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Abstract. Themain goal of the paper isto give explicit formulasfor the fundamental classes of Schu-
bert subschemes in Lagrangian and orthogonal Grassmannians of maximal isotropic subbundles as
well as some globalizations of them. The used geometric tools overlap appropriate desingul arizations
of such Schubert subschemes and Gysin maps for such Grassmannian bundles. The main algebraic
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paper. The key technical result of the paper isthe computation of the class of the (rel ative) diagona in

isotropic Grassmannian bundles based on the orthogonality property of Q and P- polynomials. Some
rel ationships with quaternionic Schubert varieties and Schubert polynomials for classical groups are
a so discussed.
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I ntroduction

In this paper we give formulasfor the fundamental classesof Schubert subschemes
in Lagrangian and orthogonal Grassmannians of maximal subbundles as well as
some globalizations of them. Our motivation to deal with this subject came essen-
tially from 3 examples where such degeneracy loci appear in algebraic geometry:
(1) The Brill-Noether loci for Prym varieties, as defined by Welters [W]; (2) The
loci of curves with sufficiently many theta characteristics, as considered by Har-
ris [Har]; (3) Some ‘higher’ Brill-Noether loci in the moduli spaces of higher
rank vector bundles over curves, considered by Bertram and Feinberg [B—F] and,
independently, by Mukai [Mu].

The common denominator of these 3 situations is a simple and beautiful con-
struction of Mumford [M]. With a vector bundle over a curve equipped with a
nondegenerate quadratic form with values in the sheaf of 1-differentials, Mum-
ford associates an even dimensional vector space endowed with a nondegenerate
guadratic form and 2 maximal isotropic subspaces such that the space of global
sections of the initial bundle is the intersection of the two isotropic subspaces. A
globalization of thisconstruction allowsoneto presentinasimilar way thevarieties
in (1) and (2) above asloci where two isotropic rank n subbundles of acertain rank
2n bundle equipped with a quadratic nondegenerate form, intersect in dimension
exceeding a given number. On the other hand, the locus in (3) admits locally this
kind of presentation using an appropriate symplectic form.

These varieties are particular cases of Schubert subschemesin Lagrangian and
orthogonal Grassmannian bundles and their globalizations. The formulas for such
loci are the main theme of this paper. More specifically, given a vector bundle V'
on avariety X endowed with a nondegenerate symplectic or orthogonal form, we
pick E and F; C F» C --- C F,, = F —isotropic subbundles of V (rank E =
n,rank F; = 1), and for agiven sequencea, = (1 < a1 < - -+ < ax < n), welook
at the locus

D(as) ={z e X |[dMENF,, ). 2p,p=1,...,k}.

We distinguish three cases:

(1) Lagrangian: rank V' = 2n, the form is symplectic;
(2) Odd orthogonal: rank V' = 2n + 1, the form is orthogonal;
(3) Even orthogonal: rank V' = 2n, the form is orthogonal .
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(In this last case the definition of D(a,) must be slightly modified — see
Section 9.)

Let usremark that theloci D(a,) (for the Lagrangian case) admit an important
specialization to the loci introduced by Ekedahl and Oort in the moduli space of
abelian varietieswith fixed dimension and polarization, in characteristic p (see, e.g.
[Q], the referencestherein and [E-vG]). This comes from certain filtrations on the
de Rham cohomol ogy defined with the help of the Frobenius-and * Verschiebung' -
maps. The formulas of the present paper are well suited to computations of the
fundamental classes of such loci in the Chow groups of the moduli spaces — for
details see a forthcoming paper by T. Ekedahl and G. van der Geer [E-vG].

The goal of this paper is to give an algorithm for computing the fundamental
classesof D(a,) aspolynomiasin the Chern classesof E and F;. Formulas given
here can be thought of as L agrangian and orthogonal analogs of the formulas due
independently to Kempf—Laksov [K-L] and Lascoux [L1] (notice, however, that
the formulas given in [K-L] are proved under a weaker assumption of ‘ expected’
dimension).

The method for computing the fundamental class of a subscheme of a giv-
en (smooth) scheme which we use here stems from a paper by the first author
[P3, Sect. 5]. It depends on a desingularization of the subscheme in question and
the knowledge of the class of the diagonal of the ambient space. It appears that
the diagonalsin the fibre products of Lagrangian or orthogonal Grassmannian, and
flag bundles are not given as the subschemes of zeros of sections of bundles over
the corresponding products. This makes an additional difficulty (e.g. in compari-
son with [K-L]) which is overcomed here using again a result from [P3, Sect. 5]
allowing to compute the class on the diagonal with the help of an appropriate
‘orthogonality’ property of Gysin maps.

To establish formulas for the classes of these diagonals, we use essentially two
tools. Thefirst oneis Theorem 6.17 of [P2] interpreting (cohomology dual to) the
classes of Schubert subvarieties in Lagrangian and orthogonal Grassmannians as
Schur’s - and P-polynomials. The importance of these polynomials to algebraic
geometry wasilluminated by thefirst author in [P1] and then developed in [P2]. In
factin[P2, Sect. 6], avariant of these polynomialswasused to giveafull description
of Schubert Cal culus on Grassmanniansof maximal isotropic subspacesassociated
with a nondegenerate symplectic or orthogonal form. These familes of symmetric
polynomials are called - and P-polynomials in the present paper. Perhaps the
‘orthogonality’ proved in Theorem 5.23 is their central property. Thisis, in fact,
the second tool in our computation of the classes of the diagonals in isotropic
Grassmannian bundles which allows us to apply the technique of [P3, Sect. 5].
The results of [P2, Sect. 6], ~recalled in Theorem2.1 below, are a natura source
of the ubiquity of Q- and P-polynomials in various formulas of this paper. As
a general rule, these are Q-polynomials that appear in the Lagrangian case and
P-polynomials that appear in the orthogonal cases.
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In general, our approach gives an efficient algorithm for computing formulas
for Lagrangian and orthogonal Schubert subschemes. In several cases, however,
we are able to give ‘closed’ expressions. At first, these are the cases of a single
Schubert condition and two Schubert conditions. The corresponding formulas are
givenin Sections6 and 7. N

The derivation of those formulas uses a formula for the push-forward of Q-
polynomials(Theorems5.10, 5.14, 5.20) fromisotropic Grassmannian bundles. For
instance, in the Lagrangian case, n: LG,V — X with the tautological subbundle
R, the element Q; RV has a nonzero image under =, only if each number p,
1 < p < n, appearsasapart of 1 with an odd multiplicity m,,. If thislast condition
holds then

n
QIR = 11 ((—1)Peg, V)= D/2,
p=1

We aso give formulas for the push-forward of S-polynomials (Theorems5.13,
5.15, 5.21) from isotropic Grassmannian bundles. For example, in the Lagrangian
case, theelement s; RV hasanonzeroimage under . only if the partition I isof the
form 2J + p,, for some partition J (here, p, = (n,n—1,...,1)). If I =2J + p,
then

(2]
msIRY = sV,

where the right-hand side is defined asfollows: if s; = P(e.) isaunique presenta-
tion of s; asapolynomial in the elementary symmetric functionse;, E— avector
bundle, then s’ (E) := P with e; replaced by (—1)icyE,i =1,2,... .

Another case (corresponding to the Schubert conditiona, = (n—k+1,...,n))
that leadsto closed formulasis the variety of maximal isotropic subbundles which
intersect a fixed maximal isotropic subbundle in dimension exceeding a given
number (Proposition 3.2 and its analogs). Thanks to the Cohern—Macaulayness
of Schubert subschemes in isotropic Grassmannians proved in [DC-L], one gets
globalizations of those formulas (as well as the other ones) to more general loci.
For instance, thislast casea, = (n—k+1,...,n) globalizesto the Mumford-type
locus discussed above where two maximal isotropic subbundles £ and F' intersect
in dimension greater than or equal to k.* N

Our formulas (see Theorems 9.1, 9.5 and 9.6) are quadratic expressionsin -
and P-polynomials of the subbundles. More explicitly in the corresponding cases
we have

(1) Lagrangian: > @IEX : @(k,kN—l,...,l)\IFv-
(2) Odd orthogonal: Y PrEY - Py, 1 aFY.

* It is mentioned in [F1, 2] that the problem of finding formulas for the classes in this case was
posed originally by Professor J. Harris severa years ago.
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(3) Even orthogonal: S PEY - Py_1p-2,. 1) F".

Here, in (1) and (2) the sum is over all subsequences’ in (k,k —1,...,1),in(3)
thesumisover al subsequences in(k—1,k—2,...,1)and (k,k—1,..., 1)\
denotes the strict partition whose parts complements the ones of I in {k,k —
1,...,1}

Formula (3) has been recently used by C. De Concini and the first hamed
author in [DC-P] to compute the fundamental classes of the Brill-Noether loci
V" for the Prym varieties (see [W]), thus solving a problem of Welters, left open
since 1985. The formula of [DC-P] asserts that if either V" is empty or of pure
codimension r(r + 1)/2 in the Prym variety then its fundamental class in the
numerical equivalencering, or its cohnomology classis equal to

3

(i — 1)1
27“(T—l)/2 H (7'- [E]r(r—l—l)/Z
0 e

where Z is the theta divisor on the Prym variety.

The paper is organized as follows.

Section 1 containsdefinitions and properties of Schubert varietiesin Lagrangian
and orthogonal Grassmannian bundles. Also, some desingularizations of these
varieties, used in later sections, are described.

Section 2 contains some recollections of Schubert calculus for Lagrangian and
orthogonal Grassmanniansfrom [P2, Sect. 6] and computation of the classes of the
diagonalsin the Chow rings of Lagrangian and orthogonal Grassmannian bundles.
This computation relies on the Gysin maps technique from [P3, Sect. 5] and on the
orthogonality theorem 5.23 which is proved independently later.

Section 3 contains an explicit computation of Gysin maps needed to determine
theformulasfor the fundamental classesof Schubert varietiesQ(n —k+1,...,n)
parametrizing subbundles intersecting an n-subbundle in dimension exceeding k.
Thisisdone using an elementary Schubert-Cal culus-typetechnique based on linear
algebra. N

In Section 4 we introduce a family of symmetric polynomials called Q-
polynomials which is modeled on Schur’s Q-polynomials (but is different from
the latter family). These polynomials are the basic algebraic tools of the present
paper. We prove several elementary but useful properties of @)-polynomials and
give some examples. N

In Section 5 we establish some new algebraic properties of (Q-polynomials
and S-polynomials; these are either certain determinantal identities like Proposi-
tions 5.2 and 5.11, or the computation of the values of these polynomials under
some divided difference operators. These algebraic results are then interpreted
using Gysin maps for Lagrangian and orthogonal Grassmannian bundles. Perhaps
the most important result of this section is the ‘orthogonality’ Theorem 5.23.
This theorem, interpreted geometrically (using a result of [P3, Sect. 5]), gives us
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the classes of the diagonals of Lagrangian and orthogona Grassmannian bundles
which are crucial for our computations.

Sections6, 7 and 8 have asupplementary character. They contain some examples
and a certain aternative (to the content of the previous sections) way of comput-
ing. Section 6 contains formulas for Schubert varieties defined by one Schubert
condition in Lagrangian and orthogonal cases. Section 7 contains similar compu-
tations for two Schubert conditions in the Lagrangian and odd orthogonal cases.
Section 8 contains another (purely algebraic) proof, using divided differences, of
Proposition 3.1 that describes the Gysin maps for some flag bundles.

In Section 9 we formulate previous results in the general setup of degeneracy
loci and give some examples. A specia emphasis is put on formulas answering
J. Harris' problem concerning the Mumford-type degeneracy loci described above.

In Appendix A we collect anumber of useful results about Quaternionic Grass-
mannians. We usethem to reprove someresults proved earlier using different meth-
ods and to show how some problems concerning Grassmannians of nonmaximal
L agrangian subspaces can be reduced to those of maximal Lagrangian subspaces,
this sort of applications we plan to devel op el sewhere.

Finaly, in Appendix B, we give an introduction to a theory of symplectic
Schubert polynomial s which has grown up from the present work. Thistheory (see
[L-P-R]) seems to be well suited to the needs of algebraic geometry because it
generalizes in a natural way QQ-polynomials which govern the Schubert calculus
on Lagrangian Grassmannians.

In Sections 2, 3, 5, 6, 7, 8 and 9 we work in the Chow rings; all results therein,
however, are equally valid in the cohomology rings.

Some of the results of this paper were announced in [P-RQ].

The paper is a revised version of the Max—Planck-Institut fur Mathematik
Preprint MPI/94-132.

Background

Several results of this paper: e.g. Propositions 3.2, 3.4 and 3.6 as well as their
globalizations in Theorems 9.1, 9.5 and 9.6 were obtained already in Spring 1993
when we tried to deduce formulas for the loci D(a,) by combining the ideas of
the paper of Kempf and Laksov [K-L] with the Q-polynomial technique developed
in [P, 2]. These results were announced together with outlines of their proofsin
[P-RO].

In summer 1993, we received an e-mail message from Professor W. Fulton
informing us about his (independent) work on the same subject and announcing
another expressions for the loci considered in Proposition 3.2, 3.4 and 3.6 of the
present paper. Responding, we informed Professor Fulton about our results of [P-
RO] mentioned above. In February 1994 we obtained from Professor W. Fulton his
preprints [F1, 2] containing details of his e-mail announcement. Both the form of
the formulas obtained as well as the approach used in [F1, 2] are totally different
from the content of our work and just a simple comparison of the results of [F1, 2]
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with oursleadsto very nontrivial new identitieswhich areinteresting in themselves.
It would be desirable to develop, in a systematic way, the comparison of formulas
given in [F1, 2] from one side with those in the present paper and [P-R0] — from
the other one.

Conventions

Partitions are weakly decreasing sequences of positive integers (asin [Mcdl] and
are denoted by capital Roman letters (as in [L-S1]). We identify partitions with
their Ferrers' diagrams visualized as in [L-S1]. The relation ‘C’ for partitions is
induced from that for diagrams.

For a given partition I = (i1,14p,...) we denote by |I| (the weight of I) the
partitioned number (i.e. the sum of all parts of ) and by (1) (the length of I)
the number of nonzero parts of I. Moreover, I~ denotes the dual partition of
I,ie I~ = (j1,j2,...) where j, = card{h|i; > p}, and (i)* — the partition
(4y...,1) (k-times).

Given sequences I = (i1,142,...) and J = (j1,j2,...) wedenoteby I + J the
sequence (i1 %+ j1,92 £ j2,. . .).

By strict partitions we mean those whose (positive) parts are all different.

In this paper, we denote by s; (£) the complete symmetric polynomial of degree
i with variables specialized to the Chern roots of a vector bundle £.

The reader should be careful with our notion of Q-polynomials here. Namely,
since we are mainly interested in the polynomials in the Chern classes of vector
bundles, we introduce Q-polynomials given by the Pfaffian of an antisymmetric
matrix whose entries are quadratic expressionsin the elementary symmetric poly-
nomialsrather than inthe ‘onerow’ Schur’s @Q-polynomials. Therefore these poly-
nomials are different from the origina Schur’s Q-polynomials. Note that nonzero
Q-polynomials Q(z1, . .., z,) areindexed by ‘usual’ partitions I but the parts of
these partitions cannot exceed the number of variables; on the contrary, nonzero
Schur’s Q-polynomials Q; (1, . . ., z,) are indexed by strict partitions I only but
the parts of these partitions can be bigger than the number of variables.

Also, thespecializationof Q(z1, . . ., z,) with (z;) equal to the sequenceof the
Chernrootsof arank n vector bundle E, denoted here— accordingly —by Q; E, isa
different cohomology class than the one associated with £ in [P1] and [P2, Sect. 3
and 5], and denoted by Q;FE therein. (Notice, however, that the (Q-polynomials
appeared already in an implicit way in [P2, Sect.6].) The reader should make a
proper distinction between Schur's Q-polynomials and @-polynomials that are
mainly used in the present paper.

For a vector bundle V', by G,V we denote the usual Grassmannian bundle
parametrizing rank » subbundlesof V. Moreover, P(V) = G1V . Wefollow mostly
[F] for theterminology in algebraic geometry. In many situations when the notation
starts to be too cumbersome, we omit some pullback-indices of the induced vector
bundles.

A good reference for ‘ changes of alphabets’ in the A-ring senseis[L-S1].
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1. Schubert subschemesand their desingularizations

We start with the Lagrangian case. Let K be an arbitrary ground field.

Assume that V' is a rank 2n vector bundle over a smooth scheme X over K
equipped with a nondegenerate symplectic form. Moreover, assume that a flag
Ve: Vi C Vo C --- C 'V, of Lagrangian (i.e. isotropic) subbundlesw.r.t. this form
is fixed, withrank V; = i. Let 7: LG,,(V') — X denote the Grassmannian bundle
parametrizing Lagrangian rank » subbundlesof V. G = LG, (V') isendowed with
the tautological Lagrangian bundle R C Vi;. Given a sequencea, = (1 < a1 <
-+ < a < n)weconsiderin G aclosed subset

Q(as) = Qaw; Va) = {g € GIAMBNV,,), > iri=1,...,k}.

Thelocus ©(a,), called a Schubert subschemeis endowed with areduced scheme
structure induced from the reduced one of the corresponding Schubert subscheme
in the Grassmannian G,,V —thisis discussed in detail, e.g., in [L-Se].

The following desingularization of @ = (a.) should be thought of as a
Lagrangian analogue of theconstructionusedin[K-L].Let F = F(as) = F(Va, C
-++ C Vg, ) bethe scheme parametrizing flags A1 C A, C --- C Ay C Agy1 such
that rank A; = s and A; C V,, fori = 1,... k; rank Ag41 = n and Agyq is
Lagrangian. F is endowed with the tautological flag D1 C D2 --- C Dy C Dgy1,
whererank D; = i,i = 1,...,k and rank D1 = n. We will write D instead of
Dk+1-

We have afibre square

GxxyF 2. F

P1 p

G

Let o: F — G be the map defined by: (A1 C A2 C -+ C Agt1) = Agya, in
other words «v isa‘classifying map’ suchthat o* R = D. Itiseasily verified that «
maps F onto €2 and « is an isomorphism over the open subset of €2 parametrizing
rank n Lagrangian subbundles A of V suchthatrank(ANV,,) =4,i=1,... k.
Moreover, « induces a section s of pp. Set Z = s(F) C G xx F. Alternatively,
we can describe Z as (1 x «)"1(A) where A isthe diagonal in G x x G. The map
p1 restricted to Z is adesingularization of 2. Therefore [©2] = (p1)«([Z]). On the
otherhand, [Z] = (1x «a)*([A]) (see[K-L, Lemma9]). Notethat F isobtained asa
composition of the following flag- and Grassmannian bundles. Let F'l = Fl(as) =
FI(Vy, C--- C Vg, ) bethe‘usua’ flag bundle parametrizingflags A; C --- C Ay
where rank A; = < and A; C V,,,¢e = 1,... k. Let C1 C --- C C} be the
tautological flag on F'l. We will write C' instead of Cy. Then F is the Lagrangian

X
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Grassmannian bundle LG,,_;(C+/C) over Fl, where C+ is the subbundle of
Vg consisting of al v that are orthogonal to C' w.r.t. the given symplectic form.
Note that C C C* because C' is Lagrangian, rank(C+/C) = 2(n — k) and the
vector bundle C+/C is endowed with a nondegenerate symplectic form induced
from the one on V. Of course the tautological Lagrangian rank n — k subbundle
on LG, (C+/C) isidentified with D/C. In other words, F is a composition
of aflag bundle (with the fiber being Fi(K% C --- C K“)) and a Lagrangian
Grassmanian bundle (with the fiber being LG, 1, (K™ —%)). In particular

dmQ = dmF =dmZ
k

=Y (ai —4) + (n—k)(n — k +1)/2+ dim X.
=1

The following particular cases will be treated in a detailed way in this paper:
ae=M—k+1Ln—k+2,...,n) (then Q(a,) parametrizes Lagrangian rank n
subbundles L of V suchthat rank(L N'V,,) > k); ae = (n+1—i),i.e k = 1; and
ae=Mn+1—i,n+1—j),iek=2.

Now consider the odd orthogonal case. Let K beaground field of characteristic
different from 2. Assume, that V' is a rank 2n + 1 vector bundle over a smooth
scheme X over K equipped with a nondegenerate orthogonal form. We assume
throughout this paper that the form restricts to a hyperbolic form on each fiber (i.e.
each fiber hasan n-dimensional isotropic subspace; if K isalgebraically closed, this
is automatically satisfied.) Let OG,, V' be the Grassmannian bundle parametrizing
rank n isotropic subbundlesof V. Whenever, in this paper, we speak about OG,,V,
we assume that there exists a rank n isotropic subbundle in V. All definitions,
notions and notation concerning Schubert subschemesand their desingularizations
are used mutatis mutandis (just instead of ‘ symplectic’ use‘orthogonal’ and instead
of ‘Lagrangian’ use ‘isotropic’). The formula for the dimension of Q(a,) in the
odd orthogonal case is the same as in the Lagrangian case. Of course, F is now
a composition of the same flag bundle F'I and the odd orthogonal Grassmannian
bundle OG,,_1(C*/C), where C isthe rank k tautological subbundie on FI.

Assumenow that V' isarank 2n vector bundle over asmooth connected scheme
X over afield K of characteristic different from 2 equipped with a nondegenerate
orthogonal form. We assume throughout this paper that there exists an isotropic
rank n subbundle of V. The scheme parametrizing isotropic rank n subbundlies
of V' breaks up into two connected components denoted OG!,V and OG!'V . Let
V,, be arank n isotropic subbundle of V' fixed once and for all. Then OG!V
(resp. OG"V') parametrizesrank n isotropic subbundles E C V suchthat dim(EN
Vi)z = n(mod?2) (resp.dim(ENV,), = n+ 1(mod2)) for every z € X. Write
G = 0G,V and G" := OG]V. Twoisotropic rank n subbundlesare in the same
component if they intersect fiberwise in dimension congruent to » modulo 2.
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Let Vo:Vi € Vo C -+ C V, be aflag of isotropic subbundles of V' with
rankV; = i. Given asequence a, = (1 < a1 < -+ < a < n) such that
k = n (mod2), we consider in G’ a Schubert subvariety

Qas) = Aaa;Va) = {g € G’ |[dM(RNV,)g > iyi = 1,... .k},

(R C Vi isherethe tautological bundle). Similarly, given a sequence a, = (1 <
a1 < -+ < ap < n)suchthat £k = n + 1(mod2), we consider in G a Schubert
subvariety

Qas) = Qaa; Vo) ={g € G" [dMRNV,,)g > 0,i=1,...,k}.

(Over apoint, say, theinteriors of the Q(a,)’s form a cellular decomposition of G’
and respectively G".) Here, the definition of the scheme structure is more delicate
than in the previous two cases (roughly speaking, instead of minors one should use
the Pfaffians of the ‘ coordinate’ antisymmetric matrix of G’ and G”). We refer the
reader for details to [L-Se] and references therein.

The Schubert subvarieties Q2(a,) in G' (resp. 2(a,) in G") are desingular-
ized using the same construction as above but instead of the scheme F one must
now use the following scheme F' (resp. F"). Let 7' = F'(as) = F'(V,, C

- C Vg, ) be a scheme parametrizing flags A1 C A> C --- C Ay C Apta
such that rank A; = ¢ and A; C Vg, for¢ = 1,... K, rank Ap11 = n, Agi1
is isotropic and rank(Ax+1 N V,), = n(mod2) for any = € X. The defini-
tion of 7" = F"(as) is the same with the exception of the last condition now
replaced by: rank(Ax+1 N V,,)z = n+ 1(mod2) forany = € X. Let p": F —
X (resp.p”: F — X) denote the projection maps. Of course, ' (resp. F"') now is
a compoasition of the same flag bundle F'I and the even orthogona Grassmannian
bundle OG!,_,(C*/C) (resp. OG”_,(C+/C)), where C is the rank k tautol ogi-
cal subbundle on £ and V,,/C is the rank n — k isotropic bundle used to define
OG!_,.(Ct/C)and OG! _,(CL/C).

The formulafor dimension now is different

k
dmF =dmF" = Z(ai —i)+(n—k)n—-k-1)/2+dmX.
i=1
We finish this section with the following lemma which will be of constant use
in this paper.

LEMMA 1.1. Consider cases (1), (2), (3) of a vector bundle endowed with a
nondegenerate form @ that are specified in the Introduction. Let C' C V be an
isotropic subbundle and C+ be the subbundle of V' consisting of all v € V' such
that ®(v,c) = 0foranyc € C.

(i) Then one has an exact sequence

0osctsvAovoo,
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where the map ¢ is defined by v — ®(v, —). In particular, in the Grothendieck
group, [V] = [C+] + [CV], [C+/C] = [V] — [C] — [CV] and the Chern classes of
C+/C arethe sameasthe onesof [V] — [C @ CV].

(if) Assume now that C' is a maximal isotropic subbundle of V. Then in cases
(1) and (3) we have C = C+ and ¢(V) = ¢(C @ CV); in case (2) one has
rank(C+/C) = Land 2¢(V) = 2¢(C & CV).

The latter equality of assertion (ii) in case (2) follows from the fact that the
form @ induces an isomorphism (C+/C)®? = Oy. This assertion will be used
in the proof of Theorem 5.14 and 5.15 and is well suited for this purpose because
of the appearance of the factor ‘2™’ on the right-hand side of the formulas of the
theorems.

2. Isotropic Schubert calculus and the class of the diagonal

Let us first recall the following result on Lagrangian and orthogonal Schubert
Calculusfrom [P1, 2].
We need two families of polynomialsin the Chern classes of a vector bundle
E over asmooth variety X. Their construction isinspired by |. Schur’s paper [S].
The both families will beindexed by partitions (i.e. by sequences/ = (i1 > --- >
> 0) of integers). Set, in the Chow ring A*(X) of X,fori >3 >0

j
QijE =B ¢;E+2) (-1ciyyB - ¢jpE,
p=1

so, in particular Q;E = Q;oE = ¢;E for i > 0. In general, for a partition
I = (i1,...,1), k-even (by putting i, = O if necessary), wesetin A*(G)

QrE = Pf(Qi, i, E)1<p<qchs

where P f meansthe Pfaffian of the given antisymmetric matrix. For the definition
and basic properties of Pfaffians we send interested readersto [A], [Bou] and [B-
E, Chap. 2]. Also, werefer the reader to the beginning of Section 4 for an alternative
recurrent definition of Q; E: just replace the polynomial @Q;(X,,) from Section4
by the element Q; E.

The member of the second family, associated with a partition I, is defined by

ﬁ[E = Zil(I)QjE.

Observe that in particular PE = ¢iE/2 (so here we must assume that ¢; E is
divisible by 2), and

7j—1
P;E=DPE-P;E+2)Y (-1)'P,E - P;_,E + (—1)' P4 E.
p=1
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It should be emphasized that Q- and P-polynomials are especially important
and useful for isotropic (sub)bundles.

The following result from [P1, (8.7)] and [P2, Sect. 6], gives a basic geometric
interpretation of - and P-polynomials. (It can be interpreted as a Giambelli-type
formula for isotropic Grassmannians; recall that a Pieri-type formula for these
Grassmannianswas given in [H-B] — consult also [P-R1] for a simple proof of the
latter result.)

THEOREM 2.1[P2, Sect. 6]. (i) Let V bea 2n-dimensional vector spaceover afield
K endowed with a nondegenerate symplectic form. Then, one hasin A*(LG, V)

[©2(ad)] = QrR",

where R isthetautological subbundleon LG,V andi, = n+1—ay,p =1,... k.
(i) LetV bea (2n + 1)-dimensional vector space over afield K of char. # 2
endowed with a nondegenerate orthogonal form. Then, one hasin A*(OG, V')

[(as)] = P1RY,

where R isthetautological subbundleonOG,,V andi, = n+1—a,,p=1,... k.

(i) Let V be a 2n-dimensional vector space over a field K of char. # 2
endowed with a nondegenerate orthogonal form. Then one has in A*(OG!,V)
(resp. A*(OG,V))

[2(as)] = PrRY,

where R is the tautological subbundleon OG,, V' (resp. OG1V') and i, = n — ay,
p = 1,...,k. (Notice that the indexing family of I's runs here over all strict
partitions contained in p,,1.)

Observethat by Lemma 1.1, RV isthe tautological quotient bundleon LG,,V,
OG;,V and OG V. Moreover, the Chern classes of thetautol ogical quotient bundle
on OG,V and RY areequal.

Note that this result has been reproved recently by S. Billey and M. Haiman in
[B-H].

Assume now that V' is a vector bundle over a smooth variety X and V, is a
flag of isotropic bundles on X. Then, using Noetherian induction, one shows that
{QrRY}1cp,, {PIRY }1cp, and {P1R" } 1), _, are A*(X)-bases respectively of
A*(LG,V), A*(0OG,V) and A*(OG!,V) (resp. A*(OG!V)). Moreover, thereis
an expression for §2(a,; V) as a polynomial in the Chern classes of RY and V;.
(Thisfollows, e.g., from the existence of desingularizations given in Section 1 and
formulas for Gysin push forwards — for ‘usua’ flag bundles they are obtained by
iterating awell known projective-bundle case; for isotropic Grassmannian bundles,
they are given for the first time in Section 5 of the present paper). Then the
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maximal degreeterminthec;(R")’s of thisexpression, in respective cases (i), (ii),
(i), coincides with that in Theorem 2.1. We will call it the dominant term (w.r.t.
R).

Let G1, G» betwo copies of the Lagrangian Grassmannian bundle .G,V over
a smooth variety X, equipped with the tautological subbundles R, and R,. Write
GG = G1 x x G2. Consider the following diagonal

A ={(91,92) € GG | ((R1)GG)(g1,92) = ((R2)GE)(g1,95) }-

Our goal isto write down aformulafor the class of this diagonal. We first record:

LEMMA 2.2. Let G be a smooth complete variety such that the * x-map’ (cf. [F,
end of Sect. 1]) givesanisomorphismA* (G x G) = A*(G) @ A*(G). Assumethat
thereexistsa family {b, }, bo € A" (G), suchthat A*(G) = &Zb,, and for every
a thereisaunique o/ suchthat n, + ny = dimG and [ b, - by # 0. Suppose
Jx ba - by = 1. Thentheclass[A] in A*(G x G) isgiven by ¥pbq X by

Proof. It followsfrom the assumptionsthat in A*(G x G), [A] = Xmagba X bg,
for someintegersm, andn, +ng = dimG for al pairs (o, 3) indexing the sum.
We have by a standard property of intersection theory for g, h € A*(G)

/X><X[A] (g xh)= /Xg -

Hence the coefficients m,, 5 satisfy

m = A-bIXbI:/bI-b/.
o= [ A1 (b X b5) = [ b b

The latter expression, according to our assumption is not zero only if o/ = (5')’
i.e. 8 = a, whenit equals 1. This provesthe lemma. O

For agiven positiveinteger &, put pr, = (k,k—1,...,2,1). For astrict partition
ICpi(ieip<kyip <k—1,...)wedenoteby p, \ I the strict partition whose
parts complement the partsof 7 intheset {k,k — 1,...,2,1}.

The Lagrangian Grassmannian (over a point, say) satisfies the assumptions of
the lemma with {Q;R" }srict 1, Playing the role of {b,} and for & = I we
have o’ = p, ~ I. Thisis a direct consequence the existence of a well-known
cellular decomposition of such a Grassmannian into Schubert cells and the results
of [P2] recalled in Theorem 2.1(i) together with a description of Poincaré duality
in A*(LG, V) from loc. cit. Thusin this situation we get by the lemma:

LEMMA 2.3. Theclassof the diagonal A of the Lagrangian Grassmannian equals

[A] =Y Qr(RY) x Qp,1(RY),
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the sumover all strict I C p,,.

We now want to show that the same formula holds true for an arbitrary smooth
base space X of avector bundle V. Our argument is based on the following result
expressing the class of the (relative) diagonal in terms of Gysin maps. This result
was due to the first author in [P3, Sect. 5] and is accompanied here by its proof for
the reader’s convenience.

LEMMA 24 [P3]. Let m:G — X be a proper morphism of smooth varieties
such that 7* makes A*(G) a free A*(X)-module, A*(G) = @aerd*(X) - ba,
where b, € A™(G) and for any « there is a unique o/ such that n, + ny =
dimG —dim X and 7, (b, - by ) # O; supposem, (b, - by ) = 1. Moreover, denoting
bypi: G xx G — G (i = 1, 2) the projections, assumethat, for asmooth G x x G,
the homomorphism A*(G) ® 4-(x) A*(G) — A*(G xx G), defined by g ® h
P19 - p5h, isan isomorphism. Then
(i) Theclassof thediagonal A inG x x G equals[A] = 3, gmaba ® bg, where,
forany a, 8, map = Pag({m(bs-bx)}) for somepolynomial P,s € Z[{x.)}].
(ii) If me(bg - bg) # Qiff 5 = o, then the class of the diagonal A C G xx G
equals[A] = X,bq ® by
Proof. Denoteby 0: G — G xx G, d":G — G xk G (the Cartesian product)
the diagonal embeddings and by v the morphism = xx m:G xx G — X. For
g,h € A*(G) we have

me(g - h) = m((0')"(g x h)) = m(6"(9 @ h))
= 7%:0:(0"(9 ® h)) = %([A] - (9 @ h)),

using © = 7y o ¢ and standard properties of intersection theory ([F]). Hence, writing
[A] = ¥myb, ® by, we get

i (ba - bg) = Y ([A] - (ba ® bp))
= (re@m) (X muwby ®b,) - (b ® b))
= > (b - ba) - i (by - bg). (%)
1,V

(i) By theassumption and (x) with « replaced by o’ and g —by ', we get
Map = W*(bal . bﬁl) - Z muyﬂ*(bu . bal) . 7'('*([),/ . bﬂl), (**)
pFav£p

where the degree of m,,, € A*(X) suchthat 4 # « or v #  and m, (b, - by) -
7 (by - bg) # 0, issmaller than the degree of m,,3. The assertion now follows by
induction on the degree of m,s.

https://doi.org/10.1023/A:1000182205320 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000182205320

FORMULAS FOR LAGRANGIAN AND ORTHOGONAL DEGENERACY LOCI 25

(if) By virtue of the assumption, Equation (xx) now reads 7, (by - bg') = map
and immediately implies the assertion. O

Let us remark that in [DC-P, Proposition 2], where a weaker variant of Theo-
rem 9.6 of the present paper is used, already assertion (i) (plus results of Section 5)
are sufficient to conclude the proof.

Let now G = LG,V — X denote a Lagrangian Grassmannian bundle.

PROPOSITION 2.5. The class of the diagonal of the Lagrangian Grassmannian
bundlein A*(G x x G) equals

[A] =Y Qr(RY)ac - Qp,1(RY)ca,

thesumover all strict I C p,, GG = Gx xGand R;,i = 1, 2, arethetautological
(sub)bundles on the corresponding factors. N

Proof. The assertion followsfrom Lemma2.4(ii) appliedtob; = Q;RY (I strict
C pp) and Theorem 5.23(i) which will be proved (independently) later. O

COROLLARY 2.6. With the notation of Section 1 and GF = G xx F, the
classof Z in A*(GF) (i.e. the image of the class of the diagonal of G x x G via
(1 x «a)*) equals

Z QI(D\C/:JE) ) @Pn\I(Ré}')'

strict 7Cpn,

Thus the problem of computing the classes of the 2(a,)’sis essentially that of
calculation p*(@IDV) where p: F — X is the projection map; then we use base
change.

Consider now the case of the orthogonal Grassmannian parametrizing rank n
subbundlesof V', whererank V' = 2n+1. Theresultsof LemmaZ2.3, Proposition 2.5
and Corollary 2.6 translate mutatis mutandis to this case with (-polynomials
replaced by P-polynomials (using essentially Theorem 5.23(ii)). Thusthe problem
of computing the classes of the 2(a,)’sis essentially that of calculation p,.(P;D")
wherep: F — X isthe projection.

Finally, consider the even orthogonal case. Suppposethat V' is a vector bundle
of rank V' = 2n endowed with a nondegenerate orthogonal form. Let G = OG!V
or G = OG!'V following the notation of Section 1. The even orthogonal analog of
Proposition 2.5 and Corollary 2.6 is obtained using Theorem 5.23(iii) and reads as
follows

PROPOSITION 2.7. The class of the diagonal of the Grassmannian bundle in
A*(G xx G) equals

[A] =" Pi(RY)ae - Py, 11(BY)ca,
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thesumover all strictI C p, _1,GG = GxxGand R;,i = 1, 2, arethetautol ogi-
cal (sub)bundlesonthe correspondingfactors. WithGF := G x x F' (resp. GF =
G xx F"), theclassof Z in A*(GF) (i.e. theimage of the class of the diagonal
of G xx Gvia(1l x «)*) equals

>.  PiDer) - Pyt (Rey).
strict ICpy_1
Thusthe proplem of compuii ng the classes of the Q(a,)’sis essentially that of
caculation p! (P; DY) and p (P; DY) wherep': 7' — X and p": 7" — X arethe
projection maps.

3. Subbundlesintersecting an n-subbundlein dim > &

We will now show an explicit computation inthe caseae = (n — k+ 1,n — k +
2,...,n). This computation relies on a simple linear algebra argument. Another
proof of Proposition 3.1, using the algebra of divided differences, will be givenin
Section 8.

We start with the Lagrangian case and follow the notation from Section 1.

PROPOSITION 3.1. Assumea, = (n — k+1,...,n). Let I C p, be a strict
partition. If (n,n —1,...,k+ 1) ¢ I, then p,Q;D" = 0. In the opposite case,
write] = (n,n—1,...,k+1,71,...,4),wherej; > Oand! < k. Thenp,Q; D" =
Qjryeret Vi -

Proof. It suffices to prove the formula for a vector bundle V- — B endowed
with a nondegenerate symplectic form, X equal to LG,V and V,, egqua to the
tautological subbundle on LG, V. (Recall that Q(n — k + 1,...,n;V,) depends
only on V,,; more precisely, it parametrizes Lagrangian rank n subbundles L of
V such that rank(L N V,,) > k.) The variety F in this case parametrizes triples
(L, M, N) of vector bundles over B such that L and N are Lagrangian rank n
subbundles of V and M isarank k£ subbundleof L N N. Let W,: Wy C W, C
-+ C W, beaflagof Lagrangian subbundlesof V withrank W; = i. For apartition
J=(j1>--->41>0) Cp,

ay = Qn+1—jg1,...,n+1—7j;W,)
— {LeX|rank(LN\ Wit j)>hh=1...1}

defines a Schubert cycle whose class has the dominant term (w.r.t. V;,) equa to
QsV,) € A*(X). It is well known that «; is an irreducible subvariety of X
provided B isirreducible.
Similarly, for a partition I = (i1 > --- > 4y > 0) C p,, ¢ F — LG,V the
projection on the third factor,
A = ¢*Qn+1—i1,...,n+1—1i; W)

= {(L,M,N) € Flrank(N " Wp41-4,) =2 h,h=1,...,1}
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defines a cycle whose class has the dominant term (w.r.t. D) equal to Q;DV €
A*(F). Also, A isanirreducible subvariety of F provided B isirreducible.
We will show (the push-forward is taken on the level of cycles) that:

Q) IfIp(n,n-1,...,k+1)thenp,Ar = 0. Passingto therational equivalence
classes, thisimplies p,Q; D" = 0.

@QUromn-1,...k+1iel=(nmn—-21...,k+17j1,...,5), where
ji > 0and! < k, thenp, A; = oy where J = (j1,...,7). Then, passing to
the rational equivalence classes (and using the projection formula), we get the
following equality involving the dominant terms: p.Q; DV = Q,V,’.

Observethat (1) holdsif [(I) < n— k becausewethenhavecodimzA; = |I| <
n+(n—21)+---+ (k+ 1), whichisthe dimension of the fiber of p. We will need
the following.

Claim. Let I C p,, beastrict partition. Let [ = card{h | i;,_+r # 0}. Assume
that [ > 0. Then one has

p(4r) C Qi g Lo kg 2seeesln— k1 (x)

Indeed, for (L, —, N) € Ay, sincerank(LNN) > k,theinequality rank(NNW,) >
h impliesrank(L N W,) > h — (n — k) for every h,r; thisgives (x).

(1) Toprovethisassertionwefirst use (x) (by the aboveremark we can assume
that /(1) > n — k) and thus get

codimgzAr — codimxp(Ar) < (i1 + -+ in—k41)
(k1 + - +in_pt1)
= i1+ + ik
Then,sincel % (n,n—1,...,k + 1), we have
gt ip_p <n4---+(E+1),

where the last number is the dimension of the fiber of p. Hence comparison of the
latter inequality with the former yields p, A; = O.

(2) To provethis, it sufficesto show p(A;) C a, dimA; = dimay; and if
pA;r =d - ayforsomed € Z thend = 1. We have

p(Aj) C ay:thisisadirect consequence of (x).

dimA; = dimay: this results from comparison of the following three formulas
dmF = dmX + k(n — k) + (n — k)(n — k + 1)/2,codimya,; = |J|, and
codimzA; =n+---+ (k+ 1)+ |J].

Thereforep, A; = d- oy for someinteger d. To show d = 1it sufficesto find an
open subset U C «; such that p|p_1U:p*1U — U is an isomorphism. We define
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the open subset U in questionas vy \ Q(n — k; W, ). Moreexplicitly, U is defined
by the conditions

rank(L N Wpi1—j,) = 1,...,rank(LNWy41-5,) > 1
and LNW,_; = (0).

Observethat these conditionsreally definean open non-empty subset of «; because
Qn+1—j1,....n+1—5;We) & Qn+1—(k+ 1);W,) for J C pg.
(Recall that for I = (i1 > --- >4 > 0),J = (51 > --- > jy > 0) one has
Qn+1—dg,....,n+1—ix;We) CQUn+1—j1,....n+1—jp; W) iff I D J).

Since our problem of showing that d = 1 isof local nature, we can assume that
B isapoint and deal with vector spacesinstead of vector bundles. Let us choose a
basises, ..., en, f1,..., frn suchthat, denoting the symplectic form by ¢, we have
®(e;,ej) = 0= @(fi, f;) and @(e;, f;) = —L(f;, &) = d; ;. Assumethat W; is
generated by the first ¢ vectors of {e;}. Let W* be the subspace generated by the
last 7 vectors of {e;}. Moreover, let W, be the subspace generated by the first i
vectorsof {f;} and W be the subspace generated by the last i vectors of {fi}-

Observe that for a strict partition p,, > I O (n,n —1,...,k + 1) anecessary
condition for *(—,—,N) € Ay is'N D W, . (This corresponds to the first
(n — k) Schubert conditions defining A;.) On the other hand, if L € U then
LN W,_r = (0) and consequently L must contain VNI/n_,C (from the rest, i.e.
Wk @ W*, we can get at most k-dimensional isotropic subspace). Hence also
|ILN(W*®WF)| = k (| — | denotesthe dimension). We conclude that anecessary
choice for an n-dimensional Lagrangian subspace N such that (L, M, N) € A;
for some M, is

N :i=Wn_p® (LN WFeWh)).

It follows from the above discussion that N is really a Lagrangian subspace of
dimensionn andit satisfiesthefirst (n — k) Schubert conditionsdefining A;. N aso
satisfiesthelast ! (< k) Schubert conditionsdefining A;: since|[LNW,,41-;,| > h
and LN W, = (0), wehave [N N Wyi1—j,| = |[Wy—k| +h >n—k+hfor

h=1,...,1.

Moreover, since |L N N| = k, the subspace M above is determined uniquely:
M=LNN.

Summing up, we have shown that d = 1; this ends the proof of (2).

Thus the proposition has been proved. O

PROPOSITION 3.2. Onehasin A*(G)

Qn—k+1....0]= > Qr(V,))aQpa(RY).
strict IC py
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Proof. Thisformulais obtained directly by pushing forward via (p1). the class
of Zin A*(GF) given by

> QuD4#) - Qp.i(REx),

strict 7Cpn,

(see Corollary 2.6), with the help of Proposition 3.1. O

EXAMPLE 3.3. For successive k (and any n) the formula reads (with D =
D¢r, R = Rqr for brevity)

k=1 QiD"+ QiR
k=2  QaDY+Q@2D" Q1R' + Q1D" - Q2R" + QuRY;
k=3  QaD"+QuDY Q1R’+ QaD" - Q2RY

+ QD" - Q3RY + Q3DV - QR

+ Q2D - QaRY + Q1DV - QxR + QanRY.

In the odd orthogonal case, the analogs of Propositions 3.1 and 3.2 are obtained
by replacing Q-polynomials by P-polynomials.

PROPOSITION 3.4. (i) Assumea, = (n—k+1,n—k+2,...,n).LetI C p, be
a strict partition. If (n,n — 1,...,k + 1) ¢ I, then p, P, DV = 0. In the opposite
case, write I = (n,n—1,...,k+ 1 41,...,7), wherej; > Oand ! < k. Then
pPDV =Py, V).

(i) Onehasm A*(OGHV)

Qn—k+1....0]= > PV, Pyu(RY).
strict 1Cpy,

Assertion (i) followsfrom (i) like Proposition 3.2 follows from Proposition 3.1.
The proof of (i) is essentially the same as the one of Proposition 3.1. More pre-
cisely, in the proof of (i), a; and A; are defined in the same way as in the
proof of this proposition. Also, the whole reasoning is the same, word by word,
except of the following one point. To prove that d = 1 one chooses now a basis
€1,...,€n, f1,..., fn,g such that denoting the orthogonal form by ®, we have
(P(e“e]) - @(fhf]) - (P(ehg) - @(fﬁ ) - 0 @(el7f]) - @(fﬁel) - 62]
and ®(g,¢9) = 1. Then W;, W?, W; and W defined like in the proof of Proposi-
tion 3.1 allow usto show that d = 1 exactly in the same way asin the proof of this
proposition.

L et us pass now to the even orthogonal case. So let V' — X (X is connected)
be arank 2n vector bundle endowed with a nondegenerate quadratic form. Fix an
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isotropic rank . subbundle V,, of V. Recall that for & = n (mod2) by p’: F' —
X we denote the flag bundles parametrizing flags A1 C A2 of subbundles of
V such that rank A3 = k, rank A, = n, A3 C V, and Ay is isotropic with
dm(A42NV,), = n(mod2) for every z € X. Similarly, for £ = n + 1(mod2)
by p": F" — X we denote the flag bundle parametrizing flags 4; C A, of
subbundlesof V suchthat rank A; = k, rank A, = n, A1 C V,, and A, isisotropic
withdim(A2N V) =n+ 1(mod2) for every z € X.
In the even orthogonal case the analog of Proposition 3.1 reads:

PROPOSITION 3.5.Let I C p,_1 beastrict partition. If (n—1,n—2,...,k) ¢ I
thenp!, PrDV = 0. Intheoppositecase, writel = (n—1,n—2,...,k, j1,...,51),
wherej; > 0and/ < k — 1. Then

p;PIDv = lea"'alen\/'

The same formulais valid for p’.

Proof. We consider first the case of p/, i.e. k = n (mod2). It sufficesto prove
the formulafor arank 2n vector bundle V' — B (we assumethat B isirreducible)
endowed with anondegenerate orthogonal form, X equal to OG,,V or OG!'V and
V,, equal to the tautological subbundle on X. Then the variety F' parametrizes
triples (L, M, N) such that dim(L N N), = n(mod2) for every b € B (i.e. L
and N either belong together to OG’,V or together to OGV) and M isarank k
subbundleof LN N.

We will now prove the proposition for X = OG', V. (Obvious modifications
lead to a proof in the case X = OG/V.) Since the strategy of proof is the same
as in the Lagrangian case, we will skip those parts of the reasoning which have
appeared aready in the proof of Proposition 3.1. Let W, Wy C Wo C --- C W,
be an isotropicflagin V.

For J = (j1 > --- > 351 > 0) C py_1 Wedefine

ay=Qn—7j1,...,n—7j; W) ifl =n(mod2)and
ay=Qn—7j1,...,n—7j,n;,We) ifl=n+1(mod2).

Similarly for I = (i1 > --- >4, > 0) C pp—1,¢: F' — OG!V the projection
on the third factor, we define

Ar=q"Qn —i1,...,n—1i; W,) if Il =n(mod2)and
Ar=q¢"Qn—1i1,...,n—13,n;W,) ifl=n+1(mod2).

Itisknownthat v, and A; areirreducible subvarieties provided 5 is. The dom-
inant terms of the classes of «v; and A; areequal to P;V,’ and Py DV respectively.
The proposition now follows from
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QDHIp(n—2Ln—2...k) thenp,A; =0.
@QUfIo>n—-14n-2...;k)iel=mn-1n—2,....k+ L1k j1,...,5),
wherej; > 0andl < k — 1, thenpl A; = a; where J = (j1,. .., 51)-

Assertion (1) (being obviousif [(I) < n — k) isaconsequence of:
Claim. For every strict partition I C p,—1, let | = card{h|i,,_r+rn # O}.
Assumethat [ > 0. Then one has

pI(AI) C iy g tyein_ kg (%)

Inclusion (x) also implies p'(A;) C «ay in (2). The equaity dimp'(A;) =
dima, now follows from: dimF' = dimX + k(n — k) + (n — k)(n — k — 1) /2,
codimyxay = |J|and codime A = (n— 1) +--- + k + | J|.

Thereforep!, A; = d-a; for someinteger d. To provethat d = litissufficientto
show anopensubsetU' C ay suchthat p'| -1y (p')~*U — U isanisomorphism.
The open subset U in question parametrizesthose L € ay forwhich LNW,,_; =

(0).
Theproblembeinglocal, wecan assumethat Bisapoint. Letes, ..., en, f1,...,
[n beabasisof V suchthat denoting theformby & wehave ®(e;, e;) = (f;, f;) =

0, CI)(GZ', f]) = q)(fj, ei) = 5i,j and Wi is Spanned by €1,...,6€;. Define Wi, Wz
and W' asin the proof of Proposition 3.1.

Now, given L € U, the unique N such that (L, M,N) € A; for some M, is
defined also asin the proof of Proposition 3.1: N := W,_ & (L N (Wk & Wk)).

This N is isotropic and satisfies the first n — k& Schubert conditions because
it contains W,,_;. Moreover, it satisfies the last [(< £ — 1) Schubert conditions
defining A;: since|LNW,,_j,| > hand LNW,,_;, = (0), wehave|NNW,,_;, | =
[Wh—k|l +h >n—k+hforh =1 ...,10. Findly, the M above is determined
uniquely: M = LN N, andp’|(p,)71U is an isomorphism.

We next consider the case of p/, i.e. k = n + 1 (mod2). It sufficesto prove the
formula for a rank 2n, vector bundle V- — B (B is irreducible) endowed with a
nondegenerate orthogonal form, X equa to OG.,V or OG!V and V,, equal to the
tautological subbundle on X. Then the variety 7" parametrizestriples (L, M, N)
such that dim(L N N), = n + 1(mod2) for every b € B (i.e. L and N belong to
different components OG!,V and OG’'V) and M isarank k subbundleof LN N.

We will prove the proposition for X = OG!'V'. (Obvious modifications lead to
aproof inthecase X = OG.,V.) Let W,: W1 C W» C --- C W,, bean isotropic
flaginV.For J = (j1 > --- > j; > 0) C px_1 we define

ay=Qn—7j1,...,n—7j;We) ifl=n+ 1(mod2)and
ay=Qn—7j1,...,n—7j,n;, We) ifl =n(mod2).

Similarly for I = (i1 > --- > iy > 0) C pp—1,¢: F" — OG,V the projection on
the third factor, we define

Ar=q¢"Qn—i1,...,n—1i;,n;W,) ifl=n+1(mod2) and
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Ar=q¢"Qn —ig,...,n—1i;W,) ifl=n(mod2).

The dominant terms of the classes of «; and A; areequal to P;V,Y and P, DV
respectively. The proposition now follows from

QUHID(n—Ln-—2,...,k)thenp’A; = 0.
@QUHI>n—1Ln-2...kiel=mn—-Ln—-2...;k+1k ji,....5),
wherej; > 0andl < k — 1, thenp/ A; = oy where J = (j1,...,J1)-

The proof of these assertions is analogous to the one above. For every strict
partition I C p,-1 and I = card{h|i,_r+r # 0} > 0O, one has p"(A;) C
Qi i1yin_pe WHich implies (1) and p" (A7) C «ay in (2); moreover, for the
dimensions reasons we have p/ A; = d - «; for some integer d. One finishes the
proof like in the case of pl,, by showing that p”|(, -1, (p")~U — Uisaniso-
morphism, where the open subset U C «; parametrizes those L € «; for which
LN W,_, = (0). Henced = 1 and the proof is complete. O

PROPOSITION 3.6. If £ = n(mod2) (resp.k = n + 1(mod2)) then one has
in A*(OG!)V) (resp. in A*(OGIV))

[Q(n_k+177n)] = Z f)I(an)G 'f)ﬂk—l\l(Rv)'
strict ICpg—1

Proof. This formula is obtained directly by pushing forward via p/, (resp. p!/)
theclassof Z in A*(GF) given by

Z PI(D\C/:.?) ’ Ppn_lxl(R\C/:f)v
strict I Cpp_1

whereGF = G x x F' (resp. GF = G x x F"), using Propositions 2.7 and 3.5. O

4. Q-Polynomialsand their properties

In this section we define a family of symmetric polynomials modeled on Schur’s
Q-polynomials. In Schur’s Pfaffian-definition (see [S]), we replace Q; by e; —
the i-th elementary symmetric polynomial. After this modification one gets an
interesting family of symmetric polynomias @ (indexed by al partitions) whose
properties are studied in this section and then applied in the next ones. It turns
out that Q; is the Young dual (in sense of the involution w of [Mcdl, 1.2.(2.7)]
to the Hall-Littlewood polynomia Q;(Y;q) where the alphabet Y is equal to
X, /(1 — q) inthe sense of A-rings, specialized with ¢ = —1 ([L-L-T], [D-L-T]).
Though most of the properties of the ; given in this section can be deduced from
the theory of Hall-Littlewood polynomials, we give here their proofs using the
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Pfaffian definition. The only exception is made for the Pieri-type formulawhichis
deduced from the one for Hall-Littlewood polynomials.

Let X = (x1,z2,...) be aseguence of independent variables. Denote by X,
the subsequence (1, ..., z,). We set Q;(X,,) = e;(X,) — the i-th elementary
symmetric polynomial in X,,. Given two nonnegative integerss, j we define

Qij(Xn) = Qi(X, )+ ZZ 1P Qisp(Xn) Qj—p(Xn).
Finally, for any (i.e. not necessary strict) partition I = (i1 > 2 > -+ > iy > 0),
with even k (by putting i, = O if necessary), we set

Q1(Xn) = Pf(Qiyiy(Xn))1<p<qsi-

Equivalently (in full analogy to [S, pp. 224-225]), @I(Xn) is defined recurrently
on!(I), by putting for odd /(1)

10

@I(Xn) = Z(_l)j_léij (Xn)él\{ij}(Xn)v (%)

@I(Xn) = (_1)j@i17ij (Xn)élx{il,ij}(Xn)- (**)

j=2

The latter case, with [ = [(I), can be rewritten as

-
Z j 1QZ];Z1 )@I\{ij,i[}(Xn)- (* * >I<)

Note that assuming formally i, = 0O, the relation (x * ) specializesto (x). We will
refer to the above equations as L aplace-type devel opments or simply recurrent for-
mulas. (Invoking theraising operators R;; ((Mcd1,1], [D-L-T]) the above definition
isrewritten

1-R;
Qr(X,) = [T T ppen(Xa),
1<) g

where e;(X,,) is the product of the elementary symmetric polynomials in X,
associated with the parts of 1.) N
We start with a useful linearity-type formulafor Q-polynomials.
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PROPOSITION 4.1. For any strict partition I one has

i1)

Qr(X,) = 1) ( > @J(an)) ;

=0 \j1l=1Jl=

where the sum is over all (i.e. not necessary strict) partitions J C I such that
I/J has at most one box in every row. (Using the terminology of [Mcd1], this
is equivalent to saying that I/.J is a vertical strip; note that I/.J is here also a
horizontal strip.)

Proof. We use induction on I(I). (1) I[(I) = 1. Since we have e;(X,) =
ei(Xn—1) + zne;—1(X,_1), the assertion follows.

(2 I(I) = 2. We havefor i > j > 0and with ¢; = ¢;(X},), & = e;(Xp—1),
e_1=0,

J
Qij(Xn) = eiej +2) (=DPeirpejp
p=1
= (éi + xnéz?l) (éj + IEnéj,l)
J
+2> (=1P(Citp + Tnlitp-1)(€j—p + Tn€j_p_1)
p=1

j
= (62'6]‘ + 22(—1)Pei+pejp>
p=1

+xp

J
€i—18 + 2 (—1)Pei_14p8j—y
p=1
j-1
+ | eeéj—1+ 22(—1)péi+péj_1_p
p=1

j-1
+$721 (eilejl + 22(—1)p6i1+p6j1p)

p=1
= Qij(Xn-1) + 2n[Qi—1;(Xn—1) + Qi j—1(Xn-1)]

+22Qi 15 1(Xn 1)

(3) By the remarks before the proposition, to prove the assertion in general it
sufficesto show it by using the recurrent relation (x * ). (Note that the right-hand
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side of the formula of the proposition specializes after the formal replacement
iy :=0(l = I(I)) to the expression asserted for (i1 > i > -+ > i;_1).

So, let us assume that [ is even and set Q; == Q;(X,),Qr = Q1(Xn_1).
Moreover, let P (I, 5) be the set of all partitions J C I suchthat I\.J has at most
one box in every row and |I| — |.J| = j. We have by induction on

1—2
Qnfiyi) = o ( > QJ) :
r=0 JEP(I\{ijit}.r)
Therefore, using (2) we have
-1

@f = Z(_l)jil[ij;il + mn(Qij—l,il + Qz'j,z',—l) + w%@ij—l,i,—l]

i=1

-2
X [Z x, ( > QJ)
r=0 JEP(I\{ij,i1}r)

On the other hand, apply the relation (« * ) to the right-hand side of the formula
in the proposition. One gets

Z:OQU%( Z QJ)

JeP(1,j)

l -1
= z%:v% [ > (Z(—l)q_leq,jl 'QJ\{jq,jl})] :
=

JeP(1,5) \¢=1

It is straightforward to verify that both these sums contain 2!(I — 1) terms of the
form

(—1)°27 QupQer,...cron
and such aterm appearsin both sumsif and only if
(C1y vy CsyyCs41,---,C2,b0) € P(L, 7).
Thus the assertion follows and the proof of the proposition is complete. O
PROPOSITION 4.2. Q; /(X,,) = ei(a3,...,22).
Proof. By definition we have (e; = e;(X},))
Qii(Xn) = ejei — 2eiq16i-1 + 2¢i10€i-2 — -

2t

= Z (—1)p+i€p€2i_p.

p=0
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On the other hand, with an indeterminate ¢, we have

A+ z1t) ... A+ zpt) (1 — z1t) ... (1 — zpt)
= (1—2%?)... (L - 22t?),

or equivalently,

(X ept?) (Z(-1)eqt?) = (- V'ei(a?,. .., a2)e?,

which implies

2i
(—1)161'(%%, s axrzl) = Z(_l)p€p€2i—p-
p=0
Comparison of this last equation with the first one gives the assertion. O

PROPOSITION 4.3. For partitions I' = (i1,%2,..,J,7,--,0k—1,%%) and I =
(41,...,1x), thefollowing equality holds

@I’ (Xn) = @j,j(Xn)él(Xn)'

Proof. Write Q; for Q;(X,). We useinduction on k. For k = 0, the assertion is
obvious. For k = 1, wehave Q; ;; = Q:Q;; and Q; ;; = Q;;Q; by the Laplace
type developments, so the assertion follows.

In general, it sufficesto show the assertion inductively, using therelation (),
if the marked *;’ does not appear on the last place; and independently, to prove it
(inductively) for I' = (41, ..., 1%, J, 7). In both instances k is assumed to be even.

In the former case, using (* * x) we get

Qr = Qil,ikQiza---,j:j,---,ikfl -k Qj:ik Qil:iZa---aj:---:ik—l
:FQj:ikQilaiZ:---:ja---aikfl - Qik—laik Qil:---:jaj:---:ikfﬂ

and the assertion followsfrom theinduction assumption by using therelation (s x)
W.r.t. Q4.4 ONCEagain.
In the latter case we use the relation (xx). We have

Qiryininy = Qin,inQis,eonsigri =+ F Qiniy Qg iy 1,55
—Qi1,j Qiye..sig T Qir,j Qigy..yifrs>

and the assertion follows from the induction assumption by using the relation (sx)
W.rt. Q.5 ONCe again. O
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LEMMA 4.4. Let I = (i1, i, . . . , i) bea partition. If iy > n then Q;(X,,) = 0.
Proof. Weuseinductionon(I). Fori(I) = 1, 2theassertionisobviousbecause

ep(z1,...,2,) = 0for p > n. For bigger [(I) one uses induction on the length

and the recurrent formulas, which immediately imply the assertion. O

EXAMPLE 4.5. Thefollowing equalitieshold: (in (1) and (2) weset Q; := @I(Xn)
for brevity)
1) C?5544441 = @5&1@44:141 = C?v55@44@4~41 = @55@44@44@1 = Qs5QuamQ1;
(2) Qsssaaa3331 = PssQaalassazr = Pssa33Qsast;
(3) Here, weset Q; := Q[(ml,xz), QII = Q[((L‘l). Then
Qa1 (1, 72, 23) = 23Q21 + 25(Q211 + Q22) + 3Qm;
= 13Q20Q1 + 73(Q11Q2 + Q22) + 13Q2
= waep(af, #5) (1 + x2) + zifen(af, 23)x122 + ea(zF, 25)]
+23(z2QY; + 25Q))
= $3(IL‘§$%) (x1+ x2) + x%[(z% + :1:%):1:1:1:2 + x%x%]
+a3(z22?3 + 2511).
By iterating the linearity formula for Q;(X,,) (Proposition 4.1), we get the

following algorithm for decompositionof Q; = Q 1(X5,) into asum of monomials
(1) If I'isnot strict, we factorize

Qr = Qryky - Qroy = -+ Qi by - QL

where L is strict (we use Proposition 4.3).
(2) We apply the linearity formulato @ (X,,) and z,,. Also, we decompose

Qkyiky(Xn) = e, (23,...,22)
= e, ($%, ... 75572;—1) + ekp_l(xf, ... 75572;—1)%21
= Qry e, (Xn—1) + Qry— 11, 1(Xn—1)22.
We then repeat (1) and (2) with the so obtained Q )1(Xp—1)'s, thusextracting z,_1;
then, we proceed similarly with the so obtained Q7 (X,,_2)’S etc.

Notethat if westop thisprocedure after extractingthevariablesz,,, z,, 1, ..., Tmi1
we get a development

@I(Xn) = Z@J(XW)FJ(xm+1a"'axn)a (%)
J
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where the sum is over J C I (this follows from the linearity formula; J are not
necessary strict). N

It followsfromthe abovealgorithmthat @, (X, ) isapositive sum of monomials.
It is, in general, not a positive sum of Schur S-polynomials in X,, (we refer
the reader to [Mcdl,1] and [L-S1] for a definition and properties of Schur S-
polynomials). Here comes an example computed with the help of SYMMETRICA
[K-K-L].
EXAMPLE 4.6.Letn =5,Q; = Q;(Xs) and s; = s;(X5). We have

C554 = 822221, C553 = 822211, C552 = 822111, C551 = $21111,

@43 = 82221 — S22111, @42 = S$2211 — S21111, @41 = S2111 — S11111,
Cf.jSZ = S221 — $2111 + S11111, C’.531 = S211 — S1111,

C521 = 821 — S111-

©543 = 533321 — 833222, @542 = 833221 — 832222, cfé541 = 832221 — 822222,
C5532 = 533211 — 832221 1 $22222, @531 = 832211 — $22221,

@521 = 832111 — 822211,

©432 = 83321 — 83222 — S33111, @431 = 83221 — 832111 — 82222,

C5421 = $3211 — $31111 — $2221,

@321 = 5321 — $3111 — $222.

C55432 = 544321 — 544222 — 543331, Cf.55431 = 543321 — 543222 — 833331,
C55421 = 543221 — 542222 — 833321,

Q5321 = 543211 — S42221 — 833311,

C54321 = 54321 — S43111 — S4222 — 83331 1 $32221 — 2322222a

@54321 = 554321 — 554222 — 553331 — 544421 1 543332 — 2333333-

We denote by SP(X,,) thering of symmetric polynomialsin X,,.

PROPOSITION 4.7. The set {Q;(X,,)} indexed by all partitions such that i1 < n
forms an additive basis of SP(X,,). Moreover, for any commutative ring R, the
same set is a basis of the free R-module SP(X,,) ® R.
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Proof. Let us compare the family {Q;(X,)} with the R-basis {e;(X,)} of
SP(X,) ®R,where I runsover all partitions such that 7; < n (and for a partition
I=(i1,...,ix) wewritee; (X,) = e;,(Xy) - ... - €, (X,)). Consider the reverse
Iexicographic ordering of [Mcd1, 1] on the set of such partitions, inducing alinear
ordering on the above set {e; (X},)}. By the definition of Q;(X,), one has

Q:(X,) = e;(X,) + (combination of earlier monomialsinthee;(X,)'s).

Since {e;(X,)} isaR-basisof SP(X,) ® R, {Q(X,)} forms another R-basis
of SP(X,) ® R. O

COROLLARY-DEFINITION 4.8. For every m < n and any partitions J C I,
there exist uniquely defined polynomials Q;/;(Zm+1, - - -, ¥n) € SP(Tm+1,-- -,
xy,) such that the following equality holds

ZQJ Q[/J($m+17"'7$n)'
JcI
Proof. The existence of such polynomials Q; /. (zm+1; - - - s Tn) € Z[Tme1, - - -,
@] follows from the above discussion and (x); weput Q;/, := F.

Since SP(X,) C SP(Xm) ® SP(Zmi, ..., zy) and {Qs(X,)|j1 < m}isa
Z-basisof SP(X,,) (Proposition 4.7), we have the corresponding development

ZQJ GJ (I,‘m_|_1, ,(I,‘n)

Using Proposition 4.6 once again with . replaced by m and R = Z[z 41, - - . , Zn),
weinfer that F;(= G ;) aresymmetricin z,,+1, . . . , z,, (and defined uniquely). O

We will need also a family of P-polynomialsin SP(X,,) ® 73] defined by
Pi(X,) = 27'DQ;(X,) for a partition 1. Also, in analogy to the above, for
every m < n and any partitions J C I there exist uniquely defined polynomials
PI/J(:L‘m+1, - ,$n) S SP(IL‘m+1, e ,IL‘n) ® Z[%] such that

ZP[ PI/J Tm+1, - ,xn)
JCI

P-polynomialssatisfy propertieswhich can be automatically gotten from the above
established properties of (-polynomials. For instance, an analogue of Proposi-
tion 4.1 for P-polynomials reads
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the sum asin Proposition 4.1. N
Givenarank n vector bundle E with the Chernroots (r1, . .., r,) weset Q, E =
Q:(X,) and P,E := P(X,,) with 2; specialized to r;. Note that this notation is
consistent with that used in Section 2 and 3. Similarly, given asubbundle E' C E
with the Chern roots (rm 41, - - -, 7n), we define Q;/, E' = Qp/j(Tmy1,- - - Tn)
and Py E' = Py y(2ms1,- . ., n) With z; specialized to 7.
In the next section we will need the following Pieri-type formula for the Q;'s.

PROPOSITION 4.9. Let I = (i1, ...,i;) beastrict partition of length k. Then

Q1(Xn)Qr(Xy) = > 2" Q4 (X,),

where the sum is over all partitions (i.e. not necessary strict) J O I such that
|J| = |I| +randJ/I isahorizontal strip. Moreover, m(I,r; J) = card{1 < p <
k|jp+1 < ip < jp} oOr, equivalently, it is expressed as the number of connected
components of the strip J/1 not meeting the first column.

(A skew diagram D is connected if each of the sets {i:3;(¢,j) € D} and
{j:3i(i,5) € D} isaninterval inZ.)

Proof. Let after [L-L-T], @’ (X,;q) denote the Hall-Littlewood polynomial
Q1(Y; q) where the alphabet Y is equal to X,,/(1 — ¢) (in the sense of A-rings).
Using raising operators R;; ([Mcdl, I] we have (see, e.g., [D-L-T])

Q1 (Xniq) = [T(X— qRij) s1(X).

i<j
Specialize ¢ = —1 and invoke the well known Jacobi—Trudi formula

51(Xa) = [T(1 - Rij)hr(Xa),

1<j

where h; (X,,) isthe product of complete homogeneous symmetric polynomialsin
X, associated with the parts of 7. We have

Q(X H g hi(Xn).
i 1+ Ry

Therefore, denoting by w the Young-duality-involution we get @I(Xn) =
w(Q}(Xn; —1)).

Therequired assertion now follows by an appropriate specialization of the Pieri-
type formulafor Hall-Littlewood polynomials ((Mo], [Mcd1, 111.3.(3.8)]). O
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5. Divided differences and isotropic Gysin maps; orthogonality of
Q-polynomials

Let V — X be avector bundle of rank 2n endowed with a nondegenerate sym-
plectic form. Let 7: LG,(V) — X and 7: LFI(V) — X denote respectively
the Grassmannian bundle parametrizing Lagrangian subbundles of V' and the flag
bundle parametrizing flags of rank 1, rank 2, . . ., rank n Lagrangian subbundles of
V. We have 7 = 7 ow Where w: LFI(V) — LG,(V) is the projection map.
The main goal of this section is to derive several formulas for the Gysin map
e A¥ (LG (V) — A*(X).

We start by recalling the Weyl group W, of type C),. This group isisomorphic
to S, x Z%5. We write a typical element of W,, asw = (o,7) where o € S,
and 7 € Z%; so that if w' = (o', 7') is another element, their product in W,
isw-w = (0o0’,§) where ‘o’ denotes the composition of permutations and
i = Ty - 7;- TO represent elements of W,, we will use the standard ‘barred-
permutation’ notation, writing them as permutations equipped with bars in those
places (numbered with *5’) where 7; = —1. Instead of using a standard system of
generators of W, given by simplereflectionss; = (1,2,...,i+ 1,4,...,n),1 <
i<n-—21ads, = (1,2,...,n—17), we will use the following system of
generators S = {s, = (1,2,...,n),5s1,...,s,_1} corresponding to the basis:
(—2e1),e1 — €2,69 — €3,...,6n—1 — Eq. It IS €Sy tO check that (W,,,S) is a
Coxeter system of type C,,. This ‘nonstandard’ system of generators has several
advantages over the standard one: it leads to easier reasonings by induction on n
and the divided differences associated with it produce ‘ stable’ symplectic Schubert
type polynomials (for the details concerning this last topic — consult a recent work
of S. Billey and M. Haiman [B-H]). Let us record first the formula for the length
of an element w = (o, 7) € W,, w.r.t. S. Thisformula can be proved by an easy
induction on /(w) and we |leave this to the reader.

LEMMA 5.1.
H(w)=>ai+ Y (2bj+1),
=1 Tj=—1

wherea; ;= card{p |p >iando, < 0;} andb; := card{p |p < j and o}, < 0;}.

In the sequel, whenever we will speak about the‘length’ of anelementw € W,
wewill havein mind the length w.r.t. S.

Let X,, = (z1,...,x,) beasequence of indeterminates.

Wenow definesymplectic divided differenceso;: Z [ X, — Z[X,]),i = 0,1,...,
n — 1, setting
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() = 1501,
82(f):x‘]::7;:-{—17 izlw"an_la

where sg actson Z[ X, by sending z1 to —z1 and s; —by exchanging z; with ;11
and leaving the remaining variables invariant. For every w € W, l(w) = [, let
Si; - ... 8;, be areduced decomposition w.r.t. S. Following the theory in [B-G-
G] and [D1, 2] we define 9y, := 05, - ... - s, - By loc. cit. we get a well-defined
operator of degree—I(I) actingon Z[X,,] (here, ‘well-defined’ means: independent
of the reduced decomposition chosen).

Wewant first to study the operator 9,,, wherew,, = (1,2, ... ,7n) isthemaximal
length element of W,,. To this end we need some preliminary considerations.

Let QP(X,,) denote the ring of Schur’s @-polynomialsin X,,. We record the
following (apparently new) identity in this ring. In 5.2-5.4 below we will write:
e; = e;(Xn), s1 = s1(Xn), Q1 = Qr(X,) and Q; = Q;(X,,) for brevity.

PROPOSITION 5.2. In QP(X.,)
Qp, = Det(a; ;) 1<i,j<k>

Whereaiyj = Qk+1+j—2i if b+ 1+j —2i 75 0 (Wlth Qz = 0for: < O) and ajj = 2
ifk+1+5—20=0.

Proof. We have from the theory of symmetric polynomials (see [P2] and the
references therein)

k
Qpy, = 283, = Det(2ep 41121 1<i j<k-

It follows from the Pieri formula (see [Mcd] and [L S1]) that

2 Z Sy '32+26i:223J-

hooks I, hooks J,
[I]=i—2 |J|=13

Hence, by multiplying the p-th row by s, and adding it to the (p — 1)-th one
successively forp = k, k — 1,..., 3,2, the above determinant is rewritten in the
form

Det | 2 Z ST

hooks I,
| I|=k+14j—2i

https://doi.org/10.1023/A:1000182205320 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000182205320

FORMULAS FOR LAGRANGIAN AND ORTHOGONAL DEGENERACY LOCI 43

Notice that the degree 0 entriesin this determinant are equal to 2 and the negative
degree entries vanish. Since

lez Z SI,

hooks1,|I|=i
the assertion follows. O

Let J betheidea in SP(X,,) generated by e;(z2,...,22),1 < i < n. Wenow
invokeacorollary of [P2, Theorem 6.17] combined with [B-G-G, Theorem 5.5] and
[D2,4.6(a)]: thereisaring isomorphism SP(X,,)/J — QP(X,)/ ® ZQ1(X,),
where I runs over all strict partitions I ¢ p,,, given by ¢;(X,,) — Q;(X,) (see
the remark after Theorem 6.17 in [P2, pp. 181-182]). We thus get from the pro-
position:

COROLLARY 5.3.1n SP(X,), Q,, is congruent to Det(b; )1« j<x modulo 7,
Wherebl-,j = €k4+1+j-2i if &+ 1+j —2i 75 0 (\Nlth e; = Ofori < 0) and bi,j =2
ifk+1+5—-2=0.

We now state

LEMMA 5.4.1n SP(X,.), Q,, = enén 1...€1 = 5,, (ModJ).

Proof. By thecorollary itissufficient to provethat Det(b; ;) 1<i j<n = €nén—1- - .
e1r = Sp, (mod ,_7) Recall that Spp, = Det(ci,j)lgijjgn where Cij = €en+tlt+j—2i if
n+l+j—2i#0andc¢; =1ifn+1+j—2i=0,i.e thematrices (b, ;) and
(¢,5) are the same modulo the degree O entries.

L et uswrite the determinants Det(b; ;) and Det(c; ;) asthe sumsof the standard
n! terms (some of them are zero). It is easy to see that apart from the ‘diago-
na’ term e,e,_1...e1, every other term appearing in both sums is divisible by
enen—1- . epr1€es for somep > 1. Weclaim that epe,—1. . . ¢p1¢2 € J. Indeed,
e2 € J and suppose, by induction, that we have shown e, e,,_1 ... ¢g11¢2 € J for
q > p. Then

p
2 A i—1
€nen—1...€pi1€y = €nen 1...¢p11 |Qpp+2 E (=1)" “epriep—i
=1

belongsto 7 by theinduction assumption, because@p,p € J (seeProposition4.2).
This shows that

Det(b; ;) = epen—1...e1 = Det(c; ;) (mod 7).

Thusthe lemmais proved. O
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The following known result (see, e.g., [D1] where the result is given aso for
other root systems) is accompanied by a proof for the reader’s convenience.

PROPOSITION 5.5. One hasfor f € Z[X,)],

1<J

-1
B, (f) = (~1)"+D/2 (2%1 S | (e w?-))

x > (=) uw(f).

weWy,
Proof. By the definition of d,,, weinfer that
O, = Z Ay W,
weWy,

wherethe coefficients o, arerationa functionsinzs, .. ., z,. Sincew, isthe max-
imal length element in W,,, 9; o 9,,, = Oforall i =0,1,...,n — 1. Consegquently
8i0y, = Oy, fori =0,1,...,n — 1 and hence vd,, = 9J,,, foral v € W,. In
particular, for every v € W,

Ow, = Z V(o )vw.
weWn

Thus ay,, = v(ay,) for dl v,w € W, and we see that, e.g., «,,, determines
uniquely al the a,,’s.

Claim.

1<J

-1
v, = (=172 <2":Jc1 Celt g 1_[(:1622 - mjz)) .

Proof of the claim. Denote now the maximal length element in W,, by wi™.
We argue by induction on n. For n = 1, we have a m = 1/2z1. We now record
the following equality ’

k+1 k
’U)(()+):Sk'Sk,]_'...'81'80'81'...'8k,1'8k'wg)
that implies
9 k1) =0y 0 0g_10-- 0010000010 0010000 ).

It follows easily from the latter equality that

-1
Oéw(()k+1) = (—1)k <2$k+1 H(.’BZ — Tp+1) H(.’El + :Ek+1)> Oéw(()k).

i<k i<k
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This allows us to perform the induction step n — n + 1, thus proving the claim.
Finally, for arbitrary w € W,

-1
= wwe(ory, ) = (—1)"nFD/2+(w) <2”$1 R 1_[(:1:12 - $32)) ;

1<j
because, for w = (0, 7), (0, 7) = Xa; + ¥r,= 1(2b; + 1) = l(0) + card{p| 7, =
—1} (mod2) (see Lemmab.l). O

COROLLARY 5.6. (1) Oy, (27252 ... 25m) = Oifa, isevenfor somep = 1,... , n.
(ii) If all oy, are odd then

Oy (251052 . afn) = (~1"0 D2, () Mo(afiag? . aln),

where here, and in the sequel, 0 denotes the Jacobi symmetrizer

( > (—1)“”)0(—)) [(zi — ;).

gESy 1<J

Proof. (i) Let usfix o € S,, and look at al elements of ¥, of the form (o, 7)
where T € Z3. Then, writing z* for z7* - ... - 2§, we have

Z(_l)l(aﬂ’) (0.7 7_)$a

T

= (-1)"Wo(z?) Y (—p@deIm="tgm | pan

T

becausel(o, 7) = l(0) + card{p | 7, = —1} (mod 2). Suppose that some numbers
among az, . . ., ay, areeven. We will show that thisimplies

S (-yedielm=-lizm | ron =,

T

We canassumethat ay, . ..,y areodd and a1, . . . , ap, areevenfor somek < n
(by permuting the 7,,'s if necessary). We have

Z(_l)card{p | TP:fl}Tf‘l T

T

— Z(_l)card{p | Tp=—1} (_1)card{p | Tp=—1, p<k}

— Z(_l)cafd{p\Tp=—1, p>k}
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_ kn_k_ i(n—Fk\ _ _ n\n—k _
=2 Z( 1)( . >_2(1 1) =0.

: 7
=0
(i) Letusnow computed,, (z7*...z%) whereall o, are odd. Then

SO (—p@dln=—tem pan = 2n and

T

—1
O, () = (=1)n(n+1)/2 (2”161%711_[((1)12 - mjz))

1<J

x2" 3" (=11 (2)

O'GSTL
= (- s, (Xn) O(). o

We now record the following properties of the operator v = 95 571)- Inthe
following, let Z = JZ[X,).

LEMMA 5.7. (i) If f € SP(22,...,22) thenv(f - g) = f - v(g).

(i) v(Qp, (X)) = (-1 D2,

Proof. (i) This assertion is clear because every polynomial in SP(z2,..., x2)
is Wy-invariant. Observe that it implies that if f = ¢g(modZ) then v(f) =
v(g) (modZ).

(i) (This can be also deduced from the Chow ring of the Lagrangian Grass-
mannian. We present here a direct algebraic argument.) In this part we will usethe
following properties of the Jacobi symmetrizer 0 (see[L-S2], [Mcd2])

(1) If f € SP(Xn), g € Z[Xy] thend(f - g) = f - 9(9g).

(2) Forany @ = (aq,...,a,) € N*, 0(z*) = sq—p, ,(Xp). In particular, if
a; = o for somei # j then 9(z*) = 0.

(3 o= 8(n,nfl ..... 1)-

Lete; = e;(X,). Since Q,,(X,) = enen_1...e1 (ModZ) (by Lemmas.4),
we have

V(Qp, (Xn)) = V(enen_1...€1) = (v od)(zP"tepen_1...e1),
by properties (1) and (2) above. Since
m,n—1,...,1)0(n,n—1,...,1) = w,

this expression equals 0y, (2" tepen—1. .. 1) by property 3. The degree of the
polynomial zfr—e,e,_1...e1isn?. Assumingthat cq + - - - + v, = n?, we have
Owo(z®) # Oonly if

a _ ,.2n—1_2n—3
T8 =2 T )7 T (n)s
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for someo € S,,. Indeed, it follows from Corollary 5.6(i) that 9,,,(z%) # O only if
all thea;’sare odd. Moreover, they must beall different; otherwise 9(z*) = 0 (and
consequently 9,,, (z*) = 0) by property 2. Weconcludethat { oy, . . ., } = {2n—
1,2n-3,...,1}. Butthereisonly onesuchamonomial z¢ inz»-1e,e,_1.. . €1,
namely the onewith (a1, ...,ay) = (2n — 1,2n — 3,...,1). Therefore

Dy (P Lepen_1. .. €1) = Duo(a3" 103 3. ay) = (—1)n(+D/2
by Corollary 5.6(ii) and property 2. O
We now pass to a geometric interpretation of the operator v.

PROPOSITION 5.8. Specializing the variables z1,...,x, to the Chern roots
r1,...,r, Of thetautological subbundle R on LG,,V, one hasthe equality

T (f(r,- oo ymn)) = Oz nz1,. 27 /) (11 - ),

where f(—) isa polynomial inn variables.

(A symmetrization-operator variant of thisproposition followsalso from arecent
paper by M. Brion [Br]. We give here a short proof using only divided-difference
interpretation of Gysin maps for complete (usual and Lagrangian) flag bundles.)

Proof. We invoke a result saying that the Gysin map associated with w and 7 is
induced by the following divided-difference operators

Te(f(re, ... mn)) = (8(12"'75)]’)(7'1, ...,my)  and

wi(f(r1,-- ) = Ompn-1,..00)(r1, -, 7n)-

Asfor the latter equality, see [P1, Sect. 2], as for the former compare [Br] where
the author gives a symmetrizing operator expression for G/ B-fibrations (over a
point, say, this expression was given in [A-C]). The needed divided-difference
interpretation of those symmetrizing operators follows, e.g., from [D1].

Since

(L,2,....n)=mn—1,...,0)0(n,n—1,...,1),

a(i,i. JA) T a(ﬁ,ﬂ,...,i) ° a(n,n—l,...,l)-

Of course, 7. = m, ow,. SiNCew, IS surjective, comparison of thelatter equation
with the former implies the desired assertion about .. O
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We now show how to compute theimagesvia, of Q-polynomialsin the Chern
classesof RY. Let uswrite XY = (-1, ..., —z,) for brevity.

PROPOSITION 5.9. One has v(Q(X)/)) # 0 only if the set of parts of I is
equal to {1,2,...,n} and each number p (1 < p < n) appearsin I with an odd
multiplicity m,,. Then, the following equality holdsin Z[X,,]

QI (X)) Hep (£2,..., z5) (mp_l)/z.

Proof. By Proposition 4.3 we can express Q; (X)) as

Qr(XY) = Qi (X)) - Qi (X))QL(X)),

where L isastrict partition. (We divide the elements of the multiset I into pairs of
equal elements and the set L whose elements are all different.) Some of the j,,'s
can be mutually equal.

By Proposition 4.2, Q; j(X,/) = ej(z2,...,z2) isascalar w.rt. v.

By Lemma 4.4, Q.(X)) # Oonly if L C p,. On the other hand, for a strict
partition L C p,, v(QL(XY)) # Oonly if L = p,, when it is equal to 1 (see
Lemmab.7(ii)).

Putting this information together, the assertion follows. O

Consequently, specializing (z;) to the Chern roots (r;) of the tautological sub-
bundleon LG, (V') we have

THEOREM 5.10. Theelement Q;R¥ hasanonzeroimageunder r.: A* (LG, V) —
A*(X) only if each number p, 1 < p < n, appears as a part of I with an odd
multiplicity m,,. If thislast condition holds then

n

QiR = [ ((—1)Pegy V) (e D/2,
p=1

Proof. This follows from Proposition 5.9 and the equality cp,V =
(=D)Pep(rf,...,r3). O

Our next goal will be to show how to compute the images via =, of S-
polynomials in the Chern classes of the tautological Lagrangian bundle. To this
end we record the following identity of symmetric polynomials. We have found
this simple and remarkable identity during our work on isotropic Gysin maps and
have not seen it in the literature.
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PROPOSITION 5.11. For every partition I = (i1, . .., i,) and any positive integer
p, onehasin SP(X,),

SI(#, -5 20)  S(p-1)p,_2 (Xn) = Sp14(p-1)pn_s (Xn)-

Here, given a partition I = (i1,1p,...), wewrite pI = (pi1, piz,...).
Proof. We use the Jacobi presentation of a Schur polynomial as aratio of two
aternants (see[Mcd1], [L-S1]). We have

i+n—l
p o Det(ay" " )1k icn

sp(zy,...,2h) = o)
Det(z, " )ickign

Det(xiiﬁ(”*l)(?*l)ﬂ"*l))Kk’lgn

DT s e Det(x P D=0+ (=Dy
k SkyIsn Det(wzil)lgk,lSn

_ 5p1+(p71)pn—1(Xn) O

S(p_l)pnfl(Xn)
COROLLARY 5.12. For p = 2 we get

s1(2%,..-,23) - $p,2(Xn) = s214p,4(Xn).

(For another derivation of thisidentity with the hel p of Quaternionic Grassmannians

see Appendix A.)
We now give a geometric transglation of this last formula, or rather its conse-
quence
st 27) - 85, (Xn) = spos2r(Xn). (+)

THEOREM 5.13. The element s; R" has a nonzero image under =, only if the
partition I is of theform 2J + p,, for some partition J. If I = 2J + p,, then

[2]
s RY = s;V,

where the right-hand side is defined as follows: if s; = P(e.) isa unique presen-
tation of s ; asa polynomial in the elementary symmetric functionse;, E —a vector
bundle, then 52 (E) := P with ¢; replaced by (—1)icxE (i = 1,2,...).

Proof. Sinces;RY = w, (¢! P»-1)whereq = (q1, ..., ¢,) aetheChernrootsof
RY (thisisafamiliar Jacobi—Trudi formularestated using the Gysin map for theflag
bundle - seg, e.g., [P3] and the references therein), we infer from Corollary 5.6(i)
that s; RV hasanonzero image under r, only if all partsof I + p,,_; are odd. This

impliesthat [(I) = n and I is strict thus of the form I’ + p,, for some partition I'.

https://doi.org/10.1023/A:1000182205320 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000182205320

50 P. PRAGACZ AND J. RATAJSKI

Finally all parts of I’ + p,, + p,_1 ae odd iff I’ = 2J for some partition J, as
required.

Assume now that 7 = 2J + p, and specialize the identity (x) by replacing
the variables (x;) by the Chern roots (¢;). The claimed formula now follows
sinces;(q?,...,q?%) isascaar W.rt. m, mis,, (q1, - - -, gn) = 1 by Lemma5.7(ii)
combined with Lemma 5.4; finally (—1)icp;V = e;(¢3, . . ., ¢%) because of Lem-
ma 1.1(ii). O

Observe that the theorem contains an explicit calculation of the ratio in Corol-
lary 5.6(ii).

We now pass to the odd orthogonal case. The Weyl group W,, of type B,
is isomorphic to .S, x Z5 and its elements are ‘barred-permutations’. We use
the following system of generatorsof W,,: S = {s, = (1,2,...,n),81,..-, 801}
correspondingtothebasis(—¢1),e1—e2,e2—€3, . .., £n—1— &y, CONsequently, the
divideddifferenceso;, i = 1,...,n—1,arethesamebut do(f) = (f —sof)/(—z1).

The odd orthogonal analog of Proposition 5.5 reads

1<J weWn

-1
Ouo(f) = (—1)n(v /2 (xl--.--wnﬂ(wf—$§)> > (=D ™w(f).

Arguing essentialy asin the proof of Proposition 5.8 (with obvious modifica-
tions), one shows that the Gysin map associated with 7: OG,,V — X isinduced

by the orthogonal divided difference operator 9 7= 7)-

The odd orthogonal analog of Theorem 5.10 reads:

THEOREM 5.14. Theelement Q;R¥ hasanonzeroimageunder r,: A*(OG,V) —
A*(X) only if each number p, 1 < p < n, appearsasa part of I with an odd mul-
tiplicity m,,. If this last condition holds then

T QrRY = 2" [[((~1)Pep, V) o D/2,
p=1

This holds because the cal culation in Proposition 5.9 now goes as follows: with
the notation from the proof of Proposition 5.9, the polynomial

@I(XX) = Zn@jl:jl(XT\l/) cee @jl:jl (Xl)ﬁpn (XX)a

ismappedviad; o= 7 t0

l
2" H ej, (23, ..., 22),
h=1
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since 0 o=, 1) (Fp, (X37)) = 1. (The proof of the last statement is the same as

that of Lemma5.7(ii)).
Finally, the odd orthogonal analog of Theorem 5.13 reads:

THEOREM 5.15. The element s; R" has a nonzero image under =, only if the
partition I is of theform 2J + p,, for some partition J. If I = 2J + p,, then

s RY = 2"3[,2}1/,

where s[Jz] (—) isdefined asin Theorem 5.13.

This holds because s, (X)) is congruent to 2" P, (X)) modulo J (Lemma
5.4) and . P, RV = 1. Also, we use Lemma 1.1(ii).

We now pass to the even orthogonal case.

In type D,, the Weyl group W,, is identified with the subgroup of the group
of ‘barred permutations’ (ws, . .., w,) Whose elements have even numbers of bars
only. Consider asystem S of generators of W,, consisting of sy = (2,1,3,...,n)
ads; =(1,2,...,i—1i+14i+2,...,n),i=212...,n—1 (W, S)isa
Coxeter system of type D,, and the length function w.r.t. S is

Ww) =Y ai+ Y 2b,
i=1 Tj=—1

wherea; = card{p |p > i and w, < w;} and b; = card{p|p < j and w, < w;}.
Thelongest element wq in W, isequal to (1, ..., n) if nisevenandto (1,2, ...,7)
if n isodd. Following [B-G-G] and [D1,2] one defines the operators 9,,: Z[ X)) —
Z[Xy) for w € W,,. Here,

f — f(_xZa —X1, X3, - - - axn)
—T1— T2 '

nf=

The even orthogonal analog of Proposition 5.5 reads

duo(f) = ()" D[] (2?2 =)™ 32 (=) Ww(f).

i<J weWn,
The even orthogonal analog of Corollary 5.6 reads:

LEMMA 5.16. (i) Oy, (27252 ... 2%") = 0if a, isodd for somep = 1,...,n.
(ii) If all oy, are even then

D, (2%) = (=)D g, (X)) THO(20),

where 0 denotes the Jacobi symmetrizer.
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Proof. (i) Let usfix o € S,, and look at al elements of ¥, of the form (o, 7)
wherer € {+1, —1}" and []; 7; = 1. We have

S (-1 (o, 7)a® = (1) Do (z*) S 1. rom,

T

because I(o, 7) = I(o) (mod2). Suppose that some numbers among a, . . . , ay,
are odd. We can assume that oz, ..., o are even and ay.1, . .., ap are odd for
somek < n (by permuting the 7,,’s if necessary). We have

n—k
St = Y () = e ok S (g (n i k> -0

T 1=0 ¢

(i) Let usnow compute d,,, (z7*...z5") whereall o, are even. Then
S gen =gt
-

and

O, (a%) = ()" V2 (@f —af) 2" Y (-1 Do(a)

Z<] UESn
= (- Vs, (X)), o

Letusnow denoteby J theideal in SP(X,,) ®Z[3] generated by e; (22, . .. , 22),

i=1...,n—1andzy-...-z,. Inthefollowing analog of Lemma5.4 we write
e; = el-(Xn), Sy = S[(Xn), Pr = P[(Xn) and Pr = P[(Xn) for brevity.

LEMMA 5.17. In SP(X,,) ® Z[3],
'ﬁpnfl = 2—(n—1)€n_1en_2 .61 = 2_(n_1)8pn71(m0d J).

Proof. Proposition 5.2 implies that P,, = Det(a;;)1<i j<k Where a;; =
Pyiayj2iifk+145-2i # 0(with P, = Ofori < O)and P ; = Lif k+1+5—-2i =
0. Similarly asin Corollary 5.3, thisimpliesthat in SP(X,,) ® Z[%], ﬁpk iscongru-
ent to Det(bi,j)lgi,jgk modulo 7, where bijj = ﬁk+1+j72z' ifk+1 + 45— 2i 75 0
(with P, = 0 for i < 0) and bij =1ifk+1+7—2 = 0. Thusitis suffi-
cient to prove that Det(2b; j)1<i j<n—1 = €n—1...€1 = $,,_,(mod 7). Recall that
Spp_1 = Det(ciyj)lgi’jgn,]_ where Cij = €ntltj—2i ifn+14+75—2i #0and
cj=1ifn+14j—2i =0, i.e thematrices (2b; ;) and (c; j) are the same
modul o the degree 0 entries.

L et uswrite the determinants Det(2b; ;) and Det(c; ;) asthesumsof the standard
n! terms (someof them are zero). It iseasy to seethat apart from the‘diagonal’ term
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en_1...e1, every other term appearing in both the sumsisdivisible either by ¢,, or
by e, 1€,_2... ep+1e]2) for somep > 1. Weclaimthat, e;,_1e,,_5. .. ep+1e]2) €J.
Tothisend, it sufficesto show that 2 ; belongsto 7 and argue asin the proof of
Lemma5.4. The needed claim follows from thefact that €2 | — e,—1(2,...,22)
isdivisible by e,,.

This shows that

Det(2b; ;) = ep—1...e1 = Det(c; ;) (mod 7).
Thusthe lemmais proved. O

The even orthogonal analog of Lemma 5.7 for the operator v = J; 51y if
isevenand v = 95 31 if nisodd, reads asfollows.

LENMMA 5.18. (i) If f € SP(23,...,22)[x1- ... z,] thenv(f - g) = f - V(9g).

(i) (B, ,(Xn)) = (~1)" D2

Proof. (i) This assertion is clear because every polynomia in the ring
SP(x2,...,22)[x1- ... x,] isW,-invariant.

(i) In this part we will use the Jacobi symmetrizer 0 (see the proof of Lem-
mab.7). Inthefollowing, Z = JZ[X,,).

Lete; = e;(X,). Since P, _,(X,) =2 Ve, 1...e1 (ModZ), we have
V(P (Xn) = 927y . ep)
= (V o 8)(27(7171)(1)%‘_16”_1 . 61)
= 8100(2_(”_1)3:”"*16“,1 ...e1).
The degree of the polynomial z°»-e,_1 . ..e1 iSn®—n. Assumingthat ay + - - - +
an = n? —n, we have 9y, (z®) # 0 only if

o 2n—2_2n—4 2 0
T =T51) To2)  To(n-1)To(n)

for some o € S,,. Indeed, it follows from Lemma 5.16 that 0,,,(z*) # 0 only if
al the «;’s are even. Moreover, they must be all different; otherwise 9(z) = 0
and consequently 9,,, (z*) = 0. We concludethat {aa,...,an} = {2n — 2,2n —
4,...,2,0}. Butthereisonly onesuchamonomial z® inzfr-te,_1...e1, Nnamely
theonewith (aa,...,a,) = (2n—2,2n —4,...,2,0). Therefore

8100(2_("_1)3:”"*16“,1 ...€1)
=27 Vg, (2324 22 1aD)

_ (_1)71(7171)/2
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by Lemma5.16. O

The even orthogonal analog of Proposition 5.9 reads (since e, (XY ) is ascalar
for v, it sufficesto evaluate theimagesvia v of P; (X)), whereall i, < n — 1):

PROPOSITION 5.19. Let I be a partition with all parts not greater than n — 1.
Onehasv(Q;(X,/)) # Oonlyif the set of partsof I isequal to {1,2,...,n — 1}
and each number p (1 < p < n — 1) appearsin I with an odd multiplicity m,.
Then, the following equality holds in Z[X},]

n—1

rrn

p=1

Arguing as in the proof of Proposition 5.8 one shows that the Gysin maps .
associated with m: OG!V — X (resp. m: OG!'V — X), and applied to (sym-
metric) polynomials in the Chern roots of R, are induced by the operator v.
The role of LFI(V) is played now by the flag bundle parametrizing flags of
rank 1,rank 2, ..., rank n isotropic subbundles of V' whose rankn subbundle E
satisfiesdim(E N V,,), = n(mod2) (resp.dim(E N V,), = n + 1(mod2)) for
every x € X . Consequently, the proposition whose proof is the same as the one of
Proposition 5.9, has as its conseguence:

THEOREM 5.20. Let I be a partition with all parts not greater than n — 1. The
element Q; R" hasanonzeroimage under 7, onlyif eachnumber p, 1 < p < n—1,
appearsasa part of 7 with an odd multiplicity . If thislast condition holds then

n—1
QiR = 27 [] (—1)Peg, V) me=0/2,
p=1

THEOREM 5.21. Theelement s; RY (I(I) < n — 1) hasanonzeroimage under .
onlyif the partition I is of theform2.J + p,,_1 for some partition J ({(J) < n—1).
fI1=2J+ Pn—1, then

s RY = 2”71352]1/,

where s[Jz] (—) isdefined asin Theorem5.13.

Proof. Since s;RY = w, (¢’ tP»-1) whereq = (q4, ..., ¢,) arethe Chern roots
of RV, weinfer from Lemmab5.16 that s; R has anonzero image under m, only if
al partsof I + p,,_1 areeven. Thisimpliesthat /(1) = n — 1 and I is strict thus
of theform I + p,,_1 for some partition I'. Finally, al partsof I' + p,, 1+ pn_1
areeveniff I' = 2J for some partition J, as required.

Assumenow that I = 2.J+ p,,_1 and speciaizetheidentity from Corollary 5.12
by replacing the variables (x;) by the Chern roots (¢;). The claimed formula now
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follows since: sr(q?,...,q2) is a scalar W.rt. m, ms,, (g1, ..., qn) = 2071
by Lemmas 5.17 and 5.18; moreover 2(—1)icy;V = 2¢;(q3,...,q2) by Lem-
ma 1.1(ii). O

REMARK 5.22. (1) Our desingularizations of Schubert subschemes are com-
positions of flag and isotropic Grassmannian bundles (see Section 1). Therefore
Corallary 2.6, the algebra of (Q-polynomialstogether with formulasfor Gysin push
forwards (Theorem 5.10 for Lagrangian Grassmanniansand awell-known formula
for projective bundles) give an explicit algorithm for calculation the fundamental
classes of Schubert subschemesin the Lagrangian Grassmannian bundles. One has
analogous algorithms in the orthogonal cases. Examples of such calculations are
given in Section 6 and 7. (2) In case X is singular, by interpreting polynomials
in Chern classes as operators acting on Chow groups (see [F]) or singular homol-
ogy groups, the same formulas hold (after their obvious adaptation to the operator
setup).

We finish this section with the following important ‘ orthogonality’ property for
the Gysin maps associated with isotropic Grassmannian bundles.

THEOREM 5.23. (i) For =: LG,V — X and any strict partitions I, J (C p,,)

T (QrRY - QRY) = 81.p, -
(ii) For m: OG,V — X (dimV = 2n + 1) and any strict partitions I, J (C py,)
m(PrRY - PyRY) = 81,5, 7.
(iif) For m: OGLV — X (resp. OG!'V — X), and any strict partitions I, J (C
Pn—1)
m(PrRY - PyRY) = 81,5, _,J-
(Here, 6. isthe Kronecker delta.)

Proof. We will prove first the Lagrangian case (i). (In case (ii), the proof goes
mutatis mutandis using the divided-difference operator 97 7— 1) for SO(2n.+1)

instead of the operator v for Sp(2n). Case (iii) will be discussed separately at the
end of the proof.

Let X,, = (z1,...,z,) beasequence of variables. We show that the operator
Vi L[ X,] — Z[X,), satisfiesthe following formulafor any strict partitions I, .J (C

Pn)
V(QI(XY) Qu(X))) = 61p,-

Sincerr, isinduced by v (Proposition 5.8), thisimplies the assertion. Observe that
for the degree reasons v(Q; - Q) = O for |I| + [J| < n(n + 1)/2 (here and
in the rest of the proof, Q; = Q;(X,’)). Also, because of the universality of the
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formulafor . (seee.g. Theorem5.10), we know (Lemmas 2.3, 2.4 and 5.8) that for
| +]J] =n(n+1)/2,v(Qr-Qy) =O0unlessJ = p, ~ I, whenv(Q;- Q) = 1.
So it remainsto show that for |I| + |J| > n(n+1)/2, v(Qr - Q) = 0. The proof
is by doubleinduction whosefirst parameter isi(I) and the second oneisi; where
I =1(I) (i.e. the shortest part of I).

Assumefirstthat I = (i) and usethe Pieri-type formulafrom Proposition 4.9. A
general partition .J’ indexing the right-hand side of theformulafrom Proposition 4.9
stemsfrom J by adding ahorizontal strip of lengthi. Since|J|+i > n(n+1)/2,the
only possibility for getting v(QJ/) #0 |sthefoIIOW|ng (Theorem 5.10): thereexist
two equal partsp in J' such that after factoring out Qp p from Q. (Proposition 4.3)
weobtain @, (recal that @, , isascaarw.r.t. v). Butl(J') < I(J)+1< n+1,0
after factoring out the length of the so-obtained partition is not greater thann — 1,
i.e. this partition is not p,,.

To perform the induction step write I’ = (i1,...,4;_1) and r = 4; where we
assumethat [ = [(I) > 2. Using the Pieri-type formula again, we have

Qr-Qr = (Qr-Q,) Qs — (Zz’“ M Q ) Qs
= Qr-(Qs- Q) - (Z Zm(II’T;M)@M> -Qy
M

:Q,,.<22"”“V ) (ZZ’” rQ )QJ

Here M runsover dl partitions different from I which contain I’ with M /I’ being
ahorizontal strip of length . Observe that either [(M) < I(I) or [(M) = I(I) but
my < 4, = r, SO we can apply the induction assumption to M. The partitions M
and N can have equal parts; if so, using the factorization property, we write

Qum = Qpl:pl Teeet st:ps “Qumy and Qn = Q‘Il:Ql Tl quh Qg

where M1, N1 are strict partitionsand p; > -+ > ps, q1 > -+ > ¢ ae positive
integers. Using the induction assumption or because of the degree reasons we see
that the only possibility to get in the first sum a summand (corresponding to V)
which is not anihilated by v is: after adding to J a horizonta strip of length r
and factoring out al pairs of equal rows, we obtain the partition N1 = p, ~ I'.
Similarly, the only possibility to get in the second sum a summand (corresponding
to M) whichisnot anihilated by v is: after adding to I’ ahorizontal strip of length
r and factoring out al pairs of equal rows, we obtain the partition M1 = p,, \ J.

Therefore to conclude the proof it is sufficient to define, for a fixed pair of
strict partitions I’, J and fixed positive integersr and p: p; > --- > ps, abijection
between the sets of partitions (with parts not exceeding n)
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N = {N|N D J;N/J is ahorizonta strip of length r; N has exactly s
parts occuring twice, equal to p.; after subtraction from N the parts p. one obtains
pn~1'},
and

M ={M|M > I''M/I' is ahorizontal strip of length »; M has exactly s
parts occuring twice, equal to p.; after subtraction from M the parts p. one obtains
pn~ I},
which preserves the cardinality of the connected components of the strip, not
meeting the first column (compare the Pieri-type formula used).

In order to define the bijection ®: N'— M wefirst invoke the diagrammatic pre-
sentation of the p,,-complementary partition from [P2, p. 160]: for examplen = 9,
I1=1(9,6,3,2),p9~1=(8,7,5,4,1),

(@)
o O

G 0 O O

o O O O O

O O O C e e

O O O O e @ o
O O e ¢ e o o o
o &6 & & o o6 o o o

o o0 ©O
Figure 1

(the collection of ‘e’ givesthe shifted diagram of I (appropriately placed); the col-
lection of ‘o’ gives the shifted diagram of pg \ I). The map ®: N'—M is defined
asfollows. Having an element N € N, i.e. astrict partition J with an added hori-
zontal strip of lengthr, eg. J = (9,6,3,2),r =5 N =(9,8,3,3,2),s = 1,p.:3
(andI' = (7,6,5,4,3,1)):

® @
e o ®
e o o
® © o o 0 o B ®
® © o & o 0 o o o
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we remove the s bottom rows in all pairs of equal rows (in the example, the third
row) and place the shift of the so-obtained diagram asin Figure 1 to get the diagram
N, say. In our example we get the diagram in Figure 3

. .

o o o o

e o o o o o

® e o @ ® o o @

®@ ® e o 0O @ De o

o o 0 00 o0 e e

° o O 00 0 0 e ®

® o O 000 o0 0 ®e

® o 0 0 0 0 0 0 ®e
Figure 3 Figure 4

(We know, by the definition of A/, that if we also remove from N the remaining
parts of lengths p. then the resulting partition is p,, ~ I'. We preserve these parts,
however, because we need them for the construction of ®(V).) Then we construct
the complement of the so-obtained diagram in p,,. In our example, using ‘o’ to
visualize the complementary diagram we get the diagram in Figure 4. By reshifting
the so-obtained complementary diagram plus the same horizontal strip (now added
to this complementary diagram) — call it ®(NV),, and inserting s rows of lengths
p., we get the needed partition (V). Observe that

(1) Since at the last stage we have inserted rows of lengths p., ®(N) consists of
the diagram I’ with an added horizontal strip of length r.

(2) ®(N) has exactly s parts occuring twice, equa to p. (apart from the parts
inserted at the | ast stage, theremaining s partsare therowswhosetherightmost
boxes are precisely the lowest boxes of the rows of length p. in V).

(3) After removing from ®(N) the 2s parts equal to p., we get p,, \ J (thisisthe
same as removing from ® (V) the s parts equal to p. — but (), minus s
parts equal to p. complements precisely J in p,,).

Therefore ®(IN) € M. Also, the cardinality of the connected components of
the strip not meeting the first columnis preserved by ®. In our example, we obtain

®

o ®®

o o ©

o o o o

0 0 0 0o ©

© 0 0 0o 0o o ®
© 0 0O 0 0 0o o ®

Figure 5
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i.e. ®(N)=(8,7,54,331).

L et usnow define, by reversingtherolesof J and I, themap &: M — N. If we
define, by a complete analogy to the above, the partitions M and ¥ (M)o, then we
have N = W(M)oand ®(N)o = M; and clearly ¥ o ® = idy and ® o ¥ = id .

This proves the orthogonality theorem in the Lagrangian case.

Essentially the same proof, with Q)-polynomials replaced by P-polynomials
(for which a Pieri-type formula is given below), works in the odd orthogonal
case (ii).

In the even orthogonal case the proof goes as follows. Let v: Z[ X, — Z[X,)]
be the even orthogonal divided-difference operator inducing .

We show that the operator v: Z[X,] — Z[X,), satisfies the following formula
for any strict partitions I, J (C pp—1)

V(PH(X)) - Pr(X)) = 01.pp_s-

Since 7, is induced by v, this implies the assertion. Observe that for the degree
reasons v(PI Pj) = Ofor |I]| + |J| < n(n — 1)/2 (here and in the rest of the
proof, P; = P;(X)). Also, because of the universality of the formulafor 7. we
have that for |I| + |J| = n(n — 1)/2, v(P; - P;) = Ounless J = p,_1 ~ 1,
when v(P; - P;) = 1. So it remains to show that for |I| + |J| > n(n — 1)/2,
v(P; - Py) = 0. Theproof is by double induction whosefirst parameter is /(1) and
the second oneisi; wherel = [(I) (i.e. the shortest part of I).

Assumefirst that I = (7) and use the Pieri-type formulafor P-polynomials(see
Proposition 4.9; a Pieri-type formulafor P-polynomials reads similarly

ﬁ.] . ]51 = Z 2m’(J,i;J’)]5J’7

the only difference being the exponent /' (.J,4; J') equa to m(J,s; J') if J'/J
meets the first column and (.7, i; J') — 1 —if not.)

A general partition J’ indexing the right-hand side of the Pieri formula stems
from J by adding a horizontal strip of length 7. Since |J| + ¢ > n(n — 1)/2, the
only possibility for getting v(ﬁJ/) # Oisthefollowi ng there exists a (single) row
of length n or there exist two equal partsp in J' (1 < p < n — 1) such that after
factoring out P, and Pp p from P, (Proposition 4.3) We obtaln P, ,.Asinthe
proof of the Lagrangian casewe seethat it isimpossibleto get Ppn_1 after factoring
out P, ,.. Also, it isimpossible to get P,,_, by factoring out P,. Indeed, using the
Pieri-type formula, we should add one box to each of thefirst n columnswhichis
impossible becausei < n — 1.

To perform the induction step write I’ = (i1,...,4;_1) and r = 4, where we
assumethat [ = I(I) > 2. Using the Pieri-type formula, we have

ﬁ[ . ﬁ.] — ﬁp . <Z 2mI(J,r;N)]5N> _ <Z ZmI(II’T;ZV[)]SM> . ]5,].
N

M
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Here M runsover dl partitions different from I which contain I’ with M /I’ being
ahorizontal strip of length . Observe that either {(M) < I(I) or [(M) = I(I) but
my < 4, = r, SO we can apply the induction assumption to M. The partitions M
and N can have equal parts; if so, using the factorization property, we write

Py =Py py- oo Ppgps - Py and Py =Pyq - Pgg Pnys

where M;, N; are strict partitionsand py > -+ > ps, g1 > --- > ¢ are positive
integers. Moreover M and N can contain asingle row of length n, and if so, then
the polynomial P, can be factored out by a property of the operator v. Using
the induction assumption or because of the degree reasons we see that the only
possibility to get in the first sum a summand (corresponding to V) which is not
anihilated by v is: after adding to J a horizontal strip of length » and factoring
out all pairs of equal rows and the row of length . (if any), we obtain the partition
N1 = p,_1~I'. Similarly, the only possibility to get in the second sum asummand
(corresponding to M) whichisnot anihilated by v is: after addingto I’ ahorizontal
strip of length  and factoring out all pairs of equal rows and the row of length n,
if any, we obtain the partition My = p,, 1~ J.

Therefore to conclude the proof it is sufficient to give two bijections.

The data of the first bijection are: a pair of strict partitions I’, J C p, 1 and
fixed positive integers~ and p.: p1 > --- > p,. One needs a bijection between the
sets of partitions (with parts not exceedingn — 1)

N = {N|N D J;N/J is ahorizonta strip of length »; N has exactly s
parts occuring twice, equal to p.; after subtraction from N the parts p. one obtains

Pn—1 Il}a
and

M= {M| M D I';M/I' isahorizontal strip of length »; M has exactly s
parts occuring twice, equal to p.; after subtraction from M the parts p. one obtains
Pn—1 J}a

which preserves the property that the strip meets or not the first column and
preservesthe cardinality of the connected components of the strip, not meeting the
first column — compare the Pieri-type formula used).

Here the bijection ®: N/ — M from the proof of the Lagrangian case with n
replaced by n — 1 does the job (i.e. to construct ®(N)o for N € N we take the
complement in p,,_1). Note that ® preserves the property that the strip meets or
not the first column by the construction.

The data of the second bijection are also: apair of strict partitions I’, J C p,, 1
and fixed positiveintegers~ and p.: p1 > - - - > p,. One needs a bijection between
the sets of partitions (with parts not exceeding n)

N'={N|N D> J;N/J isahorizonta strip of length r; N has a single part
equal ton; N hasexactly s parts occuring twice, equal to p.; after subtraction from
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N the partsp. and n one obtains p,, 1~ I'},
and

M' ={M|M > I';M/I' isahorizontal strip of length r; M hasasingle part
equal ton; M hasexactly s parts occuring twice, equal to p.; after subtraction from
M the partsp. and n one obtains p,,—1 \ J},

which preserves the property that the strip meets or not the first column and
preserves cardinality of the connected components of the strip, not meeting the
first column.

Here we also use the map ¢ from the proof of case (i) (to construct ®(N)o for
N e N wetake the complement in p,,). We illustrate the map @ by the following
example.

Letn =10,J = (8,7,4,2), N = (10,8,4,4,2) and I' = (9,7,6,5,4,3,1).

)
e o
® ® e o o
e o B ® ® e o @
N=o9o o o o N=@®®e o
® o 0 0 0 0 o ® P e e
® o6 0 0 & o 0 0 B ® o o
o o
® ®
®

°

® o

o e o

®» o o

0O ® B e e

O 0 0 ® e e

O O O O O e e

O O O O O O e e

O 0O 0 0 0 0 0 ® ®

O 0 0 0 0 0 0O O O ®

&® ®
o ® ® o ® ®
o o o ® o o o ®
#(N)g = 0o 0o o 0o o d(N) = o 0o o0 o
0o 0 0 0 0o ©° o © o o o
o o o o o o o ®® © 0o 0o 0 0o o
o 0o o o o0 0 0 o ® 0O 0O 0 0 0 0 0 ® ®
© 0 0o o0 0o o0 o0 o0 &
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(N = {10,8,4,4,2}) ~ {10,4, 4}
= {97 87 77 67 57 47 37 27 1} N ({97 77 67 57 47 37 1} = II)?
(®(N) = {10,9,6,5,4,4,3,1}) ~ {10,4, 4}
= {9’ 8,7,6,5,4,3,2, 1} N ({87 7,4, 2} = J)'

We have ®(N') ¢ M'. Indeed, if N € N’ then ®(N) hasapart equal ton by
the construction. Moreover, the equations

N~Anpt=ppa~I'y,  @(N)~{n,p}=po-1~J,
are equivalent to the equations
N~{p}=p T, O(N)~{p.} =pn~J,

so the assertion follows from the proof in case (i) above.

By reversing theroles of J and I’, one defines (as in the proof of case (i)) the
map ¥: M’ — N’ which satisfies: ¥ o @ = idy» and ® o ¥ = idpy.

This endsthe proof of the theorem. O

6. Single Schubert condition

We consider first the Lagrangian case G = LG,V and follow the notation intro-
duced in Section 1.

PROPOSITION 6.1. Theclassof 2(a) in A*(G), wherea = n+ 1 — 1, isgiven by
the formula

[a)] =D R - sip(Va)-
p=0

Proof. The desingularization F of 2(a) C G isgiven by the composition (recall
that Fl(a,) from Section 1 is here P(V,) and C is the tautological line bundle on

it)
F =LG,_1(C+/C) 5 P(V,) =2 G,

where 71 and 72 denote the corresponding projection maps. By Corollary 2.6 we
have

Z]= Y QDY Q, R (*)

strict 7Cpn,
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Let S be the tautological rank n — 1 bundleon F; S = D/Cx. Let ¢ = c1(CVY).
Then, by Proposition 4.1

QDY = (ric)* ZQJS ()
k=0

the sum over all partitions J C I of weight |J| = |I| — k and I/J has at most one
box in each row. By Theorem 5.10 the only I’sin (x) for which (m1),Q;D" # 0,
arethose containing p,, 1, i.e. I must be equal to one of the partitions of the form
I,=(mnmn-1...,p+1Lp—1...,1) forsomep =0,1,...,n. ForI = I, the
only term in (**) which contributes after applying (1) istheonewith J = p,,_1
andk =n —p.

Since, by awell-known push forward formulafor projective bundles, we have

(WZ)*(Cnip) = Snfpf(nfi)(vav) = Si*P(Va\/)?

we infer that only p = 0,1,...,4 give anontrivial contribution from (xx) (with
k =mn — p). Finaly, we get

[Q(a)] = (w2m1)« ZQP ~ 8i—p( Zcp ~ 8i—p( v)7

as asserted. O

Essentially the same computation gives the following formulafor G = OG,,V/
wheredmV = 2n + 1.

PROPOSITION 6.2. Theclassof Q(a) in A*(G), wherea = n + 1 — i isgiven by
the formula

92@)] = 3 e sy (V)
p=0

Consider finally the even orthogonal case where the computation is slightly
different.

* Observe that though % appears in the formula, the integrality property of the class obtained
holds true (i.e. we get the class in the Chow group with the integer coefficients). This follows
directly from our way of computing it. Indeed, the (odd) orthogonal version of Proposition 2.5 and
consequently also of Corollary 2.6 holds true over integers. Also, the integrality is preserved by the
Gysin maps in the odd orthogonal analogs of Propositions 3.1 and 3.2. The same remark applies to
Proposition 6.3 and Theorem 7.9 below.
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PROPOSITION 6.3. Theclassof Q2(a) in A*(OG., V) for odd n, or in A*(OG)V)
for even n, is given by the following expressionwherei = n — a

9(0)] = 5 SR + Vi) sy (V)
p=0

Proof. Suppose that n is odd. Then the desingularization ' of Q(a) C G =
OG@'!,V isgiven by the composition

F' =0a!, ,ct/0) v, =G,

where 71 and 7, denote the corresponding projection maps.
If n is even then the desingularization F” of Q(a) C G = OG!'V isgiven by
the composition

F'=0G" ,(ct/c) (V) = a,

where 1 and m, denote the corresponding projections. In the following we denote
by F both F" and F” for brevity.
By Proposition 2.7 we have in both the cases

Z]= Y. PDY-P, , R
strict ICpp—1

Let S be the tautological rank n — 1 bundleon ;5 = D/Cr. Let ¢ = aCv.
Then, by Proposition 4.1 interpreted now in terms of P-polynomials we have

n

P DY = Z(ch)k : (Z ZI(J)_I(I)JBJSV> , (% * %)
J

k=0

the sum over all partitions J C I of weight |J| = |I| — k and I/J has at most
one box in each row. By Theorem 5.20, if (m1).Q; DY # OthenI D p,_», 0T
must be equal to the partition I, = (n—1,n—2,...,p+1,p—1,...,1) for some
p = 0,1,...,n — 1. More precisely, the only terms in (x % x) which contribute

nontrivially after applying (71). correspond to the following two instances

1D I=1=p,1,k=0andJ = p, 1—this gives a difference between the
odd orthogonal case and the present one.

@I=1,k=n—p—-—1andJ =p, o herep=0,1,...,n — 1 but we will
seethatonly p =0, 1,...,4 giveanontrivia contribution.

Let us first compute the contribution of (1). We claim that

(ﬂ-l)*PpnflSv = % ’ U,
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wherev = ¢,_1(V,,/C). Indeed, if n is odd then

(m1) P, SV =

Pn—1

H(m1)u(en-18 - By, _,5Y)

(1) (v Py, ,8Y) =3,

NI NI

by Lemma5.18 and atheorem of Edidin—Graham [E-G] asserting, in this case, the
equality ¢,_15 = v.
If n iseventhen
(m1)4Pp, 18" = =5 (11)s(ca-1S - Fp, ,5Y)
= =3 (m)i(~v- B, ,8Y) =5,

because the theorem of Edidin—Graham now assertsthat c,,_1.5 = —w.
Therefore the contribution of (1) isequal to

(7"2 © 7"1)*Ppn_1sv = % : (WZ)*Cnfl(Vn/C)

|
N

n—1
e (g_l)wlcpvn . 0)

p=0

n—1
NN DA
p=0
1 n—1
=5 Zchn 5i—pC
p=0

On the other hand the contribution of (2) isequal to
3 (m2om)u(qRY - " P71 B, ,SY)
= % RV - (Wz)*(cnfpfl) = % cepRY - si (V).

Summing up the contributions of (1) and (2) we infer

1 7
[Q(a)] = 5 Z(chn + chv) . si_p(Va\/),
p=0
which is the asserted formula O

7. Two Schubert conditions

In this section wetreat the classes of Schubert subschemesdefined by two Schubert
conditionsin the Lagrangian and odd orthogonal cases.
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We consider first the L agrangian case. Our desingularizationof Q(n+1—i,n+
1-5)inG = LG,V isgiven by the composition (we use the notation of Section 1,
rank C = 2)

F = LGn_o(C*/C) I FI(V, C V}) 22 G,

where (a,b) = (n+1—i,n+ 1— j) and the element to be push forwarded
via (mam1). is XQrDY - Q,, 1R, the sum over al strict I C p,,. Let S be the
tautological rank (n—2) bundleon LG,, »(C~+/C).Using[DV] = [SV]+[C}] and
the linearity formula from Proposition 4.1 together with the factorization property
from Proposition 4.3, we have (71).Q DY # 0only if (71).QsSY # 0 for some
J C I. By virtue of Theorem 5.10 (applied to SV), (r1).Q,SY # 0 only if
J D pn_2. Consequently, the unique strict I's for which (wl)*QIDV % 0 must
contain p,,_o, i.e. they are of theform: I = p,,,I = (n,n—1,...,p,...,1) =:
Ij,I =(mnn-1...,p,...,q,..., 1) = I, , (here, p and g run over {1,... ,n}
and the symbol **’ indicates the corresponding omission).
We need the following technical lemma.

LEMMA 7.1. If rank C' = 2 then

(I) QIp/Pn—Z(C:/) = Snfl,nfp(cv);
(i) For g <p,Q1, ,/p, ,(CY) = s$p—q-10-p(C");
(i) ForO<v < n— 2, Qpn/(pn72+(2)”)~(cv) = Sp—vn—v-1(C").
Proof. The proof is an easy application of the linearity formula from Proposi-
tion 4.1 and is given herein case (i) (the proofs of (ii) and (iii) being similar).
Denote the Chern roots of CV by z1, z,. Consider the skew Ferrers' diagram
of I,,/pn—2 and fill up with ‘1’ the boxes, whose subtraction correspond to the
summands in Proposition 4.1 applied to =1 instead of z,,. Then fill up with ‘2’ the
boxes, whose subtraction correspond to the summands in Proposition 4.1 applied
to z;, instead of z,,. Of courseit isimpossibleto havetwo ‘1’ or two ‘2’in one row.
Also, the following configuration cannot appear

x1

wherethe box ‘X’ belongsto D, , (Having two equal rows ending with 5 we use
Proposition 4.3, thus we must subtract both boxesinstead of the higher one only).
For example, for n = 6,p = 3 we get two Ferrers' diagrams, one contained in
another (the smaller diagram is depicted with ‘x’ and the difference between the
bigger diagram and the smaller oneis depicted with ‘e’)
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KK XK e
moRnoKoe
P
.

and we have 3 possibilities

[ NI
DO
oy

N
Lo
o

[
[Nl

giving Qp,/p,(71,22) = (2172)3(22 + 2172 + 73) = ss3(71,72). In generd,
arguing in the same way, we get
Q1 /pn_o(21,22) = (2122)" P(2} "+ 28 Pwo+ -+ b
= ex(x1,22)" Psp_1(x1, x2)

= Sn—l,n—p(xlaxZ)- o
LEMMA 7.2. With the above notation we have
() (m1):+(Q1,DV) = sn-1a—p(CY);

(i) For g < p, (Wl)*(élp,qu) = 8n—q-1np(C");

(1) (72)+ (o DY) = SpB(~ 1V oV - [5u kn & 2(CY) = 5uks2m - 2(CY)
+oeet (—1)"71682(71%71),1(0\/)]-

Proof. Assertions (i) and (ii) follow immediately from Lemma 7.1(i), (ii) and
Theorem 5.10. Asfor (iii), we have (in the following, (7). (other terms) = 0)

(71)+(Qp, DY)

n—2
= (1)« Z Q(pn_2+(2)v)~(sv) : Qpn/(pn_2+(2)”)~(c}/:) + (other terms)
v=0

n—2

B E_%(—l)”czy(m/ C) - Qpy pzre(C)
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: Sn—v,n—v—l(cv)

n—2
= Z(—l)” [ Z corV - sa(CoCY)

k+l=v

n—2 ank

=> (-DfeaxV-| Y (-1)'sa(C@CY) - sppink1-1(CY)
k=0 1=0

n—2

= Z(_l)kCZkV [sn—tmn—k-1(C") = Sp—t+1n—k—2(C")
k=0

ot (D) s g m1)2(CY))],

where the above equalities follow from: Theorem 5.10, Lemma 1.1 and Pieri’s
formula ([Mcd1], [L-S1]); recall that rank C' = 2. O

LEMMA 73. Let0 < a < band k > [ > 0 be integers. Let C be the rank 2
tautological (sub)bundle of 7: Fi(a,b) — X. Then

Tesk ) (CY) = sp_—2) (V') - s12(a-1) (Vy')
—sk—(a=2)(Va') - s1—o—-1)(V),
wherewe assume s, (—) = 0for h < 0.
Proof. Let C1 C C, = C bethe tautological subbundleson F'i(a,b), C1 C V,,

Cr CVy; rankCh =h,h= 1, 2. Let 1 = C]_(Ci/) and z, = C]_((Cz/cl)v). The
flagbundle 7: Fi(a,b) — X isequa to the composition

P(Vy/Ch) =2 P(Va) = X.
We have
Tk (CV) = mul(mama) (5~ + 2h a4 maah T ah )

The assertion now follows by applying to all summands the well-known formulas

(12)(@5) = 5 b2 (Vs/C1)Y = 5p_b-2)(V}’) — 5p_(p—2)-1(V})’) - 21,
(7—1)*($€_) = Spf(afl)(vav)u
and simplifying. O
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THEOREM 7.4.For n > i > 5 > Oonehasin A*(G) witha = n+1—1,
b=n+1-7,

[Q(a,b)] = Z @p,qu ) (Sifp(Vav) : Sj*q(vbv)

p>q20
P<,9<]

—Si—q(Vav) ) ijp(v;;v))

i—1
+ Z Z(—l)ijtilCZpV ) (si—p—t(vav) : 3j—p+t(vbv)

p=01t>1

—si—pt+t(Va') » 8j-p—t (V"))

where we assume s, (—) = Ofor h < O.
Proof. It follows from Lemma 7.2 that

[a,0)] = D7 (72)(sn-g-10-p(C")) - QpgR”

0<g<p
n—2
+ Z(—l)pCZPV : (WZ)*[Sn—p,n—p—l(Cv) - 3n—p+1,n—p—2(cv)
p=0
+ o 4 (=) Pspp_1y 2 (CY)].
Applying Lemma7.3to mp: Fl(a,b) — X, the assertion follows. O

EXAMPLE 7.5. (1) For i = 2,5 = 1 and any n the formula reads
QaRY + Q2R - 51V, + Q1R - (s1V, 1 - 51V, — 52V, )

+'(51‘C$L1' Sz‘ﬁy —-83‘65;1-— Sg‘ﬁy — oV -sllﬁy)

= QuR" + Q2R" - Q1V,) + Q1RY - Q2V,Y + QzV,)' .

(2) Fori = 3,5 = 1 and any n one obtains, with Q,, = Q, R, s, =
sk(V,)_,) and s}, = s, (V,), the expression

Qar + Q381+ Qa1 51+ Q251+ 81+ Q1+ (s2- 51 — s3)
+ 82+ 85— 54— 81853+ 8y —caV - (s1- 8] — s5) + c4V.

(3) Fori = 3,5 = 2 and any n one obtains, with Q,, = Q,,R" and
sk = sku(V, 1), the expression
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Qa+Qa-s1+ Qz-s2+ Qs+ Q2521+ Q1 52
+ $32 — 841+ S5 — 2V - ($21 — 83) + ¢4V - s1.
More generally we have:

COROLLARY 7.6. With the above notation and j = i — 1, s = s(V,'i0_;),
theclass [{2(a, b)] equals

~ v
Z QpgR" - Si—1-gip

12p>q>0
i-1 i—1—p
Y (DPeV - > (1) "Siprni-1-pn

Consider now the odd orthogonal case. Our desingularization in the case a, =
(a,b) = (n+1—1i,n+ 1— j) isgiven by the composition (rank C' = 2)

0G,_2(C*+/C) = FI(V, C V}) 2% G.

Then the analog of Lemma 7.1 reads (with the notation explained before this
lemma):

LEMMA 7.7.
) Pry/p, (CY) = 3 - sn-10-p(C")-
i) P, /p5(CY) = $n—g-10-p(C").
(i) P, i @ (CY) = 8nvnv1(CY), 0<v<n—2,
and P, ,, ,(CV) =13 spn1(C).

The element to be push forwarded via (mom), is P DY - -ﬁpn\IRv, the sum
over al strict I C p, (the notation as in Section 1). The analog of Lemma 7.2
reads:

THEOREM 7.8.
() (r1)«(Pr, DY) = 5 - sn 10 p(CY).
(”) Forg < p, ( ) (PIpq ) - SH*Q*l,nfp(Cv)'

(iii) (m1)+(B,, DY) = 333 -8(= 1)k ek V- [sn—kn—t-1(CY) = $n—pt1n—k—2(C")
+o (-pnk 32(n7k71),1(0v)]'

Consequently, the analog of Theorem 7.4 now reads:
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THEOREM 79. For n > 7 > 5 > Oonehasin A*(G) witha = n+1—1,

b:n+1—ﬁ
Z quR (si— p(V ) - Sj*q(va) - Sifq(Vav) ) ijp(va)) +
p>q>0
P<i,9<]
1
+5 2B R (sip(Va) - 5;(V) = si(Va) - 55-p(V") +
het
1 Z—l 1
+Z ’ Z Z(_l)p+t_ cp V- (Si*pft(vav) ) 3j7p+t(va) -
p=0t>1

—8i—p+1(Va') - 8j—p-1(V3))-
For instance, invoking Example 7.5, the formulareadsfor i = 2,5 = 1and any n

K)(n-—-l,rﬂ]:: ﬁ%llgv +—j%1%v -ﬁa‘cy +—ja1%v -fé‘cy +—ﬁ21‘ﬁy.

8. An operator proof of Proposition 3.1

The goal of this section is to provide another proof of Proposition 3.1 and its
odd orthogonal analogue by using divided-difference operators. We start with the
Lagrangian case. Let X,, = (z1,...,z,) be asequence of indeterminates. Recall
(see Section 5) that the symplectic Weyl group W, isisomorphicto S, x Z% and
the elements of ,, are identified with ‘barred permutations': if w = (o, 7),0 €
Sp, T € L5 then we write w as the sequence (wy, . .., wy,) endowed with barsin
places where 7; = —1. In particular, wo = (1,2, ...,7n) isthe longest element of
W,. Consider in I¥,, the poset (") of minimal length left coset representatives
of W,, modulo its subgroup generated by reflections corresponding to the simple
rootse; — e»,...,en_1 — &, (in the standard notation)

W(”):{(21>Ez>--->2z;y1<---<yn_z)€Wm [=01,...,n}.

The assignment w = (Z1,...,Z5;Y1,- -+ Yn) — I = (21,...,2) establishes a
bijection between the poset W (") and the poset of all strict partitions contained
in p,.

One has divided differences 0,,: Z[ X,,] — Z[X,] (w € W,,) i.e. operators of
degree —I(w), whose definition has been explained in Section 5.

Fix now an integer 0 < k£ < n and denote

o= mn—1,....k+112....k).

w!

Observefirst that for astrict partition I C p,, of length I(1), 9,4 Q1(X,) # 0
only if I(I) > n — k. (This is because 0, decreases the degree by I(w*)) =
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n+ (n—1)+---+ (k+1).) More precisely, writing XY = (—z1,...,—z,), We
have:

PROPOSITION 8.1. For a strict partition I of length > n — k, 0, Qi(XY)#0

iff I D (n,n—1,...,k+1). Inthislast case, writing I = (n,n — 1,...,k +
1,71,...,71), wherej; > 0and! < k, onehasin Z[ X ]

D QX)) = Qi (X))
Proof. Let I beastrict partition of lengthh > n — k. Let
wy = (51,52, e s On Opgly e - ,Un),

be the element of W (™) corresponding to . Then taking into account that

(w(k))_lz m—k+ln—k+2....,n;n—kn—k—1...,1),
weget wy o (wk)) 1 =
(Tn—k41 > Tnpg2> - > 0p, Opg1 < Opg2 < - -+
< Oy O < Opfpo1 < -0 < 01).
We havel(wr) = o1+ -+ op, l(w®) =n+ (n—1) +--- + (k+ 1), and
lwyo (™)™ = oy ji1+0ppi2t -+ o
n—h
+anrd{1<p<n—k|ap < Opyjts
j=1
by Lemma 5.1. Thus, denoting the above sum E?;f(. ..) by X, we get

Hwr) = Uw™)) = I(wy o (w*))™h)
=01+ Fopp—(n+n-1)+ -+ ((k+1)-.
Now, a necessary condition for aw(k)@I(X,Y) #0is
o1+ tonr—Mm+m-—1+-+(k+1)-> =0
which implies (o1,...,0, k) = (n,n—1,...,k+ 1) and ¥ = 0, i.e, o, <
on_ k- (Using the theory from [B-G-G], [D1, 2] and the result from [P2] recalled

in Theorem 2.1, the just proved assertion easily implies that aw(k)él(x,y) =
Qjr,....;; (X)) (modZ)). Wewill now provedirectly that for I = (n,n—1,...,k+
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1,41, ---,4;) one has 8,4 Q(XY) = Qj,...; (X)) dready in Z[X,,]. Observe
that

Oyyk)y = (Ok...0100)...(0p—2...0100) (0 —1...0100).
Theproof isby inductiononn—k—1.Forn—k—1 = 0,onehas(J = (j1,---,7))
O 1.-0100(Qn, (X))
= Op—1..0100(en (X)) - Qu (X))
= On-1..01((—32)-(—20) Qu (X)) — en(X)Y) - B0Q (X))
= Qu(X)) — en(X))) - On-1..0100(Q (X)) = Qu (X)),
where the vanishing of the second summand in the last difference follows from the

just proved first assertion.
Theinduction step goes as follows. By the equality proved above,

.....

.....

where the sum is over all partitions/ C (n —1,n —2,...,k + 1, J) such that the
diagram (n —1,n —2,...,k + 1,J)/I isof weight ; and has at most one box in
every row (use the linearity formula, i.e. Proposition 4.1). Each time we get two
equal parts p in a partition I such that Q;(X,’_;) appearsin the expression, we
factor out Q,,(X.Y_;) by Proposition 4.3. The last sum can be rewritten in the
form

DD () Qui (X ) far + D0 Y (=) Qn (X, 1o,

i>0 M i>0 N

where M (resp. N) runs over the so-obtained partitions contained in the partition
(n—1,n—2,...,k+1,J) wheresomebox isremoved fromthefirstn — k — 1 rows
(resp. no box is subtracted from thefirst n — k — 1 rows), and £, (resp. g ) denotes
the corresponding monomial inthe elements @p,p(X ./ ;) obtained by factoring out.
By the first assertion (applied to XY ;) we know that our operator annihilates the
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first sum. By theinduction assumptionweget (withV = (n—1,n—-2,...,k+1,J’)
and g, = gn)

(0-..0100)...(Op—2...0100) (ZZ —2n) QN (X)) 1)g )

>0
= Z Z(—fﬂn)i@J' (Xr\{—l)gj’ = @J(XX),
i0 J!
by the factorization property and the linearity formula, now used backwards. O
We now pass to a geometric interpretation of the proposition. The setup and
the notation is the same as in the proof of Proposition 3.1: V- — B —rank 2n
vector bundle endowed with a nondegenerate symplectic form, X = LG, V.V,

denotes here the tautological subbundle on X and p: F — X is the composition
(see Section 1)

LGn_(CH/C) 2 Gi(Va) =5 X,

where C' is the tautological rank £ bundle on G (V,,). Thetautological rank n — k
subbundle S for LG,, (C+/C) isidentified with D/Cx where D is the rank n
tautological subbundleon F.Letry, . .., r, betheChernrootsof V,, andds, . .., d,
— the Chern roots of D. Since Cx C (V)7 and Cx C D, we can assume that
r1 =ds1,...,r, = di arethe Chernrootsof C.

Claim. For any symmetric polynomial f inn variables,
(71)s (f(dry1s -y dnyday oo ydi)) = (0o f)(Thaty o3 T0s Ty o5 TR,

wherev=(n—kn—k—1,...,n—k+1,...,n).
Indeed, for the Chern roots dy. 1, . . . , d,, Of S one has by Proposition 5.8

(m1)s (f(dpg1, - - dn,yde, ..o di)) = (71)s (f(dkgts ooy ny 71, s T))

= (Opf)(dis1y - sdpyr1,y .. Tk).

We know by Proposition 5.9 that 0, f is a polynomia symmetric in the squares of
thefirst n — k variables. By Lemma 1.1 we have

[S]1+[8¥] = [(CH/C)#] = [VF] = [CF] - [CH]
= [(Va)z] + (Vi) #] = [CF] - [CF]
= [(V)#/Crl+ (V) 7/ Cr)"].

Hence, for the Chernroots 1, . . ., 7, Of V,,/C,

(avf)(dk+la s 7dna7‘17' .. ;T‘k) = (8@f)(7"k;+1, sy Ty TL, - 77'/6)’
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and the claim is established.
We are now in position to give
ANOTHER PROOF OF PROPOSITION 3.1

By virtue of the previous proposition it suffices to show that for every symmetric
polynomial f in n variables p.(f(di,...,dn)) = (0w f)(r1,...,rs). For a
polynomial g symmetric in the first n — k£ — and in the last k£ variables, one
has

(72) e (g(Tkats -y s 1y o5 7k)) = (Oug) (T2, -+, T0)s

whereu = (k+1,...,n,1,2,...,k) (see[L2], [P2] and [Br]). (Thiscan be proved
using areasoning similar to the one in the proof of Proposition 5.8 above.) Since
w®) =y ovandl(w®)) = I(u) + I(v), we thus have, invoking the claim

ps(fldy, ... dn)) = pu(f(dis1s- .- dn,da, ..., di))
= 7o (M1 (f (dis1y - - - dpyda, ..., di)))
= 2 ((Opf)(Thats oo s Ty T1ye ooy TE))
= (0u(0uf))(r1,-. ., mn)
= ((Ou00)f) (11, smn) = (O )15 - s 7)),

which isthe desired assertion. O

In the odd orthogonal case, by replacing Q-polynomials by P-polynomials and
arguing in the same way as above, one proves the following proposition.

PROPOSITION 8.2. For a strict partition I of length > n — k, 8w(k)131(X7¥) #0
iff I D (n,n—1,...,k+1). Inthislast case, writing I = (n,n — 1,...,k +
1,71,...,1), wherej; > 0and! < k, onehasin Z[ X )]
Oy Pr(X)) = Ppy. (X))
Let V — B be arank 2n + 1 vector bundle endowed with a nondegener-
ate orthogonal form, X = OG,V and V,, denote the tautological subbundle on

X. Then, by an appropriate interpretation of the Gysin map associated with the
composition

O0G,_1(C*+/C) =5 Gp(Vy) =2 X,

where C' is the tautological rank & bundle on G (V,,), one gets another proof of
Proposition 3.4.
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We refer the reader to [L-P-R] for another operator treatment of Q- and P-
polynomials and their generalizations.

9. Main resultsin the generic case

Let V' be a rank 2n vector bundle over a smooth pure-dimensional scheme X
endowed with a nondegenerate symplectic form. Let F and Fy: Fy C F> C --- C
F,, = F be Lagrangian subbundles of V' with rank F; = 7 and rank E = n. For a
given sequencea, = (1< a1 < --- < a; < n), weareinterested in the locus

D(as) ={z e X |dmMENF,, ). 2p, p=1...k}

Let G = LG,V and let R C V; be the tautological rank n subbundle on G.
By awell known universality property of Grassmannians there exists a morphism
s: X — G suchthat E = s*R. Therefore (in the set-theoretic sense) we have

D(as) = 5 (Qae; F)),
where
Qae; Fo) ={geG|dmMRNEF,, ), >p, p=1...,k}

Wetakethisequality asthe definition of aschemestructureon D(a,), i.€., D(a,) iS
definedin X by theinverseimageideal sheaf (see[Ha, p. 163]): s 1Z(£2)-Ox where
Z(92) isthe ideal sheaf defining Q2 (a.; Fe) in G. It follows from the main theorem
of [DC-L] that 2(a,; F,) is a Cohen—Macaulay scheme. Hence, by [K-L, Lem-
ma 9] we get [D(as)] = s*[2(as; F,)] provided D(a,) is either empty or of pure
codimension equa to the codimension of Q(a,; F,) in G. Therefore, having afor-
mulafor the fundamental classof Q(a,; F,) given by apolynomial P inc.(R) and
c(Fo,)a,p=1,...,k theformulafor D(a,) becomes P(c.(E), c.(Fy, )p=1,...k)-
Moreover, by using the Chow groups for singular schemes and a technique from
[F] one can provethefollowing refinement of the above. If X isapure-dimensiona
Cohen—Macaulay scheme and D(a,) is either empty or of pure codimension equal
to the codimension of Q(a.; Fs) in G then the class of D(a,) in the Chow group
of X equals P(c.(E),c.(Fu,)p=1,..k) N [X]. Thisreasoning (with obvious mod-
ifications) also applies, word by word, to the case of rank 2n + 1 vector bundle
endowed with a nondegenerate orthogonal form.

In particular, for aq = (n — k + 1,n—k + 2,...,n) we have by Propo-
sition 3.2:

THEOREM 9.1. If X is a pure-dimensional Cohen—Macaulay scheme and the
subscheme

DF ={z € X|dm(ENF), >k},
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is either empty or of pure codimension k(k + 1)/2 in X, then the class of D*
(endowed with the above scheme structure) in the Chow group of X equals

D = (Y QiB” - Qpes FY) NIX],
wherethe sumisover all strict partitions I C py.
EXAMPLE 9.2. The expressions giving the classes for successive k are
k=1 QiEY + Q1FY;
k=2  QuEY +Q2E" - Q1FY + Q1E" - QoF" + QuF";
k=3  QmE" + QnE" - QiFY + QauE" - Q2F"
+QuE" - QsFY + Q3B - QuF"
+Q2EY - QuFY + Q1EY - QaF" + QanF".
For ae = (n 4+ 1 — i) we get:
THEOREM 9.3. Let X be a pure-dimensional Cohen—Macaulay scheme and

assume that the subscheme S* = {z € X |dim(E N F,;1_;), > 1} is either
empty or of pure codimension s in X . Then

(Zcp *Si—p n+1 z) ﬂ[X]

EXAMPLE 9.4. The expressions giving the classes for successivei are
i=1 B +s1FY;
1=2 2B + c1EVs1F)Y 1 + s2F)_4;
7=3 c3EY + czEvlev s+l 32FV >+ 33F o

Thetheorem isaglobalization to degeneracy loci of Proposition 6.1. Also other
formulas from Sections 6 and 7 admit analogous globalizations. We concentrate
ourselveson asolutionto J. Harris' problem for the Mumford-type degeneracy loci
mentioned in the Introduction.

The odd orthogonal analog of Theorem 9.1 is a consequence of Proposition 3.4
and reads as follows:

THEOREM 9.5. Let X be a pure-dimensional Cohen—Macaulay scheme over a
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field of characteristic different from 2. Suppose that V' is a rank 2n + 1 vector

bundle endowed with a nondegenerate orthogonal form. Let £ and F' be two rank
n isotropic subbundles of V. If the subscheme

DF ={z e X|dm(ENF), >k},

is either empty or of pure codimension k(k + 1)/2 in X, then the class of D in
the Chow group of X equals

(Z PEY . P, [FV) N [X],

wherethe sumisover all strict partitions I C pg.*

Let now V' be a rank 2n vector bundle over a connected pure-dimensional
scheme X endowed with a nondegenerate orthogonal form. Let E and F,: F; C
F, C --- C F, = F beisotropic subbundles of V withrank F; = i andrank £ =
n. One should be careful here with the definition of D(a,). For a given sequence
ae = (1< a1 < -+ <ap <n),wherek issuchthat dim(£ N F), = k(mod?2) if
aj = n, we are interested in the locus

D(as) ={z € X|[dM(ENF,, ) >p, p=1...,k}.
There is a morphism s = (s',s"): X — OGLV U OG!'V such that s*R = E

where R isthetautological rank »n subbundleon OG!,V U OG!'V. We have (in the
scheme — theoretic sense) that if £ = n (mod 2) then

D(as) = (') 'aa; (Fo) o, v),
andif & = n + 1(mod 2) then
D(as) = (s") 'Qae; (Fo)ocuv)-
The even orthogonal analog of Theorem 9.1 reads as follows:

THEOREM 9.6. If X is a connected pure-dimensional Cohen—Macaulay scheme
over afield of characteristic different from 2 and the subscheme

DF ={z e X|dm(ENF), >k},

* Observe that though the P-polynomials of a vector bundle are defined only when the Chern
classes of the vector bundle are divisible by 2, the integrality property of the classes obtained in
the theorem holds true. One argues as in the preceding footnote, taking into account that the base
change argument [K-L, Lemma 9] preserves the integrality too. The same remark applies to the even
orthogonal case (Theorem 9.6 below).
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defined for £ suchthat £ = dim(E N F'), (mod2) wherez € X, iseither empty or
is of pure codimension k(k — 1)/2 in X, then the class of D* in the Chow group
of X equals

(X BB Py paFY) N1X],
wherethe sumisover all strict partitions I C pg_1.

EXAMPLE 9.7. The expressions giving the classes for successive k are
k=1 1
k=2 PE'+PFY;
k=3  PuE'+ PE' P FY +PE"-PFY + PyFV;
k=4  PgpEY + PpEY.PFY + PyEY - PFY
+ PyEY - P3FY + P3EY - PoFVY
+ PEY - PyFY + PLE" - PpFV + Py FY.

REMARK 9.8. All theformulas stated in this section in the Chow groups havetheir
direct analogs in topology. Perhaps the simplest version is the following. Assume
that X is a compact complex manifold, the bundles E, F; are holomorphic and
the morphism s from X to LG,V above is transverse to the smooth locus of the
Schubert variety 2(a.; F,). Then the conomology fundamental classes of D(a,)
are evaluated by the corresponding (given above) expressionsin the Chern classes
of E and F;. The same appliesto the orthogonal case.

Appendix A. Quaternionic Schubert calculus

Let H denote the (skew) field of quaternions. Let Pf; be the projective space that is
identified with (H"** < {0})/ ~, where (h1, ..., hny1) ~ (BY,...,hL ) iff there
isO # h € Hsuchthat h; = h - ] for every i. It is a compact, oriented manifold
over R of dimension 4n. Let us recall after Hirzebruch [H1], that, in general, this
real manifold does not admit a structure of a complex analytic manifold.

Let G(H") be the set of all k-dimensional subspaces* of H". G (H") has a
natural structure of 4k (n — k)-dimensional, compact, oriented manifold over R. Of
course G1(H" 1) = P2,

Let Fly, . (H") betheset of al flags of subspacesof consecutivedimensions
(k1,...,k,)overH.Itisalsoacompact, oriented manifold over R. Onehas(see[B],
[S']), Flkl,...,kT (Hn) = Sp(n)/ H;:O Sp(k)H_l — kz) (here, ko = 0and kr+1 = n)

* Theword ‘ (sub)space’ means always a ‘left H-(sub)space’.
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Of course F'ly,, (H") = Gy, (H").
10.1. ([B, 31.1 p.202)]). Let y1,...,y, be a sequence of independent variables
with degy; = 4. Then

~ SP(y1,y---,Yn)

H* (Pl ., (B'),2) = T2 0
1y-eshur

7

where I, ., istheideal generated by polynomials symmetric in each of the sets
{Wkitts - Ukia )1 = 0,1, r, separately (ko = 0, ky 1 = n).
For instance (all cohomology groups are taken with coefficientsin Z)

) = Y deay=4

SP(Y1:- -+ Yn)

H* (Gy(E)) = T,

degy; = 4.

We see that these cohomology rings are double-degree isomorphic with the coho-
mology rings of their complex anal ogues.

Fix now aflag V,: V1 C V> C --- C V,, of subspaces of H* with dimy V; = i.
For every partition I C (n — k)* we set

o(I) = {L € Gx(H") | dimy(L N Vy—pipi,) =p, p=1,....k}.

The so defined o(1) (I C (n — k)*) giveacellular decomposition of G (H") and
the codimension of &(I) is4|I|. Now define

U(I) = U(I,V.) = {L € Gk(Hﬂ) | dimH(Lﬂ ankqtpfip) > D,
p=1...,k}

The cohomology classes of o (1, V4), in fact, do not depend on the flag V, chosen
and will be denoted by the same symbol o (I). We record

10.2. (Pieri-type formula). In H* (G (H") one has

wherethe sumisover J suchthat i, < j, < ip—1and|J| = |I| + .

Not all proofs of the Pieri formulafor Complex Grassmannians can be extended
to the quaternionic case. However, the proof in [G-H, pp. 198-204] has this advan-
tage. As a matter of fact, G (H") is an oriented compact manifold and thus its
cohomology ring is endowed with the Poincaré duality. Moreover, one checks by
direct examination that

oI)-o(n—k—ig...,n—k—i1) =o((n—k)*) = [pt].
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Then the proof in loc. cit. goes through mutatis mutandis also in the quaternionic
case.

We can restate thisinformation about the multiplicativestructurein H*(G (H" ) )
asfollows:

10.3. LetY = (y1,...,yx) beindependent variablesof degree 4. The assignment
si(y1, .-, yk) — o(I) for I C (n — k)*, and O-otherwise, is a ring homomor-
phism, and allows one to identify H* (G (H")) with a quotient of SP(Y") modulo
theideal ©Zs;(Y), thesumover I ¢ (n — k)*.

Thisresult hasanumber of useful consequences. For example, it impliesimme-
diately that the signature of the Complex Grassmannian (see[H, p. 163] and [H-S,
Formula (23) p. 336] is the same as the one of the Quaternionic Grassmannian —a
result proved originally in [Sl] using different methods.

We now describe a certain fibration which makes the Quaternionic Grassman-
nians useful in study of the Grassmannians of non-maximal Lagrangian subspaces
(which are not Hermitian symmetric spaces).

Let V' = C?* be endowed with a nondegenerate symplectic form @ given by
the matrix

. 0o -1, |
-I, O
where I, isthe (n x n)-identity matrix.
Having in mind the standard notation associated with H we endow V' with a

structure of H-space settingj - v = Av, where‘ ~’ denotesthe complex conjugation
(notethat A2 = —idy).

10.4. If U C V isk-dimensional Lagrangian C-subspace of V' then dimg(H -
U) = k. Moreover, the restriction of the symplectic form @ to any H-subspace of
V', isnondegenerate.

To show this consider the standard Hermitian scalar product (, ) on V = ¢,
Now givenU, wetakeaC-basisuy, . .. , uy suchthat (uy,, uq) = J, 4. Weclaimthat
U, - .., Uk, U1, . . ., jug arelinearly independent over C (which implies dimy (H -
U) = k). Thisclaim follows immediately from ®(u,,, u,) = 0 = ®(juy, ju,) and
P (up,jug) = U;;A(Aﬂq) = —(up, ug) = =bpq.

Suppose now a H-subspace W C V' is given with dimyW = k, say. We can
awaysfind C-linearly independent vectorswy, . . ., wy, € W suchthat & (wy,, w,) =
0 and (wp, wq) = 0pq. Then jwy,...,jwy also belong to W. It follows from
D (wp, wq) = 0= (jwp, jwg) and (wy, jwg) = —dpq that wy, ..., wy, jws,. ..,
jwy, form aC-basis of W and the form @ restricted to W is nondegenerate.

We infer from the above

10.5. Theassignment U +— H - U, definesalocally trivial fibration of LG, (C?")
over G (H") with the fiber LG, (C%).
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In other words, denoting by S the tautological (sub)bundle over Gy (H"),
rankyS = k, we have an identification LG, (C?") = LG(S), where the latter
symbol denotes (the total space of) the corresponding Grassmannian bundle.

Thisidentification can be used in reduction of some problems about Grassman-
nians of non-maximal Lagrangian subspacesto the problems about the Grassman-
nians of maximal ones. For example, we get from 10.5 the following identity of
Poincaré series

Pra. () = Pa,w)(t) - Pra, ) (1)

thus reproving the result from [P-R2, Corollary 1.7].
Similar fibrations exist for flag varieties. Let LFly, ., (C?) be the variety
parametrizing Lagrangian (w.r.t. ®) flags of dimensions (k, ..., k,) in C?".

10.6. Theassignment (dimcU; = ki, i =1,...,7)

(hcU,Cc---CUy)—» H-UyCH-UyC---CH-U,),
is a locally trivial fibration of LFly,  , (C*) over Fly, (H"). If C¥1 C
%2 c ... c C? isa (part of) the standard flag, then the fiber of this fibration

is the variety parametrizing Lagrangian flags W1 C W» C --- C W, such that
W; C €% anddimeW; = ki, i=1,...,r.

Therefore the fiber is a composition of Lagrangian Grassmannian bundles of
maximal subspaces. In particular, we obtain the following formula for the Poincaré
seriesof LFly, ., (C*)

T
PLFlk1 _____ kr(czn)(t) = PFlk1 _____ ko (H")(t) : H PLGk.,k. 1((C2(ki*ki71))(t)7
i=1 v

where kg = 0. Since explicit expressions for the factors on the right-hand side are

.....

10.7. Finaly, we show an algebro-topological interpretation (as well as another
proof) of the identity

sl(m%, ... ,m,zl) “Spn (X1 -y Tp) = S214p, (T2, -+, Tp),

from Section 5. To this end we show two different ways of constructing LF'[ :=
LFI(C?). The first way is given by taking the total space of the flag bundle
FI(R) — LG,(C?") where R is the tautological vector bundle on LG, (C?").
The second way relies on the following observation: LF'l can be interpreted asthe
variety of flagsWy C W> C --- C Wa, suchthat dimcW; = j and each W»; isa
H-subspace. Thisrealization is given by the assignment

(WVNCVoC---CWVy)

l—)(V]_CH-V1CH-V1+V2CH-V1+H-V2C---).
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Equivalently, using the tautological sequence S1 C S> C -+ C Sy, rankyS; = i,
on Flg, this corresponds to taking the total space of the product of projective
bundles

P:= ]P’(Sz/Sl) XPly -+ XFly ]P’(Sn/Sn_l) — Fly,
where S;11/S;,i=1,...,n, areconsidered as rank 2 complex bundles.

The same holds in the relative situation, i.e. given a rank 2n vector bundle
V — X endowed with a nondegenerate symplectic form we get a commutative

diagram
P —— LFI(V) FI(R)
T1 ™1 ,
Fly(V) 2 X 2 LG,V

where Fiz (V) denotes the flag bundle parametrizing complete quaternionic flags
of V.Letxy,...,z, bethesequenceof the Chernroots of the tautological quotient
bundleon LG, V. By Corollary 5.6(i) we know that if there exists an evenii,, then

i1

(a0 my)s(2f ... zl) = 0.

(Calculating the other way arround, thisfollows easily from the projection formula.)
On the other hand, iff all 7, are odd, then (see Proposition 5.5)

i1

Spp (@1, ., xy) - (M2 0 my) (27 - ... xﬁ{‘) = S1—p, 1 (T1,.. ., Zp).

Putting i,, = 2j,, + 1 and calculating the other way around, we get

(T271) (mijﬁ'lmgj#l . xrzlj""'l)
2\j 2\j 2\j
= (12)«((2D)* - (22)72 - .- (27)"")
= SJ,pn_l(:L“%, L a2).

Indeed, recalling the notation from 10.1 we have y, = zg,p =1...,n (see
[B,31.1]), and we use the fact that (72). is induced by the Jacobi symmetrizer
(recalled in the proof of Corollary 5.6(ii) and that of Lemma 5.7(ii)) this time
appliedto ys, . .., y,. The latter statement follows from 10.1 by exactly the same
reasoning asthat used in the proof of Lemma 2.4 in [P1]. Comparison of theresults
of both computations, yields the desired identity.
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Appendix B. Introduction to Schubert polynomials a la polonaise

We provide here a brief sketch of a theory of symplectic Schubert polynomials
which has grown up from the present work. For details and further developments
aswell asfor the orthogonal Schubert polynomials, we refer the reader to [L-P-R].
Let (z1, z2,...) beasequence of independent variables. Let wo be the longest
element in the Weyl group W,, of type C,,. Define
Cuwo = Cup(x1,...,2n)

- (_1)71(”*1)/2 x’f—lmg_z m,lhl :E2 @pn (21, ..., 2Tn),
and for an arbitrary w € W,,,
Cw = Cw($17 s 7$ﬂ) = 8':1/_lwo(cw0)'

Above, by 0., (w € W,,) we understand the composition of the divided-difference
operators 9} defined by

o =152,
811(f):ﬂ’ izlaza"'an_la
Li+1 — Xy

associated in a usual way with an arbitrary reduced decomposition of w using
si,i:O,l,...,n—l.
These polynomials satisfy the following properties:

(1) (Stability) Suppose that m > n. Let W,, — W,,, be the embedding via the
first n components. Then, for any w € W,,, the following equality holds

Cw(Z1,- s Tm)|epsa==2m=0 = Cuw(T1, ..., Tn).

(2) (the Grassmannian case) Let I = (i1 > --- > i > 0) be a strict partition
contained in p,,. Set

wy = (Ea"'aﬁajl<j2< <jnfk)7
where {i1,..., ik, J1,- - Jn-k} ={1,2,...,n}. Then
Cuw; (1, Tp) = @[(wl,...,xn).

As we know from Section 4, @I(xl, ...,Ty) IS apositive sum of monomials.
The polynomial C,, has not this property. Also, it isin general neither negative nor
positive sum of monomials.

Thefollowing is the list of symplectic Schubert polynomialsfor n = 2.

_ .3 2.2
C(i,é) = 12 — XX,
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C(l,i) = —ﬁxz, C(Zi) = ﬁxz + :1:13:%,
C(Zl) = 1172, C(Z,T) = x%,

C21) = T2, Ciap = 71+ 22,

Caz =1
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