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The object of this paper is to prove that the only non-trivial solution in positive integers
of the equation of the title is X = 3, Y = 4.

Substituting x = 2^—1, y = 2Y— 1 gives with a little manipulation

2 -> I A x

r-3
This is of the form

M
2 - 3 U

2 = 1, (1)
where

u = y and v = £ (x2 — 1).
Hence we must have

x2 = l+6y. (2)

Now, all the integral solutions of (1) are given by u = un, v = vn, where n is an integer and

(3)
By (3), we have

«. = — • V» =

where a = 2 + N/3 and 0 = 2-^/3. We easily find from (4), since a+/J = 4, a-/? = 2 /̂3 and
aj?= 1, that

«-„ = «,. (5)

»-»=-»«, (6)

Wm + n = Wm"n + 3umU,,) (7)

m̂ + n = Mm«n + "nfm. (8)

u2n = u2
n+3v2

n=2u2
n-l, (9)

«2» = 2wn"n> (10)

M5n = Mn(16M*-20MB
2 + 5), (11)

vSn = vn(l6ut-l2u2
n + \). (12)

We then have, using (7)-(10), that

»B+2rs»«(mod»r), (13)

yn+2r= -»B(mod«r). (14)
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We have also the following table of values

« wn %

0 1 0
1 2 1
2 7 4
3 26 15
4 97 56
5 362 209
6 1351 780
7 5042 2911
8 18817 10864
9 70226 40545

10 262087 151316.

We note that y is odd and hence u is odd. Thus we have to consider only the even values
of n. The proof is now accomplished in six stages.

(i) (2) is impossible if n = ± 4 (mod 10).

For,

unst>±4(modi>5)

= ±i>4(modi>5), using (6),

= ±56 (mod 209),
whence vn s +1 (mod 11). Then x2 = l±6un = 7 or —5 (mod 11), and since (7/11) = — 1,
(-5/11) = - 1 , (2) is impossible.

(ii) (2) is impossible if n = 8 (mod 10).

For,

vn = u8 = u_2 (mod v5)

= - 4 (mod 209).

However, then l+6i>n= —1 (mod 11) and since ( —1/11) = —1, (2) is impossible,

(iii) (2) is impossible if n = 12 (mod 20).

For,

= -10864 (mod 151316).

Now, 1811151316 and 1 + 6^= - 23 (mod 181). Since (-23/181) = - 1 , (2) is
impossible.

(iv) (2) is impossible if n = 10 (mod 20).

For,

vn= ±«io(m o d"io)

= ±151316 (mod 262087).
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Hence x2 = 1 + 6.151316 (mod 7.37441). That is, either x2 = 907897 (mod 7.37441) or
x2 = -907895 (mod 7.37441). Since (907897/37441) = - 1 and (-907895/7) = - 1 , (2) is
impossible.

(v) (2) is impossible if n = 0 (mod 20), n * 0.

For, if n ^ 0, we may write « = 5.2'(2/+1), where / is an integer, odd or even, and / ^ 2.
That is, n = 5k+2.5k.I, where k = 2'. Then by using (14) / times, we obtain

= ±pt(24i;2+4)(mod

Hence x2 = 1 + 6^(24^ + 4) (mod 144t£ + 36û  +1). First consider

x2 = 1 +6^(24^ + 4) (mod 144uJ + 36t;J+ 1).

Now,

144»!+24«>t+l

12y|+-12t?fc+-l\
"TT2 —r)
I2vi-vk+l )

13

Similarly

(-1/ V 13

Hence

/l±6t^(24u|+4)\ _
j V 13

Now vk = + 4 (mod 13) and so

_
\ 13 )

Hence (2) is impossible.

(vi) (2) is impossible if n = 2 (mod 20), « ^ 2.

For, we can write n = 2+2k.5l, where fc = 2', t ^ 1 and / is an odd integer.
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Using (14) / times, we obtain

vn= -v2(modu5k)

Hence
x2 = -23 (mod uk(l6u£-20ul

= (16«t-20«|+5/23) = (/(

where f(uk) = 16uf - 20w£ + 5.
The residues of uk,f(uk) modulo 23 are periodic and the length of the period is 5. The

following table gives these residues and the signs of (uJ23) and (J(uk)j23).

u 2'

II

= 2
= 3
= 4
= 5
= 6

uk (mod 23)

7
5
3

- 6
2
7

W
- l
- l
+ i
- l
+ i
- l

(mod 23)

- 6

- 3

ff(uk)\
UJ

- 1

- 1

From the above table we see that the congruences x2 = — 23 (mod uk) and x2 = — 23 (mod f(uk))
cannot hold simultaneously. Hence (2) is impossible.

Summarizing the results, we see that (2) can hold for n even, only for n = 0 and n = 2
and these values do indeed satisfy with u= I, v = 0, x = I, y = \, and u = 7, v = 4, x = 5,
y = l. The values x = 1, y = 1 give the trivial solution A' = 1, 7 = 1 while the values x = 5,
j> = 7 give the solution X = 3, y = 4.
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