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There has been a steady growth in the applications and breadth of in situ transmission electron mi-

croscopy (TEM) since the 1980’s [1]. At that time, the procedures to carry out meaningful experi-

ments were described (e.g. [2]) but it was thought that high voltage TEM and thick specimens were 

required to reproduce bulk behavior. However, in a series of studies, we established that this was 

not necessarily the case and that even high resolution TEM recordings could be made in real time, 

in situ and that the atomic behavior associated with materials reactions at interfaces could be de-

duced (e.g. [3, 4]). Moreover, with the advent of thin film and nanotechnology, the investigation of 

thin and nano-scale materials became a necessity (e.g. [5]). In recent years, there has been an addi-

tional proliferation, most notably from in situ TEM in controlled environments such as in gases and 

liquids (e.g. [1], [6]). 

 

This paper reviews the application of in situ high resolution TEM to investigate material reactions. 

An overarching theme of our work has been to ensure that the in situ studies are truly representative 

of the real behavior of the material system, and we have advanced a number of guidelines to ensure 

this. [3 ,7] Moreover, we have also expanded our approach to environmental material-gas reactions 

such as carbon nanotube (CNT) oxidation [8], hydrogen reactions with molybdenum sulphide cata-

lysts [9] (e.g. Fig.1), oxygen vacancy formation in ceria thin films [10] etc. The influence of the 

imaging electron beam is more important for the gaseous reactions, as the beam ionizes the reacting 

gas species, and it is necessary to develop protocols to take this into account, especially monitoring 

the electron beam dose and dose rate. In some cases this phenomenon can be used to good effect 

[11, 12]. The procedures we have adopted to do this will be described, [13]. 
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Figure 1. High resolution TEM images of amorphous molybdenum sulphide before (a) and after (b) 

hydrogenation in the environmental TEM, showing the formation of crystalline disulphide regions. 

(c) Electron energy loss spectra showing the characteristic sulphur edge for crystalline MoS2 in the 

latter. 
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