin–Graham now asserts that cn�1S = �v.
Therefore the contribution of (1) is equal to

(�2 � �1)�P�n�1S
_ = 1

2 � (�2)�cn�1(Vn=C)

= 1
2 � (�2)�

0@n�1X
p=0

(�1)n�p�1cpVn � sn�p�1C

1A

= 1
2 � (�2)�

0@n�1X
p=0

cpVn � c
n�p�1

1A

=
1
2
�

0@n�1X
p=0

cpVn � si�pC
_

1A :

On the other hand the contribution of (2) is equal to

1
2 � (�2 � �1)�(cpR

_ � cn�p�1 � P�n�2S
_)

= 1
2 � cpR

_ � (�2)�(c
n�p�1) = 1

2 � cpR
_ � si�p(V

_
a ):

Summing up the contributions of (1) and (2) we infer

[
(a)] =
1
2
�

iX
p=0

(cpVn + cpR
_) � si�p(V

_
a );

which is the asserted formula. 2

7. Two Schubert conditions

In this section we treat the classes of Schubert subschemes defined by two Schubert
conditions in the Lagrangian and odd orthogonal cases.
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We consider first the Lagrangian case. Our desingularization of
(n+1�i; n+
1�j) inG = LGnV is given by the composition (we use the notation of Section 1,
rankC = 2)

F = LGn�2(C
?=C)

�1�! F l(Va � Vb)
�2�! G;

where (a; b) = (n + 1 � i; n + 1 � j) and the element to be push forwarded
via (�2�1)� is � eQID

_ � eQ�nrIR
_, the sum over all strict I � �n. Let S be the

tautological rank (n�2) bundle onLGn�2(C
?=C). Using [D_] = [S_]+[C_

F ] and
the linearity formula from Proposition 4.1 together with the factorization property
from Proposition 4.3, we have (�1)� eQID

_ 6= 0 only if (�1)� eQJS
_ 6= 0 for some

J � I . By virtue of Theorem 5.10 (applied to S_), (�1)� eQJS
_ 6= 0 only if

J � �n�2. Consequently, the unique strict I’s for which (�1)� eQID
_ 6= 0 must

contain �n�2, i.e. they are of the form: I = �n; I = (n; n � 1; : : : ; p̂; : : : ; 1) =:
Ip; I = (n; n � 1; : : : ; p̂; : : : ; q̂; : : : ; 1) =: Ip;q (here, p and q run over f1; : : : ; ng
and the symbol ‘^’ indicates the corresponding omission).

We need the following technical lemma.

LEMMA 7.1. If rankC = 2 then

(i) eQIp=�n�2
(C_) = sn�1;n�p(C

_);

(ii) For q < p; eQIp;q=�n�2
(C_) = sn�q�1;n�p(C

_);

(iii) For 0 6 v 6 n� 2; eQ�n=(�n�2+(2)v)e(C_) = sn�v;n�v�1(C
_):

Proof. The proof is an easy application of the linearity formula from Proposi-
tion 4.1 and is given here in case (i) (the proofs of (ii) and (iii) being similar).

Denote the Chern roots of C_ by x1; x2. Consider the skew Ferrers’ diagram
of Ip=�n�2 and fill up with ‘1’ the boxes, whose subtraction correspond to the
summands in Proposition 4.1 applied to x1 instead of xn. Then fill up with ‘2’ the
boxes, whose subtraction correspond to the summands in Proposition 4.1 applied
to x2 instead of xn. Of course it is impossible to have two ‘1’ or two ‘2’in one row.
Also, the following configuration cannot appear

2

x 1

where the box ‘x’ belongs to D�n�2 (Having two equal rows ending with 2
x

we use
Proposition 4.3, thus we must subtract both boxes instead of the higher one only).
For example, for n = 6; p = 3 we get two Ferrers’ diagrams, one contained in
another (the smaller diagram is depicted with ‘x’ and the difference between the
bigger diagram and the smaller one is depicted with ‘�’)
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and we have 3 possibilities

giving QI3=�4
(x1; x2) = (x1x2)

3(x2
1 + x1x2 + x2

2) = s5;3(x1; x2). In general,
arguing in the same way, we get

QIp=�n�2
(x1; x2) = (x1x2)

n�p(xp�1
1 + x

p�2
1 x2 + � � �+ x

p�1
2 )

= e2(x1; x2)
n�psp�1(x1; x2)

= sn�1;n�p(x1; x2): 2

LEMMA 7.2. With the above notation we have

(i) (�1)�( eQIpD
_) = sn�1;n�p(C

_);

(ii) For q < p; (�1)�( eQIp;qD
_) = sn�q�1;n�p(C

_);

(iii) (�1)�( eQ�nD
_) = �n�2

k=0(�1)kc2kV � [sn�k;n�k�1(C
_)� sn�k+1;n�k�2(C

_)

+ � � �+ (�1)n�ks2(n�k�1);1(C
_)]:

Proof. Assertions (i) and (ii) follow immediately from Lemma 7.1(i), (ii) and
Theorem 5.10. As for (iii), we have (in the following, (�1)�(other terms) = 0)

(�1)�( eQ�nD
_)

= (�1)�

"
n�2X
v=0

eQ(�n�2+(2)v)e(S_) � eQ�n=(�n�2+(2)v)e(C_
F ) + (other terms)

#

=
n�2X
v=0

(�1)vc2v(C
?=C) � eQ�n=(�n�2+(2)v)e(C_)
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=
n�2X
v=0

(�1)v

24 X
k+l=v

c2kV � s2l(C �C_)

35 � sn�v;n�v�1(C
_)

=
n�2X
k=0

(�1)kc2kV �

"
n�2�kX
l=0

(�1)ls2l(C � C_) � sn�k�l;n�k�l�1(C
_)

#

=
n�2X
k=0

(�1)kc2kV � [sn�k;n�k�1(C
_)� sn�k+1;n�k�2(C

_)

+ � � � + (�1)n�ks2(n�k�1);1(C
_)];

where the above equalities follow from: Theorem 5.10, Lemma 1.1 and Pieri’s
formula ([Mcd1], [L-S1]); recall that rankC = 2. 2

LEMMA 7.3. Let 0 < a < b and k > l > 0 be integers. Let C be the rank 2
tautological (sub)bundle of � :F l(a; b)! X . Then

��sk;l(C
_) = sk�(b�2)(V

_
b ) � sl�(a�1)(V

_
a )

�sk�(a�2)(V
_
a ) � sl�(b�1)(V

_
b );

where we assume sh(�) = 0 for h < 0.
Proof. Let C1 � C2 = C be the tautological subbundles on F l(a; b), C1 � Va,

C2 � Vb; rankCh = h, h = 1; 2. Let x1 = c1(C
_
1 ) and x2 = c1((C2=C1)

_). The
flag bundle � :F l(a; b)! X is equal to the composition

P(Vb=C1)
�2�! P(Va)

�1�! X:

We have

��sk;l(C
_) = ��[(x1x2)

l(xk�l1 + xk�l�1
1 x2 + � � �+ x1x

k�l�1
2 + xk�l2 )]:

The assertion now follows by applying to all summands the well-known formulas

(�2)�(x
p
2) = sp�(b�2)(Vb=C1)

_ = sp�(b�2)(V
_
b )� sp�(b�2)�1(V

_
b ) � x1;

(�1)�(x
p
1) = sp�(a�1)(V

_
a );

and simplifying. 2
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THEOREM 7.4. For n > i > j > 0 one has in A�(G) with a = n + 1 � i,
b = n+ 1� j,

[
(a; b)] =
X
p>q>0
p6i;q6j

eQp;qR
_ � (si�p(V

_
a ) � sj�q(V

_
b )

�si�q(V
_
a ) � sj�p(V

_
b ))

+
i�1X
p=0

X
t>1

(�1)p+t�1c2pV � (si�p�t(V
_
a ) � sj�p+t(V

_
b )

�si�p+t(V
_
a ) � sj�p�t(V

_
b ));

where we assume sh(�) = 0 for h < 0.
Proof. It follows from Lemma 7.2 that

[
(a; b)] =
X

06q<p

(�2)�(sn�q�1;n�p(C
_)) � eQp;qR

_

+
n�2X
p=0

(�1)pc2pV � (�2)�[sn�p;n�p�1(C
_)� sn�p+1;n�p�2(C

_)

+ � � � + (�1)n�ps2(n�p�1);1(C
_)]:

Applying Lemma 7.3 to �2:F l(a; b)! X , the assertion follows. 2

EXAMPLE 7.5. (1) For i = 2; j = 1 and any n the formula readseQ21R
_ + eQ2R

_ � s1V
_
n + eQ1R

_ � (s1V
_
n�1 � s1V

_
n � s2V

_
n�1)

+ (s1V
_
n�1 � s2V

_
n � s3V

_
n�1 � s3V

_
n � c2V � s1V

_
n )

= eQ21R
_ + eQ2R

_ � eQ1V
_
n + eQ1R

_ � eQ2V
_
n + eQ21V

_
n :

(2) For i = 3; j = 1 and any n one obtains, with eQp;q = eQp;qR
_; sk =

sk(V
_
n�2) and s0k = sk(V

_
n ), the expression

eQ31 + eQ3 � s
0
1 +

eQ21 � s1 + eQ2 � s1 � s
0
1 +

eQ1 � (s2 � s
0
1 � s3)

+ s2 � s
0
2 � s4 � s1 � s

0
3 + s04 � c2V � (s1 � s

0
1 � s02) + c4V:

(3) For i = 3; j = 2 and any n one obtains, with eQp;q = eQp;qR
_ and

sk;l = sk;l(V
_
n�1), the expression
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eQ32 + eQ31 � s1 + eQ3 � s2 + eQ21 � s11 + eQ2 � s21 + eQ1 � s22

+ s32 � s41 + s5 � c2V � (s21 � s3) + c4V � s1:

More generally we have:

COROLLARY 7.6. With the above notation and j = i � 1; sk;l = sk;l(V
_
n+2�i),

the class [
(a; b)] equalsX
i>p>q>0

eQp;qR
_ � si�1�q;i�p

+
i�1X
p=0

(�1)pc2pV �

i�1�pX
h=0

(�1)hsi�p+h;i�1�p�h:

Consider now the odd orthogonal case. Our desingularization in the case a� =
(a; b) := (n+ 1� i; n+ 1� j) is given by the composition (rankC = 2)

OGn�2(C
?=C)

�1�! F l(Va � Vb)
�2�! G:

Then the analog of Lemma 7.1 reads (with the notation explained before this
lemma):

LEMMA 7.7.

(i) ePIp=�n�2
(C_) = 1

2 � sn�1;n�p(C
_):

(ii) ePIp;q=�n�2
(C_) = sn�q�1;n�p(C

_):

(iii) eP�n=(�n�2+(2)v)e(C_) = sn�v;n�v�1(C
_); 0 < v 6 n� 2;

and eP�n=�n�2
(C_) = 1

4 � sn;n�1(C
_):

The element to be push forwarded via (�2�1)� is � ePID_ � eP�nrIR_, the sum
over all strict I � �n (the notation as in Section 1). The analog of Lemma 7.2
reads:

THEOREM 7.8.

(i) (�1)�( ePIpD_) = 1
2 � sn�1;n�p(C

_):

(ii) For q < p; (�1)�( ePIp;qD_) = sn�q�1;n�p(C
_):

(iii) (�1)�( eP�nD_) = 1
4 ��

n�2
k=0(�1)kc2kV �[sn�k;n�k�1(C

_)�sn�k+1;n�k�2(C
_)

+ � � �+ (�1)n�k � s2(n�k�1);1(C
_)]:

Consequently, the analog of Theorem 7.4 now reads:
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THEOREM 7.9. For n > i > j > 0 one has in A�(G) with a = n + 1 � i,
b = n+ 1� j,

[
(a; b)] =
X

p>q>0
p6i;q6j

ePp;q R_ � (si�p(V
_
a ) � sj�q(V

_
b )� si�q(V

_
a ) � sj�p(V

_
b )) +

+
1
2
�
X
p>0
p6i

ePpR_ � (si�p(V
_
a ) � sj(V

_
b )� si(V

_
a ) � sj�p(V

_
b )) +

+
1
4
�
i�1X
p=0

X
t>1

(�1)p+t�1c2p V � (si�p�t(V
_
a ) � sj�p+t(V

_
b )�

�si�p+t(V
_
a ) � sj�p�t(V

_
b )):

For instance, invoking Example 7.5, the formula reads for i = 2; j = 1 and any n

[
(n� 1; n)] = eP21R
_ + eP2R

_ � eP1V
_
n + eP1R

_ � eP2V
_
n + eP21V

_
n :

8. An operator proof of Proposition 3.1

The goal of this section is to provide another proof of Proposition 3.1 and its
odd orthogonal analogue by using divided-difference operators. We start with the
Lagrangian case. Let Xn = (x1; : : : ; xn) be a sequence of indeterminates. Recall
(see Section 5) that the symplectic Weyl group Wn is isomorphic to Sn n Z

n
2 and

the elements of Wn are identified with ‘barred permutations’: if w = (�; �); � 2
Sn; � 2 Z

n
2 then we write w as the sequence (w1; : : : ; wn) endowed with bars in

places where �i = �1. In particular, w0 = (1; 2; : : : ; n) is the longest element of
Wn. Consider in Wn the poset W (n) of minimal length left coset representatives
of Wn modulo its subgroup generated by reflections corresponding to the simple
roots "1 � "2; : : : ; "n�1 � "n (in the standard notation)

W (n) = f(z1 > z2 > � � � > zl; y1 < � � � < yn�l) 2Wn; l = 0; 1; : : : ; ng:

The assignment w = (z1; : : : ; zl; y1; : : : ; yn�l) 7! I = (z1; : : : ; zl) establishes a
bijection between the poset W (n) and the poset of all strict partitions contained
in �n.

One has divided differences @w:Z[Xn] ! Z[Xn] (w 2 Wn) i.e. operators of
degree �l(w), whose definition has been explained in Section 5.

Fix now an integer 0 < k < n and denote

w(k) := (n; n� 1; : : : ; k + 1; 1; 2; : : : ; k):

Observe first that for a strict partition I � �n of length l(I), @w(k)
eQI(Xn) 6= 0

only if l(I) > n � k. (This is because @w(k) decreases the degree by l(w(k)) =
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n+ (n� 1) + � � �+ (k + 1).) More precisely, writing X_
n = (�x1; : : : ;�xn), we

have:

PROPOSITION 8.1. For a strict partition I of length > n� k, @w(k)
eQI(X

_
n ) 6= 0

iff I � (n; n � 1; : : : ; k + 1). In this last case, writing I = (n; n � 1; : : : ; k +
1; j1; : : : ; jl), where jl > 0 and l 6 k, one has in Z[Xn]

@w(k)
eQI(X

_
n ) =

eQj1;:::;jl(X
_
n ):

Proof. Let I be a strict partition of length h > n� k. Let

wI = (�1; �2; : : : ; �h;�h+1; : : : ; �n);

be the element of W (n) corresponding to I . Then taking into account that

(w(k))�1 = (n� k + 1; n� k + 2; : : : ; n;n� k; n� k � 1; : : : ; 1);

we get wI � (w
(k))�1 =

(�n�k+1 > �n�k+2 > � � � > �h; �h+1 < �h+2 < � � �

< �n; �n�k < �n�k�1 < � � � < �1):

We have l(wI) = �1 + � � �+ �h; l(w
(k)) = n+ (n� 1) + � � �+ (k + 1), and

l(wI � (w
(k))�1) = �n�k+1 + �n�k+2 + � � �+ �h

+
n�hX
j=1

cardf1 6 p 6 n� k j�p < �h+jg;

by Lemma 5.1. Thus, denoting the above sum �n�h
j=1 (: : :) by �, we get

l(wI)� l(w(k))� l(wI � (w
(k))�1)

= �1 + � � �+ �n�k � (n+ (n� 1) + � � � + (k + 1))�
X

:

Now, a necessary condition for @w(k)
eQI(X

_
n ) 6= 0 is

�1 + � � � + �n�k � (n+ (n� 1) + � � �+ (k + 1))�
X

= 0;

which implies (�1; : : : ; �n�k) = (n; n � 1; : : : ; k + 1) and � = 0, i.e., �n <

�n�k. (Using the theory from [B-G-G], [D1, 2] and the result from [P2] recalled
in Theorem 2.1, the just proved assertion easily implies that @w(k)

eQI(X
_
n ) =eQj1;:::;jl(X

_
n ) (mod I)). We will now prove directly that for I = (n; n�1; : : : ; k+
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1; j1; : : : ; jl) one has @w(k)
eQI(X

_
n ) =

eQj1;:::;jl(X
_
n ) already in Z[Xn]. Observe

that

@w(k) = (@k:::@1@0):::(@n�2:::@1@0)(@n�1:::@1@0):

The proof is by induction onn�k�1. Forn�k�1 = 0, one has (J = (j1; : : : ; jl))

@n�1:::@1@0( eQn;J(X
_
n ))

= @n�1:::@1@0(en(X
_
n ) �

eQJ(X
_
n ))

= @n�1:::@1((�x2):::(�xn) eQJ(X
_
n )� en(X

_
n ) � @0

eQJ(X
_
n ))

= eQJ(X
_
n )� en(X

_
n ) � @n�1:::@1@0( eQJ(X

_
n )) =

eQJ(X
_
n );

where the vanishing of the second summand in the last difference follows from the
just proved first assertion.

The induction step goes as follows. By the equality proved above,

(@k:::@1@0):::(@n�2:::@1@0)(@n�1:::@1@0)( eQn;n�1;:::;k+1;J(X
_
n ));

(@k:::@1@0):::(@n�2:::@1@0)( eQn�1;n�2;:::;k+1;J(X
_
n ));

(@k:::@1@0):::(@n�2:::@1@0)

0@X
i>0

(�xn)
i
X eQI(X

_
n�1)

1A ;

where the sum is over all partitions I � (n� 1; n� 2; : : : ; k + 1; J) such that the
diagram (n� 1; n� 2; : : : ; k + 1; J)=I is of weight i and has at most one box in
every row (use the linearity formula, i.e. Proposition 4.1). Each time we get two
equal parts p in a partition I such that eQI(X

_
n�1) appears in the expression, we

factor out eQp;p(X
_
n�1) by Proposition 4.3. The last sum can be rewritten in the

formX
i>0

X
M

(�xn)
i eQM (X_

n�1)fM +
X
i>0

X
N

(�xn)
i eQN (X

_
n�1)gN ;

where M (resp: N) runs over the so-obtained partitions contained in the partition
(n�1; n�2; : : : ; k+1; J)where some box is removed from the firstn�k�1 rows
(resp. no box is subtracted from the first n�k�1 rows), and fM (resp: gN ) denotes
the corresponding monomial in the elements eQp;p(X

_
n�1) obtained by factoring out.

By the first assertion (applied to X_
n�1) we know that our operator annihilates the
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first sum. By the induction assumption we get (withN = (n�1; n�2; : : : ; k+1; J 0)
and gJ 0 = gN )

(@k:::@1@0):::(@n�2:::@1@0)

0@X
i>0

X
N

(�xn)
i eQN (X

_
n�1)gN

1A
=
X
i>0

X
J 0

(�xn)
i eQJ 0(X

_
n�1)gJ 0 =

eQJ(X
_
n );

by the factorization property and the linearity formula, now used backwards. 2

We now pass to a geometric interpretation of the proposition. The setup and
the notation is the same as in the proof of Proposition 3.1: V ! B – rank 2n
vector bundle endowed with a nondegenerate symplectic form, X = LGnV; Vn
denotes here the tautological subbundle on X and p:F ! X is the composition
(see Section 1)

LGn�k(C
?=C)

�1�! Gk(Vn)
�2�! X;

where C is the tautological rank k bundle on Gk(Vn). The tautological rank n� k

subbundle S for LGn�k(C
?=C) is identified with D=CF where D is the rank n

tautological subbundle onF . Let r1; : : : ; rn be the Chern roots of Vn and d1; : : : ; dn
– the Chern roots of D. Since CF � (Vn)F and CF � D, we can assume that
r1 = d1; : : : ; rk = dk are the Chern roots of C .

Claim. For any symmetric polynomial f in n variables,

(�1)�
�
f(dk+1; : : : ; dn; d1; : : : ; dk)

�
= (@vf)(rk+1; : : : ; rn; r1; : : : ; rk);

where v = (n� k; n� k � 1; : : : ; 1; n� k + 1; : : : ; n).
Indeed, for the Chern roots dk+1; : : : ; dn of S one has by Proposition 5.8

(�1)�
�
f(dk+1; : : : ; dn; d1; : : : ; dk)

�
= (�1)�

�
f(dk+1; :::; dn; r1; :::; rk)

�
= (@vf)(dk+1; : : : ; dn; r1; : : : ; rk):

We know by Proposition 5.9 that @vf is a polynomial symmetric in the squares of
the first n� k variables. By Lemma 1.1 we have

[S] + [S_] = [(C?=C)F ] = [VF ]� [CF ]� [C_
F ]

= [(Vn)F ] + [(V _
n )F ]� [CF ]� [C_

F ]

= [(Vn)F=CF ] + [((Vn)F=CF )
_]:

Hence, for the Chern roots rk+1; : : : ; rn of Vn=C ,

(@vf)(dk+1; : : : ; dn; r1; : : : ; rk) = (@vf)(rk+1; : : : ; rn; r1; : : : ; rk);
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and the claim is established.
We are now in position to give

ANOTHER PROOF OF PROPOSITION 3.1

By virtue of the previous proposition it suffices to show that for every symmetric
polynomial f in n variables p�(f(d1; : : : ; dn)) = (@w(k)f)(r1; : : : ; rn). For a
polynomial g symmetric in the first n � k – and in the last k variables, one
has

(�2)�(g(rk+1; : : : ; rn; r1; : : : ; rk)) = (@ug)(r1; : : : ; rn);

where u = (k+1; : : : ; n; 1; 2; : : : ; k) (see [L2], [P2] and [Br]). (This can be proved
using a reasoning similar to the one in the proof of Proposition 5.8 above.) Since
w(k) = u � v and l(w(k)) = l(u) + l(v), we thus have, invoking the claim

p�(f(d1; : : : ; dn)) = p�(f(dk+1; : : : ; dn; d1; : : : ; dk))

= �2�(�1�(f(dk+1; : : : ; dn; d1; : : : ; dk)))

= �2�((@vf)(rk+1; : : : ; rn; r1; : : : ; rk))

= (@u(@vf))(r1; : : : ; rn)

= ((@u � @v)f)(r1; : : : ; rn) = (@w(k)f)(r1; : : : ; rn);

which is the desired assertion. 2

In the odd orthogonal case, by replacing eQ-polynomials by eP -polynomials and
arguing in the same way as above, one proves the following proposition.

PROPOSITION 8.2. For a strict partition I of length > n� k; @w(k)
ePI(X_

n ) 6= 0
iff I � (n; n � 1; : : : ; k + 1). In this last case, writing I = (n; n � 1; : : : ; k +
1; j1; : : : ; jl), where jl > 0 and l 6 k, one has in Z[Xn]

@w(k)
ePI(X_

n ) =
ePj1;:::;jl(X

_
n ):

Let V ! B be a rank 2n + 1 vector bundle endowed with a nondegener-
ate orthogonal form, X = OGnV and Vn denote the tautological subbundle on
X . Then, by an appropriate interpretation of the Gysin map associated with the
composition

OGn�k(C
?=C)

�1�! Gk(Vn)
�2�! X;

where C is the tautological rank k bundle on Gk(Vn), one gets another proof of
Proposition 3.4.
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We refer the reader to [L-P-R] for another operator treatment of eQ- and eP -
polynomials and their generalizations.

9. Main results in the generic case

Let V be a rank 2n vector bundle over a smooth pure-dimensional scheme X

endowed with a nondegenerate symplectic form. Let E and F�:F1 � F2 � � � � �
Fn = F be Lagrangian subbundles of V with rankFi = i and rankE = n. For a
given sequence a� = (1 6 a1 < � � � < ak 6 n), we are interested in the locus

D(a�) := fx 2 X j dim(E \ Fap)x > p; p = 1; : : : ; kg:

Let G = LGnV and let R � VG be the tautological rank n subbundle on G.
By a well known universality property of Grassmannians there exists a morphism
s:X ! G such that E = s�R. Therefore (in the set-theoretic sense) we have

D(a�) = s�1(
(a�;F�));

where


(a�;F�) = f g 2 G j dim(R \ Fap)g > p; p = 1; : : : ; kg:

We take this equality as the definition of a scheme structure onD(a�), i.e.,D(a�) is
defined inX by the inverse image ideal sheaf (see [Ha, p.163]): s�1I(
)�OX where
I(
) is the ideal sheaf defining 
(a�;F�) in G. It follows from the main theorem
of [DC-L] that 
(a�;F�) is a Cohen–Macaulay scheme. Hence, by [K-L, Lem-
ma 9] we get [D(a�)] = s�[
(a�;F�)] provided D(a�) is either empty or of pure
codimension equal to the codimension of 
(a�;F�) in G. Therefore, having a for-
mula for the fundamental class of 
(a�;F�) given by a polynomial P in c:(R) and
c:(Fap)G, p = 1; : : : ; k, the formula for D(a�) becomesP (c:(E); c:(Fap )p=1;:::;k).
Moreover, by using the Chow groups for singular schemes and a technique from
[F] one can prove the following refinement of the above. IfX is a pure-dimensional
Cohen–Macaulay scheme and D(a�) is either empty or of pure codimension equal
to the codimension of 
(a�;F�) in G then the class of D(a�) in the Chow group
of X equals P (c:(E); c:(Fap )p=1;:::;k) \ [X]. This reasoning (with obvious mod-
ifications) also applies, word by word, to the case of rank 2n + 1 vector bundle
endowed with a nondegenerate orthogonal form.

In particular, for a� = (n � k + 1; n � k + 2; : : : ; n) we have by Propo-
sition 3.2:

THEOREM 9.1. If X is a pure-dimensional Cohen–Macaulay scheme and the
subscheme

Dk = fx 2 X j dim(E \ F )x > kg;
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is either empty or of pure codimension k(k + 1)=2 in X , then the class of Dk

(endowed with the above scheme structure) in the Chow group of X equals

[Dk] =
�X eQIE

_ � eQ�krIF
_
�
\ [X];

where the sum is over all strict partitions I � �k.

EXAMPLE 9.2. The expressions giving the classes for successive k are

k = 1 eQ1E
_ + eQ1F

_;

k = 2 eQ21E
_ + eQ2E

_ � eQ1F
_ + eQ1E

_ � eQ2F
_ + eQ21F

_;

k = 3 eQ321E
_ + eQ32E

_ � eQ1F
_ + eQ31E

_ � eQ2F
_

+ eQ21E
_ � eQ3F

_ + eQ3E
_ � eQ21F

_

+ eQ2E
_ � eQ31F

_ + eQ1E
_ � eQ32F

_ + eQ321F
_:

For a� = (n+ 1� i) we get:

THEOREM 9.3. Let X be a pure-dimensional Cohen–Macaulay scheme and
assume that the subscheme Si = fx 2 X j dim(E \ Fn+1�i)x > 1g is either
empty or of pure codimension i in X . Then

[Si] =

0@ iX
p=0

cpE
_ � si�pF

_
n+1�i

1A \ [X]:

EXAMPLE 9.4. The expressions giving the classes for successive i are

i = 1 c1E
_ + s1F

_;

i = 2 c2E
_ + c1E

_s1F
_
n�1 + s2F

_
n�1;

i = 3 c3E
_ + c2E

_s1F
_
n�2 + c1E

_s2F
_
n�2 + s3F

_
n�2:

The theorem is a globalization to degeneracy loci of Proposition 6.1. Also other
formulas from Sections 6 and 7 admit analogous globalizations. We concentrate
ourselves on a solution to J. Harris’ problem for the Mumford-type degeneracy loci
mentioned in the Introduction.

The odd orthogonal analog of Theorem 9.1 is a consequence of Proposition 3.4
and reads as follows:

THEOREM 9.5. Let X be a pure-dimensional Cohen–Macaulay scheme over a
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field of characteristic different from 2. Suppose that V is a rank 2n + 1 vector
bundle endowed with a nondegenerate orthogonal form. Let E and F be two rank
n isotropic subbundles of V . If the subscheme

Dk = fx 2 X j dim(E \ F )x > kg;

is either empty or of pure codimension k(k + 1)=2 in X , then the class of Dk in
the Chow group of X equals�X ePIE_ � eP�krIF_

�
\ [X];

where the sum is over all strict partitions I � �k.?

Let now V be a rank 2n vector bundle over a connected pure-dimensional
scheme X endowed with a nondegenerate orthogonal form. Let E and F�:F1 �
F2 � � � � � Fn = F be isotropic subbundles of V with rankFi = i and rankE =
n. One should be careful here with the definition of D(a�). For a given sequence
a� = (1 6 a1 < � � � < ak 6 n), where k is such that dim(E \ F )x � k(mod 2) if
ak = n, we are interested in the locus

D(a�) = fx 2 X j dim(E \ Fap)x > p; p = 1; : : : ; kg:

There is a morphism s = (s0; s00):X ! OG0
nV [ OG00

nV such that s�R = E

where R is the tautological rank n subbundle on OG0
nV [OG

00
nV . We have (in the

scheme – theoretic sense) that if k � n (mod 2) then

D(a�) = (s0)�1
(a�; (F�)OG0
nV
);

and if k � n+ 1(mod 2) then

D(a�) = (s00)�1
(a�; (F�)OG00
nV
):

The even orthogonal analog of Theorem 9.1 reads as follows:

THEOREM 9.6. If X is a connected pure-dimensional Cohen–Macaulay scheme
over a field of characteristic different from 2 and the subscheme

Dk = fx 2 X j dim(E \ F )x > kg;

? Observe that though the eP -polynomials of a vector bundle are defined only when the Chern
classes of the vector bundle are divisible by 2, the integrality property of the classes obtained in
the theorem holds true. One argues as in the preceding footnote, taking into account that the base
change argument [K-L, Lemma 9] preserves the integrality too. The same remark applies to the even
orthogonal case (Theorem 9.6 below).
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defined for k such that k � dim(E \F )x (mod 2) where x 2 X , is either empty or
is of pure codimension k(k � 1)=2 in X , then the class of Dk in the Chow group
of X equals�X ePIE_ � eP�k�1rIF

_
�
\ [X];

where the sum is over all strict partitions I � �k�1.

EXAMPLE 9.7. The expressions giving the classes for successive k are

k = 1 1;

k = 2 eP1E
_ + eP1F

_;

k = 3 eP21E
_ + eP2E

_ � eP1F
_ + eP1E

_ � eP2F
_ + eP21F

_;

k = 4 eP321E
_ + eP32E

_ � eP1F
_ + eP31E

_ � eP2F
_

+ eP21E
_ � eP3F

_ + eP3E
_ � eP21F

_

+ eP2E
_ � eP31F

_ + eP1E
_ � eP32F

_ + eP321F
_:

REMARK 9.8. All the formulas stated in this section in the Chow groups have their
direct analogs in topology. Perhaps the simplest version is the following. Assume
that X is a compact complex manifold, the bundles E, Fi are holomorphic and
the morphism s from X to LGnV above is transverse to the smooth locus of the
Schubert variety 
(a�;F�). Then the cohomology fundamental classes of D(a�)
are evaluated by the corresponding (given above) expressions in the Chern classes
of E and Fi. The same applies to the orthogonal case.

Appendix A. Quaternionic Schubert calculus

Let H denote the (skew) field of quaternions. Let Pn
H

be the projective space that is
identified with (H n+1

rf0g)= �, where (h1; : : : ; hn+1) � (h01; : : : ; h
0
n+1) iff there

is 0 6= h 2 H such that hi = h � h0i for every i. It is a compact, oriented manifold
over R of dimension 4n. Let us recall after Hirzebruch [H1], that, in general, this
real manifold does not admit a structure of a complex analytic manifold.

Let Gk(H
n) be the set of all k-dimensional subspaces? of H n : Gk(H

n) has a
natural structure of 4k(n�k)-dimensional, compact, oriented manifold over R. Of
course G1(H

n+1) = P
n
H

.
Let F lk1;:::;kr(H

n) be the set of all flags of subspaces of consecutive dimensions
(k1; : : : ; kr) over H . It is also a compact, oriented manifold overR. One has (see [B],
[Sl]), F lk1;:::;kr(H

n) = Sp(n)=
Qr
i=0 Sp(ki+1 � ki) (here, k0 = 0 and kr+1 = n).

? The word ‘(sub)space’ means always a ‘left H -(sub)space’.
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Of course F lk1(H
n) = Gk1(H

n).

10.1. ([B, 31.1 p. 202]). Let y1; : : : ; yn be a sequence of independent variables
with deg yi = 4. Then

H�(F lk1;:::;kr(H
n);Z)�=

SP(y1; : : : ; yn)

Ik1;:::;kr

;

where Ik1;:::;kr is the ideal generated by polynomials symmetric in each of the sets
fyki+1; : : : ; yki+1g, i = 0; 1; : : : ; r, separately (k0 = 0, kr+1 = n).

For instance (all cohomology groups are taken with coefficients in Z)

H�(Pn
H
) =

Z[y]

(yn+1)
; degy = 4;

H�(Gk(H
n)) =

SP(y1; : : : ; yn)

Ik
; deg yi = 4:

We see that these cohomology rings are double-degree isomorphic with the coho-
mology rings of their complex analogues.

Fix now a flag V�:V1 � V2 � � � � � Vn of subspaces of H n with dimH Vi = i.
For every partition I � (n� k)k we set

�
�

(I) = fL 2 Gk(H
n) j dimH (L \ Vn�k+p�ip) = p; p = 1; : : : ; kg:

The so defined �
�

(I) (I � (n� k)k) give a cellular decomposition of Gk(H
n) and

the codimension of �
�

(I) is 4jIj. Now define

�(I) = �(I; V�) = fL 2 Gk(H
n) j dimH (L \ Vn�k+p�ip) > p;

p = 1; : : : ; kg:

The cohomology classes of �(I; V�), in fact, do not depend on the flag V� chosen
and will be denoted by the same symbol �(I). We record

10.2. (Pieri-type formula). In H�(Gk(H
n) one has

�(I) � �(r) =
X

�(J);

where the sum is over J such that ip 6 jp 6 ip�1 and jJ j = jIj+ r.

Not all proofs of the Pieri formula for Complex Grassmannians can be extended
to the quaternionic case. However, the proof in [G-H, pp. 198–204] has this advan-
tage. As a matter of fact, Gk(H

n) is an oriented compact manifold and thus its
cohomology ring is endowed with the Poincaré duality. Moreover, one checks by
direct examination that

�(I) � �(n� k � ik; : : : ; n� k � i1) = �((n� k)k) = [pt]:
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Then the proof in loc. cit. goes through mutatis mutandis also in the quaternionic
case.

We can restate this information about the multiplicative structure inH�(Gk(H
n))

as follows:

10.3. Let Y = (y1; : : : ; yk) be independent variables of degree 4. The assignment
sI(y1; : : : ; yk) 7! �(I) for I � (n � k)k, and 0-otherwise, is a ring homomor-
phism, and allows one to identify H�(Gk(H

n)) with a quotient of SP(Y ) modulo
the ideal �ZsI(Y ), the sum over I 6� (n� k)k .

This result has a number of useful consequences. For example, it implies imme-
diately that the signature of the Complex Grassmannian (see [H, p. 163] and [H-S,
Formula (23) p. 336] is the same as the one of the Quaternionic Grassmannian – a
result proved originally in [Sl] using different methods.

We now describe a certain fibration which makes the Quaternionic Grassman-
nians useful in study of the Grassmannians of non-maximal Lagrangian subspaces
(which are not Hermitian symmetric spaces).

Let V = C
2n be endowed with a nondegenerate symplectic form � given by

the matrix

A =

 
0 �In

�In 0

!
;

where In is the (n� n)-identity matrix.
Having in mind the standard notation associated with H we endow V with a

structure of H -space setting j �v = Av, where ‘�’ denotes the complex conjugation
(note that A2 = �idV ).

10.4. If U � V is k-dimensional Lagrangian C -subspace of V then dimH (H �
U) = k. Moreover, the restriction of the symplectic form � to any H -subspace of
V , is nondegenerate.

To show this consider the standard Hermitian scalar product h ; i on V = C
2n .

Now givenU , we take a C -basis u1; : : : ; uk such that hup; uqi = �p;q. We claim that
u1; : : : ; uk; ju1; : : : ; juk are linearly independent over C (which implies dimH (H �
U) = k). This claim follows immediately from �(up; uq) = 0 = �(jup; juq) and
�(up; juq) = utpA(Auq) = �hup; uqi = ��p;q.

Suppose now a H -subspace W � V is given with dimHW = k, say. We can
always find C -linearly independent vectorsw1; : : : ; wk 2W such that�(wp; wq) =
0 and hwp; wqi = �p;q. Then jw1; : : : ; jwk also belong to W . It follows from
�(wp; wq) = 0 = �(jwp; jwq) and �(wp; jwq) = ��p;q that w1; : : : ; wk; jw1; : : : ;

jwk form a C -basis of W and the form � restricted to W is nondegenerate.
We infer from the above

10.5. The assignmentU 7! H �U , defines a locally trivial fibration of LGk(C
2n)

over Gk(H
n) with the fiber LGk(C

2k ).
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In other words, denoting by S the tautological (sub)bundle over Gk(H
n),

rankHS = k, we have an identification LGk(C
2n) �= LGk(S), where the latter

symbol denotes (the total space of) the corresponding Grassmannian bundle.
This identification can be used in reduction of some problems about Grassman-

nians of non-maximal Lagrangian subspaces to the problems about the Grassman-
nians of maximal ones. For example, we get from 10.5 the following identity of
Poincaré series

PLGk(C2n )(t) = PGk(Hn )(t) � PLGk(C2k )(t);

thus reproving the result from [P-R2, Corollary 1.7].
Similar fibrations exist for flag varieties. Let LFlk1;:::;kr(C

2n) be the variety
parametrizing Lagrangian (w.r.t. �) flags of dimensions (k1; : : : ; kr) in C 2n .

10.6. The assignment (dimCUi = ki; i = 1; : : : ; r)

(U1 � U2 � � � � � Ur) 7! (H � U1 � H � U2 � � � � � H � Ur);

is a locally trivial fibration of LFlk1;:::;kr(C
2n) over F lk1;:::;kr(H

n). If C 2k1 �
C

2k2 � � � � � C
2kr is a (part of) the standard flag, then the fiber of this fibration

is the variety parametrizing Lagrangian flags W1 � W2 � � � � � Wr such that
Wi � C

2ki and dimCWi = ki; i = 1; : : : ; r.

Therefore the fiber is a composition of Lagrangian Grassmannian bundles of
maximal subspaces. In particular, we obtain the following formula for the Poincaré
series of LFlk1;:::;kr(C

2n)

PLFlk1;:::;kr
(C 2n)(t) = PF lk1;:::;kr

(Hn)(t) �
rY
i=1

P
LGki�ki�1

(C 2(ki�ki�1))
(t);

where k0 = 0. Since explicit expressions for the factors on the right-hand side are
known (see (10.1)), this gives an explicit formula for PLFlk1;:::;kr

(C 2n)(t).

10.7. Finally, we show an algebro-topological interpretation (as well as another
proof) of the identity

sI(x
2
1; : : : ; x

2
n) � s�n(x1; : : : ; xn) = s2I+�n(x1; : : : ; xn);

from Section 5. To this end we show two different ways of constructing LFl :=
LFl(C 2n). The first way is given by taking the total space of the flag bundle
F l(R) ! LGn(C

2n) where R is the tautological vector bundle on LGn(C
2n).

The second way relies on the following observation: LFl can be interpreted as the
variety of flags W1 � W2 � � � � � W2n such that dimCWj = j and each W2j is a
H -subspace. This realization is given by the assignment

(V1 � V2 � � � � � Vn)

7! (V1 � H � V1 � H � V1 + V2 � H � V1 + H � V2 � � � �):
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Equivalently, using the tautological sequence S1 � S2 � � � � � Sn, rankHSi = i,
on F lH , this corresponds to taking the total space of the product of projective
bundles

P := P(S2=S1)�F lH
: : :�F lH

P(Sn=Sn�1)! F lH ;

where Si+1=Si, i = 1; : : : ; n, are considered as rank 2 complex bundles.
The same holds in the relative situation, i.e. given a rank 2n vector bundle

V ! X endowed with a nondegenerate symplectic form we get a commutative
diagram

P ===== LFl(V ) ===== F l(R)

F lH (V )

�1

?

�2
- X �

�2 LGnV

�1

?

;

where F lH (V ) denotes the flag bundle parametrizing complete quaternionic flags
of V . Let x1; : : : ; xn be the sequence of the Chern roots of the tautological quotient
bundle on LGnV . By Corollary 5.6(i) we know that if there exists an even ip, then

(�2 � �1)�
�
xi11 � : : : � x

in
n

�
= 0:

(Calculating the other way arround, this follows easily from the projection formula.)
On the other hand, iff all ip are odd, then (see Proposition 5.5)

s�n(x1; : : : ; xn) � (�2 � �1)�(x
i1
1 � : : : � x

in
n ) = sI��n�1(x1; : : : ; xn):

Putting ip = 2jp + 1 and calculating the other way around, we get

(�2�1)�(x
2j1+1
1 x

2j2+1
2 : : : x2jn+1

n )

= (�2)�((x
2
1)
j1 � (x2

2)
j2 � : : : � (x2

n)
jn)

= sJ��n�1(x
2
1; : : : ; x

2
n):

Indeed, recalling the notation from 10.1 we have yp = x2
p; p = 1; : : : ; n (see

[B, 31.1]), and we use the fact that (�2)� is induced by the Jacobi symmetrizer
(recalled in the proof of Corollary 5.6(ii) and that of Lemma 5.7(ii)) this time
applied to y1; : : : ; yn. The latter statement follows from 10.1 by exactly the same
reasoning as that used in the proof of Lemma 2.4 in [P1]. Comparison of the results
of both computations, yields the desired identity.
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Appendix B. Introduction to Schubert polynomials à la polonaise

We provide here a brief sketch of a theory of symplectic Schubert polynomials
which has grown up from the present work. For details and further developments
as well as for the orthogonal Schubert polynomials, we refer the reader to [L-P-R].

Let (x1; x2; : : :) be a sequence of independent variables. Let w0 be the longest
element in the Weyl group Wn of type Cn. Define

Cw0 := Cw0(x1; : : : ; xn)

:= (�1)n(n�1)=2 xn�1
1 xn�2

2 : : : x1
n�1 x

0
n
eQ�n(x1; : : : ; xn);

and for an arbitrary w 2Wn,

Cw := Cw(x1; : : : ; xn) := @0w�1w0
(Cw0):

Above, by @0w (w 2Wn) we understand the composition of the divided-difference
operators @0i defined by

@00(f) =
f � s0f

2x1
;

@0i(f) =
f � sif

xi+1 � xi
; i = 1; 2; : : : ; n� 1;

associated in a usual way with an arbitrary reduced decomposition of w using
si; i = 0; 1; : : : ; n� 1.

These polynomials satisfy the following properties:

(1) (Stability) Suppose that m > n. Let Wn ,! Wm be the embedding via the
first n components. Then, for any w 2Wn, the following equality holds

Cw(x1; : : : ; xm)jxn+1=���=xm=0 = Cw(x1; : : : ; xn):

(2) (the Grassmannian case) Let I = (i1 > � � � > ik > 0) be a strict partition
contained in �n. Set

wI = (i1; � � � ; ik; j1 < j2 < � � � < jn�k);

where fi1; : : : ; ik; j1; : : : ; jn�kg = f1; 2; : : : ; ng. Then

CwI
(x1; : : : ; xn) = eQI(x1; : : : ; xn):

As we know from Section 4, eQI(x1; : : : ; xn) is a positive sum of monomials.
The polynomial Cw has not this property. Also, it is in general neither negative nor
positive sum of monomials.

The following is the list of symplectic Schubert polynomials for n = 2.

C(1;2) = �x3
1x2 � x2

1x
2
2;
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C(1;2) = �x2
1x2; C(2;1) = x2

1x2 + x1x
2
2;

C(2;1) = x1x2; C(2;1) = x2
2;

C(2;1) = x2; C(1;2) = x1 + x2;

C(1;2) = 1:
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(1988) 413–454.

[P2] Pragacz, P.: Algebro–geometric applications of Schur S- and Q-polynomials, Séminare
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