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We investigate a reaction–diffusion problem in a two-component porous medium with a nonlinear
interface condition between the different components. One component is connected and the other
one is disconnected. The ratio between the microscopic pore scale and the size of the whole domain
is described by the small parameter ε. On the interface between the components, we consider a
dynamic Wentzell-boundary condition, where the normal fluxes from the bulk domains are given
by a reaction–diffusion equation for the traces of the bulk solutions, including nonlinear reaction
kinetics depending on the solutions on both sides of the interface. Using two-scale techniques, we
pass to the limit ε→ 0 and derive macroscopic models, where we need homogenisation results for
surface diffusion. To cope with the nonlinear terms, we derive strong two-scale convergence results.

Keywords: Homogenisation, two-scale convergence, reaction–diffusion equations, nonlinear inter-
face conditions, surface diffusion
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1 Introduction

In this paper, we derive homogenised models for nonlinear reaction–diffusion problems with
dynamic Wentzell-boundary conditions in multi-component porous media. The domain consists
of two components �1

ε and �2
ε , where �1

ε is connected, and �2
ε is disconnected and consists of

periodically distributed inclusions. The small scaling parameter ε represents the ratio between
the length of an inclusion and the size of the whole domain. At the interface �ε between the two
components, we assume a dynamic Wentzell-boundary condition, that is, the normal flux at the
surface is given by a reaction–diffusion equation on �ε . More precisely, this boundary/interface
condition describes processes like reactions, adsorption, desorption and diffusion at the interface
�ε . Further, it takes into account exchange of species between the different compartments, what
can be modelled by nonlinear reaction kinetics depending on the solutions on both sides of �ε .
The aim is the derivation of macroscopic models with homogenised diffusion coefficients for
ε→ 0, the solution of which is an approximation of the microscopic solution. An additional
focus of the paper is to provide general strong two-scale compactness results, which are based
on a priori estimates for the microscopic solution.
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Reaction–diffusion processes play an important role in many applications, and our model is
motivated by metabolic and regulatory processes in living cells. Here, an important example is
the carbohydrate metabolism in plant cells, where biochemical species are diffusing and react-
ing within the (connected) cytoplasm and the (disconnected) organelles (like chloroplasts and
mitochondria) and are exchanged between different cellular compartments. At the outer mito-
chondrial membrane takes place the process of metabolic channelling, where intermediates in
metabolic pathways are passed directly from enzyme to enzyme without equilibrating in the bulk-
solution phase of the cell [32]. This effect can be modelled by the dynamic Wentzell-boundary
condition, see [16, Chapter 4] for more details about the modelling and the derivation of these
boundary conditions, which can be derived by asymptotic analysis.

To pass to the limit ε→ 0 in the variational equation for the microscopic problem, we have to
cope with several difficulties. The main challenges are the coupled bulk-surface diffusion in the
perforated domains, as well as the treatment of the nonlinear terms, especially on the oscillating
surface �ε . To overcome these problems, we make use of the two-scale method in perforated
domains and on oscillating surfaces, where we need two-scale compactness results for diffusion
processes on surfaces. To pass to the limit in the nonlinear terms, we need strong convergence
results. Such results are quite standard for the connected domain, but the usual methods fail
for the disconnected domain. Here we make use of the unfolding method, which gives us a
characterisation for the two-scale convergence via functions defined on fixed domains, and a
Kolmogorov–Simon-type compactness result for Banach-valued function spaces. Additionally,
due to the nonlinear structure of the problem and the weak assumptions on the data, we have to
deal with low regularity for the time derivative.

There exists a large amount of papers dealing with homogenisation problems for parabolic
equations in multi-component porous media. However, results for the connected–disconnected
case for nonlinear problems, especially for nonlinear interface conditions, seem to be rare. In [20]
and [19], systems of reaction–diffusion problems are considered with nonlinear interface condi-
tions. In [20], surface concentration is included and an additional focus lies on the modelling
part of the carbohydrate metabolism and the specific structure of the nonlinear reaction kinetics.
In the present paper, we extend those models to problems including an additional surface diffu-
sion for the traces of the bulk solutions in �1

ε and �2
ε . The stationary case for different scalings

with a continuous normal flux condition at the interface, given by a nonlinear monotone function
depending on the jump of the solutions on both sides, is treated in [14]. There, the nonlinear
terms in the disconnected domain only occur for particular scalings and it is not straightforward
to generalise those results to systems.

A double porosity model, where the diffusion inside the disconnected domain is of order ε2, is
considered in [9, 29] for continuous transmission conditions at the interface for the solutions and
the normal fluxes. In [9], a nonlinear diffusion coefficient is considered, and the convergence of
the nonlinear term is obtained by using the Kirchhoff transformation and comparing the micro-
scopic and the macroscopic equation, where the last one was obtained by a formal asymptotic
expansion. Nonlinear reaction kinetics in the bulk domains and an additional ordinary differen-
tial equation on the interface are considered in [29], where the strong convergence is proved by
showing that the unfolded sequence of the microscopic solution is a Cauchy sequence. A simi-
lar model with different kind of interface conditions is considered in [25], where the method of
two-scale convergence is used and a variational principle to identify the limits of the nonlinear
terms.
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To pass to the limit in the diffusive terms on the interface �ε arising from the Wentzell-
boundary condition, compactness results for the surface gradient on an oscillating manifolds
are needed. For such kind of problems in [4, 22], two-scale compactness results are derived for
connected surfaces, where in [22] the method of unfolding is used. Compactness results for a
coupled bulk-surface problem when the evolution of the trace of the bulk solution on the surface
�ε is described by a diffusion equation are treated in [6, 17]. In [6], continuity of the traces
across the interface is assumed, where in [17] also jumps across the interface are allowed and
also compactness results for the disconnected domain �2

ε are derived. In [6], the convergence
results are applied to a linear problem with a dynamic Wentzell-interface condition. A reaction–
diffusion problem including dynamic Wentzell-boundary conditions and nonlinear reaction rates
in the bulk domain and on the surface is considered in [7] for a connected perforated domain.

In this paper, we start with the microscopic model and establish existence and unique-
ness of a weak solution. The appropriate function space for a weak solution is the space
of Sobolev functions of first order with H1-traces on the interface �ε , which we denote by
Hj,ε for j = 1, 2. To pass to the limit ε→ 0, we make use of the method of two-scale con-
vergence for domains and surfaces, see [2, 3, 26, 28]. For the treatment of the diffusive
terms on the oscillating surface, we use the methods developed in [17] for the spaces Hj,ε .
Those two-scale compactness results are based on a priori estimates for the microscopic solu-
tion depending explicitly on ε. However, to pass to the limit in the nonlinear terms, the
usual (weak) two-scale convergence is not enough and we need strong two-scale convergence,
what leads to difficulties especially in the disconnected domain �2

ε . The strong convergence
is obtained by applying the unfolding operator, see [12] for an overview of the unfolding
method, to the microscopic solution and uses a Kolmogorov–Simon-type compactness result
for the unfolded sequence. We derive a general strong two-scale compactness result that is
based only on a priori estimates and estimates for the difference between the solution and
discrete shifts (with respect to the microscopic cells) of the solution. Since we only take
into account linear shifts, which are not well defined for general surfaces, we use a Banach-
valued Kolmogorov–Simon-compactness result, see [18]. Further, for our microscopic model
we only obtain low regularity results for the time derivative (which is a functional on Hj,ε),
what leads to additional difficulties in the control of the time variable in the proof of the strong
convergence.

This paper is organised as follows: In Section 2, we introduce the geometrical setting and the
microscopic model. In Section 3, we show existence and uniqueness of a microscopic solution
and derive a priori estimates depending explicitly on ε. In Section 4, we prove general strong
two-scale compactness results for the connected and disconnected domain. In Section 5, we
state the convergence results for the microscopic solution, formulate the macroscopic model and
show that the limit of the micro-solutions solves the macro-model. In the Appendix A, we repeat
the definition of the two-scale convergence and the unfolding operator and summarise some
well-known results from the literature.

2 The microscopic model

In this section, we introduce the microscopic problem. We start with the definition of the micro-
scopic domains �1

ε and �2
ε , as well as the interface �ε , and explain some geometrical properties.

Then we state the microscopic equation for given ε and give the assumptions on the data.
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2.1 The microscopic geometry

Let �⊂R
n with Lipschitz boundary and ε > 0 a sequence with ε−1 ∈N. We define the unit

cube Y := (0, 1)n and Y2 ⊂ Y such that Y2 ⊂ Y , so Y2 strictly included in Y . Further, we define
Y1 := Y \ Y2 and � := ∂Y2, and we suppose that � ∈ C1,1. We assume that Y1 is connected and
for the sake of simplicity we also assume that Y2 is connected. The general case of disconnected
Y2 is easily obtained by considering the connected components of Y2, see also Remark 2. Now,
the microscopic domains �1

ε and �2
ε are defined by scaled and shifted reference elements Yj for

j = 1, 2. Let Kε := {k ∈Z
n : ε(k + Y ) ⊂�} and define

�2
ε :=

⋃
k∈Kε

ε(Y2 + k), �1
ε :=� \�2

ε , �ε := ∂�2
ε .

Hence, �ε denotes the oscillating interface between �1
ε and �2

ε . Due to the assumptions on Y1

and Y2 it holds that �1
ε is connected and �2

ε is disconnected, and �ε ∈ C1,1 is not touching the
outer boundary ∂�.

2.2 The microscopic model

We are looking for a solution
(
u1
ε , u2

ε

)
with uj

ε : (0, T) ×�
j
ε →R for j = 1, 2, such that it holds

that

∂tu
j
ε − ∇ · (Dj

ε∇uj
ε

)= f j
ε

(
uj
ε

)
in (0, T) ×�j

ε ,

ε
(
∂tu

j
ε − ∇�ε · (Dj

�ε
∇�εu

j
ε

)− hj
ε

(
u1
ε , u2

ε

) )= −Dj
ε∇uj

ε · ν on (0, T) × �ε ,

−D1
ε∇u1

ε · ν = 0 on (0, T) × ∂�,

uj
ε(0) = uj

ε,i in �j
ε ,

uj
ε |�ε (0) = uj

ε,i,�ε
on �ε ,

(2.1)

where ν denotes the outer unit normal (we neglect a subscript for the underlying domain, since
this should be clear from the context), and uj

ε |�ε denotes the trace of uj
ε on �ε . If it is clear from

the context, we use the same notation for a function and its trace, for example, we just write
uj
ε for uj

ε |�ε . The precise weak formulation of the micro-model above is stated in Section 3, see
(3.2), after introducing the necessary function spaces.

In the following, with Ty� and Tx�ε for y ∈ � and x ∈ �ε we denote the tangent spaces of � at
y and �ε at x, respectively. The orthogonal projection P�(y) : Rn → Ty� for y ∈ � is given by

P�(y)ξ = ξ − (ξ · ν(y))ν(y) for ξ ∈R
n,

where ν(y) denotes the outer unit normal at y ∈ �. Let us extend the unit normal Y -periodically.
Then, the orthogonal projection P�ε (x) : Rn → Tx�ε for x ∈ �ε is given by

P�ε (x)ξ = ξ −
(
ξ · ν

( x

ε

))
ν
( x

ε

)
for ξ ∈R

n.
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Assumptions on the data:
In the following let j ∈ {1, 2}.

(A1) For the bulk diffusion, we have Dj
ε(x) := Dj

(
x
ε

)
with Dj ∈ L∞

per

(
Yj

)n×n
symmetric and

coercive, that is, there exits c0 > 0 such that for almost every y ∈ Yj

Dj(y)ξ · ξ � c0|ξ |2 for all ξ ∈R
n.

(A2) For the surface diffusion, we suppose Dj
�ε

(x) := Dj
�

(
x
ε

)
with Dj

� ∈ L∞
per(�)n×n symmet-

ric and Dj
�(y)|Ty� : Ty�→ Ty� for almost every y ∈ �. Further, we assume that Dj

� is
coercive, that is, there exists c0 > 0 such that for almost every y ∈ �

Dj
�(y)ξ · ξ � c0|ξ |2 for all ξ ∈ Ty�.

(A3) For the reaction rates in the bulk domains, we suppose that f j
ε (t, x, z) := f j

(
t, x
ε
, z
)

with
f j ∈ L∞((0, T) × Yj ×R

)
is Y -periodic with respect to the second variable and uniformly

Lipschitz continuous with respect to the last variable, that is, there exists C> 0 such that
for all z, w ∈R and almost every (t, y) ∈ (0, T) × Yj it holds that

|f j(t, y, z) − f j(t, y, w)|� C|z − w|.

(A4) For the reaction rates on the surface, we suppose that hj
ε(t, x, z1, z2) := hj

(
t, x
ε
, z1, z2

)
with

hj ∈ L∞((0, T) × �×R
2) is Y -periodic with respect to the second variable and uniformly

Lipschitz continuous with respect to the last variable, that is, there exists C> 0 such that
for all z1, z2, w1, w2 ∈R and almost every (t, y) ∈ (0, T) × � it holds that

|hj(t, y, z1, z2) − hj(t, y, w1, w2)|� C
(|z1 − w1| + |z2 − w2|

)
.

(A5) For the initial conditions, we assume uj
ε,i ∈ L2

(
�

j
ε

)
and uj

ε,i,�ε ∈ L2(�ε) with

‖uj
ε,i‖L2

(
�

j
ε

) + √
ε‖uj

ε,i,�ε‖L2(�ε ) � C.

Further, there exist uj
0,i ∈ L2(�) and uj

0,i,� ∈ L2(�) such that

uj
ε,i → uj

0,i in the two-scale sense,

uj
ε,i,�ε

→ uj
0,i,� in the two-scale sense on �ε .

Additionally, we assume that the sequences u2
ε,i and u2

ε,i,�ε
converge strongly in the two-scale

sense. For the definition of the two-scale convergence see Section 4.

3 Existence of a weak solution and a priori estimates

The aim of this section is the investigation of the microscopic problem (2.1). We introduce appro-
priate function spaces and show existence and uniqueness of a microscopic solution. Further, we
derive a priori estimates for the solution depending explicitly on ε. These estimates form the
basis for the derivation of the macroscopic problem (5.7) by using the compactness results from
Section 4.
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3.1 Function spaces

Due to the Laplace–Beltrami operator in the boundary condition in (2.1), it is not enough to
consider the usual Sobolev space H1

(
�

j
ε

)
as a solution space, because we need more regular

traces. This gives rise to deal with the following function spaces for j = 1, 2:

Hj,ε := {φj
ε ∈ H1

(
�j
ε

)
: φj

ε |�ε ∈ H1(�ε)
}

,

Hj := {φ ∈ H1
(
Yj

)
: φ|� ∈ H1(�)

}
,

(3.1)

with the inner products (
φj
ε ,ψ

j
ε

)
Hj,ε

:= (φj
ε ,ψ

j
ε

)
H1
(
�

j
ε

) + ε
(
φj
ε ,ψ

j
ε

)
H1(�ε )

,

(φ,ψ)Hj := (φ,ψ)H1(Yj) + (φ,ψ)H1(�).

The associated norms are denoted by ‖ · ‖Hj,ε and ‖ · ‖Hj . Obviously, the spaces Hj,ε and Hj are

separable Hilbert spaces and we have the dense embeddings C∞(�j
ε

)⊂Hj,ε and C∞(Yj

)⊂Hj,
see [17, Proposition 5]. We also define the space

Lj,ε := L2
(
�j
ε

)× L2(�ε), Lj := L2
(
Yj

)× L2(�)

with inner products (
φj
ε ,ψ

j
ε

)
Lj,ε

:= (φj
ε ,ψ

j
ε

)
L2
(
�

j
ε

) + ε
(
φj
ε ,ψ

j
ε

)
L2(�ε )

,

(φ,ψ)Lj := (φ,ψ)L2(Yj) + (φ,ψ)L2(�),

and again denote the associated norms by ‖ · ‖Lj,ε and ‖ · ‖Lj . Obviously, we have

Hj,ε
∼= {(uε , vε) ∈ H1

(
�j
ε

)× H1(�ε) : uε |�ε = vε
}

,

and a similar result for Hj. Therefore, we have the following Gelfand triples:

Hj,ε ↪→Lj,ε ↪→H
′
j,ε , Hj ↪→Lj ↪→H

′
j.

We will also make use for α ∈ ( 1
2 , 1
]

of the function space

H
α
j := {φ ∈ Hα

(
Yj

)
: φ|� ∈ Hα(�)

}
with inner product

(φ,ψ)Hαj := (φ,ψ)Hα(Yj) + (φ,ψ)Hα (�).

By definition, we have Hj =H
1
j . Obviously, we have the compact embedding Hj ↪→H

α
j for α ∈(

1
2 , 1
)
.

3.2 Existence and uniqueness of a weak solution

A weak solution of Problem (2.1) is defined in the following way: The tuple
(
u1
ε , u2

ε

)
is a weak

solution of (2.1) if for j = 1, 2

uj
ε ∈ L2

(
(0, T), Hj,ε

)∩ H1
(
(0, T), H′

j,ε

)
,
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uj
ε and uj

ε |�ε fulfil the initial condition uj
ε(0) = uj

ε,i and uj
ε |�ε (0) = uj

ε,i,�ε , and for all φj
ε ∈Hj,ε it

holds almost everywhere in (0,T)〈
∂tu

j
ε , φ

j
ε

〉
H

′
j,ε ,Hj,ε

+ (Dj
ε∇uj

ε , ∇φj
ε

)
�

j
ε
+ ε
(
Dj
�ε

∇�εu
j
ε , ∇�εφ

j
ε

)
�ε

= (f j
ε

(
uj
ε

)
, φj

ε

)
�

j
ε
+ ε
(
hj
ε

(
u1
ε , u2

ε

)
, φj

ε

)
�ε

.
(3.2)

Here (·, ·)U stands for the inner product on L2(U), for a suitable set U ⊂R
n and for a Banach

space X and its dual X ′ we write 〈·, ·〉X ′,X for the duality pairing between X ′ and X . The scaling
factor ε for the time derivative in (2.1) is included in the duality pairing 〈·, ·〉H′

j,ε ,Hj,ε
. In fact, if

additionally it holds that ∂tu
j
ε ∈ L2

(
(0, T), H1

(
�

j
ε

)′)
and ∂tu

j
ε |�ε ∈ L2((0, T), H1(�ε)′) with respect

to the Gelfand triples H1
(
�

j
ε

)
↪→ L2

(
�

j
ε

)
↪→ H1

(
�

j
ε

)′
and H1(�ε) ↪→ L2(�ε) ↪→ H1(�ε)′, we get

for all φj
ε ∈Hj,ε〈

∂tu
j
ε , φ

j
ε

〉
H

′
j,ε ,Hj,ε

= 〈∂tu
j
ε , φ

j
ε

〉
H1
(
�

j
ε

)′
,H1
(
�

j
ε

) + ε
〈
∂tu

j
ε |�ε , φj

ε |�ε
〉
H1(�ε )′,H1(�ε )

.

Proposition 1 There exists a unique weak solution uε = (u1
ε , u2

ε

)
of the microscopic prob-

lem (2.1).

Proof This is an easy consequence of the Galerkin method and the Leray–Schauder principle,
where we have to use similar estimates as in Proposition 2 below. The uniqueness follows from
standard energy estimates. For more details see [16]. �

3.3 A priori estimates

We derive a priori estimates for the microscopic solution depending explicitly on ε. These esti-
mates are necessary for the application of the two-scale compactness results from Section 4 to
derive the macroscopic model. In a first step, we give estimates in the spaces L2

(
(0, T), Hj,ε

)
and

H1
(
(0, T), H′

j,ε

)
. Such kind of estimates is also needed to establish the existence of a weak solu-

tion via the Galerkin method. In a second step, we derive estimates for the difference of shifted
microscopic solution with respect to the macroscopic variable. These estimates are necessary for
strong two-scale compactness results in the disconnected domain.

The following trace inequality for perforated domains will be used frequently throughout the
paper and follows easily by a standard decomposition argument and the trace inequality on the
reference element Yj, see also [21, Theorem II.4.1 and Exercise II.4.1]: For every θ > 0, there
exists a C(θ )> 0 such that for every vε ∈ H1

(
�

j
ε

)
it holds that

√
ε‖vε‖L2(�ε ) � C(θ )‖vε‖L2

(
�

j
ε

) + θε‖∇vε‖L2
(
�

j
ε

). (3.3)

Proposition 2 The weak solution uε = (u1
ε , u2

ε

)
of the microscopic problem (2.1) fulfils the

following a priori estimate∥∥∂tu
j
ε

∥∥
L2
(

(0,T),H′
j,ε

) + ∥∥uj
ε

∥∥
L2
(

(0,T),Hj,ε

) � C,

for a constant C> 0 independent of ε.
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Proof We choose uj
ε as a test function in (3) (for j = 1, 2) to obtain with the Assumptions (A3)

and (A4) on f j and hj

1

2

d

dt

∥∥uj
ε

∥∥2

Lj,ε
+ (Dj

ε∇uj
ε , ∇uj

ε

)
�

j
ε
+ ε
(
Dj
�ε

∇�εu
j
ε , ∇�εu

j
ε

)
�ε

= (f j
ε

(
uj
ε

)
, uj
ε

)
�

j
ε
+ ε
(
hj
ε

(
u1
ε , u2

ε

)
, uj
ε

)
�ε

� C

(
1 + ∥∥uj

ε

∥∥2

L2
(
�

j
ε

) + ε
∥∥u1

ε

∥∥2

L2(�ε )
+ ε
∥∥u2

ε

∥∥2

L2(�ε )

)
� C

(
1 + ∥∥u1

ε

∥∥2

L1,ε
+ ∥∥u2

ε

∥∥2

L2,ε

)
.

Using the coercivity of Dj
ε and Dj

�ε
from the Assumptions (A1) and (A2), we obtain for

j = 1, 2

d

dt

∥∥uj
ε

∥∥2

Lj,ε
+ ∥∥∇uj

ε

∥∥2

L2
(
�

j
ε

) + ε
∥∥∇�εu

j
ε

∥∥2

L2(�ε )
� C

(
1 + ∥∥u1

ε

∥∥2

L1,ε
+ ∥∥u2

ε

∥∥2

L2,ε

)
.

Summing over j = 1, 2, integrating with respect to time, Assumption (A5) and the Gronwall
inequality implies the boundedness of

∥∥uj
ε

∥∥
L2
(

(0,T),Hj,ε

) uniformly with respect to ε.

It remains to check the bound for the time derivative ∂tu
j
ε . As a test function in (3.2) we choose

φ
j
ε ∈Hj,ε with

∥∥φj
ε

∥∥
Hj,ε

� 1 to obtain (using the boundedness of the diffusion tensors and again

the growth condition for hj and f j):〈
∂tu

j
ε , φ

j
ε

〉
H

′
j,ε ,Hj,ε

� C
(∥∥u1

ε

∥∥
H1,ε

+ ∥∥u2
ε

∥∥
H2,ε

) ∥∥φj
ε

∥∥
Hj,ε

� C
(∥∥u1

ε

∥∥
H1,ε

+ ∥∥u2
ε

∥∥
H2,ε

)
.

Squaring, integrating with respect to time and the boundedness of uj
ε for j = 1, 2 already obtained

above imply the desired result. �

Next, we derive estimates for the difference of the shifted functions. First of all, we introduce
some additional notations. For h> 0 let us define

�h := {x ∈� : dist(x, ∂�)> h},
Kε,h := {k ∈Z

n : ε(Y + k) ⊂�h},
�ε,h := int

⋃
k∈Kε,h

ε
(
Y + k

)
,

and the related perforated domains and the related surface

�2
ε,h :=

⋃
k∈Kε,h

ε
(
Y2 + k

)
, �1

ε,h :=�ε,h \�2
ε,h, �ε,h := ∂�2

ε,h.

For l ∈Z
n with |lε|< h and Gε,h ∈ {�ε,h,�1

ε,h,�2
ε,h

}
, we define for an arbitrary function vε :

Gε,h →R the shifted function

vl
ε(x) := vε(x + lε),

and the difference between the shifted function and the function itself

δlvε(x) := δvε(x) := vl
ε(x) − vε(x) = vε(x + lε) − vε(x). (3.4)
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Here, in the writing δvε we neglect the dependence on l if it is clear from the context. Further,
we define Hj,ε,h in the same way as Hj,ε in (3.1) by replacing �j

ε and �ε with �j
ε,h and �ε,h. In

the same way, we define Lj,ε,h. Further, for any function φε,h ∈H2,ε,h we write φε,h for the zero
extension to �2

ε . Especially it holds that φε,h ∈H2,ε , since �2
ε is disconnected.

Proposition 3 Let 0< h � 1, then for all l ∈Z
n with |εl|< h, it holds that∥∥δu2

ε

∥∥
L∞((0,T),L2,ε,h)

+∥∥∇δu2
ε

∥∥
L2((0,T),L2,ε,h)

� C

(∥∥δu1
ε

∥∥
L2
(

(0,T),L2
(
�1
ε,h

)) + ∥∥δ(u2
ε,i, u2

ε,i,�ε

)∥∥
L2,ε,h

+ ε

)
,

for a constant C> 0 independent of h, ε, and l.

Proof Let 0< h � 1 and l ∈Z
n with |εl|< h, and we shortly write u2,l

ε :=
(

u2
ε |�2

ε,h

)l
, that is, the

shifts with respect to lε of the restriction u2
ε |�2

ε,h
(we neglect the index h). In the same way,

we define u1,l
ε . Let φε,h ∈H2,ε,h. Then, for x ∈�2

ε \ (�2
ε,h + εl

)
it holds that x − lε /∈�2

ε,h and

therefore φ
−l
ε,h(x) = 0 and similar from x ∈ �ε \ (�ε,h + εl

)
it follows φ

−l
ε,h(x) = 0. This implies for

all ψ ∈ C∞
0 (0, T)

∫ T

0

(
u2,l
ε , φε,h

)
L2,ε,h

ψ ′(t)dt

=
∫ T

0

[∫
�2
ε,h

u2
ε(t, x + lε)φε,h(x)dx + ε

∫
�ε,h

u2
ε(t, x + lε)φε,h(x)dσ

]
ψ ′(t)dt

=
∫ T

0

[∫
�2
ε,h+lε

u2
ε(t, x)φ−l

ε,h(x)dx + ε

∫
�ε,h+lε

u2
ε(t, x)φ−l

ε,h(x)dσ

]
ψ ′(t)dt

=
∫ T

0

[∫
�2
ε

u2
ε(t, x)φ−l

ε,h(x)dx + ε

∫
�ε

u2
ε(t, x)φ−l

ε,h(x)dσ

]
ψ ′(t)dt

=
∫ T

0

(
u2
ε , φ

−l
ε,h

)
L2,ε

ψ ′(t)dt = −
∫ T

0

〈
∂tu

2
ε , φ

−l
ε,h

〉
H

′
2,ε ,H2,ε

ψ(t)dt.

Hence, we have ∂tu2,l
ε ∈ L2

(
(0, T), H′

2,ε,h

)
with

〈
∂tu

2,l
ε , φε,h

〉
H

′
2,ε,h,H2,ε,h

=
〈
∂tu

2
ε , φ

−l
ε,h

〉
H

′
2,ε ,H2,ε

almost everywhere in (0,T). Using φ
−l
ε,h ∈H2,ε as a test function in (3.2), we obtain using the

periodicity of D2, D2
� , f 2 and h2, by an elemental calculation〈

∂tu
2
ε , φ

−l
ε,h

〉
H

′
2,ε ,H2,ε

= − (D2
ε∇u2,l

ε , ∇φε,h
)
�2
ε,h

− ε
(

D2
�ε

∇�εu
2,l
ε , ∇�εφε,h

)
�ε,h

+
(

f 2
ε

(
u2,l
ε

)
, φε,h

)
�2
ε,h

+ ε
(

h2
ε

(
u1,l
ε , u2,l

ε

)
, φε,h

)
�ε,h

.
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Subtracting the above equation for l = 0 and arbitrary l ∈Z
n with |εl|< h we obtain〈

∂tδu
2
ε , φε,h

〉
H

′
2,ε,h,H2,ε,h

+ (D2
ε∇δu2

ε , ∇φε,h
)
�2
ε,h

+ ε
(

D2
�ε

∇�ε δu
2
ε , ∇�εφε,h

)
�ε,h

=
(

f 2
ε

((
u2
ε

)l)− f 2
ε

(
u2
ε

)
, φε,h

)
�2
ε,h

+ ε
(

h2
ε

((
u1
ε

)l
,
(
u2
ε

)l)− h2
ε

(
u1
ε , u2

ε

)
, φε,h

)
�ε,h

.

Choosing φε,h := δu2
ε

(
more precisely we take the restriction of u2

ε to �2
ε,h

)
we obtain with the

coercivity of D2 and D2
� , as well as the Lipschitz continuity of f 2 and h2

1

2

d

dt

∥∥δu2
ε

∥∥2

L2,ε,h
+ c0

∥∥∇δu2
ε

∥∥2

L2,ε,h
� C

⎛⎝∥∥δu2
ε

∥∥2

L2
(
�2
ε,h

) + ε

2∑
j=1

∥∥δuj
ε

∥∥2

L2
(
�ε,h

)⎞⎠
�

2∑
j=1

(
C(θ )

∥∥δuj
ε

∥∥2

L2
(
�

j
ε,h

) + εθ
∥∥∇uj

ε

∥∥2

L2
(
�

j
ε,h

)) ,

for arbitrary θ > 0, where we used the trace inequality (3.3). Choosing θ small enough the gra-
dient term for j = 2 can be absorbed from the left-hand side. Integrating with respect to time,
using the a priori estimates from Proposition 2 for the gradients of u1

ε , as well as the Gronwall
inequality, we obtain the desired result. �

4 Two-scale compactness results

In this section, we prove general strong two-scale compactness results for functions in the space
L2
(
(0, T), Hj,ε

)∩ H1
(
(0, T), H′

j,ε

)
for j ∈ {1, 2} based on suitable a priori estimates. These esti-

mates are fulfilled by the microscopic solution uε = (u1
ε , u2

ε

)
which fulfils Propositions 2 and 3,

but are not restricted to them. The connected and disconnected cases are completely different
and are therefore treated separately. These strong compactness results are enough to pass to the
limit in the nonlinear terms in the microscopic equation (3.2), in fact we have

Lemma 1 Let p ∈ (1, ∞).

(i) For j ∈ {1, 2}, let
(
uj
ε

)⊂ Lp
(

(0, T) ×�
j
ε

)
be a sequence converging strongly in the two-

scale sense to uj
0 ∈ Lp((0, T) ×�× Yj). Further f : [0, T] × Yj ×R→R is continuous, Y-

periodic with respect to the second variable, and fulfils the growth condition

|f (t, y, z)|� C(1 + |z|) for all (t, y, z) ∈ [0, T] × Yj ×R.

Then it holds up to a subsequence

f
(
·t, ·x
ε

, uj
ε

)
→ f

(
·t, ·y, uj

0

)
in the two-scale sense in Lp.

(ii) Let (uε) ⊂ Lp ((0, T) × �ε) be a sequence converging strongly in the two-scale sense on �ε
to u0 ∈ Lp((0, T) ×�× �). Further, h : [0, T] × �×R→R is continuous, Y-periodic with
respect to the second variable, and fulfils the growth condition

|h(t, y, z)|� C(1 + |z|) for all (t, y, z) ∈ [0, T] × �×R.
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Then it holds up to a subsequence

h
(
·t, ·x
ε

, uε
)

→ h(·t, ·y, u0) in the two-scale sense on �ε in Lp.

We emphasise that for functions f and h uniformly Lipschitz continuous with respect to the last
variable, the growth conditions are fulfilled. For such Lipschitz-continuous functions we also
easily obtain the strong two-scale convergence of the whole sequence.

Proof We only prove (ii). The other statement follows the same way. Due to Lemma 6 in
the Appendix A, the sequence Tεuε converges in Lp((0, T) ×�× �) to u0. Hence, up to a
subsequence, Tεuε → u0 almost everywhere in (0, T) ×�× �. Further, we have

Tε
(

h
(
·t, ·x
ε

, uε
))

= h (·t, y, Tεuε)→ h(·t, ·y, u0) a.e. in (0, T) ×�× �.

The growth condition on h implies Tε
(
h
(·t, ·x

ε
, uε
))

bounded in Lp((0, T) ×�× �). Egorov’s
theorem (see also [24, Theorem 13.44]) implies

Tε
(

h
(
·t, ·x
ε

, uε
))
⇀ h(·t, ·y, u0) weakly in Lp((0, T) ×�× �).

Using again Lemma 6, we obtain the desired result. �

4.1 The connected domain �1
ε

Here we give a strong compactness result for a sequence in the connected domain �1
ε under

suitable a priori estimates. The case of a connected perforated domain can be treated more easily
than a disconnected domain, because we can extend a bounded sequence in H1(�ε) to a bounded
sequence in H1(�), due to [1, 13]. Hence, we can work in fixed Bochner spaces (not depending
on ε) and use standard methods from functional analysis. For this we need control for the time
variable, which can be obtained from the uniform bound of the time derivative ∂tu1

ε . However,
since ∂tu1

ε is pointwise only an element in the space H′
1,ε it is not clear if the time derivative of the

extension of u1
ε exists and if it is bounded uniformly with respect to ε. The following lemma gives

us an estimate for the difference of the shifts with respect to time for functions with generalised
time derivative. It is just an easy generalisation of [19, Lemma 9].

Lemma 2 Let V and H be Hilbert spaces and we assume that (V , H , V ′) is a Gelfand triple. Let
v ∈ L2((0, T), V ) ∩ H1((0, T), V ′). Then, for every φ ∈ V and almost every t ∈ (0, T), s ∈ (−T , T),
such that t + s ∈ (0, T), we have∣∣(v(t + s) − v(t), φ)H

∣∣�√|s|‖φ‖V ‖∂tv‖L2((t,t+s),V ′).

Especially, it holds that∥∥v(t + s) − v(t)
∥∥2

H
�
√|s|∥∥v(t + s) − v(t)

∥∥
V
‖∂tv‖L2((t,t+s),V ′).

Proof The proof follows the same lines as the proof of [19, Lemma 9], if we replace the Gelfand
triple

(
H1
(
�εj
)
, L2
(
�εj
)
, H1

(
�εj
)′)

by the Gelfand triple (V , H , V ′). �
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In the following, for vε ∈ H1
(
�1
ε

)
we denote by ṽε ∈ H1(�) the extension from [1, 13] with

‖ṽε‖L2(�) � C‖vε‖L2
(
�1
ε

), ‖∇ṽε‖L2(�) � C‖∇vε‖L2
(
�1
ε

),
with a constant C> 0 independent of ε.

Proposition 4 Let (vε) ⊂ L2
(
(0, T), H1,ε

)∩ H1
(
(0, T), H′

1,ε

)
be a sequence with

‖∂tvε‖L2
(

(0,T),H′
1,ε

) + ‖vε‖L2
(

(0,T),H1,ε

) � C. (4.1)

There exists v0 ∈ L2
(
(0, T), H1(�)

)
such that for all β ∈ ( 1

2 , 1
)

up to a subsequence it holds
that

ṽε → v0 in L2
(
(0, T), Hβ (�)

)
.

Further, it holds that (up to a subsequence)

Tεvε → v0 in L2 ((0, T) ×�, H1) .

Proof Since ṽε is bounded in L2
(
(0, T), H1(�)

)
there exists v0 ∈ L2

(
(0, T), H1(�)

)
, such that up

to a subsequence vε converges weakly to v0 in L2
(
(0, T), H1(�)

)
. Lemma 2 and inequality (4.1)

imply for 0< h � 0∫ T−h

0
‖vε(t + h) − vε‖2

L1,ε
dt � C

√
h‖∂tvε‖L2

(
(0,T),H′

1,ε

) ∫ T−h

0
‖vε(t + h) − vε‖H1,εdt

� C
√

h.

(4.2)

Now, from the properties of the extension ṽε we obtain∫ T−h

0
‖ṽε(t + h) − ṽε‖2

L2(�)dt � C

∫ T−h

0
‖vε(t + h) − vε‖2

L2
(
�1
ε

)dt � C
√

h.

Since H1(�) ↪→ Hβ(�) is compact for β ∈ ( 1
2 , 1
)

we can apply [30, Theorem 1] to (ṽε)
as a sequence in L2

(
(0, T), Hβ(�)

)
and obtain the strong convergence of ṽε to v0 in

L2
(
(0, T), Hβ (�)

)
.

Now we prove the convergence of Tεvε . It holds that

‖Tεvε − v0‖2
L2((0,T)×�,H1)

= ‖Tεvε − v0‖2
L2((0,T)×�,H1(Y1))

+ ‖Tεvε − v0‖2
L2((0,T)×�,H1(�))

.

We only prove the convergence to zero for the second term, since the first one can be treated in
a similar way. We obtain from the properties of the unfolding operator from Lemma 5, the trace
inequality and the inequality (4.1)

‖Tεvε − v0‖L2((0,T)×�,H1(�)) � C‖Tεvε − v0‖L2((0,T)×�×�) + C‖∇�,yTεvε‖L2((0,T)×�×�)

� C

(
‖Tεvε − v0‖L2((0,T)×�×Y1)

+ ε‖∇vε‖L2
(

(0,T)×�1
ε

) + ε
3
2 ‖∇�ε vε‖L2((0,T)×�ε)

)
� C

(
‖vε − v0‖L2

(
(0,T)×�1

ε

) + ‖Tεv0 − v0‖L2((0,T)×�×Y1)
+ ε

)
.
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The first term converges to zero for ε→ 0, due to the strong convergence of ṽε to v0, and the
second term because of [12, Proposition 4.4]. This gives the desired result. �

4.2 The disconnected domain �2
ε

In this section, we give a strong two-scale compactness result for the disconnected domain�2
ε of

Kolmogorov–Simon-type, that is, it is based on a priori estimates for the difference of discrete
shifts, see condition (ii) in Theorem 4.1. As already mentioned above, it is in general not possi-
ble to find an extension for a function in H1

(
�2
ε

)
to the whole domain � which preserves the

a priori estimates. Hence, the method from Section 4.1 for the connected domain fails. Therefore,

we consider the unfolded sequence in the Bochner space Lp
(
�, L2

(
(0, T), Hβ

2

))
with β ∈ ( 1

2 , 1
)

and p ∈ (1, 2) and apply the Kolmogorov–Simon-compactness result from [18], which gives an
extension of [30, Theorem 1] to higher-dimensional domains of definition. Here, a crucial point
is the estimate for the shifts. An important reason to work here with general Bochner spaces, that
is, Banach-valued functions spaces, is that we are dealing with manifolds and therefore linear
shifts with respect to the space variable are not well defined.

In the following lemma, we estimate the shifts of the unfolded sequence with respect to the
macroscopic variable by the shifts of the function itself, see again Section 3.3 for the notations.

Lemma 3 Let vε ∈ L2
(

(0, T) ×�
j
ε

)
for j ∈ {1, 2} and wε ∈ L2 ((0, T) × �ε). Then, for 0< h � 1,

|z|< h, and ε small enough it holds that∥∥Tεvε(t, x + z, y) − Tεvε
∥∥2

L2(0,T)×�2h×Yj

) � ∑
k∈{0,1}n

‖δvε‖2

L2
(

(0,T)×�j
ε,h

),
∥∥Tεwε(t, x + z, y) − Tεwε

∥∥2

L2(0,T)×�2h×�
) � ε ∑

k∈{0,1}n

‖δwε‖2
L2((0,T)×�ε,h)

,

with l = l(ε, z, k) = k + [ z
ε

]
.

Proof The proof for a thin layer can be found in [27, p. 709] and can be easily extended to our
setting. See also [19] for more details. �

Theorem 4.1 Let vε ∈ L2
(
(0, T), H2,ε

)∩ H1
(
(0, T), H′

2,ε

)
with:

(i) It holds the estimate

‖vε‖L2((0,T),H2,ε) + ‖∂tvε‖L2
(

(0,T),H′
2,ε

) � C.

(ii) For 0< h � 1 and l ∈Z
n with |lε|< h it holds that

‖δvε‖L2
(

(0,T),L2
(
�2
ε,h

)) εl→0−→ 0.

Then, there exists v0 ∈ L2
(
(0, T), L2(�)

)
, such that for β ∈ ( 1

2 , 1
)

and p ∈ [1, 2) it holds up to
a subsequence that

Tεvε → v0 in Lp
(
�, L2

(
(0, T), Hβ

2

))
.

Especially, vε and vε |�ε converge strongly in the two-scale sense to v0 (with respect to Lp).
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Proof Our aim is to apply [18, Corollary 2.5] to (Tεvε) as a sequence in Lp
(
�, L2

(
(0, T), Hβ

2

))
for p ∈ [1, 2) and β ∈ ( 1

2 , 1
)
. Hence, we have to check the following three conditions:

(K1) For every measurable set A ⊂�, the sequence
{∫

A vεdx
}

is relatively compact in

L2
(
(0, T), Hβ

2

)
,

(K2) for all 0< h � 1 and |z|< h it holds that

sup
ε

‖vε(· + z) − vε‖Lp
(
�h,L2

(
(0,T),Hβ2

))→ 0 for z → 0,

(K3) for h> 0 it holds that supε
∫
�\�h

|vε(x)|pdx → 0 for h → 0.

We start with the condition (K1). Let A ⊂� be measurable and we define Vε(t, y) :=∫
A Tεvε(t, x, y)dx. To show the relative compactness of (Vε), we use again [30, Theorem 1] as

in the proof of Proposition 4. First of all, due to our assumptions on vε and the properties of the
unfolding operator, for t1, t2 ∈ (0, T) it holds that∥∥∥∥∫ t2

t1

Vεdt

∥∥∥∥
H2

� ‖Tεvε‖L2((0,T)×�,H2) � C.

Due to the compact embedding H2 ↪→H
β

2 we obtain that
∫ t2

t1
Vεdt is relatively compact in H

β

2 .
Further, for 0< s � 1 we obtain with the estimates for vε and the trace inequality (3.3)∥∥Vε(t + s, y) − Vε

∥∥
L2((0,T−s),H2)

�
∥∥Tεvε(t + s, x, y) − Tεvε

∥∥
L2((0,T−s)×�,H2)

� C‖vε(t + s, x) − vε‖L2
(

(0,T−s)×�2
ε

) + Cε‖∇vε(t + s, x) − ∇vε‖L2
(

(0,T−s)×�2
ε

)
+ Cε

3
2 ‖∇�ε vε(t + s, x) − ∇�ε vε‖L2((0,T−s)×�ε)

� C
(

s
1
4 + ε

)
,

(4.3)

where for the last inequality we used Lemma 2 to estimate the first term in the line before by
using the same arguments as for the inequality (4.2) in the proof of Proposition 4. We show that
inequality (4.3) implies the convergence of the difference of the shifts to zero for s → 0 uniformly
with respect to ε, see also [27, pp. 710–711] or [15, pp. 1476–1477] for the same argument. First
of all, from (4.3) we obtain for every 0<ρ the existence of 0< ε0, δ0, such that for all ε � ε0

and s � δ0 it holds that ∥∥Vε(t + s, y) − Vε
∥∥

L2((0,T−s),H2)
� ρ. (4.4)

Since ε−1 ∈N, there are only finitely many elements ε, denoted by εi with i = 1, . . . , N , such
that ε0 < εi. For every εi there exists a 0< δi, such that (4.4) is valid for ε = εi and all s � δi.
In fact, this follows directly from Vεi ∈ L2((0, T), H2), see for example [5, Theorem 4.15] or use
the Kolmogorov–Simon-compactness theorem from [30, Theorem 1] applied to the function Vεi .
Choosing δ := maxi=0,. . .,N {δi}, we obtain for all s � δ

sup
ε

∥∥Vε(t + s, y) − Vε
∥∥

L2((0,T−s),H2)
� ρ.

Hence, [30, Theorem 1] implies that (Vε) is relatively compact in L2
(
(0, T), Hβ

2

)
, that is,

condition (K1).
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For (K2) we fix 0< h � 1 and choose |z|< h. Lemma 3 with l = k + [ z
ε

]
(see the definition of

the difference δ in (3.4)), the conditions (i) and (ii), as well as the trace inequality (3.3) imply∥∥Tεvε(t, x + z, y) − Tεvε
∥∥

L2(�2h,L2((0,T),H2))

� C
∑

k∈{0,1}n

(
‖δvε‖L2

(
(0,T)×�2

ε,h

) + ε‖δ∇vε‖L2
(

(0,T)×�2
ε,h

) + ε
3
2 ‖δ∇�ε vε‖L2((0,T)×�ε,h)

)

� C

⎛⎝ ∑
k∈{0,1}n

‖δvε‖L2
(

(0,T)×�2
ε,h

) + ε

⎞⎠ ε,z→0−→ 0.

Again we obtain for every 0<ρ the existence of 0< ε0, δ0, such that for all ε � ε0 and |z|� δ0

it holds that ∥∥Tεvε(t, x + z, y) − Tεvε
∥∥

L2(�2h,L2((0,T),H2))
� ρ. (4.5)

Arguing as above, this inequality is also valid for all (finitely many) ε > ε0 and |z| small enough.
This implies (K2). For the last condition (K3) we use the Hölder inequality to obtain for p ∈ [1, 2)
and 0< h � 1

∥∥Tεvε∥∥Lp(�\�h,L2((0,T),H2))
� |� \�h|

2−p
2p
∥∥Tεvε∥∥L2((0,T)×�\�h,H2)

� Ch
2−p
2p

h→0−→ 0,

where we used again estimate (i). Now, [18, Corollary 2.5] implies the the strong convergence

of Tεvε up to a subsequence in Lp
(
�, L2

(
(0, T), Hβ

2

))
to a limit function v0. Lemma 6 (see

Appendix A) implies the strong two-scale convergence of vε to the same limit. The fact v0 ∈
L2
(
(0, T), L2(�)

)
follows from standard two-scale compactness results, see [2], based on the

estimate (i). �

Remark 1 Theorem 4.1 and its proof remain valid if we replace H2,ε and H
β by H1

(
�2
ε

)
and

Hβ(Y2).

5 Derivation of the macroscopic model

The aim of this section is the derivation of the macroscopic model (5.7) from Theorem 5.1 for
ε→ 0. Therefore, we make use of compactness results from Section 4 and the a priori estimates
from Section 3. In the following proposition, we collect the convergence results for the micro-
scopic solution uε = (u1

ε , u2
ε

)
. Again we use the notation ũ1

ε for the extension of u1
ε from [1, 13]

used in Section 4.1.

Proposition 5 Let uε = (u1
ε , u2

ε

)
be the microscopic solution of the problem (2.1). There exist

u1
0 ∈ L2

(
(0, T), H1(�)

)
, u1

1 ∈ L2((0, T), H1/R), u2
0 ∈ L2((0, T) ×�),

such that up to a subsequence it holds for p ∈ [1, 2)
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ũ1
ε → u1

0 strongly in the two-scale sense, (5.1a)

∇ũ1
ε → ∇u1

0 + ∇yu1
1 in the two-scale sense, (5.1b)

u1
ε |�ε → u1

0 strongly in the two-scale sense on �ε , (5.1c)

∇�εu
1
ε → P�∇u1

0 + ∇�,yu1
1 in the two-scale sense on �ε , (5.1d)

χ�2
ε
u2
ε → χY2 u2

0 strongly in the two-scale sense in Lp, (5.1e)

χ�2
ε
∇u2

ε → 0 in the two-scale sense, (5.1f)

u2
ε |�ε → u2

0 strongly in the two-scale sense in Lp on �ε , (5.1g)

∇�εu
2
ε → 0 in the two-scale sense on �ε . (5.1h)

Proof The convergence results (5.1a)–(5.1d) follow immediately from Proposition 4, Lemma 4
(see Appendix A) and the a priori estimates in Proposition 2.

For (5.1e)–(5.1h) we first notice that due to Lemma 4 there exists u2
0 ∈ L2((0, T) ×�) and

u2
1 ∈ L2((0, T) ×�, H2/R), such that up to a subsequence

χ�2
ε
u2
ε → χY2u2

0 in the two-scale sense,

χ�2
ε
∇u2

ε → χY2∇yu2
1 in the two-scale sense,

u2
ε |�ε → u2

0 in the two-scale sense on �ε ,

∇�εu
2
ε |�ε → ∇�u2

1 in the two-scale sense on �ε .

For the strong two-scale convergence of u2
ε and u2

ε |�ε we make use of Theorem 4.1, where
we have to check the conditions (i) and (ii). The first one is just the a priori estimate from
Proposition 2. For (ii), we use Proposition 3 to obtain for fixed 0< h � 1 and l ∈Z

n with
ε|l|< h∥∥δu2

ε

∥∥
L2
(

(0,T),L2
(
�2
ε,h

)) � C

(∥∥δu1
ε

∥∥
L2
(

(0,T),L2
(
�1
ε,h

)) + ∥∥δ(u2
ε,i, u2

ε,i,�ε

)∥∥
L2,ε,h

+ ε

)
. (5.2)

For the first term on the right-hand side, we have∥∥δu1
ε

∥∥
L2
(

(0,T),L2
(
�1
ε,h

)) � ∥∥Tεu1
ε(t, x + lε, y) − Tεu1

ε

∥∥
L2
(

(0,T)×�h×Y1

).
The right-hand side converges to zero for εl → 0, due to the strong two-scale convergence of
u1
ε , that is, the strong convergence of Tεu1

ε in L2 ((0, T) ×�× Y1) (see again Lemma 6 in the
Appendix A), and the standard Kolmogorov-compactness theorem. For the term including the
shifts of the initial values in (5.2) we argue in a similar way: We have

√
ε
∥∥δu2

ε,i,�ε

∥∥
L2(�ε )

�
∥∥∥Tεu2

ε,i,�ε (x + lε, y) − Tεu2
ε,i,�ε

∥∥∥
L2(�h,L2(�))

. (5.3)

Due to Assumption (A5), the sequence u2
ε,i,�ε

converges strongly in the two-scale sense on �ε ,
which implies the strong convergence of Tεuε,i,�ε in L2

(
�, L2(�)

)
. Especially, the sequence

Tεuε,i,�ε is relatively compact in L2
(
�, L2(�)

)
. Hence, we can apply the Kolmogorov–Simon-

compactness result from [18, Corollary 2.5] and obtain that the right-hand side in (5.3) converges
to zero for εl → 0. In the same way, we can treat the term in (5.2) including δu2

ε,i. Hence, the
condition (ii) of Theorem 4.1 is proved and we obtain the strong two-scale convergence of u2

ε

and its trace.
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To prove (5.1f) and (5.1h), we have to show that u2
1 is constant with respect to y. Therefore,

we choose φε(t, x) := εφ
(
t, x, x

ε

)
with φ ∈ C∞

0

(
(0, T) ×�× Y2

)
(periodically extended in the

last variable) as a test function in (3.2) for j = 2 and integrate with respect to time to obtain∫ T

0

〈
∂tu

2
ε , φε

〉
H

′
2,ε ,H2,ε

dt +
∫ T

0

∫
�2
ε

D2
ε∇u2

ε ·
(
ε∇xφ

(
t, x,

x

ε

)
+ ∇yφ

(
t, x,

x

ε

))
dxdt

+ ε

∫ T

0

∫
�ε

D2
�ε

∇�εu
2
ε ·
(
εP�ε∇xφ

(
t, x,

x

ε

)
+ P�ε∇yφ

(
t, x,

x

ε

))
dσdt

=ε
∫ T

0

∫
�2
ε

f 2
ε

(
u2
ε

)
φ
(

t, x,
x

ε

)
dxdt + ε2

∫ T

0

∫
�ε

h2
ε

(
u1
ε , u2

ε

)
φ
(

t, x,
x

ε

)
dxdt.

(5.4)

For the first term on the left-hand side including the time derivative, we get by integration by
parts in time ∫ T

0

〈
∂tu

2
ε , φε

〉
H

′
2,ε ,H2,ε

dt = −ε
∫ T

0

∫
�2
ε

∂tφ
(

t, x,
x

ε

)
u2
εdxdt

− ε2
∫ T

0

∫
�ε

∂tφ
(

t, x,
x

ε

)
u2
εdσdt.

The right-hand side is of order ε, due to the estimates in Proposition 2. Hence, all terms in (5.4)
except the terms including the ∇y are of order ε (again because of Proposition 2) and we obtain
for ε→ 0 ∫ T

0

∫
�

∫
Y2

D2(y)∇yu2
1(t, x, y) · ∇yφ(t, x, y)dydxdt

+
∫ T

0

∫
�

∫
�

D2
�(y)∇�,yu2

1(t, x, y) · ∇�,yφ(t, x, y)dσydxdt = 0.

Due to the density of C∞(Y2) in H2, see [17, Lemma 2.1], the equation above holds for all
φ ∈ L2((0, T) ×�, H2). This implies u2

1 = 0. The proposition is proved. �

We have the following representation of u1
1:

Corollary 1 Almost everywhere in (0, T) ×�× Y1 it holds that

u1
1(t, x, y) =

n∑
i=1

∂xiu
1
0(t, x)w1

i (y), (5.5)

where w1
i ∈H1/R with Y-periodic boundary conditions is the unique weak solution of the

following cell problem (i = 1, . . . , n)

−∇y · (D1
(∇yw1

i + ei

))= 0 in Y1,

−D1
(∇yw1

i + ei

) · ν = −∇�,y · (D1
�

(∇�,yw1
i + ∇�,yyi

))
on �,

w1
i is Y-periodic and

∫
�

w1
i dσ = 0.

(5.6)

Proof The procedure is quite standard, see, for example, [2], but for the sake of completeness
we give the main steps. We choose φε(t, x) = εφ

(
t, x, x

ε

)
with φ ∈ C∞

0

(
(0, T) ×�, C∞

per

(
Y1
))

as
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a test function in (3.2) and integrate with respect to time to obtain (5.4) if we replace j = 2 by
j = 1. From Proposition 5, we get for ε→ 0

0 =
∫ T

0

∫
�

∫
Y1

D1(y)
[∇xu1

0(t, x) + ∇yu1
1(t, x, y)

] · ∇yφ(t, x, y)dydxdt

+
∫ T

0

∫
�

∫
�

D1
�(y)

[
P�(y)∇xu1

0(t, x) + ∇�,yu1
1(t, x, y)

] · ∇�,yφ(t, x, y)dσydxdt.

Due to the Lax–Milgram lemma, this problem has a unique solution u1
1 and due to its linearity

we easily obtain the representation (5.5). �

Now, we are able to formulate the macroscopic model. We show that u0 = (u1
0, u2

0

)
from

Proposition 5 is the unique weak solution (the definition of a weak solution is given below)
of the macro-model

(|Y1| + |�|)∂tu
1
0 − ∇ · (D̂1∇u1

0

)= ∫
Y1

f 1
(
t, y, u1

0

)
dy +

∫
�

h1
(
t, y, u1

0, u2
0

)
dσy in (0, T) ×�,

(|Y2| + |�|)∂tu
2
0 =

∫
Y2

f 2
(
t, y, u2

0

)
dy +

∫
�

h2
(
t, y, u1

0, u2
0

)
dσy in (0, T) ×�,

−D̂1∇u1
0 · ν = 0 on (0, T) × ∂�,

uj
0(0) = |Yj|uj

0,i + |�|uj
0,i,�

|Yj| + |�| in �,

(5.7)

where the homogenised diffusion coefficient D̂1 ∈R
n×n is defined by (i, l = 1, . . . , n)(

D̂1
)

il
:=
∫

Y1

D1
(∇yw1

i + ei

) · (∇yw1
l + el

)
dy

+
∫
�

D1
�

(∇�,yw1
i + ∇�,yyi

) · (∇�,yw1
l + ∇�,yyl

)
dσ ,

and w1
i ∈H1/R (see Section 3.1 for the definition of this space) for i = 1, . . . , n are the solutions

of the cell problems (5.6).
We say that u0 = (u1

0, u2
0

)
is a weak solution of the macroscopic model, if

u1
0 ∈ L2

(
(0, T), H1(�)

)∩ H1
(
(0, T), H1(�)′

)
,

u2
0 ∈ H1

(
(0, T), L2(�)

)
,

the equation for ∂tu2
0 in (5.7) is valid in L2((0, T) ×�), and for all φ ∈ H1(�) it holds almost

everywhere in (0,T)

(|Y1| + |�|)〈∂tu
1
0, φ
〉
H1(�)′,H1(�)

+
∫
�

D̂1∇u1
0 · ∇φdx

=
∫
�

∫
Y1

f 1
(
y, u1

0

)
φdydx +

∫
�

∫
�

h1
(
y, u1

0, u2
0

)
φdσydx,

together with the initial conditions from (5.7).
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Theorem 5.1 The limit function u0 = (u1
0, u2

0

)
from Proposition 5 is the unique solution of the

macroscopic problem (5.7).

Proof We illustrate the procedure for j = 1 (the case j = 2 follows by similar arguments, where
the diffusion terms vanish in the limit). As a test function in (3.2) for j = 1 we choose φ ∈
C∞

0 ([0, T) ×�) and integrate with respect to time. By integration by parts in time, we obtain

−
∫ T

0

∫
�1
ε

u1
ε∂tφdxdt − ε

∫ T

0

∫
�ε

u1
ε∂tφdσdt

+
∫ T

0

∫
�1
ε

D1
ε∇u1

ε · ∇φdxdt + ε

∫ T

0

∫
�ε

D1
�ε

∇�εu
1
ε · ∇�εφdσdt

=
∫ T

0

∫
�1
ε

f 1
ε

(
u1
ε

)
φdxdt + ε

∫ T

0

∫
�ε

h1
ε

(
u1
ε , u2

ε

)
φdσdt

+
∫
�1
ε

u1
ε,iφdx + ε

∫
�ε

u1
ε,i,�εφdσ .

Using the convergence results from Proposition 5, Corollary 1, and Lemma 1, as well as the
Assumption (A5) on the initial conditions, we obtain for ε→ 0

−(|Y1| + |�|) ∫ T

0

∫
�

u1
0∂tφdxdt +

∫ T

0

∫
�

D̂1∇u1
0 · ∇φdxdt

=
∫ T

0

∫
�

∫
Y1

f 1
(
u1

0

)
φdydxdt +

∫ T

0

∫
�

∫
�

h1
(
u1

0, u2
0

)
φdσydxdt

+
∫
�

|Y1|u1
0,iφ(0)dx +

∫
�

|�|u1
0,i,�φ(0)dx.

Choosing φ with compact support in (0,T) we get ∂tu1
0 ∈ L2

(
(0, T), H1(�)′

)
(see also Remark 2)

with u1
0(0) = |Y1|u1

0,i+|�|u1
0,i,�

|Y1|+|�| , and by density we obtain that u1
0 is a weak solution of the macro-

scopic equation for j = 1 in (5.7). Following the same arguments as above, we obtain for all
φ ∈ C∞

0 (�) and ψ ∈ C∞
0 (0, T)

−
∫ T

0

∫
�

u2
0φψ

′dxdt =
∫ T

0

{
1

|Y2| + |�|
∫
�

[∫
Y2

f 2
(
t, y, u2

0

)
dy +

∫
�

h2
(
t, y, u1

0, u2
0

)
dσy

]
φdx

}
ψdt.

By density, this result is valid for all φ ∈ L2(�). Hence, the expression in the curly brack-
ets defines a linear functional on L2(�). This implies ∂tu2

0 ∈ L2((0, T) ×�). Uniqueness of the
macroscopic problem follows by standard energy estimates. �

Remark 2

(i) We established the regularity for the time derivatives via the variational equations derived
in the proof of Theorem 5.1. However, we emphasise that some regularity is also a direct
consequence of the a priori estimates in Proposition 2. In fact, define for 0< h � 1 and
v : (0, T) → X for a Banach space X the difference quotient for t ∈ (0, T − h)

∂h
t v(t) := v(t + h) − v(t)

h
.
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Then for all φ ∈ C∞
0 ((0, T), C∞(�)) it holds, due to Proposition 5 and the a priori estimates

for the time derivative in Proposition 2:〈
∂h

t u1
0, φ
〉
L2
(

(0,T−h),H1(�)′
)

,L2
(

(0,T−h),H1(�)
) =

∫ T−h

0

∫
�

∂h
t u1

0φdxdt

= lim
ε→0

1

|Y1| + |�|
(∫ T−h

0

∫
�1
ε

∂h
t u1
εφdx + ε

∫
�ε

∂h
t u1
εφdσdt

)
= lim
ε→0

1

|Y1| + |�|
∫ T

0

〈
∂h

t u1
ε , φ
〉
H

′
1,ε ,H1,ε

dt.

� lim
ε→0

1

|Y1| + |�|
∥∥∂h

t u1
ε

∥∥
L2
(

(0,T),H′
1,ε

)‖φ‖
L2
(

(0,T),H1,ε

)
� C lim

ε→0
‖∂tu

1
ε

∥∥
L2
(

(0,T),H′
1,ε

)∥∥φ‖
L2
(

(0,T),H1,ε

)
� C lim

ε→0
‖φ‖

L2
(

(0,T),H1,ε

) � C‖φ‖
L2
(

(0,T),H1(�)
),

where at the end we used that P� is an orthogonal projection. By density and the reflexivity
of L2

(
(0, T − h), H1(�)

)
, we obtain the boundedness∥∥∂h

t u1
0

∥∥
L2
(

(0,T−h),H1(�)′
) � C,

for a constant C independent of h. This implies ∂tu1
0 ∈ L2

(
(0, T), H1(�)′

)
. A similar argu-

ment implies ∂tu2
0 ∈ L2

(
(0, T), H1(�)′

)
. However, the limit equation for u2

0 even improves
the regularity of ∂tu2

0.

(ii) We can also consider the case of a connected–connected porous medium (for n � 3 and a
domain � which can be decomposed in microscopic cells, for example, a rectangle with
integer side length, and an additional boundary condition on ∂�ε is needed). In this case,
both macroscopic solutions are described by a reaction–diffusion equation as for u1

0 in
Theorem 5.1. The derivation of the macroscopic model for the connected–connected case
even gets simpler, because we only need the a priori estimates from Proposition 2 and the
convergence results for the connected domain in Section 4.1. The estimates for the shifts
in Proposition 3 are no longer necessary.

(iii) The results can be easily extended to systems, see [16] for more details.

6 Discussion

By the methods of two-scale convergence and the unfolding operator we derived a macroscopic
model for a reaction–diffusion equation in a connected–disconnected porous medium with a
nonlinear dynamic Wentzell-interface condition across the interface. The crucial point was to
pass to the limit in the nonlinear terms, especially on the interface. Therefore, we established
strong two-scale compactness results just depending on a priori estimates for the sequence of
solutions. We emphasise that the strong compactness result in Theorem 4.1 is not restricted
to our specific problem, but on the a priori estimates and the estimates for the shifts for the
sequence. Therefore, it can be easily applied to other problems. Especially, the results above can
be extended to systems in an obvious way.

The time derivative in the Wentzell-boundary condition on the interface �ε regularises
the problem and leads to a simple variational structure with respect to the Gelfand triple
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(Hj,ε , Lj,ε , H′
j,ε), see (3.2). Hence, the problem seems to be more complex regarding stationary

interface conditions (neglecting the time derivative). On the other hand, neglecting the diffusion
term on the surface leads to an ordinary differential equation on the surface and we loose spatial
regularity on the surface. Hence, we have to replace Hj,ε by H1

(
�

j
ε

)
and it could be expected

that the methods in this paper can be adapted to that case.

Acknowledgements

The author was supported by the Odysseus program of the Research Foundation – Flanders
FWO (Project-Nr. G0G1316N) and the project SCIDATOS (Scientific Computing for Improved
Detection and Therapy of Sepsis), which was funded by the Klaus Tschira Foundation, Germany
(Grant number 00.0277.2015). Further, the author thanks an anonymous referee for detailed
and helpful comments about an earlier version of the manuscript, which helped to improve the
structure and thus the readability of the paper.

References

[1] ACERBI, E., CHIADÒ, V., MASO, G. D. & PERCIVALE, D. (1992) An extension theorem from con-
nected sets, and homogenization in general periodic domains. Nonlinear Anal. Theory Methods
Appl. 18(5), 481–496.

[2] ALLAIRE, G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–
1518.

[3] ALLAIRE, G., DAMLAMIAN, A. & HORNUNG, U. (1996) Two-scale convergence on periodic
surfaces and applications. In: A. BOURGEAT and C. CARASSO (editors), Proceedings of the
International Conference on Mathematical Modelling of Flow Through Porous Media, World
Scientific, Singapore, pp. 15–25.

[4] ALLAIRE, G. & HUTRIDURGA, H. (2012) Homogenization of reactive flows in porous media and
competition between bulk and surface diffusion. IMA J. Appl. Math. 77, 788–215.

[5] ALT, H. W. (2016) Linear Functional Analysis, Springer, Berlin Heidelberg.
[6] AMAR, M. & GIANNI, R. (2018) Laplace-Beltrami operator for the heat conduction in polymer coating

of electronic devices. Discrete Cont. Dyn. Syst. B 23(4), 1739–1756.
[7] ANGUIANO, M. (2020) Existence, uniqueness and homogenization of nonlinear parabolic problems

with dynamical boundary conditions in perforated media. Mediterr. J. Math. 17, 1–22
[8] ARBOGAST, T., DOUGLAS, J. & HORNUNG, U. (1990) Derivation of the double porosity model of

single phase flow via homogenization theory. SIAM J. Math. Anal. 27, 823–836.
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Univ. Babeş-Bolyai Math. 61(3), 279–290.

[19] GAHN, M., NEUSS-RADU, M. & KNABNER, P. (2016) Homogenization of reaction–diffusion pro-
cesses in a two-component porous medium with nonlinear flux conditions at the interface. SIAM J.
Appl. Math. 76(5), 1819–1843.

[20] GAHN, M., NEUSS-RADU, M. & KNABNER, P. (2017) Derivation of an effective model for metabolic
processes in living cells including substrate channeling. Vietnam J. Math. 45(1–2), 265–293.

[21] GALDI, G. P. (2011) An Introduction to the Mathematical Theory of the Navier–Stokes Equations.
Springer Monographs in Mathematics, Springer-Verlag, New York, New York.

[22] GRAF, I. & PETER, M. A. (2014) A convergence result for the periodic unfolding method related to
fast diffusion on manifolds. C. R. Acad. Sci. Paris Ser. I 352(6), 485–490.

[23] GRAF, I. & PETER, M. A. (2014) Diffusion on surfaces and the boundary periodic unfolding operator
with an application to carcinogenesis in human cells. SIAM J. Math. Anal. 46(4), 3025–3049.

[24] HEWITT, E. & STROMBERG, K. (1975) Real and Abstract Analysis, Springer-Verlag, New York.
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Appendix A. Two-scale convergence and unfolding operator

We repeat the definition of the two-scale convergence and the unfolding operator and summarise
some well-known properties and compactness results.

A.1 Two-scale convergence

In the following, unless stated otherwise, we assume that p ∈ (1, ∞) and p′ is the dual exponent
of p. We start with the definition of the two-scale convergence, see [2, 28].

Definition A.1 We say the sequence uε ∈ Lp((0, T) ×�) converges in the two-scale sense (in Lp)
to a limit function u0 ∈ Lp((0, T) × Y ), if for all φ ∈ Lp′(

(0, T) ×�, C0
per(Y )

)
it holds that

lim
ε→0

∫ T

0

∫
�

uε(t, x)φ
(

t, x,
x

ε

)
dxdt =

∫ T

0

∫
�

∫
Y

u0(t, x, y)φ(t, x, y)dxdydt.
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We say the sequence converges strongly in the two-scale sense (in Lp), if it holds that

lim
ε→0

‖uε‖Lp((0,T)×�) = ‖u0‖Lp((0,T)×�×Y ).

Remark 3

(i) For sequences in Lp
(

(0, T) ×�
j
ε

)
on the perforated domain, we also use the designation

‘two-scale convergence’. The definition is also valid for such functions by extension by
zero (or with the extension operator from [1]), and considering suitable test functions.

(ii) The two-scale convergence introduced above should actually be referred to as ‘weak two-
scale convergence’. However, in accordance with the definition in [2] we neglect the word
‘weak’ and only use ‘strong’ to highlight the ‘strong two-scale convergence’.

(iii) For the ‘two-scale convergence in L2’ we just write ‘two-scale convergence’.

Next, we give the definition of the two-scale convergence on oscillating surfaces, see [3, 26].

Definition A.2 We say the sequence uε ∈ Lp ((0, T) × �ε) converges in the two-scale sense (in
Lp) to a limit function u0 ∈ Lp((0, T) ×�× �), if for all φ ∈ C0

(
[0, T] ×�, C0

per(�)
)

it holds
that

lim
ε→0

ε

∫ T

0

∫
�ε

uε(t, x)φ
(

t, x,
x

ε

)
dσxdt =

∫ T

0

∫
�

∫
�

u0(t, x, y)φ(t, x, y)dσydxdt.

We say the sequence converges strongly in the two-scale sense, if it holds that

lim
ε→0

ε
1
p ‖uε‖Lp((0,T)×�ε) = ‖u0‖Lp((0,T)×�×�).

In accordance with Remark 3, we proceed analogously for the two-scale convergence on �ε and
neglect the word ‘weak’ and the addition ‘L2’.

To pass to the limit ε→ 0 in the diffusion terms in the bulk domain �j
ε and the surface �ε in

the microscopic equation (3.2) we need compactness results for the spaces Hj,ε . In the following
lemma, we summarise some weak two-scale compactness results for such functions, which can
be found in [17]:

Lemma 4 For j ∈ {1, 2} let uj
ε ∈ L2

(
(0, T), Hj,ε

)
be a sequence with

∥∥uj
ε

∥∥
L2
(

(0,T),Hj,ε

) � C.

Then it holds:

(i) For j = 1 there exists an extension ũ1
ε ∈ L2

(
(0, T), H1(�)

)
of u1

ε (see Section 4.1 for more
details), and u1

0 ∈ L2
(
(0, T), H1(�)

)
and a Y-periodic function u1

1 ∈ L2((0, T) ×�, H1/R),
such that up to a subsequence
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ũ1
ε → u1

0 in the two-scale sense,

∇ũ1
ε → ∇xu1

0 + ∇yu1
1 in the two-scale sense,

u1
ε |�ε → u1

0 in the two-scale sense on �ε ,

∇�εu
1
ε |�ε → P�∇u1

0 + ∇�u1
1|� in the two-scale sense on �ε .

(ii) For j = 2 there exist u2
0 ∈ L2((0, T) ×�) and u2

1 ∈ L2((0, T) ×�, H2/R) such that up to a
subsequence

χ�2
ε
u2
ε → χY2u2

0 in the two-scale sense,

χ�2
ε
∇u2

ε → χY2∇yu2
1 in the two-scale sense,

u2
ε |�ε → u2

0 in the two-scale sense on �ε ,

∇�εu
2
ε |�ε → ∇�u2

1 in the two-scale sense on �ε .

A.2 The unfolding operator

In the following, we give the definition of the unfolding operator and summarise some well-
known properties, see the monograph [12] for an overview about this topic, and also [8–11,
31]. In the following, we consider the tuple (Gε , G) ∈ {(�, Y ),

(
�1
ε , Y1

)
,
(
�2
ε , Y2

)
, (�ε , �)} and

we define

Ĝε := int
⋃

k∈Kε

ε
(
G + k

)
, �ε :=� \ Ĝε .

Then, for p ∈ (1, ∞) we define the unfolding operator

Tε : Lp((0, T) × Gε) → Lp((0, T) ×�× G),

with

Tε(φε)(t, x, y) :=
{
φε
(
t, ε
[

x
ε

]+ εy
)

for x ∈ Ĝε ,

0 for x ∈�ε .

We emphasise that we use the same notation for the unfolding operator for the different choices
of the tuple (Gε , G). It should be clear from the context in which sense it has to be understood.
Further, we mention that unfolding operator commutes with the trace operator in the following
sense: For φε ∈ Lp

(
(0, T), W 1,p

(
�

j
ε

))
for j ∈ {1, 2} it holds that

Tε
(
φε |�ε

)= (Tε(φε))|� .

Lemma 5

(a) For (Gε , G) ∈ {(�, Y ),
(
�1
ε , Y1

)
,
(
�2
ε , Y2

)}
we have:

(i) For φε ∈ Lp((0, T) × Gε) it holds that

‖Tεφε‖Lp((0,T)×�×G) = ‖φε‖Lp((0,T)×Ĝε ).

(ii) For φε ∈ Lp
(
(0, T), W 1,p(Gε)

)
it holds that

∇yTεφε = εTε∇xφε .
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(b) For the unfolding operator on the surface, we have

(i) For φε ∈ Lp ((0, T) × �ε) it holds that

‖Tεφε‖Lp((0,T)×�×�) = ε
1
p ‖φε‖Lp((0,T)×�ε).

(ii) For φε ∈ Lp
(
(0, T), W 1,p(�ε)

)
it holds that

∇�,yTεφε = εTε∇�εφε .

Proof For (a) and (b)(i) see [12]. A proof for (b)(ii) can be found in [23]. �

In the following lemma, we give an equivalent relation between the unfolding operator and
the two-scale convergence. For a proof see for example [9, 10, 12].

Lemma 6 Let p ∈ (1, ∞).

(a) For (Gε , G) ∈ {(�, Y ),
(
�1
ε , Y1

)
,
(
�2
ε , Y2

)}
and a sequence uε ∈ Lp((0, T) × Gε), the follow-

ing statements are equivalent:

(a) uε → u0 weakly/strongly in the two-scale sense in Lp,
(b) Tεuε → u0 weakly/strongly in Lp((0, T) ×�× G).

(b) For a sequence uε ∈ Lp ((0, T) × �ε) with ε
1
p ‖uε‖Lp((0,T)×�ε) � C, the following statements

are equivalent:

(a) uε → u0 weakly/strongly in the two-scale sense on �ε in Lp,
(b) Tεuε → u0 weakly/strongly in Lp((0, T) ×�× �).
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