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Alpha particle confinement is one of the most demanding issues for stellarators. It now
seems clear that it is possible to design optimized stellarators that confine the background
plasma at near tokamak radial transport levels. Moreover, adequate collisionless alpha
particle confinement is possible in the core of a highly optimized stellarator. Here, the
collisional confinement of barely trapped alphas in an optimized stellarator is considered
by accounting for the resonance due to the reversal in direction of the drift within a flux
surface and investigating the sensitive role of magnetic shear in keeping this resonance
close to the passing boundary in some nearly quasisymmetric stellarator configurations.
The treatment relies on a narrow collisional boundary layer formulation that combines the
responses of both these resonant pitch angle alphas and the remaining barely trapped
alphas. A novel merged regime treatment leads to explicit expressions for the energy
diffusivity for both superbanana plateau (or resonant plateau) and

√
ν transport in the

large aspect ratio limit for a slowing down tail alpha distribution function, where ν
is the effective pitch angle scattering collision frequency of the trapped alphas off the
background ions. Depending on the details of the optimization scheme and the sign of the
magnetic shear, modest magnetic shear can be used to reduce superbanana (or resonant)
plateau transport to below the

√
ν transport level. In addition, a quasilinear equation

retaining spatial diffusion is derived for a general alpha distribution function that allows
the radial alpha transport to modify the distribution so it is no longer isotropic in velocity
space.

Key words: fusion plasma, plasma confinement

1. Introduction

Recent stellarator optimization efforts (Landreman & Sengupta 2018, 2019; Landreman
2019; Landreman, Sengupta & Plunk 2019; Plunk et al. 2019) extending the earlier near
magnetic axis formalism of Garren & Boozer (1991a,b) demonstrate that many optimized
nearly quasisymmetric and/or omnigenous (Boozer 1983; Nührenberg & Zille 1988; Cary
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& Shasharina 1997a,b; Parra et al. 2015) configurations are possible and can be efficiently
constructed. For an exactly quasisymmetric (QS) magnetic flux surface in a stellarator a
drift kinetic canonical angular momentum (Boozer 1983; Landreman & Catto 2011) exists
that is a constant of the motion as in a tokamak. Optimized nearly QS stellarators provide
good collisional confinement for the background ions and electrons (Beidler et al. 2011;
Landreman & Sengupta 2019). However, the alpha particles produced by fusion must also
be well confined so that most of their energy heats the background plasma before they
are lost by collisional radial heat transport. As this is a more difficult task, collisional
radial transport at low collisionality in nearly optimized QS stellarators remains a focus of
magnetic fusion efforts (Gates et al. 2017; Henneberg et al. 2019), with a proxy sometimes
used in place of full collisional treatments (Bader et al. 2019; Velasco et al. 2021) to reduce
computational costs. Importantly, recent work by Landreman & Paul (2022) demonstrates
that quasiaxisymmetric (QAS) and quasihelically symmetric (QHS) configurations with
excellent collisionless alpha confinement are within reach.

Here, earlier work on weakly collisional superbanana (or resonant) plateau and
√
ν alpha

particle transport (Catto 2019b) is extended to retain magnetic shear, where ν is the pitch
angle scattering collision frequency for the trapped alphas. Superbanana plateau transport
occurs when the tangential drift vanishes so the alphas encounter a drift resonance. The
definition of tangential drift is such that there is no parallel streaming along the tangential
drift direction within a flux surface. The resonance enhances the transport caused by any
small radial drift departure from quasisymmetry. Because the trapped alpha response must
vanish at the passing velocity space boundary,

√
ν transport also arises as a result of the

same symmetry breaking radial drift. Even though shear is often weak to modest in a
stellarator, it is shown to enter the results in a sensitive way. Indeed, shear can result in
a merging of the superbanana plateau (Galeev et al. 1969; Shaing 2015) and

√
ν (Galeev

et al. 1969; Ho & Kulsrud 1987) transport regimes. The sensitivity arises because shear
alters the location in velocity space of the sign change in the tangential drift frequency.
The reversal of the tangential drift is responsible for the resonant alphas associated with the
superbanana or resonant plateau transport. Depending on the details of the QS stellarator
configuration, shear can move the resonance closer to the trapped–passing boundary,
where the vanishing of the passing response provides the boundary condition for

√
ν

transport. It is this feature that causes the merging of the two regimes and allows the
two separate regimes to be treated as a single merged regime close to the trapped–passing
boundary. The key new aspect of the work presented here is a method for treating the
merging of these two regimes in a unified manner. The narrow collisional boundary layer
treatment demonstrates that superbanana plateau transport need not dominate over

√
ν

regime transport (Beidler et al. 2011; Calvo et al. 2017). Depending on the details of the
QS configuration, the shear is typically restricted in sign to justify the narrow boundary
layer assumption employed here. The sensitivity to shear arises when it causes the resonant
alphas to be so close to the passing boundary that the pitch angle variation of the drift
becomes strong enough to reduce the number of resonant alphas.

The narrow boundary layer treatment also allows the formulation of a quasilinear
(QL) treatment whereby the radial transport of the alphas alters the background alpha
distribution function. This QL equation indicates that a substantial departure from QS is
needed for radial transport to modify the unperturbed alpha distribution function from its
usual isotropic form.

The details of the treatments in the sections that follow are somewhat involved kinetic
theory calculations with the added complication of stellarator geometry. Consequently,
it is useful to keep in mind that the departure from QS only matters in the radial
drift. Unperturbed QS alpha trajectories are used everywhere else. In addition, the full
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alpha collision operator with electron and ion drag and pitch angle scattering by the
background ions matters for determining the unperturbed distribution function. However,
radial transport introduces velocity space anisotropy, thereby requiring the retention of
pitch angle scattering off the background ions to resolve narrow boundary layers associated
with the perturbed alpha distribution function.

The superbanana or resonant plateau regime is particularly interesting since it occurs
because the tangential drift vanishes, thereby allowing a drift resonance to occur. The
occurrence of this resonant plateau behaviour is similar to the effect of the small
parallel velocity particles that are responsible for the usual plateau regime of neoclassical
transport in a tokamak. Indeed, the superbanana plateau radial diffusivity is independent of
collision frequency even though the process responsible for the transport is collisional. To
understand how this happens its diffusivity can be estimated by considering the tangential
magnetic drift frequency ωα and the radial drift speed Vr. In a large aspect ratio torus
the QS tangential magnetic drift is of order ωα ∼ qv2

0/Ω0Rr, with v0 the alpha birth
speed, Ω0 the on axis alpha gyrofrequency, R and r the major and minor radii and q
the safety factor. The radial drift due to a departure from QS is of order Vr ∼ δqv2

0/Ω0r,
where δ � ε = r/R is the error or QS breaking magnetic field amplitude normalized by
the on axis magnetic field (Calvo et al. 2013, 2014a,b). Diffusive collisions result in a
narrow boundary layer of dimensionless width wsbp in pitch angle such that the effective
collision frequency in the superbanana plateau regime is νsbp ∼ ν/w2

sbp, with ν the effective
collision frequency for pitch angle scattering of the trapped alphas by the background
ions. A resonance occurs because the tangential drift vanishes at some pitch angle with
collisions resulting in a spread out drift resonance with an effective width given by ωαwsbp.
Balancing the effective drift and collisions (ωαwsbp ∼ νsbp) gives the dimensionless width
(Catto & Tolman 2021) to be wsbp ∼ (ν/ωα)1/3 � 1, and thereby an enhanced collision
frequency of νsbp ∼ ν/w2

sbp � ν ∼ ναi/ε, where ναi is the pitch angle scattering frequency
of the alphas by the background ions. The resulting radial step size is then � = Vr /νsbp.
Only the trapped particles in the narrow collisional boundary layer contribute to transport.
Defining the inverse aspect ratio as ε = r/R, then this fraction is wsbpε

1/2. Consequently,
the diffusivity is seen to be independent of the collision frequency and given by

Dsbp ∼ (wsbpε
1/2)V2

r /νsbp ∼ ε1/2V2
r /ωα ∼ δ2qv2

0/ε
1/2Ωo, (1.1)

due to a cancelation between the boundary layer trapped fraction and the effective collision
frequency. In some QAS and QHS configurations it will be shown that magnetic shear can
reduce wsbp by a factor that increases exponentially with shear. These configurations are
the ones of interest here and for them the superbanana plateau diffusivity is reduced to

Dsbp ∼ ε1/2V2
r /γωα ∼ δ2qv2

0/γ ε
1/2Ωo, (1.2)

as the shear reduction factor γ is large. The reduction occurs because very few barely
trapped alphas are able to resonate with the drift once the drift varies strongly with pitch
angle very near the trapped–passing boundary.

The estimate for the
√
ν regime is a bit more straightforward to obtain since the

tangential drift ωα does not vanish so the effective collision frequency is ν√
ν ∼ ν/w2√

ν
.

The dimensionless width w√
ν is found from ωα ∼ ν/w2√

ν
to be w√

ν ∼ (ν/ωα)
1/2 � 1. In

this case, the trapped fraction in the narrow boundary layer is w√
νε

1/2, and results in the
smaller diffusivity of

D√
ν ∼ (w√

νε
1/2)V2

r /ν
√
ν ∼ w√

νε
1/2V2

r /ωα ∼ γ w√
νDsbp. (1.3)
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Magnetic shear will be shown to have little effect on this estimate, but as the shear
reduction factor is large Dsbp � D√

ν may no longer hold.
Results very similar to the preceding will be recovered in the merged regime treatment

by assuming that radial transport does not modify the unperturbed distribution function
significantly.

The sections that follow begin by introducing notation and briefly presenting some
background for general stellarators in § 2 and QS stellarators in § 3. In § 4 an average over
the tangential angle variable α is introduced and used to obtain the energy and particle
balance equations with radial transport retained. Section 5 uses the α average to derive
the QL equation for the unperturbed distribution function and the linearized equation
for the perturbed distribution function. Simplification of the linearized kinetic equation
for a narrow boundary layer is performed in § 6 and, except for the retention of finite
drift effects to retain magnetic shear, is similar to the procedure used by Catto (2019b).
A unified solution of the merged superbanana plateau and

√
ν regime is presented in § 7.

Section 8 derives the QL velocity space dependent radial diffusivity needed to complete
the derivation of the full QL equation for the unperturbed distribution function. In § 9
the alpha particle energy diffusivity is evaluated for the merged superbanana plateau and√
ν regime by using the usual slowing down tail alpha distribution function. The results

indicate that magnetic shear in some QS configurations can be used to reduce superbanana
plateau transport below the

√
ν transport level. The last section summarizes and discusses

the results.

2. General stellarator properties

A general stellarator magnetic field depends on the poloidal flux function ψp, and the
poloidal and toroidal angles ϑ and ζ , respectively. Introducing the angle variable

α = ζ − qϑ = ζ − � ι−1ϑ, (2.1)

the Boozer (1981) and Clebsch representations for a general stellarator magnetic field are

B = Bb = ∇α × ∇ψp = Kp∇ψp + G∇ϑ + I∇ζ, (2.2)

with B · ∇ψp = 0 = B · ∇α, q the safety factor and � ι the rotational transform flux
functions, and

B · ∇ζ = q∇ψp × ∇ϑ · ∇ζ = qB · ∇ϑ = qB2/(qI + G). (2.3)

The coefficients I and G are flux functions and related to the toroidal current enclosed by
a magnetic field line or flux surface

∫
tor

d2r · J =
∫ ψp

0
dψp

∫ 2π

0
dϑ

∇ζ · J
B · ∇ϑ = cG

2
, (2.4)

and the poloidal current outside the flux surface

∫
pol

d2r · J =
∫ ψp

0
dψp

∫ 2π

0
dζ

∇ϑ · J
B · ∇ϑ = cI

2
. (2.5)

In the preceding, unlike in usual stellarator notation, I is used with ∇ζ to more closely
conform to tokamak notation.
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3. Quasisymmetric stellarator properties

The magnetic field B = |B| of a QS stellarator depends on the flux and is periodic in a
single angle variable

η = Mϑ − Nζ, (3.1)

where M ≥ 0 and N ≥ 0 with N = 0 and M = 1 for a tokamak. On a QS flux surface a
point on a constant B contour closes on itself after ϑ increases by 2πN and ζ increases
by 2πM. Defining the helical magnetic flux function (Boozer 1983; Landreman & Catto
2011) as

ψh = Mψp − Nψt, (3.2)

with the poloidal flux function ψp and toroidal flux function ψt related by

∂ψt/∂ψp = q = � ι−1, (3.3)

then
∇ψh = (M − qN)∇ψp. (3.4)

The special case of M = 0 is often referred to as quasi-poloidal symmetry (QPS), the
N = 0 case is referred to as quasi-axisymmetry (QAS includes, but is not limited to, strict
axisymmetry), and the general N �= 0 �= M case is referred to as quasi-hleical symmetry
(QHS). The preceding imply that the Boozer (1981) representations for a QS stellarator
magnetic field may also be written as

B = Bb = (M − qN)−1∇α × ∇ψh = Kh(ψh, ϑ, ζ )∇ψh + G∇ϑ + I∇ζ, (3.5)

with Kp = (M − qN)Kh

B · ∇η = (M − qN)B · ∇ϑ = (M − qN)B2/(qI + G), (3.6)

and

B · ∇ζ = q(M − qN)−1∇ψh × ∇ϑ · ∇ζ = qB · ∇ϑ = qB2/(qI + G). (3.7)

In terms of α and η
ϑ = (Nα + η)/(M − qN), (3.8)

and
ζ = (Mα + qη)/(M − qN). (3.9)

For fixed α, η changes by 2π when ϑ → ϑ + 2π/(M − qN) and ζ → ζ + 2πq/
(M − qN).

In a QS stellarator the drift kinetic canonical angular momentum constant of the motion
(Boozer 1983; see Appendix A of Landreman & Catto 2011) is

ψ∗ = ψh − Ihv||/Ω, (3.10)

where Ω = ZeB/Mαc and
Ih = MI + NG, (3.11)

with Z the alpha charge number, Mα the alpha mass, e the charge on a proton and c the
speed of light. As in a tokamak, the drift kinetic angular momentum in ψh, ϑ, ζ variables
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satisfies
(v||b + vd) · ∇ψ∗ = 0, (3.12)

where the combined magnetic and electric drifts used are

vd = Ω−1b × (μ∇B + v2
||b · ∇b)+ cB−1b × ∇Φ 
 Ω−1v||∇ × (v||b), (3.13)

in magnetic moment, μ = v2
⊥/2B, and total energy variables

E = v2/2 + ZeΦ/Mα, (3.14)

for which v2
|| = 2(E − ZeΦ/Mα − μB), with Φ the electrostatic potential. The parallel

component of the last form of vd is negligible compared with parallel streaming so vd 

Ω−1v||∇⊥ × (v||b) may be employed.

4. Alpha transport for nearly QS stellarators

In E, μ and ϕ (= gyrophase) velocity space variables the drift kinetic equation for alpha
particles is simply

(v||b + vd) · ∇f = C{f } + S(ψp)δ(v − v0)

4πv2
, (4.1)

where the flux function S = nTnD〈σv〉DT is the birth rate of the alphas born isotropically
in velocity space at the birth speed v0, and

C{f } = 1
τs

∇v ·
[(
v3 + v3

c

v3

)
vf + v3

λ

2v3
(v2↔

I − vv) · ∇vf
]
, (4.2)

is the collision operator retaining electron and ion drag and pitch angle scattering by ions,
with

τs = 3MiT3/2
e

4(2πme)
1/2Z2

i e4ne�nΛ
, (4.3)

the slowing down time, vc the critical speed defined by

v3
c = 3π 1/2T3/2

e

(2me)
1/2ne

∑
i

Z2
i ni

Mi
, (4.4)

and τsv
3v−3
λ the pitch angle scattering time, where

v3
λ = 3π 1/2T3/2

e

(2me)
1/2Mαne

∑
i

Z2
i ni. (4.5)

The electron temperature Te and the electron and ion densities ne and ni are taken to be flux
functions and quasineutrality (ne 
 �iZini) is employed. The masses of the background
ions and electrons are Mi and me, respectively, and Zi is the charge number of the ions
with �i denoting a sum over all background ion species. The alpha particle collision
operator is obtained by expanding unlike collision operators for vi � vλ ∼ vc � v0 � ve,
making energy scattering of alphas by ions and electrons small because v2 � v2

i = 2Ti/Mi
and v2 � v2

e = 2Te/me, respectively.
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In an imperfect stellarator B, and therefore v||, depends on α as well as η and the flux.
Using α and η from (3.8) and (3.9) in the Boozer form of (3.5) along with (3.4) and (3.6)
gives

vd · ∇ψh = v||
B

[
∇α × ∇ψp · ∇

(
Ihv||
Ω

)
+ (qI + G)∇η × ∇ψp · ∇

(v||
Ω

)]

= v||b · ∇
(

Ihv||
Ω

)
− (M − qN)v||B

∂

∂α

(v||
Ω

)
.

(4.6)

In the final form of (4.6), the last term proportional ∂/∂α is the drive term that arises from
the lack of QS and the first term proportional to b · ∇ is the neoclassical drive term. As the
departure from QS is assumed small, the QS trajectories may be used to evaluate all other
terms in the drift kinetic equation. Consequently, departures from QS must be retained in
the radial drift, while unperturbed QS trajectories are employed elsewhere.

As the departure from QS is assumed small, the lowestorder alpha distribution function
f0 cannot depend on α. Consequently,

f = f (ψp, η, α,E, μ, σ ) = f0(ψp, η,E, μ, σ )+ f1 + · · · , (4.7)

with f0 � f1. Then, compared with parallel streaming, the radial and tangential drifts are
small and the source term and collisions are weak, giving to lowest order

v||b · ∇f0 = v||b · ∇η∂f0/∂η = 0. (4.8)

Therefore, for small departures from QS, ∂f0/∂η = 0 as well as ∂f0/∂α = 0, leading to

f0 = f0(ψp,E, μ), (4.9)

with no dependence on σ as the alphas are born isotropically.
Going to next order by retaining ∂f1/∂ψp to allow radial transport to modify f0, the

kinetic equation becomes

(v||b + vd) · ∇f1 + vd · ∇ψh
∂f0

∂ψh
= C{f0 + f1} + Sδ(v − v0)

4πv2

= v||
B

∇ ·
[

B
v||
(v||b + vd)(f0 + f1)

]
, (4.10)

where the alternate form on the far right follows by using

Bv−1
|| vd · ∇f1 = ∇ · (Bv−1

|| vdf1), (4.11)

and C{f0 + f1} = C{f0} + C{f1}. The usual slowing down distribution function

f0 = SτsH(v0 − v)
4π(v3 + v3

c )
, (4.12)

with H the Heaviside step function, satisfies 4πv2C{f0} + Sδ(v − v0) = 0. However,
strong radial losses in (4.10) cause a departure from the isotropic behaviour of (4.12).

The right most form of the drift kinetic operator is convenient for forming flux surface
averaged moments. To do so, use d3v → 2π

∑
σBdEdμ/|v||| = 2π

∑
σBv2dvdλ/B0|ξ |,
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with
∑

σ a reminder to sum over both signs of σ = v||/|v|||, ξ = v||/v, λ = 2μB0/v
2, and

the flux surface average of an arbitrary function A as defined by

〈A〉 =
∮

dϑ dζA
B · ∇ϑ /

∮
dϑ dζ

B · ∇ϑ =
∮

dη dαA
B · ∇η /

∮
dη dα
B · ∇η , (4.13)

where dη dα = (M − qN) dϑ dζ . Then allowing for a collisional loss sink L at small
speeds where the alphas become ash due to ion drag, the continuity equation leads to
the expected result that radial particle loss reduces the amount of ash

1
V ′

∂

∂ψp

[
V ′
〈∫

d3vf1vd · ∇ψp

〉]
= S − L, (4.14)

where V ′ = ∮
dϑ dζ/B · ∇ϑ , (3.13), 〈∫ d3vf0vd · ∇ψp〉 = 〈Ω−1

∫
d3vv||∇ · (f0v||b ×

∇ψp)〉 = 0 and

〈∇ · A〉 = 1
V ′

∂

∂ψp
(V ′〈A · ∇ψp〉), (4.15)

are employed. The loss into a small velocity space sphere about the origin is

L ≡ −
〈∫

d3vC{f0 + f1}
〉

= −τ−1
s

∮
d3v∇v ·

[
v

(
v3 + v3

c

v3

)
f
]

no→
xport

S, (4.16)

where ∇v · (vv−3f ) →
v→0

−4πδ(v)f (ψ, v = 0). In the absence of alpha transport loss L = S

as all the alphas become ash.
A related, but more important, result holds for energy conservation

1
V ′

∂

∂ψp

[
V ′
〈

Mα

2

∫
d3vf1v

2vd · ∇ψp

〉]
= 1

2
Mαv

2
0S − E, (4.17)

with E the alpha energy loss to the background ions and electrons

E ≡ −Mα

2

〈∫
d3vv2C{f }

〉
= Mα

τs

∫
d3vv−1(v3 + v3

c )f
no→

xport

1
2

Mαv
2
0S. (4.18)

To avoid severe depletion, radial alpha energy losses must be kept small compared with
Mαv

2
0S/2.

5. Quasilinear theory for nearly QS stellarators

Quasilinear theory allows the unperturbed distribution to be altered if the radial
transport is large. To obtain this QL feature the form of the drift kinetic equation must
be simplified further. To do so it is necessary to introduce the α average of an arbitrary
function A as

〈A〉α =
∮

dαA/
∮

dα ≡
∫ α+2π(M−qN)

α

dα′A/
∫ α+2π(M−qN)

α

dα′

=
∫ α+2π(M−qN)

α

dα′A/2π(M − qN), (5.1)

where the integration on a fixed flux surface is over a closed loop on a constant B contour
that closes back on itself when ϑ → ϑ + 2πN and ζ → ζ + 2πM (causing α → α +
2π(M − qN)). Such B contours exist by definition for a QS magnetic field.
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The drive term (4.6) in the kinetic equation is the sum of two contributions

vd · ∇ψh = vd · ∇ψh|nc + vd · ∇ψh|im, (5.2)

with
vd · ∇ψh|nc = v||b · ∇(Ihv||/Ω), (5.3)

the usual QS neoclassical drive term, and

vd · ∇ψh|im = −(M − qN)v|| B
∂

∂α

(v||
Ω

)
, (5.4)

the drive term due to the departure from QS. Therefore, f1 is written as the sum of the
neoclassical (nc) and non-QS (im) contributions

f1 = f nc
1 + f im

1 , (5.5)

with f nc
1 ≡ 〈f1〉α and 〈f im

1 〉α = 0. Then the neoclassical portion satisfies

v||b · ∇f nc
1 + vd · ∇ψh|nc

∂f0

∂ψh
= C{f nc

1 } = v||b · ∇
(

f nc
1 + Ihv||

Ω

∂f0

∂ψh

)
, (5.6)

where ∂f nc
1 /∂α = 0 and the vd · ∇η∂f nc

1 /∂η term is ignored as negligible. The solution
to the neoclassical equation for alphas in a QS stellarator does not involve any resonant
particles and can be obtained from Hsu et al. (1990) and Catto (2018) using the
isomorphism of stellarators with tokamaks (Boozer 1983; Landreman & Catto 2011). It
is of no concern here.

Subtracting the neoclassical equation from the full equation and continuing to keep
∂f1/∂ψh, leaves

v||
B

∇ ·
[

B
v||
(v||b + vd)f im

1

]
+ vd · ∇ψh|im ∂(f0 + f nc

1 )

∂ψh
= C{f0 + f im

1 } + Sδ(v − v0)

4πv2
,

(5.7)

where the ash sink is implicit as ∇v · (vv−3f0) →
v→0

−4πδ(v)f0(ψ, v= 0) and
∫

d3vδ(v) = 1.

Departures from a QS magnetic field are assumed to satisfy stellarator symmetry. Upon
Fourier decomposition they may be written as proportional to cos(mϑ − nζ ) with m �= M
and n �= N. As a result, the non-QS drive terms are proportional to sin(mϑ − nζ ), where

χ ≡ mϑ − nζ = [(mN − nM)α + (m − qn)η]/(M − qN). (5.8)

Then f im
1 is the portion of f1 periodic in α such that 〈f im

1 〉α = 0, 〈∂f im
1 /∂α〉α = 0

and 〈vd · ∇ψh|im/v||b · ∇η〉α = 0 (recall b · ∇η ∝ B). Consequently, writing out the
divergence on the left of (5.7) in ψh, η, α variables, dividing by v||b · ∇η, and averaging
over α as in (5.1), leaves

1∮
dα

∂

∂ψh

∮
dα

f im
1 vd · ∇ψh|im
v||b · ∇η

+ ∂

∂η

〈
f im
1 (v||b + vd) · ∇η

v||b · ∇η
〉
α

=
〈

C{f0}
v||b · ∇η

〉
α

+
〈

Sδ(v − v0)

4πv2v||b · ∇η
〉
α

, (5.9)

where for narrow collisional boundary layers 〈B−1v−1
|| C{f im

1 }〉α 
 B−1v−1
|| C{〈f im

1 〉α} = 0 is
assumed.
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A final simplification follows by integrating η over a full bounce for the trapped and
over a fixed α path for which η changes by 2π for the passing. Periodicity in η is then used
to obtain the QL equation to evaluate f0 once the solution f im

1 is found, namely,

1∮
dα

∂

∂ψp

∮
dα
∮
α

dηf im
1 vd · ∇ψp|im
v||b · ∇η =

〈∮
α

dηC{f0}
v||b · ∇η

〉
α

+ Sδ(v − v0)

4πv2

〈∮
α

dη
v||b · ∇η

〉
α

.

(5.10)

The subscript on the integral is a reminder that it is performed at fixed α. This QL equation
for f0 implies that depletion due to strong ψp variation of f im

1 vd · ∇ψp|im caused by α
variation can alter the alpha distribution function for large enough departures from QS.
The radial transport term on the left must remain unimportant to control alpha particle
losses in a stellarator.

Subtracting the α average of (5.7) from the full equation yields the f im
1 equation

(v||b + vd) · ∇η∂f im
1

∂η
+ vd · ∇α∂f im

1

∂α
+ vd · ∇ψh|nc

∂f im
1

∂ψh
− C{f im

1 } + vd · ∇ψh|im ∂f0

∂ψh


 v||b · ∇η
〈
vd · ∇ψh|im
v||b · ∇η

∂f im
1

∂ψh

〉
α

− vd · ∇ψh|im ∂f im
1

∂ψh
,

(5.11)

where ∂f nc
1 /∂ψh � ∂f0/∂ψh is assumed. In a standard QL treatment the terms on the

right side of this equation are ignored. The neglect corresponds to an assumption that
the departure from QS is small. Therefore, only the remaining linear equation,

(v||b + vd) · ∇f im
1 − C{f im

1 } = −vd · ∇ψh|im ∂f0

∂ψh
= v|| B

∂

∂α

(v||
Ω

) ∂f0

∂ψp
, (5.12)

is to be solved. The passing alphas trace out flux surfaces and, as v||b · ∇f im
1 � vd ·

∇f im
1 � C{f im

1 } for all passing particles, little to no transport occurs. The trapped alphas are
unable to trace out flux surfaces. Moreover, the tangential drift in a flux surface is known
to change sign at some pitch angle. Consequently, it is these trapped alphas that give the
dominant contribution to the radial transport. Therefore, the next task is to further simplify
this kinetic equation for the trapped alphas by using the unperturbed QS trajectories on the
left side based on the approximations already outlined.

6. Formulation of the linearized drift kinetic equation for nearly QS stellarators

As the unperturbed QS trajectories are adequate on the left side, (v||b + vd) · ∇ψ∗ = 0
is used there. Then, to retain radial drift departures from QS it is convenient to use the
variables ψ∗, η and

α∗ ≡ ζ − q∗ϑ = ζ− � ι−1
∗ ϑ, (6.1)

along with E and μ, with q∗ = q∗(ψ∗), q = q(ψh) and dψh = (M − qN) dψp. Using (3.12)

ωα ≡ (v||b + vd) · ∇α∗ = vd · ∇ζ − q∗vd · ∇ϑ − (q∗ − q)v||b · ∇ϑ


 Bv||
(qI + G)

[
∂

∂ψp

(
Gv||
Ω

)
+ q

∂

∂ψp

(
Iv||
Ω

)
+ Ihv||
(M − qN)Ω

∂q
∂ψp

− (M − qN)
∂

∂η

(
Khv||
Ω

)]
,

(6.2)
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where magnetic shear effects are retained (unlike Catto 2019b), and q∗vd · ∇ϑ 
 qvd · ∇ϑ
and

q∗ 
 q(ψh)+ (ψ∗ − ψh)∂q/∂ψh = q(ψh)− IhΩ
−1v||∂q/∂ψh, (6.3)

are employed. Using α∗ instead of α removes the awkward secular term ϑvd · ∇q �= 0
as ϑ(v||b + vd) · ∇q∗ = 0 in ωα. Consequently, the drift kinetic equation for the trapped
alphas with finite orbit effects retained becomes

v||b · ∇η∂f im
1

∂η
+ ωα ∂f im

1

∂α∗
− C{f im

1 } 
 v|| B
∂

∂α

(v||
Ω

) ∂f0

∂ψp
= −v

2

Ω

(
1 − λB

2B0

)
∂B
∂α

∂f0

∂ψp
,

(6.4)

where the drift correction to the streaming term is neglected as small and now

f im
1 = f im

1 (ψ∗, η, α∗, v, λ). (6.5)

For alphas the electrostatic potential is unimportant and it is convenient to introduce the
pitch angle variable

λ = 2μB0/v
2, (6.6)

with
B2

0 = 〈B2〉, (6.7)

so that
v2

|| = v2(1 − λB/B0). (6.8)

As the drive term due to the departure from QS is small and parallel streaming dominates
the left side of the equation, to lowest order ∂f im

1 /∂η = 0. Letting f im
1 = f̄ im

1 + f̃ im
1 with

∂ f̄ im
1 /∂η = 0 and f im

1 (ψp, α, v, λ) � f̃ im
1 , the next order equation is

v||b · ∇η∂ f̃ im
1

∂η
+ ωα ∂ f̄ im

1

∂α∗
− C{f̄ im

1 } 
 v||B
∂

∂α

(v||
Ω

) ∂f0

∂ψp
, (6.9)

where the distinction between α∗ and α no longer matters to the requisite order, collisions
are weak and v||b · ∇η � ωα is assumed.

To annihilate the streaming term integration along the characteristics associated with
the alpha trajectories at fixed α is employed by defining the total trajectory derivatives
using

dη(τ)/dτ = v||b · ∇η 
 v||(M − qN)B/qI, (6.10)

with η(τ = 0) = η and η(τ0) = 0 at the closed minimum B contour of the lowest order
QS magnetic field (recall that unperturbed QS trajectories are being used on the left side
of the kinetic equation). Transit or bounce averaging over a full bounce for the trapped
alphas leads to the reduced kinetic equation(∮

α

dτωα

)
∂ f̄ im

1

∂α∗
−
∮
α

dτC
{
f̄ im
1

} 
 qI
M − qN

∂

∂α

(∮
α

dηv||
Ω

)
∂f0

∂ψp
, (6.11)

where qI � G is employed and the transit average subscript is a reminder to hold α fixed.
The usual superbanana plateau resonance and

√
ν behaviour occurs for the trapped when∮

α
dτωα changes sign and near the passing boundary, respectively. Consequently, trapped

particle contributions to transport will always occur.
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12 P.J. Catto, E.A. Tolman and F.I. Parra

From here on the focus is on evaluating the superbanana plateau and
√
ν transport

for the trapped alphas. To proceed analytically it is convenient to assume a large aspect
ratio stellarator by using the approximations Bt 
 B0 and I 
 RB0, where B0 is a constant
equal to the lowestorder toroidal magnetic field while the constant R is the nominal major
radius. Then, to lowest order, ψt 
 B0a(r), where a = a(r) is the area enclosed by the
flux surface labelled by r, and ∂/∂ψp = q∂/∂ψt 
 (q/B0a′)∂/∂r with a′ = da/dr ∼ r and
a2 ∼ r2. Using G/qI � 1, NG � MI and Ω0 ≡ ZeB0/Mαc,

ωα + v||b · ∇η ∂
∂η

(
Khv||
Ω

)


 B0

2Ω0

[
∂v2

||
∂ψp

+ 2Ihv
2
||

(M − qN)Iq
∂q
∂ψp

]

 q

2Ω0a′

[
∂v2

||
∂r

+ 2M v2
||

(M − qN)q
∂q
∂r

]
. (6.12)

Continuing to assume large aspect ratio by taking

B = B0

[
1 − ε cos(Mϑ − Nζ )+

∑
m,n

δn
m cos(mϑ − nζ )

]
, (6.13)

with 1 � ε 
 r/R � δn
m, and

∑
denoting the sums over n �= N ≥ 0 and m �= M ≥ 0

(n = N and m �= M or n �= N and m = M represent field departures from QS). Then

∂B
∂α

= −B0

∑
m,n

mN − nM
M − qN

δn
m sinχ. (6.14)

For the unperturbed QS trajectories using B 
 B0(1 − ε cos η) gives

ωα 
 qv2

2Ω0Ra′

[
λ cos η + 2sM

(M − qN) ε
(1 − λ+ λε cos η)

]
− v||b · ∇η ∂

∂η

(
Khv||
Ω

)
,

(6.15)

with the magnetic shear defined as

s ≡ a′∂q
q∂r

. (6.16)

To evaluate the transit averages it is convenient to define

ξ = v||/v =
√

1 − λB/B0 =
√

1 − λ(1 − ε cos η), (6.17)

and use the QS trapped results by letting sin(η/2) = κ sin x to find

∮
α

dη/ξ = 8(2ελ)−1/2
∫ π/2

0
dx/

√
1 − κ2sin2x

= 8(2ε)−1/2
√

1 − ε + 2εκ2K(κ) 
 8(2ε)−1/2K(κ), (6.18)∮
α

dηξ = 8
√

2εκ2

√
1 − ε + 2εκ2

∫ π/2

0

dxcos2x√
1 − κ2cos2x


 8
√

2ε[E(κ)− (1 − κ2)K(κ)],

(6.19)
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and ∮
α

dη cos η/ξ = 8(2ελ)−1/2
∫ π/2

0
dx
(1 − 2κ2sin2x)

(1 − κ2sin2x)
1/2

= 8(2ε)−1/2
√

1 − ε + 2εκ2[2E(κ)− K(κ)], (6.20)

where κ2 = [1 − (1 − ε)λ]/2ελ. Then b · ∇η 
 (M − qN)/qR leads to
∮

t dτξ 

2πqR/|M − qN|v,

τt =
∮
α

dτ =
∮
α

dη
v|||b · ∇η| 
 qR

|M − qN|v
∮
α

dη
ξ


 8qRK(κ)

|M − qN|v√2ε
, (6.21)

and∮
α

dτωα =
∮
α

dηωα(η)
v|||b · ∇η|


 4q2v

|M − qN|Ω0a′√2ε

{
2E(κ)− K(κ)+ 4sM

M − qN
[E(κ)− (1 − κ2)K(κ)]

}
.

(6.22)

In the absence of shear and a radial electric field a superbanana plateau resonance
(
∮
α

dτωα = 0) occurs at 2E = K (Shaing, Sabbagh & Chu 2009; Catto 2019b),
corresponding to κ2 
 0.83. In a tokamak, s> 0 moves the resonance closer to the
trapped–passing boundary. Stellarators tend to have weaker shear but can have s> 0
or s< 0. Shear is unimportant in QPS stellarators (M = 0), while for QAS and QHS
stellarators the limiting forms of the trapped tangential drift follow from

2E(κ)− K(κ)+ 4sM
M − qN

[E(κ)− (1 − κ2)K(κ)]

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
π

[
1 −

(
1 + 4sM

qN − M

)
κ2/2

]
/2 κ2 � 1

−�n(4/√1 − κ2)+ 2
(

2sM
M − qN

+ 1
)

κ2 → 1
. (6.23)

Magnetic shear tends to be weak or modest in a stellarator, keeping q between any
lower rational surfaces (M ∼ 1 ∼ N). A deeply trapped κ2 � 1 resonance is less likely
as it requires 4sM/(qN − M) � 1 and often M = 1 (Landreman & Paul 2022). More
importantly, the resonance as κ2 → 1 is exponentially sensitive to even modest shear and
leads to shear reduction factor γ to be introduced in the next section that also appears in
(1.2). It is these barely trapped alphas that give a superbanana plateau resonance when

1 − κ2
res = 16 e−4−8sM/(M−qN) = 16/γ � 1, (6.24)

although (6.24) is less accurate for s = 0. To keep 1 − κ2
res � 1 requires either s> 0 for

M> qN, or s< 0 for M< qN. In addition, as sM/(M − qN) > 0 increases the resonance
moves even closer to the passing boundary, merging the superbanana plateau and

√
ν

transport regimes. The behaviour when the two regions merge is the focus of much of
the remaining sections, with only QAS (with N = 0 and s> 0) and QHS stellarators (with
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14 P.J. Catto, E.A. Tolman and F.I. Parra

sM/(M − qN) > 0) of interest as the resonance for QPS stellarators is insensitive to shear.
These are two QS configurations recently shown by Landreman & Paul (2022) to offer the
possibility of good alpha confinement.

The form of the kinetic equation for the trapped alphas suggests a solution of the form

f im
1 = Im

∑
m,n

hn
m(ψp, v, λ) ei((mN−nM)/(M−qN))α, (6.25)

where ∂hn
m/∂η = 0, which leads to

ihn
m

∮
α

dτωα = M − qN
mN − nM

∮
α

dτC{hn
m} + Mαcv2

Ze

(
1 − λ

2

)
∂f0
∂ψh

δn
m

∮
α

dτ ei((m−qn)/(M−qN))η(τ)].

(6.26)
Next, the solution of (6.26) is given when the superbanana plateau and

√
ν regimes merge.

7. Merged solution for the trapped alphas in nearly QS stellarators

In the presence of shear, superbanana plateau and
√
ν transport collisions only matter

in narrow layers near the trapped–passing boundary. Consequently, in (6.26)

ω̄α ≡
∮
α

dτωα∮
α

dτ
→
κ→1

−qv2

2Ω0Ra′

{
1 − 2[1 + 2sM/(M − qN)]

�n(4/
√

1 − κ2)

}
, (7.1)

where ∂ω̄α/∂λ = (∂κ2/∂λ)∂ω̄α/∂κ
2 →
κ→1

−qv2[1 + 2sM/(M − qN)]/4Ω0a′r(1 − κ2)�n2

(4/
√

1 − κ2) is responsible for the sensitivity to magnetic shear that enters via the shear
reduction factor

γ ≡ e4+8sM/(M−qN) � 1. (7.2)

As only pitch angle scattering need be retained in the collision operator in (6.26),

C{hn
m} → 2v3

λB0

τsv5B
v||
∂

∂λ

(
λv||
∂hn

m

∂λ

)
, (7.3)

gives∮
α

dτC{hn
m}∮

α
dτ

→ 2v3
λB0

τsv3
∮
α

dτ
∂

∂λ

[
λ

(∮
α

dτ
ξ 2

B

)
∂hn

m

∂λ

]


 4εv3
λ

τsv3K(κ)
∂

∂λ

{
[E(κ)− (1 − κ2)K(κ)]

∂hn
m

∂λ

}
→
κ→1

v3
λ

4ετsv3�n(4/
√

1 − κ2)

∂2hn
m

∂κ2
.

(7.4)

In addition, the phase factor in the drive term of (6.26), which enters as

Θ ≡
∮
α

dτ ei((m−qn)/(M−qN))η(τ)/

∮
α

dτ 

∮
α

dηξ−1 ei((m−qn)/(M−qN))η/

∮
α

dηξ−1, (7.5)

can be taken to be approximately equal to one as long as 2π(m − qn)/(M − qN) < 1.
Keeping Θ allows the recovery of ripple modifications in a tokamak (M = 1, N = 0, n �
1 ∼ m).
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Using the preceding simplifies (6.26) to

i(nM − mN)qv2

2(M − qN)Ω0Ra′

[
1 − �n(

√
γ )

�n(4/
√

1 − κ2)

]
hn

m − v3
λ

4ετsv3�n(4/
√

1 − κ2)

∂2hn
m

∂κ2


 (mN − nM)
(M − qN)

B0δ
n
mv

2

2Ω0

∂f0

∂ψp
Θ.

(7.6)

To consider the merged trapped regime it is convenient to first rewrite the kinetic equation
by introducing the new variable

ς = (1 − κ2)/16 
 (1 − κ)/8, (7.7)

to obtain
1

�n(ς)
∂2hn

m

∂ς 2
+ i2W

[
1 + �n(γ )

�n(ς)

]
hn

m = 2V, (7.8)

where

W ≡ 32q(nM − mN)ετsv
5

(M − qN)v3
λΩ0Ra′ , (7.9)

and

V ≡ −32(nM − mN)B0εδ
n
mτsv

5

(M − qN)Ω0v
3
λ

∂f0

∂ψp
Θ. (7.10)

As ς → 0, hn
m → −iV/W, provided �n(1/ς)� �n(γ ). However, a solution is required

that vanishes at the trapped–passing boundary. An approximate matched asymptotic
solution in

√
ν regime is given by (Catto 2019a)

hn
m

∣∣√
ν 
 iV

W
[e−(1±i)ς

√|W|�n(1/ς) − 1] 
 iV
W

[e−(1±i)ς
√

|W|�n(|W|1/2) − 1], (7.11)

with the upper (lower) sign for W > 0 (W < 0) and where the
√
ν boundary layer width is

w√
ν ∼ |W|−1/2 � 1. (7.12)

To carefully capture the preceding features in a merged superbanana plateau and
√
ν

evaluation and demonstrate that the two contributions are additive, an expansion in
the vicinity of γ ς = 1 is employed by writing �n(γ ς) 
 (γ ς − 1)+ · · · to be able
to consider κ2 
 1 − 16/γ close to one when γ � 1. Then letting x = γ ς the kinetic
equation can be approximated by

∂2hn
m

∂x2
+ i

2W
γ 2
(x − 1)hn

m = −2V
γ 2
�nγ. (7.13)

This merged limit is the situation of interest and x = γ ς ∼ 1 implies that ς = (1 −
κ2)/16 ∼ 1/γ , giving ∂ω̄α/∂λ→

κ→1
−qv2γ /64Ω0a′r�n(γ ) ∼ ω̄αγ /ε�n(γ ) ∼ ω̄αγ /ε, as

used to obtain estimate (1.2). Using this estimate for the merged case for which the
superbanana plateau boundary layer extends to the trapped–passing boundary gives
C{hn

m} ∼ νhn
m/w

2
sbp ∼ ω̄αγ ε

−1wsbphn
m, and a width wsbp ∼ (ν/γωα)

1/3 � 1, where ν ∼
v3
λ/εv

3
0τs ∼ ναi/ε is the effective pitch angle scattering frequency of the trapped alphas
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with the background ions. This width becomes narrower than the
√
ν boundary layer width

w√
ν ∼ (ν/ωα)

1/2 � 1 when shear becomes strong, that is when γ > (ωα/ν)1/2.
Letting

z = ±(2|W|)1/3
γ 2/3

(x − 1) = ± x − 1
γwsbp

, (7.14)

with the upper (lower) sign for W > 0 (W < 0) and wsbp the superbanana plateau boundary
layer width, more precisely defined as

wsbp = 1/|2Wγ |1/3 � 1, (7.15)

leads to the Su & Oberman (1968) form

∂2hn
m

∂z2
+ izhn

m 
 − 2V�n(γ )
(2|W|γ )2/3 = −2Vw2

sbp�n(γ ). (7.16)

As W ∼ ωα/ν, this more precise definition of wsbp is consistent with the rougher estimates.
The superbanana plateau solution is

hn
m|sbp = 2V�n(γ )

(2|W|γ )2/3
∫ ∞

0
dτ eizτ−τ 3/3 →

|z|�1

i2V�n(γ )
(2|W|γ )2/3z

. (7.17)

The resonance γ ς = x = 1 remains near the trapped–passing boundary as long as
16/γ � 1, a condition that is marginally satisfied even for s = 0. Using (7.12) and (7.15)
gives

wsbp/w√
ν ∼ |W|1/6/γ 1/3, (7.18)

indicating wsbp will become smaller than w√
ν as the shear becomes stronger.

To estimate the magnetic shear level at which the narrow boundary layer treatment fails
consider a D-T plasma with v0 
 1.3 × 109 cm sec−1, R = 10 m, B = 10 T, T = 10 keV and
ne = 1014 cm−3, to find τs 
 0.6 sec, ρ0 
 1 cm, v0τs/R ∼ 106, R/ρ0 ∼ 103, R/a = 10 and
v0/vλ ∼ 3. These parameters give |W| ∼ 106 if |(nM − mN)/(M − qN)| ∼ 1, indicating
that, for γ ∼ 103, the boundary layers are of comparable width. For the modest shear
(0 < sM/(M − qN) < 1) case of interest here, w√

ν < wsbp � 1. Once γ � |W|1/2, the
superbanana plateau regime gives negligible transport.

The merged regime solution about to be presented is valid when 1 � γ � (ωα/ν)
1/2. It

is obtained by adding the appropriate homogeneous solution to the Su & Oberman (1968)
form to make the total solution vanish at the trapped–passing boundary. To do so it is
convenient to consider

∂2Υ/∂z2 + izΥ = −1, (7.19)

then the merged solution is given by

hn
m = 2V�n(γ )

(2|W|γ )2/3Υ = −q−1δn
m�n(γ )B0Ra′ ∂f0

∂ψp

ΘW
u|W|Υ, (7.20)

with
u = γ /(2|W|γ )1/3 = γwsbp. (7.21)

A particular solution to this inhomogeneous Airy equation is the Su & Oberman form,

ΥSO =
∫ ∞

0
dτ eizτ−τ 3/3 →

|z|�1
i/z. (7.22)
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FIGURE 1. The solution for Υ given by (7.28) is plotted for various values of the shear reduction
factor γ . The Υ√

ν contribution from the truncated tail is small and nearer κ = 1, while the larger
ΥSO feature moves toward the trapped–passing boundary and narrows as γ increases.

For the homogenous solutions it is convenient to use Airy functions by letting y = iz to
obtain

∂2Υ/∂y2 − yΥ = 1. (7.23)

Then the convenient homogenous solutions are Ai( y) and Ai( y e−i2π/3) for large z> 0
(upper sign) and Ai( y) and Ai( y ei2π/3) for z< 0 with -z large (lower sign) (Abramowitz &
Stegun 1964). Asymptotically these give

Ai( y) = Ai(±z e±iπ/2) ∝ e−2 e±i3π/4(±z)3/2/3 → ∞, (7.24)

while for z> 0 with |z| � 1

Ai( y e−i2π/3) = Ai(z e−iπ/6) ∝ e−2 e−iπ/4z3/2/3 → 0, (7.25)

and for z< 0 with |z| � 1

Ai( y e−i2π/3) = Ai(−z eiπ/6) ∝ e−2 e−iπ/4(−z)3/2/3 → 0. (7.26)

Consequently, the solution vanishing for the barely trapped alphas is

Υ = ΥSO(z)+ aAi(±z e∓iπ/6), (7.27)

where the constant a is determined by the need to satisfy Υ (z = ∓1/u) = 0 at the
trapped–passing boundary. Hence, once the two regimes merge

Υ = ΥSO(z)− ΥSO(z = ∓1/u)Ai(±z e∓iπ/6)/Ai(− e∓iπ/6/u) ≡ ΥSO(z)+ Υ√
ν(z), (7.28)

is the solution from which the QL diffusivity and alpha heat flux can be evaluated, with
Υ√

ν(z) the homogenous contribution needed to satisfy the trapped–passing boundary
condition. The solution Υ in figure 1 shows the Υ√

ν contribution from the truncated
tail nearer κ = 1 is small and the larger ΥSO feature moves toward the trapped–passing
boundary and narrows as γ increases.
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8. The QL alpha diffusivity in nearly QS stellarators

At large aspect ratio the QL equation (5.10) for f0 becomes

Sδ(v − v0)

4πv2
+ 1
τsv2

∂

∂v
[(v3 + v3

c )f0] + 2v3
λ

τsv3
∮
α

dηξ−1

∂

∂λ

[
λ(

∮
α

dηξ)
∂f0

∂λ

]



∂

∂ψp

[
qR
〈∮
α

dηξ−1f im
1 vd · ∇ψp|im

〉
α

]
qR
∮
α

dηξ−1
,

(8.1)

where the sink term is contained in v3
c

∫
d3vv−2∂f0/∂v →

v→0
−4πv3

c f0(ψ, v = 0).

To evaluate the diffusivity in the QL equation for f0 and the alpha energy flux, the
remaining angle integral is performed by first using λ 
 1 and

2〈ei(mN−nM)α/(M−qN) sinχ〉α = i e−i(m−qn)η/(M−qN), (8.2)

to find〈∮
α

dηξ−1f im
1 vd · ∇ψp|im

〉
α


 v2

2Ω0
Im
∑
m,n

hn
m

∮
α

dηξ−1

〈
ei(mN−nM)α/(M−qN) ∂B

∂α

〉
α


 −B0v
2

2Ω0
Im
∑
m,n

hn
m

∑
m′,n′

m′N − n′M
M − qN

δn′
m′

∮
α

dηξ−1〈ei(mN−nM)α/(M−qN) sinχ ′〉α


 −B0v
2

4Ω0
Im
∑
m,n

ihn
m

mN − nM
M − qN

δn
mΘ

∗
∮
α

dηξ−1,

(8.3)

where only mϑ − nζ in χ ′ = m′ϑ − n′ζ contributes.
Inserting hn

m with u = γwsbp, (8.3) becomes

〈∮
α

dηξ−1f im
1 vd · ∇ψp|im

〉
α

= �n(γ )a′v2

4qΩ0|M − qN|

[∑
m,n

|mN − nM|(δn
m)

2|Θ|2 ReΥ
u

]
B2

0R
∂f0
∂ψp

∮
α

dη
ξ
.

(8.4)

The delta function behaviour of ΥSO occurs upon integration over pitch angle λ (Catto &
Tolman 2021). Using

γReΥSO

32πuε
= γ

32πuε

∫ ∞

0
dτ e−τ 3/3 cos(zτ), (8.5)

with dλ 
 −2ε dκ2 and γ dκ2 
 −16u dz gives

γ

32πuε

∫ 1/(1−ε)

1/(1+ε)
dλReΥSO 
 1

π

∫ ∞

0

dτ
τ

e−τ 3/3
∫ (γ−16)/16γwsbp

−1/γwsbp

dz
d
dz

sin(zτ) 
 1, (8.6)

due to the superbanana or resonant plateau contribution.

https://doi.org/10.1017/S0022377822001301 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001301


Merging of the superbanana plateau 19

Using ∂/∂ψp 
 (q/B0a′)∂/∂r and ε 
 r/R, and defining the spatial diffusivity

D ≡ q�n(γ )v2

4εΩ0|M − qN|

[∑
m,n

|nM − mN|(δn
m)

2|Θ|2 ReΥ
γwsbp

]
, (8.7)

the QL equation (5.10) becomes

Sδ(v − v0)

4πv2
+ 1
τsv2

∂

∂v
[(v3 + v3

c )f0] + 2v3
λ

τsv3
∮
α

dηξ−1

∂

∂λ

[
λ(

∮
α

dηξ)
∂f0

∂λ

]


 − 1
| ∮
α

dηξ−1|a′
∂

∂r

(
D|
∮
α

dηξ−1|r∂f0

∂r

)
,

(8.8)

where
∮
α

dηξ/
∮
α

dηξ−1 = 2ε[E(κ)− (1 − κ2)K(κ)]/K(κ) and
∮
α

dηξ−1 ∝ ε−1/2.
In addition to retaining alpha birth and slowing down (including the ash sink) on the

left, the preceding QL equation retains the radial loss of alphas on the right. The strong
dependence of the spatial diffusivity on pitch angle allows pitch angle scattering to enter
on the left side of (8.8). Notice that D ∝ v2 implies that radial loss becomes negligible at
low speed where f0 becomes isotropic.

Negative definite entropy production is associated with both the radial transport and
pitch angle scattering terms as multiplying by �nf0|

∮
t dηξ−1| and integrating over velocity

space and cross section da 
 dra′ out to some reference flux surface label r0 leads to the
expression

∫
d3v

∫ r0

0
dr�nf0

{
∂

∂r

[
D|
∮
α

dηξ−1|r∂f0

∂r

]
+ 2a′v3

λ

τsv3
∮
α

dηξ−1

∂

∂λ

[
λ(

∮
α

dηξ)
∂f0

∂λ

]}

= −
∫

d3v

∫ r0

0

dr
f0

[
rD|

∮
α

dηξ−1|
(
∂f0

∂r

)2

+ 2a′v3
λλ

τsv3
|
∮
α

dηξ |
(
∂f0

∂λ

)2
]
.

(8.9)

The entropy production is associated with the alphas attempting to remove radial and pitch
angle gradients to become the slowing down distribution function of (4.12) as implied by
the remaining source and drag terms in (8.8).

9. The QL alpha heat flux in nearly QS stellarators

The heat flux evaluation involves performing velocity space integrals in addition to the
angle integral evaluated in the last section. Rewriting

〈∫
d3vf im

1 v
2vd · ∇ψp|im

〉


∫ v0

0
dvv4

∫ 1/(1−ε)

1/(1+ε)
dλ
〈∮

t

dη
ξ

f im
1 vd · ∇ψp|im

〉
α

= B0R�n(γ )
4Ω0(M − qN)

∑
m,n

[
(mN − nM)(δn

m)
2
∫ v0

0
dvv6 ∂f0

∂r

∫ 1/(1−ε)

1/(1+ε)
dλ
(

ReΥ
w

)
(

∮
t
dηξ−1)|Θ|2

]
,

(9.1)

where
∮

dη = 2π . To simplify further recall that the superbanana plateau resonance
is at γ ς = 1, and the

√
ν boundary layer width estimate from (7.11) is ς = (1 −

κ2)/16 ∼ W−1/2, while the superbanana plateau boundary layer width estimate is ς =
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(1 − κ2)/16 ∼ γ −1. As these small ς are very close to the trapped–passing boundary they
imply

∮
t
dηξ−1 
 8(2ε)1/2�n

(
4√

1 − κ2

)

 8(2ε)1/2

{
�n(

√
γ ) sbp

�n(W1/4
0 )

√
ν



{∮

t dηξ−1|sbp∮
t dηξ−1|√ν

,

(9.2)
where

W0 ≡ 32q(nM − mN)τsv
5
0

(M − qN)v3
λΩ0R2

> 0. (9.3)

Moreover, the barely trapped (κ → 1) evaluation in Appendix A of Catto (2019b) suggests

|Θ|2 
 cos2

[(
qn − m
M − qN

)
π

] �n2

[
4/
(

1 +
∣∣∣∣ qn − m
M − qN

∣∣∣∣
)√

1 − κ2

]
�n2(4/

√
1 − κ2)


 cos2

[(
qn − m
M − qN

)
π

]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�n2

[√
γ /

(
1 +

∣∣∣∣ qn − m
M − qN

∣∣∣∣
)]

�n2(
√
γ )

sbp

�n2

[
W1/4

0 /

(
1 +

∣∣∣∣ qn − m
M − qN

∣∣∣∣
)]

�n2(W1/4
0 )

√
ν

≡
{

|Θ|2sbp

|Θ|2√
ν

,

(9.4)

then |Θ|2 → 1 as required for |(qn − m)/(M − qN)| � 1, but |Θ|2 < 1 otherwise. When
|(qn − m)/(M − qN)| � 1 the rapid oscillation of the Θ phase factor in (7.5) cannot be
ignored as it acts to reduce the effective step size of a trapped alpha (for a tokamak N = 0,
M = 1 and n � m ∼ 1). Using the preceding approximations indicates the pitch angle
dependence of |Θ|2 and

∮
t dηξ−1 only enters logarithmically and suggests writing〈∫

d3vf im
1 v

2vd · ∇ψp|im
〉


 B0R�n(γ )
4Ω0(M − qN)

∑
m,n

{(mN − nM)(δn
m)

2

[
|Θ|2sbp

∮
t
dηξ−1|sbp

∫ v0

0
dvv6 ∂f0

∂r

∫ 1/(1−ε)

1/(1+ε)
dλ
(

ReϒSO

u

)

+ |Θ|2√
ν

∮
t
dηξ−1|√ν

∫ v0

0
dvv6 ∂f0

∂r

∫ 1/(1−ε)

1/(1+ε)
dλ
(

Reϒ√
ν

u

)]}
,

(9.5)

where defining w√
ν = 1/(2|W|)1/2 leads to u = γwsbp = γ 2/3w2/3√

ν
. The ΥSO term has

already been evaluated in (8.6). For the Υ√
ν term only the large z limit is required giving

γ

32πuε

∫ 1/(1−ε)

1/(1+ε)
dλReΥ√

ν 
 − 1
π

Re
[
ϒSO(z = ∓1/u)
Ai(−e∓iπ/6/u)

∫ γ /16u

−1/u
dzAi(±z e∓iπ/6)

]
. (9.6)

Using the u � 1 asymptotic forms (Abramowitz & Stegun 1964)

Ai(−e∓iπ/6/u) 
 e±iπ/24u1/4 sin[21/2(1 − i)/3u3/2 + π/4]
π 1/2

+ · · · , (9.7)
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and∫ γ /16u

−1/u
dzAi(±z e∓iπ/6) =

∫ γ /16u

0
dzAi(±z e∓iπ/6)+

∫ 1/u

0
dzAi(∓z e∓iπ/6)

= e±iπ/6

[∫ γ e∓iπ/6/16u

0
dtAi(t)±

∫ e∓iπ/6/u

0
dtAi(−t)

]


 e±iπ/6

[
1 ∓ e±iπ/8u3/4 cos[21/2 (1 − i)/3u3/2 + π/4]

π 1/2
+ . . .

]
,

(9.8)

leads to∫ γ /16u
−1/u dzAi(±z e∓iπ/6)

Ai(−e∓iπ/6/u)

 −e±iπ/4u1/2 cot[21/2(1 − i)/3u3/2 + π/4] 
 −ie±iπ/4u1/2.

(9.9)

Therefore, using ΥSO(∓1/u) 
 ∓iu,

γ

32πuε

∫ 1/(1−ε)

1/(1+ε)
dλReΥ√

ν 
 u3/2

21/2π
, (9.10)

and
γ

32πuε

∫ 1/(1−ε)

1/(1+ε)
dλReΥ 
 1 + u3/2

21/2π
. (9.11)

Amazingly, u3/2 = γ /
√

2|W| ∝ τ−1/2
s , and is just the

√
ν regime contribution.

Consequently, the merged procedure formulated here has the virtue of recovering both
the

√
ν and superbanana plateau regimes in a unified and additive manner when u � 1.

Only the u � 1 limit is considered here. Once γ � √
2|W| is satisfied, presumably√

ν transport will dominate since so few trapped alphas experience the tangential drift
resonance.

Inserting the preceding results into the heat flux leads to〈∫
d3vf im

1 v
2vd · ∇ψp|im

〉

 8πB0�n(γ )r
Ω0|M − qN|γ

∑
m,n

{|mN − nM|(δn
m)

2

[
|Θ|2sbp

∮
t
dηξ−1|sbp

∫ v0

0
dvv6 ∂f0

∂r
+ |Θ|2√

ν

∮
t
dηξ−1|√ν

∫ v0

0
dvv6 ∂f0

∂r
u3/2

21/2π

]}
.

(9.12)

Then using the approximation that near the birth speed v3∂f0/∂r 
 (4π)−1∂(Sτs)/∂r,〈
Mαq
2B0r

∫
d3vf im

1 v
2vd · ∇ψp|im

〉

 qv2

0�n(γ )
2Ω0|M − qN|γ

(
Mαv

2
0

2

)∑
m,n

{|mN − nM|(δn
m)

2

[
|Θ|2sbp

∮
t
dηξ−1|sbp + 4γ

3πW1/2
0

|Θ|2√
ν

∮
t
dηξ−1|√ν

]}
∂(Sτs)

∂r
,

(9.13)

where for the slowing down distribution the alpha density is nα 
 Sτs�n(v0/vc).
Importantly, in the presence of magnetic shear with sM/(qN − M) > 0, superbanana
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plateau transport no longer dominates over
√
ν regime transport when γ → W1/2

0 ∼
(ωα/ν)

1/2 as suggested by the estimate of (7.18). The merged solution found here fails in
this limit, but by then superbanana plateau transport is expected to be as small or smaller
than

√
ν transport.

The preceding leads to the heat transport as being the sum of the superbanana plateau
and

√
ν heat diffusivities (Dsbp and D√

ν , respectively)

Dsbp = 32[1 + 2sM/(M − qN)]2qv2
0√

2εΩ0|M − qN| e−4[1+2sM/(M−qN)]
∑
m,n

|mN − nM|(δn
m)

2 |Θ|2sbp,

(9.14)
and

D√
ν = 16[1 + 2sM/(M − qN)]qv2

0

3π
√

2εΩ0|M − qN| �n(W0)
∑
m,n

|mN − nM|(δn
m)

2
|Θ|2√

ν

W1/2
0

, (9.15)

where in some stellarator cases |Θ|2sbp 
 1 and |Θ|2√
ν


 1 may be adequate
approximations in

1
V ′

∂

∂ψp

[
V ′
〈

Mα

2

∫
d3vf1v

2vd · ∇ψp

〉]

 1

a′
∂

∂r

[〈
Mαq
2B0

∫
d3vf1v

2vd · ∇ψp

〉]

= 1
a′
∂

∂r

[
r

Mαv
2
0

2
(Dsbp + D√

ν)
∂(Sτs)

∂r

]
.

(9.16)

The preceding results retain magnetic shear for sM/(qN − M) > 0 with γ ≡
e4+8sM/(M−qN) � 1 and confirm the estimates in the Introduction of

Dsbp ∼ (δn
m)

2qv2
0/γ

√
εΩ0, (9.17)

and

D√
ν/Dsbp ∼ γ /W1/2

0 ∼ (Ω0R/v0)
1/2(v3

λR/v
4
0τs)

1/2 e4+8sM/(M−qN). (9.18)

The general expressions (9.14) and (9.15) indicate that shear can significantly reduce
superbanana plateau transport but has little effect on

√
ν regime transport. As γ ≡

e4+8sM/(M−qN) increases the superbanana plateau boundary layer narrows and the diffusivity
is strongly reduced because of the rapid variation the transit average tangential drift as seen
in (7.1) and noted there. As a result, fewer trapped alphas are able participate in the drift
resonance, thereby reducing the transport. The shear at the edge of a tokamak means that
superbanana transport is unlikely to ever be of concern, and the small ripple makes

√
ν

transport weak as well (Catto 2019a). The
√
ε and q factors found here are consistent with

the shearless limit (Catto 2019b). However, the result here is larger, presumably because
the barely trapped asymptotic limits of the elliptic integrals are used here to treat finite
shear. This last approximation works well for finite shear, but is less accurate in the absence
of shear.

The superbanana plateau diffusivity can be rewritten in an alternate approximate form.
Using the resonance condition κ2

res = 1 − 16/γ in κ2 = [1 − (1 − ε)λ]/2ελ gives the
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resonant pitch angle to be
λres = 1 − (1 − 32γ −1)ε. (9.19)

Then taking advantage of the implicit delta function in ReΥ by letting

ReΥ → 32πuεγ −1δ(λ− λres), (9.20)

this result is used to obtain an approximate superbanana plateau D for the QL operator
(8.8) of the form

D = 8πq�n(γ )v2

Ω|M − qN|γ δ(λ = λres)
∑
m,n

|nM = mN|(δn
m)

2, (9.21)

where |Θ|2 
 1 is also assumed. In this form collisions no longer appear even though
the derivation is based on a collisional boundary layer treatment. The diffusivity can also
be rewritten using δ(λ− λres) = δ(κ − κres)/4ε since dλ 
 −4ε dκ . The absence of an
explicit collisional dependence is characteristic of resonant plateau regime behaviour to
lowest order.

The strong pitch angle dependence of the diffusivity Dsbp means that ignoring the λ
dependence of f0 when evaluating the evaluation of the radial heat transport is not justified
for large departures from QS.

10. Discussion

Superbanana plateau and
√
ν transport of alpha particles in a nearly QS, large aspect

ratio stellarator, having a sheared magnetic field with sM/(M − qN) > 0 is evaluated
by solving a kinetic equation retaining both processes in the same narrow collisional
boundary layer. The radial superbanana plateau alpha energy flux is reduced by magnetic
shear s satisfying sM/(M − qN) > 0, with M and N the integers associated with the
toroidal and poloidal variation of the QS field, respectively, for the QS angle variable
η = Mϑ − Nζ (for which a B contour closes on itself after a 2πN change in ϑ and a
2πM change in ζ ). As M ≥ 0 and N ≥ 0 the shear in a QHS stellarator needs to be
positive for M> qN and negative for M< qN. In a QAS stellarator (N = 0) the shear
must be positive. In a QPS stellarator (M = 0) shear has no significant effect. The
corresponding superbanana plateau and

√
ν energy diffusivities are given by (9.14) and

(9.15), respectively, for a slowing down tail alpha distribution function, with the alpha
energy balance equation given by (9.16). The key new result is the significant reduction of
superbanana plateau transport due to magnetic shear for the cases just enumerated. Shear
acts to move the tangential drift resonance of the alphas very close to the trapped–passing
boundary where the strong pitch angle variation of the drift reduces the number of alphas
that are able to resonate, thereby reducing the transport. Even at modest shear levels it
is possible to substantially reduce superbanana plateau transport. Although the solution
presented here fails in this limit, it suggests that superbanana plateau transport will become
as small or smaller than

√
ν transport at rather modest shear. Similar behaviour is expected

for the background ions when the superbanana plateau and
√
ν regimes merge.

In addition, a QL description of radial alpha particle transport is derived to find (8.8)
with the QL diffusivity given by (8.7). The QL formulation demonstrates how transport
acts to deplete the resonant pitch angle and thereby introduce a pitch angle modification
to the usual isotropic slowing down tail alpha distribution.

As the departure from QS becomes smaller and smaller, the perturbed radial drift
term in the kinetic equation (5.12) can no longer be ignored. Once it matters collisional
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detrapping and retrapping in the wells due to imperfect QS is expected to lead to transport
becoming linear in the collision frequency due to collisional changes in the second
adiabatic invariant. In this superbanana regime the collision operator acts to place a
constraint on how the constants of the drift motion and the first and second adiabatic
invariant dependences are allowed to change the non-Maxwellian features (Hazeltine &
Catto 1981; Shaing 2015; d’Herbemont et al. 2022). The stellarator case is discussed in
detail in this last reference for background ions.

The alpha particle case differs from the background ion case because the magnetic
tangential drift matters rather than the tangential E × B drift. Accounting for this
difference allows an estimate of when a superbanana plateau regime treatment is expected
to remain a valid description. As the trapped alphas drift radially at speed Vr ∼ δωαR into
a different magnetic field the pitch angle of the turning point of the trapped, λ = B0/B,
does not change, but the bounce points change by �r/R ∼ �B/B0 thereby shifting the
trapped–passing boundary λ = 1/(1 + ε) by �λ ∼ �r/R relative to the drift reversal
layer location. Consequently, the nonlinear or finite orbit radial drift term neglected in
(5.12) enters once this boundary change becomes comparable to the boundary layer width,
�λ ∼ wsbp ∼ �r/R. Therefore, the radial and tangential drift terms will compete once

Vr ∂f im
1 /∂r

ωα∂f im
1 /∂α

∼ δωαR/wsbpR
γωαwsbp

∼ δ

γw2
sbp

∼ 1, (10.1)

where ∂f im
1 /∂r ∼ f im

1 /wsbpR and recall that expanding about drift reversal layer near the
trapped–passing boundary gives the estimate ωα → γωαwsbp. As a result, a superbanana
plateau treatment for the alphas using unperturbed trajectories assumes(

ν

ωα

)2/3

∼
(
νR
v0

)2/3(aΩ0

qv0

)2/3

>
δ

γ 1/3
, (10.2)

where shear enters through γ . For the numbers given below (7.18) this requires highly
optimized fields with δ < 10−3 for s = 0 (for which γ 1/3 ∼ 4). When sM/(M − qN) > 0
this requirement is relaxed, while for sM/(M − qN) < 0 it is more stringent (and the
description here begins to fail as γ → 1). In addition, to the preceding, ∂f im

1 /∂r < ∂f0/∂r,
requires f im

1 /f0 ∼ wsbp/ε � 1. Combining this with (10.2) leads to the restriction

(δ/ε)1/2 � (εγ )1/2, (10.3)

further confirming that δ/ε � 1 is required.
Based on the QL (8.8), τsDsbp/a2 must be small to avoid superbanana plateau transport

from becoming a concern. For |Θ|2sbp|mN − nM|/|M − qN| ∼ 1, (9.14) gives the estimate
of (1.2), namely Dsbp ∼ δ2qv2

0/γ ε
1/2 o ∼ δ2ωαRa/γ ε1/2. Using it with the preceding

estimate δ < γw2
sbp and r ∼ a, leads to an estimate of the condition for small alpha loss

while the transport still remains in the superbanana plateau regime(
δ

ε

)1/2
ντs

εγ 1/2
<
τsDsbp

a2
� 1. (10.4)

As ντs/γ
1/2 � 1, as long as (δ/ε)1/2 � 1, then for any reasonable aspect ratio it seems

likely that superbanana plateau alpha transport will remain small. In particular, for
δ ∼ 10−3 and ε ∼ 0.1, large alpha losses are unlikely to be an issue as long as shear is
favourable or unimportant. Indeed, as superbanana plateau transport is always expected to
be larger that superbanana transport, well optimized stellarators are expected to provide
adequate alpha confinement as long as magnetic shear is weak or favourable.
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