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Abstract

We explore a simple model of network dynamics which has previously been applied to
the study of information flow in the context of epidemic spreading. A random rooted
network is constructed that evolves according to the following rule: at a constant rate,
pairs of nodes (i, j) are randomly chosen to interact, with an edge drawn from i to j
(and any other out-edge from i deleted) if j is strictly closer to the root with respect to
graph distance. We characterise the dynamics of this random network in the limit of large
size, showing that it instantaneously forms a tree with long branches that immediately
collapse to depth two, then it slowly rearranges itself to a star-like configuration. This
curious behaviour has consequences for the study of the epidemic models in which this
information network was first proposed.
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1. Introduction

There is a growing awareness in the mathematical epidemiology community of the need to
model not just the infective status of individuals in a population, but also their knowledge and
attitudes. In important early work in this direction, [13] combined a simple model of infor-
mation spread with standard epidemic dynamics to create a new class of models in which
there is feedback between the progress of the disease and altered behaviours as a result of risk
awareness. It has been shown that this feedback can fundamentally change the trajectory of
an outbreak [12, 13, 15, 16]. Information networks responding to disease and other hazards
are of course not unique to humans [23], and the ability to transmit information accurately
and efficiently confers significant evolutionary advantages in animal populations. Hence, it is
of fundamental interest to understand how information is transmitted in populations and how
networks linking information sources are formed.

The literature on the spread of information, such as rumours and opinions, has a wide range
of fascinating models and dynamics. General prominent modelling approaches include the use
of voter models [8], opinion dynamics [1, 2, 5, 28], rumour spread models [10], first-passage
percolation [3, 29], and agent-based models [14]. More specifically, we highlight the use of
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1030 A. SONTAG ET AL.

stochastic differential equations for representative voters and the microstructure of elections
[7], and a point process model based on the assumption that fake news spreads as a two-
stage process [19]. The simultaneous transmission of both information and misinformation (or
hoaxes) in communities, however, is still under development. The most promising approaches
consider contagion processes in networks [24–27] and agent-based models [6, 9, 21].

In this article, we explore in greater depth the paradigmatic model of [13] that has been
used to describe the intricate dynamics of awareness spread. This model has been commonly
used in conjunction with compartment-based epidemic models, for which analysis is often
performed in the limit of large population sizes. For this reason, we are primarily interested in
the dynamics of the information network in this same limit. Readers familiar with the literature
in probability will recognise the model of [13] as a random recursive tree [18, 20] with a
rewiring mechanism, or a preferential attachment tree [4, 11, 17]. As we show in this article,
the model exhibits an unusual dynamic in infinite populations: it instantaneously forms long
branches, which then immediately collapse to a tree of depth two; it then slowly rearranges to
a star-like configuration in a process that takes infinite time.

The article is organised as follows. In Section 2, we introduce the model and key definitions
that will be important for expressing our main results in Section 3. In the model, individuals are
represented by nodes which are linked whenever information is exchanged between them. One
informed node is defined as the root, while the remaining nodes initially have no information.
In the infinite population size limit, our theorems show that an information tree containing all
nodes forms instantly almost surely, while it takes infinite time until everyone obtains infor-
mation of the best quality. In this same limit, we show that nodes have depth two almost surely
at any time t> 0, yet the longest branch ever formed in the tree scales with the logarithm of
the population size. This suggests a strange behaviour of the model, where long branches form
and collapse in a fraction of time. Proofs of the theorems are provided in Section 4.

2. The model and key definitions

Consider a population of identical individuals modelled as nodes in an evolving network.
One node is distinguished as the root, to be thought of as the originator of a piece of informa-
tion. It is convenient to label the nodes by non-negative integers and adopt the convention that
node zero is the root. To each pair of nodes (i, j) we associate an independent unit-rate Poisson
clock; whenever this clock rings we draw a directed edge from i to j (and delete all other out-
edges from i) if j is strictly closer to the root. Figure 1 shows snapshots of two simulations of
the model, restricted to N = 100 and N = 1000 nodes.

This is the network model that underlies the early-time and large-population dynamics of
the disease awareness model introduced in [13]. In that work, individuals are classified by
their information level, with zero representing first-hand information (in the epidemic context,
someone currently infected), and generally level n describing people for whom information
has travelled n steps to reach. In our model the information level of a node corresponds to
its distance from the root. Two extra processes were included in [13] that we do not include
here: the fading of information (spontaneous lowering of an individual’s information level) and
generation of new information (when an infection takes place, the infected individual jumps
to information level zero). We have chosen to leave out these elements in order to focus on
the dynamics of the information network pertaining to a single initial piece of information.
For an analysis of finite-size effects when information fading is included, see our companion
work [22].
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Dynamics of information networks 1031

FIGURE 1. Snapshots from two simulations of the information network with different sized populations.
(a) Typical structure at t = 0.1 for a population of N = 100; nodes are spread over several layers and some
are yet to attach. (b) Typical structure at t = 0.1 for a population of N = 1000; nodes are almost entirely

condensed into the first two layers.

Definition 1. Let τij be the set of (random) times when nodes i and j interacted (whether any
edges are redrawn or not). We use νi(t) to denote the information level of node i at time t.
Naturally, ν0(t) = 0 for all t ≥ 0, while for i> 0 we have

νi(t) = 1 + inf{νj(s) : j �= i, s ∈ τij, s< t},

where we assume the convention inf{∅} = ∞.

Many of our results require examination of finite subsets of the population. To that end we
introduce, for i> 1, the information level of node i when it only has sight of the first N nodes
in the network:

νN
i (t) = 1 + inf{νN

j (s) : j �= i, s ∈ τij, s< t, j ≤ N},

where again νN
0 (t) = 0 for all t ≥ 0.

We note that it is not a priori obvious that the model is well defined in the case of an
infinite population. However, the random variables νN

i (t) are monotonically non-increasing in
N, which allows us access to several almost sure results characterising the large-N limit.

3. Main results

Initially, the network is empty and all nodes are uninformed except the root. The only sta-
tionary configuration is the star graph in which every node is attached to the root. Our first
results concern the time evolution of the graph in between these limits.

Theorem 1. (The graph is a tree.) Denote by TN the time until nodes {0, . . . ,N − 1} are all
informed (i.e. are connected to the information network). Then P( limN→∞ TN = 0) = 1.
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Theorem 2. (The graph is never a star.) Let T∗
N be the first hitting time of the star configura-

tion amongst the first N nodes; that is, T∗
N = inf{t : maxi<N ν

N
i (t) = 1}. Then P( limN→∞ T∗

N =
∞) = 1.

The next results characterise the shape of the tree as it evolves. We find that at all positive
times the tree has a maximum depth of two, and compute the probability to find a given node
at a particular depth.

Theorem 3. (The tree has maximum depth two.) For all t> 0,

P

(
lim

N→∞ max
i<N

{νN
i (t)} ≤ 2

)
= 1.

Theorem 4. (Node depth distribution.) Let τi0 be the time when node i first interacted with the
root. For all t> 0, and all nodes i �= 0,

P

(
lim

N→∞ νN
i (t) = 1 + 1τi0>t

)
= 1,

where, by the definition of the model, 1τi0>t is Bernoulli distributed with parameter e−t.
Furthermore, for all i �= 0, P( limt→0+ νi(t) = 2) = 1.

Hitherto, our theorems have mostly concerned the state of the system at any given time t in
the limit of infinite network size. The previous result combined with our next theorem probes
the early time limit t → 0, establishing the entrance law of the process in the system with an
infinite number of nodes.

Theorem 5. (There is always at least one node with depth one.)

P

(
lim

t→0+ inf
i �=0

{νi(t)} = 1
)

= 1.

These results characterise the instantaneous arrangement of the infinite network into a tree
of depth two. Amongst the first N nodes, however, we can show that branches of depth log N
are certain to have existed at some point. This implies an interesting explosive behaviour in
which arbitrarily long branches form and then immediately collapse.

Theorem 6. (Longest branch.) Consider the length of the longest branch ever formed in
the network amongst the first N nodes, DN = max ({νN

i (t), t> 0, i ≤ N} \ {∞}). This quantity
grows logarithmically with N; specifically,

lim
N→∞ P

(
DN

log N
∈ [e/2, e]

)
= 1.

Together, these results give a complete characterisation of the (somewhat strange) dynamics
of the information network: the graph instantaneously forms a tree with long branches which
then promptly collapse to depth two; it then takes an infinitely long amount of time to slowly
rearrange itself towards a star-like configuration.

4. Proofs of the main theorems

In this section we provide the proofs for the main theorems stated in Section 3. We also give
two corollaries that relate Theorems 1 and 2 to the variables νN

i (t).

Proof of Theorem 1. For the system with N nodes {0, . . . ,N − 1}, TN is the sum of N − 1
independent random variables, TN =∑N−1

n=1 Wn,N , where we define Wn,N as the time between
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the nth and (n + 1)th nodes joining the informed group. By definition, W0,N = 0, since the
initial condition is one node at level 0.

The transition from n informed nodes to n + 1 occurs when one of the N − n uninformed
nodes interacts with one of the n informed nodes in any information level. This transition
occurs at a rate n · (N − n). The transition time Wn,N is then exponentially distributed with rate
n(N − n), mean (n(N − n))−1, and variance (n(N − n))−2. Hence,

E[TN] =
N−1∑
n=1

E[Wn,N] =
N−1∑
n=1

1

n(N − n)
= 1

N

N−1∑
n=1

(
1

n
+ 1

N − n

)
= 2

N

N−1∑
n=1

1

n
= 2HN−1

N
,

Var[TN] =
N−1∑
n=1

Var[Wn,N] =
N−1∑
n=1

1

n2(N − n)2
= 1

N2

N−1∑
n=1

(
1

n
+ 1

N − n

)2

= 2

N2

(
N−1∑
n=1

1

n2

)
+ 4

N3

(
N−1∑
k=1

1

n

)
= 2

N2

(
π2

6
−ψ ′(N)

)
+ 4

N3
HN−1,

where Hn =∑n
k=1 (1/k) is the nth harmonic number, and ψ ′(N + 1) is the first derivative of

the digamma function.
We will use the Borel–Cantelli lemma to prove almost sure convergence. Observe that TN >

0 and TN > ε⇒ T2
N > ε

2. Thus, for all ε > 0,

P(TN > ε) = P(T2
N > ε

2) ≤ E[T2
N]

ε2

≤ 1

ε2

[
2

N2

(
π2

6
−ψ ′(N)

)
+ 4

N3
HN−1 + 4H2

N−1

N2

]
by Chebyshev’s inequality, where we used E[T2

N] = Var[TN] +E[TN]2.
Fix ε > 0, and consider the set of events AεN = {TN > ε}. It follows that

∞∑
N=1

P(AεN) =
∞∑

N=1

P
(
TN > ε) ≤

∞∑
N=1

1

ε2

[
2

N2

(
π2

6
−ψ ′(N)

)
+ 4

N3
HN−1 + 4H2

N−1

N2

]
.

It is easy to see that the sum converges. By the Borel–Cantelli lemma, it follows that
P( lim supN→∞ AεN) = P( lim supN→∞{TN > ε}) = 0.

To complete the proof, let εk, k ∈N, be a sequence of decreasing times such that εk < εk−1,
εk > 0, and limk→∞ εk = 0. Hence, Aεk

N ⊂ Aεk+1
N , and

P

(
∪ε>0 lim sup

N→∞
AεN
)

≤
∞∑

k=1

P

(
lim sup
N→∞

Aεk
N

)
= 0.

Consequently, P( limN→∞ TN = 0) = 1, and the result is proved. �

The previous proof that the graph is a tree shows that the time until all nodes in the pop-
ulation are aware is almost surely zero. Hence, all nodes, and in particular the maximum of
the population, have to be aware almost surely at any time t> 0. This suggests the follow-
ing proposition, which relates the previous result with the maximum information level in the
population.
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Proposition 1. For all times t> 0, P( limN→∞ maxi<N{νN
i (t)}<∞) = 1.

In fact, Theorem 3 is a stronger version of this proposition, so we will not prove this weak
form here.

Proof of Theorem 2. Similarly to the previous case, supi<N ν
N
i (t) = 1 if and only if all nodes

have interacted with the root, i.e. the graph is a star. Thus, the time until the star is formed can
be written as the sum of the transition times between each node connecting to the root. That
is, the time T∗

N until the star forms is again the sum of N − 1 independent random variables,
T∗

N =∑N−1
n=1 Vn,N , where we define Vn,N as the time between the nth node and the (n + 1)th

connecting to the root. Again, V0,N = 0, as there is one node at level 0 from the beginning.
The transition from n to n + 1 nodes occurs when one of the remaining N − n nodes not

connected to the root interacts with the root. This transition has rate 1 · (N − n). The transition
time Vn,N is then an exponentially distributed random variable with rate (N − n), mean (N −
n)−1, and variance (N − n)−2. Consider now the set of random variables {Vn}∞n=1 such that
Vn = (1/n)Xn, where Xn ∼ Exp(1) are independent and identically distributed (i.i.d.). Observe
that Vn ∼ Exp(n). Instead of writing T∗

N as a sum of random variables that depend on N, we
can use the set {Vn}∞n=1 to write T∗

N =∑N−1
n=1 Vn =∑N−1

n=1 (1/n)Xn.
By the monotone convergence theorem, T∗

N → T∗ ∈R∪ {∞}.
We will show that T∗ = ∞ by contradiction. First, consider the random variable

SM = 1

M − 1

M∑
N=2

T∗
N = 1

M − 1

M∑
N=2

N−1∑
n=1

1

n
Xn

= 1

M − 1

M−1∑
n=1

(M − n)
Xn

n

=
(

1 + 1

M − 1

)
T∗

M − 1

M − 1

M−1∑
n=1

Xn. (1)

Assume T∗ is finite. Then, limM→∞ T∗
M/(M − 1) = 0 almost surely (a.s.). Since

limM→∞ T∗
M

a.s.−→ T∗, it follows that limM→∞ SM
a.s.−→ T∗. Additionally, by the strong law of

large numbers, limM→∞ (1/(M − 1))
∑M−1

n=1 Xn
a.s.−→ 1. Taking the limit M → ∞ in (1) leads

to T∗ = T∗ − 1, contradicting our assumption that T∗ is finite. Thus, T∗ = ∞ and T∗
N → ∞

almost surely. �

The previous theorem can be written in terms of the νN
i (t) variables as the following

corollary.

Corollary 1. At all times t> 0, P( limN→∞ maxi<N ν
N
i (t)> 1) = 1.

The star graph has all nodes, excluding the root, at depth one. Since the maximum is a.s.
not at depth one, the tree cannot be a star.

Proof of Theorem 3. Taking the system with nodes {0, . . . ,N − 1}, consider first the prob-
ability that the maximum information level in the population has depth greater than two. This
is equivalent to the probability that at least one node has depth greater than two.

For i> 0, we define the variables τ 1
ij as the time when the first meeting between nodes i

and j occurs. Note that the τ 1
ij are i.i.d. Exp(1) random variables. Now, fix t> 0 and consider
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the events At
ij = {τj0 < τ

1
ij < t}, i.e. the event that node j exchanged information with the root

before interacting with node i for the first time before time t. Using the fact that the random
variables τ 1

ij and τj0 are independent, it follows that

P(At
ij) =

∫ t

0

∫ s

0
e−τ × e−s dτ ds = 1

2
e−2t(et − 1)2 = εt > 0. (2)

The events At
ij are mutually independent for fixed i and varying j, since meetings between

nodes are independent. Furthermore, if event At
ij occurred, then νN

i (t) ≤ 2. Consequently,

P(νN
i (t)> 2) ≤

N−1∏
j �=0, j �=i

P((At
ij)

c) = (1 − εt)
N−2.

Let Ft
N = {maxi<N ν

N
i (t)> 2}. Thus,

P(Ft
N) = P

(
N−1⋃
i=1

{νN
i (t)> 2}

)
≤

N−1∑
i=1

(1 − εt)
N−2 = (N − 1)(1 − εt)

N−2.

Therefore,
∑∞

N=1 P(Ft
N) =∑∞

N=1 (N − 1)(1 − εt)N−2 = ε−2
t <∞.

By the Borel–Cantelli lemma, P
(⋂∞

k=1
⋃∞

N=k{maxi≤N{νN
i (t)}> 2})= 0. Thus,

P( limN→∞ maxi≤N{νN
i (t)} ≤ 2) = 1, and Theorem 3 is proved. �

We next prove the following lemma.

Lemma 1. For all t> 0, and all nodes i �= 0, P
(
νi(t) = 1 + 1τi0>t

)= 1, where 1 + 1τi0>t is the
Bernoulli random variable determining whether or not the node interacted with the root yet.

Proof. Consider the system with infinite nodes. As before, we define the variables τij as the
time when the first meeting between nodes i and j occurs, but this time only for 0 ≤ i< j.

For i> 0, we again define the random variables μi(t) = 1 + infj>i{μj(τij) : τij < t}, μi(0) =
∞, and μ0(t) = ν0(t) = 0; in this case, μi(t) is the quality of information of node i when we
allow the nodes to meet and exchange information with nodes j, j> i, only once. Considering
again the events At

ij = {τj0 < τij < t}, i.e. the event that node j exchanged information with
the root before interacting with node i before time t. Recall that the events At

ij are mutu-
ally independent for different j. Moreover, for all t> 0,

∑∞
j=i+1 P(At

ij) =∑∞
j=i+1 εt = ∞,

where εt is the same as in (2). Thus, by the converse Borel–Cantelli lemma, P
(⋃

j>i At
ij

)= 1
for any t> 0. Therefore, at least one of the events At

ij occurred (in fact, infinitely many
of them). Consequently, P(νi(t) ≤ 2) ≥ P(μi(t) ≤ 2) = 1. Since νi(t) ≤ 2 ⇒ νi(t) ∈ {1, 2}, and
P(νi(t) = 1) = 1 − e−t, the probability that node i interacted with the root, it follows that
P(νi(t) = 2) = e−t. As a final step, note that νi(t) = 1 ⇐⇒ {τi0 < t}, by definition. Ergo,
1 + 1τi0>t and νi(t) are defined in the same probability space (�,F , P), and

P({ω ∈� : νi(t)[ω] = 1 + 1τi0>t[ω]}) = 1 =⇒ P(νi(t) = 1 + 1τi0>t) = 1. �

Proof of Theorem 4. To complete the proof of Theorem 4, note that limN→∞ νN
i (t) =

νi(t) by Definition 1. Thus, from Lemma 1, P
(

limN→∞ νN
i (t) = 1 + 1τi0>t

)= 1, and since
P(τi0 > 0) = 1 given τi0 ∼ Exp(1), it follows that P (limt→0+ νi(t) = 2)= 1, and the theorem is
proved. �
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Proof of Theorem 5. Define the random variables Xn = infi �=0,i≤n{νi(n−α)} and Yn =
infi �=0{νi(n−α)} for fixed α ∈ (0, 1), i.e. Yn is the infimum information level when consider-
ing all nodes in the infinite tree at time n−α , while Xn is the infimum information level of the
subset of nodes {1, . . . , n} of the infinite tree.

Note that, almost surely, Yn ≤ Xn for all n, and 1 ≤ Yn. Hence,

1 ≤ lim
t→0+ inf

i �=0
{νi(t)} = lim

n→∞ Yn ≤ lim
n→∞ Xn.

We want to show that Xn
a.s.−→ 1 as n → ∞. By definition, infi �=0,i≤n{νi(t)}> 1 ⇔ for all i �=

0, i ≤ n, νi(t)> 1, i.e. not a single node has interacted with the root before time t. As we know,
the probability that a given node did not interact with the root before time t is e−t. Thus,
P(Xn > 1) = e−n1−α

, and
∑∞

n=1 P(Xn > 1) =∑∞
n=1 e−n1−α

<∞.
By the Borel–Cantelli lemma,

P

(
lim

n→∞ Xn > 1
)

= 0 =⇒ P

(
lim

n→∞ Xn = 1
)

= 1,

because {Xn > 1}c = {Xn = 1}. Therefore,

P

(
lim

n→∞ Yn ≤ 1
)

= P

(
lim

n→∞ Yn = 1
)

= P

(
lim

t→0+ inf
i �=0

{νi(t)} = 1
)

= 1. �

Proof of Theorem 6. In our model, the tree is frequently reshaped by reattachment events
that move nodes closer to the root. Moreover, the rate and consequences of these events
depends on the configuration of the tree. It will turn out, however, that long branches form
before any reattachment event has occurred.

Recall that τij denotes the set of times that nodes i and j are in contact, and the information
level of node i at time t in the finite-N model is defined as

νN
i (t) = 1 + inf{νN

j (s) : j �= i, s< t, j ≤ N, s ∈ τij}.
Introduce the restricted set of times τ̃ij = τij \ ( inf{t : νN

i (t)<∞},∞) in which all contact
events after the initial attachment of i are discarded. These times define a coupled instance
of the model in which reattachment is ignored via

ν̃N
i (t) = 1 + inf{̃νN

j (s) : j �= i, s< t, j ≤ N, s ∈ τ̃ij}.
Since contact events can only lower the information level of a node, we immediately have the
bound

νN
i (t) ≤ ν̃N

i (t). (3)

Additionally, the two processes are identical up to the random time t
N of the first reattach-
ment event. To control the maximal informational level in the original model, we consider the
structure of the coupled process at time t
N and in its end state.

The network constructed by the process ignoring reattachment is an instance of a random
recursive tree [18, 20]. Write D̃M for the length of the longest branch of this tree when it has
M nodes. [20] proved that D̃M/ log M

a.s.−→ e as M → ∞. This result translates immediately to
an almost sure upper bound on the original model via (3). Specifically, DN < D̃N implies

P

(
lim

N→∞
DN

log N
≤ e

)
= 1,
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which in turn implies the convergence in probability upper bound in the statement of
Theorem 6.

For the lower bound on DN , we compute the size M

N of the random recursive tree at time

t
N . It turns out that M

N is of order

√
N.

First, note that the rate of attachment events when the informed tree has size n is n(N − n),
while the rate of reattachment events is smaller than n(n − 1). Therefore, the probability qn that
an attachment event occurs before a reattachment event when the tree has size n is bounded
from below by

qn ≥ n(N − n)

n(N − n) + n(n − 1)
= N − n

N − 1
.

It is in fact neater to study M

N+1, since we may compute

P(M

N+1 ≥ m) ≥

m∏
n=1

qn = N!
(N − m)!Nm

.

Using the well-known factorial bounds

√
2πN

(
N

e

)N

e1/(12N+1) <N!<√
2πN

(
N

e

)N

e1/12N,

it follows that

P(M

N+1 ≥ m)>

√
NNN exp{−N + (1/(12N + 1))}√

N − m(N − m)(N−m) exp{−N + m + (1/(12(N − m)))}Nm
,

=
(

N

N − m

)N−m+1/2

exp{−m + (1/(12N + 1)) − (1/(12(N − m)))},

≥ exp

{
−m2

N
+ m

2N
+ 1

12N + 1
− 1

12(N − m)

}
,

where we have used the inequality log (N − m) ≤ log N − (m/N).
To understand the scaling law of MN we consider m = Nα , where 0<α ≤ 1. From the

above, we obtain

P(M

N+1 ≥ Nα) ≥ exp

{
−N2α−1 + 1

2
Nα−1 + 1

12N + 1
− 1

12N(1 − Nα−1)

}
.

Thus, for all α < 1
2 , limN→∞ P(M∗

N+1 ≥ Nα) = 1, and in particular

lim
N→∞ P(2 log M∗

N+1 ≥ log N) = 1.

To end the proof of Theorem 6, we note that DN ≥ D̃M

N

, where it is known that almost
surely D̃M


N
/ log M


N → e as M

N → ∞. So, for any ε > 0 we may choose N large enough that

P({2DN > (1 − ε)e(2 log M

N)} ∩ {2 log M


N ≥ log N})> 1 − ε.

Sending ε→ 0 and passing to large N, we obtain

lim
N→∞ P

(
DN

log N
≥ e

2

)
= 1. �
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