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Abstract

We characterise solutions f , g : R→ R of the functional equation f (x + g(x)y) = f (x) f (y) under the
assumption that f is continuous. Our considerations refer mainly to a paper by Chudziak [‘Semigroup-
valued solutions of the Goła̧b–Schinzel functional equation’, Abh. Math. Semin. Univ. Hambg. 76,
(2006), 91–98], in which the author studied the same equation assuming that g is continuous.
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In 1959 Goła̧b and Schinzel [7] introduced the functional equation

f (x + f (x)y) = f (x) f (y) (1)

in connection with looking for subgroups of the centroaffine group of a field. It
turned out that the equation and its generalisations are one of the most important
composite type functional equations because of their applications in the determination
of substructures of algebraic structures [3], in the theory of geometric objects [1],
in classification of near-rings [4] and quasialgebras [11], as well as in differential
equations in meteorology and fluid mechanics [10]. That is why for over fifty years
so many papers devoted to various generalisations of (1) have been published. (An
extensive bibliography concerning the Goła̧b–Schinzel type functional equations and
their applications can be found in the survey paper [5].)

In [9], the author considered the most general equation of the Goła̧b–Schinzel type,
that is, the Pexiderised Goła̧b–Schinzel equation

f (x + g(x)y) = h(x)k(y) (2)

in the class of functions f , g, h, k mapping a linear space over a field K into K. It has
been proved that solutions of (2) can be described by solutions of the equation

f (x + g(x)y) = f (x) f (y). (3)
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Therefore, (3) plays one of the most important roles among equations of the Goła̧b–
Schinzel type.

This equation was considered for the first time by Chudziak [6]. He determined,
among other things, solutions f , g : R→ R of (3) under the assumption that the
function g is continuous. Here we characterise solutions f , g : R→ R of (3), where
f is continuous. In fact, we prove that the continuity of f implies the continuity of g,
provided f is not constant.

Equation (3) also generalises the well-known exponential equation

f (x + y) = f (x) f (y) (4)

(for information on which we refer the reader to [2, pp. 25–33, 52–57]), as well as two
other equations of the Goła̧b–Schinzel type:

f (x + f (x)ny) = f (x) f (y) for some n ∈ N

and
f (x + M( f (x))y) = f (x) f (y)

(which have been studied mainly by the author and by Brzdȩk).
Throughout this paper we use the following notation:

A = f −1({1}), B = g−1({1}), W = f (R) \ {0},

F = {x ∈ R : f (x) , 0}, G = R \ F.

Let us recall some basic properties of functions satisfying (3).

L 1 [8, Lemma 1]. Let X be a real linear space, f , g : X→ R, f , 1 and f , 0.
If f and g satisfy (3), then the following hold.

(i) f (0) = 1 and g(0) , 0.
(ii) F = {x ∈ X : g(x) , 0}.
(iii) f (g(x)−1(z − x)) = f (x)−1 f (z) for every x ∈ F and z ∈ X.
(iv) (y − x)/g(x) ∈ A for every x, y ∈ F with f (x) = f (y).
(v) f and ḡ satisfy (3), where

ḡ(x) =
g(x)
g(0)

for each x ∈ X. (5)

L 2 [8, Lemma 2]. Let X be a real linear space, f , g : X→ R, f (X) \ {0, 1} , ∅
and g(X) \ {0, 1} , ∅. If f and g satisfy (3) and A is a linear space, then there exists an
x0 ∈ X \ A such that

f −1({ f (x)}) = (g(x) − 1)x0 + A for each x ∈ F.

First we prove a proposition which plays a very important role in the proof of the
main theorem.

P 3. Let f , g : R→ R be nonconstant solutions of (3) such that f is
continuous and g(0) = 1. Then there exist c ∈ R \ {0} and r > 0 such that f , g have

https://doi.org/10.1017/S0004972712000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000299


12 E. Jabłońska [3]

one of the following forms:{
g(x) = cx + 1 for x ∈ R,
f (x) = |cx + 1|r for x ∈ R,

(6){
g(x) = cx + 1 for x ∈ R,
f (x) = |cx + 1|rsgn (cx + 1) for x ∈ R,

(7){
g(x) = max{0, cx + 1} for x ∈ R,
f (x) = (max{0, cx + 1})r for x ∈ R.

(8)

P. Setting z = 0 in Lemma 1(iii) and using Lemma 1(i), we obtain that W is
a multiplicative group. Since f is nonconstant and continuous, there are a, a−1 ∈

W \ {1} and the set W contains a closed interval I such that 1 ∈ int I. Hence, by the
multiplicativity of W, (0,∞) ⊂W.

Observe that A ∩ B = {0}. Clearly, by Lemma 1(i), 0 ∈ A ∩ B. Suppose that there is
an x ∈ (A ∩ B) \ {0}. Then, by (3), f (x + y) = f (y) for each y ∈ R. This means that f is
continuous and periodic. Hence W is bounded, which is a contradiction.

In the next step we prove that |g(x)| = 1 for each x ∈ A. To this end, we consider two
cases.

First, suppose that there is an x ∈ A such that |g(x)| < 1. According to Lemma 1(ii),
g(x) , 0. Then, by (3), using induction,

f (y) = f (x)n f (y) = f (x)n−1 f (x + g(x)y)

= f (x)n−2 f (x + g(x)(x + g(x)y)) = f (x)n−2 f (x(1 + g(x)) + g(x)2y)

= · · · = f (x(1 + g(x) + · · · + g(x)n−1) + g(x)ny)

= f
(
x

1 − g(x)n

1 − g(x)
+ g(x)ny

)
for every y ∈ R and n ∈ N. Thus, by the continuity of f ,

f (y) = lim
n→∞

f
(
x

1 − g(x)n

1 − g(x)
+ g(x)ny

)
= f

( x
1 − g(x)

)
for each y ∈ R.

This is a contradiction, because f is not constant.
Next, suppose that there is an x ∈ A such that |g(x)| > 1. Then, by Lemma 1(iii),

using induction,

f (y) = f (x)−n f (y) = f (x)−n+1 f
(y − x

g(x)

)
= f (x)−n+2 f

( (y − x)/g(x) − x
g(x)

)
= f (x)−n+2 f

(y − x(1 + g(x))
g(x)2

)
= · · · = f

(y − x(1 + g(x) + · · · + g(x)n−1)
g(x)n

)
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= f
(
g(x)−ny − x

1 − g(x)n

1 − g(x)
g(x)−n

)
= f

(
g(x)−ny − x

g(x)−n − 1
1 − g(x)

)
for every y ∈ R and n ∈ N. Using the continuity of f , we get

f (y) = lim
n→∞

f
(
g(x)−ny − x

g(x)−n − 1
1 − g(x)

)
= f

( x
1 − g(x)

)
for y ∈ R,

which is a contradiction.
In this way, we have proved that g(x) = 1 or g(x) = −1 for each x ∈ A. Moreover,

according to (3), f (z − x) = f (x) for every z ∈ A with g(z) = −1 and x ∈ R. This means
that f is symmetric in a line x = z/2 for each z ∈ A with g(z) = −1. Suppose that there
are z1, z2 ∈ A ∩ g−1({−1}) with z1 , z2. Then f (z1 − x) = f (x) = f (z2 − x) for x ∈ R and
thus f (z1 − z2 + x) = f (x) for x ∈ R. Since f is periodic and continuous, f has to be
bounded, which contradicts (0,∞) ⊂W. Consequently, A ∩ g−1({−1}) ∈ {∅, {x0}} for
an x0 , 0.

Since A ∩ B = {0}, we obtain that either A = {0}, or A = {0, x0} for an x0 , 0 with
g(x0) = −1.

Case 1. First consider the case in which A = {0, x0} with x0 , 0 such that g(x0) = −1.
Then f is symmetric in a line x = x0/2. Assume that x0 > 0. (If x0 < 0, the proof
is analogous.) According to (3), f (x0 − x) = f (x) , 0 for each x ∈ F. Hence, by
Lemma 1(iv),

x0 − 2x
g(x)

∈ A = {0, x0} for x ∈ F.

Thus, either x = x0/2, or x , x0/2 and (x0 − 2x)/g(x) = x0 for x ∈ F. Consequently,

g(x) = −
2
x0

x + 1 for x ∈ F \ {x0/2}.

Suppose that x0/2 ∈ F. Then, in view of (3), for each x ∈ F \ {x0/2},

f
( x0

2

)
f (x) = f

(
x + g(x)

x0

2

)
= f

(
x +

(
−

2
x0

x + 1
) x0

2

)
= f

( x0

2

)
, 0.

Thus f (x) = 1 for x ∈ F \ {x0/2} and, consequently, by the continuity of f , f = 1. But
f cannot be constant. This contradiction proves that f (x0/2) = 0. Hence

g(x) = −
2
x0

x + 1 for each x ∈ F. (9)

In the next step, we prove that f is one-to-one on the set F ∩ (−∞, x0/2).
To the contrary, suppose that there are x1 < x2 < x0/2 such that f (x1) = f (x2) , 0.
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Then, since f is symmetric in the line x = x0/2, there is an x3 > x0/2 such that
f (x1) = f (x2) = f (x3). Thus, in view of Lemma 1(iv),

x1 − x2

g(x2)
,

x3 − x2

g(x2)
∈ A = {0, x0}.

Moreover, x1 − x2 < 0, x3 − x2 > 0 and hence

x1 − x2

g(x2)
= x0 =

x3 − x2

g(x2)
.

This means that g(x2) > 0 and g(x2) < 0, which is a contradiction.
Since f is continuous, f |F∩(−∞,x0/2) is one-to-one, x0/2 > 0, f (0) = 1 and f (x0/2) = 0,

we obtain that (−∞, 0] ⊂ F. Hence G ⊂ (0,∞). Moreover, the set G is closed because
of the continuity of f . Let z0 = min G. Suppose that z0 < x0/2. Since f |F∩(−∞,x0/2) is
one-to-one, f |[z0,x0/2] = 0. Hence, according to (9),

0 = f (y) f (z0) = f (y + g(y)z0) = f
(
y −

2
x0

yz0 + z0

)
for each y ∈ F.

This means that y(1 − (2/x0)z0) + z0 ≥ z0 for y ∈ F. Since 1 − (2/x0)z0 > 0, we have
y ≥ 0 for y ∈ F. But (−∞, 0] ⊂ F. This contradiction proves that z0 = x0/2. Thus,
using the symmetry of f in the line x = x0/2, G = {x0/2}. Hence, according to (9),
setting c = −2/x0,

g(x) = cx + 1 for each x ∈ R. (10)

Case 2. Now we consider the second case, in which A = {0}. Then, by Lemma 1(iv),
(x − y)/g(y) ∈ A = {0} for every x, y ∈ F with f (x) = f (y). Hence f |F is one-to-one.
Thus, in view of Lemma 2, there is an x0 ∈ R \ {0} such that x = (g(x) − 1)x0 for each
x ∈ F. This means that

g(x) =
x
x0

+ 1 for each x ∈ F. (11)

Assume that x0 < 0. (The case where x0 > 0 is analogous.) In view of (11) and
Lemma 1(ii) we have f (−x0) = 0.

Since f is continuous, f |F is one-to-one, −x0 > 0, f (0) = 1 and f (−x0) = 0, we
obtain that (−∞, 0] ⊂ F and G ⊂ (0,∞). The set G is closed because of the continuity
of f , so there exists a z0 = min G. Suppose that z0 < −x0. Then f |[z0,−x0] = 0 because
f |F is one-to-one. Hence, according to (11),

0 = f (x) f (z0) = f (x + g(x)z0) = f
(
x +

x
x0

z0 + z0

)
for each x ∈ F.

This means that x(1 + z0/x0) + z0 ≥ z0 for x ∈ F. Since 1 + z0/x0 > 0, we have x ≥ 0
for x ∈ F, which contradicts (−∞, 0] ⊂ F. Consequently, −x0 = z0 = min G.
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Now we prove that G ∈ {{−x0}, [−x0,∞)}. To the contrary, suppose that there is a
z1 = max G such that z1 > −x0. Since f |F is one-to-one, G = [−x0, z1]. In view of (11),

0 = f (x) f (z1) = f (x + g(x)z1) = f
(
x +

x
x0

z1 + z1

)
for each x ∈ F.

Thus x(1 + z1/x0) + z1 ≤ z1 for x ∈ F. Moreover, 1 + z1/x0 < 0, so x ≥ 0 for x ∈ F.
This contradicts (−∞, 0] ⊂ F. Hence either −x0 = z1 = max G, or max G does not
exist. Consequently, G = {−x0} or G = [−x0,∞). Setting c = 1/x0, in view of (11),
if G = {−x0}, then g is given by (10); otherwise,

g(x) = max{cx + 1, 0} for x ∈ R. (12)

In this way we have proved that g has one of the forms (10) and (12). Now define a
function φ : R→ R as follows:

φ(x) = f
( x − 1

c

)
for each x ∈ R.

Since f is continuous and nonconstant, so is φ. Moreover, according to (3), for every
x, y ∈ R,

φ(x)φ(y) = f
( x − 1

c

)
f
(y − 1

c

)
= f

( x − 1
c

+ x
y − 1

c

)
= f

( xy − 1
c

)
= φ(xy).

This means that φ is multiplicative. Hence, by [2, p. 31, Corollary 9], either

φ(x) = |x|r for x ∈ R,

or
φ(x) = |x|rsgn x for x ∈ R

with some r > 0. Thus, either

f (x) = φ(cx + 1) = |cx + 1|r for x ∈ R

and (6) holds, or

f (x) = φ(cx + 1) = |cx + 1|rsgn (cx + 1) for x ∈ R

and (7) holds.
Finally, if g is given by (12), then we define a function φ : [0,∞)→ R by the formula

φ(x) = f
( x − 1

c

)
for each x ≥ 0.

As before, we obtain that φ is continuous, nonconstant and multiplicative. Hence, by
[2, p. 30, Proposition 6],

φ(x) = xr for x ≥ 0
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with some r > 0. Thus

f (x) = φ(cx + 1) = (cx + 1)r for x ∈ R with cx + 1 ≥ 0

and, in view of (12) and Lemma 1(ii), f (x) = 0 for x ∈ Rwith cx + 1 < 0. Consequently

f (x) = (max{0, cx + 1})r for x ∈ R,

which ends the proof of (8). �

Now we are in a position to prove our main result.

T 4. Functions f , g : R→ R satisfy (3) and f is continuous if and only if one
of the following conditions holds.

(i) g is arbitrary and either f = 0, or f = 1.
(ii) g = 1 and there is a c ∈ R \ {0} such that f (x) = exp(cx) for x ∈ R.
(iii) There are c ∈ R \ {0} and r > 0 such that f and g have one of the forms (6)–(8).

P. Let f and g satisfy (3). Clearly, if f is constant, then either f = 1, or f = 0.
So assume that f is not constant. Then, by Lemma 1(vi), f with ḡ given by (5) also
fulfill (3) and ḡ(0) = 1.

If ḡ = 1, using (3) we find that f is a nonconstant continuous solution of (4) and
hence, according to [2, p. 29, Theorem 5], there is a c ∈ R \ {0} such that f (x) = exp(cx)
for x ∈ R. Hence, by (3),

c(x + g(x)y) = cx + cy for every x, y ∈ R.

Thus g = 1. In this way we have proved that (ii) holds.
Now assume that both functions f and ḡ are not constant. Then, in view of

Proposition 3, f and ḡ satisfy one of conditions (6)–(8). We prove that g(0) = 1. Write
g(0) = a. Since f , g as well as f , ḡ satisfy (3),

f (x + g(x)y) = f (x) f (y) = f (x + ḡ(x)y) for x, y ∈ R.

Hence, setting x = 0 and using ḡ(0) = 1,

f (ay) = f (y) for each y ∈ R.

If f and ḡ are given by (6), then

|ca + 1|r = f (a) = f (1) = |c + 1|r,

|2ca + 1|r = f (2a) = f (2) = |2c + 1|r.

Hence either a = 1, or a , 1 and a = −1 − 2/c = −1 − 1/c. Thus a = 1.
If f and ḡ are given by (7), then f is injective. Hence f (a) = f (1) implies a = 1.
Finally, let f and ḡ be given by (7). Then

(max{0, ca + 1})r = f (a) = f (1) = (max{0, c + 1})r

https://doi.org/10.1017/S0004972712000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000299


[8] On continuous solutions of an equation of the Goła̧b–Schinzel type 17

implies that

either
{

ca + 1 > 0,
c + 1 > 0

or
{

ca + 1 ≤ 0,
c + 1 ≤ 0.

If ca + 1 > 0 and c + 1 > 0, then

(ca + 1)r = f (a) = f (1) = (c + 1)r;

otherwise, ca + 1 ≤ 0 and c + 1 ≤ 0, which implies −ca + 1 > 0, −c + 1 > 0 and

(−ca + 1)r = f (−a) = f (−1) = (−c + 1)r.

In both cases a = 1.
In this way we have proved that g(0) = 1. Then, according to (5), g = ḡ and

consequently f and g have one of the forms (6)–(8).
It may be checked that functions f and g which have one of the forms (6)–(8) satisfy

(3). This ends the proof. �
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