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We present numerical simulation and mean-flow modelling of statistically stationary plane

Couette–Poiseuille flow in a parameter space (Re, θ) with Re =
√

Re2
c + Re2

M and θ =
arctan(ReM/Rec), where Rec, ReM are independent Reynolds numbers based on the plate
speed Uc and the volume flow rate per unit span, respectively. The database comprises
direct numerical simulations (DNS) at Re = 4000, 6000, wall-resolved large-eddy
simulations at Re = 10 000, 20 000, and some wall-modelled large-eddy simulations
(WMLES) up to Re = 1010. Attention is focused on the transition (from Couette-type
to Poiseuille-type flow), defined as where the mean skin-friction Reynolds number
on the bottom wall Reτ,b changes sign at θ = θc(Re). The mean flow in the (Re, θ)

plane is modelled with combinations of patched classical log-wake profiles. Several
model versions with different structures are constructed in both the Couette-type
and Poiseuille-type flow regions. Model calculations of Reτ,b(Re, θ), Reτ,t(Re, θ) (the
skin-friction Reynolds number on the top wall) and θc show general agreement with
both DNS and large-eddy simulations. Both model and simulation indicate that, as θ is
increased at fixed Re, Reτ,t passes through a peak at approximately θ = 45◦, while Reτ,b
increases monotonically. Near the bottom wall, the flow laminarizes as θ passes through
θc and then re-transitions to turbulence. As Re increases, θc increases monotonically.
The transition from Couette-type to Poiseuille-type flow is accompanied by the rapid
attenuation of streamwise rolls observed in pure Couette flow. A subclass of flows with
Reτ,b = 0 is investigated. Combined WMLES with modelling for these flows enables
exploration of the Re → ∞ limit, giving θc → 45◦ as Re → ∞.
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1. Introduction

Statistically stationary, wall-bounded turbulent flow between two parallel plane walls is
an idealized canonical configuration that enables study of Reynolds number effects on
wall-bounded turbulent flows. The driving force is typically either a mean-flow pressure
gradient, which alone results in a plane Poiseuille (PP) flow, or the viscous force induced
by moving walls which generates a plane Couette (PC) flow. For PP flow, direct numerical
simulations (DNS), which resolve the smallest dissipation scale for turbulence, have been
performed at Reτ = 5200 (Lee & Moser 2015) with Reτ based on the wall skin-friction
velocity. Experimental results at Reτ ∼ 5900 (Schultz & Flack 2013) are available. DNS
of PC flow by Pirozzoli, Bernardini & Orlandi (2014) reach Reτ = 986, while DNS of
Lee & Moser (2018) – who used a larger streamwise domain – at Reτ ≈ 220 showed the
presence of streamwise-oriented coherent roll structures. Large-eddy simulations (LES) of
PC flow (Cheng, Pullin & Samtaney 2022) up to Reτ = 2.85 × 105 show the tendency of
roll structures to weaken with increasing Reynolds number. Reynolds numbers achieved
in experimental studies of Couette flow remain relatively low at around the onset of
turbulence transition (Bottin et al. 1998; Couliou & Monchaux 2015) or slightly above
the transition state (Tillmark & Alfredsson 1992).

The flow produced by the combination of relative moving walls and the application
of a pressure gradient, here denoted as plane Couette–Poiseuille (PCP) flow, is a
more complex wall-bounded flow with distinct and competing flow-driving mechanisms
resulting in possibly different flow states. Generally, statistically stationary PCP flow can
be characterized in a space of three parameters consisting of two independent Reynolds
numbers and a single angle φ between the moving-plates-velocity-difference vector and
the externally applied pressure-gradient vector. All possible PCP flows are contained
in 0 ≤ φ ≤ 90◦. We will refer to φ = 0 as parallel PCP flow. Pirozzoli, Bernardini &
Orlandi (2011) studied PCP flow with φ = 0 using DNS at bulk flow Reynolds number
approximately 4800, discussing a nonlinear mechanism where a low-wavenumber flow
component modulates the high-wavenumber turbulence. Gandía-Barberá et al. (2018)
investigated PCP flow using a long streamwise domain at Reτ ≈ 125, observing similar
large-scale streamwise structures of length ∼ 50h as found in pure Couette flow by Lee &
Moser (2018). Kim et al. (2020) and Kim & Lee (2018) utilize DNS of a temporal transition
from pure PP to PCP flow to study the formation of large- and very-large-scale streamwise
eddy structures. On the theoretical side, Wei, Fife & Klewicki (2007) applied a multiscale
analytical approach to the mean momentum equation to estimate wall-normal positions
of maxima in the Reynolds shear-stress profile in addition to proposing an intermediate
or mesoscale basis for the profile shapes near those locations. Andreolli, Quadrio &
Gatti (2021) investigated the turbulent characteristics of PCP flows under the constraint
of constant power input.

A specifically interesting limit for PCP flow occurs when the balance between the
pressure gradient and the shear provided by the wall velocity difference gives zero mean
skin friction on one wall, in the sense of a time-planar average. Using DNS at a top
wall, Reτ,t ∼ 180, Yang, Zhao & Andersson (2017) report negligible turbulent energy
production near the zero-stress wall, while at Reτ,t ∼ 260, Choi, Lee & Hwang (2021)
find an elongated log region in comparison to PP flow at a similar Reynolds number.
Coleman et al. (2017) explored this state with DNS at Reynolds numbers based on the
wall difference velocity up to 1.2 × 104. Using a velocity scale based on the cube root
of the product of the kinematic viscosity and pressure gradient divided by fluid density,
their DNS find some support for the Stratford (1959) square-root law for the variation of

955 A4-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1023


Plane Couette–Poiseuille flow

the streamwise velocity near the zero-shear-stress wall, over a very small region in the
wall-normal dimensionless variable y−.

Experimental studies of PCP flow have been challenging. Eltelbany & Reynolds (1980,
1981) documented measurements with a flow development distance of only 40h (where h
is the half-channel height) at their highest Reynolds number. Interaction between the two
wall layers over a long channel length of 180h was investigated by Thurlow & Klewicki
(2000) at Reτ up to 280. The shear Reynolds number, at approximately 10 % of the bulk
Reynolds number, indicates Poiseuille- or pressure-gradient-type flow. Nakabayashi, Kitoh
& Katoh (2004) studied the effect of shear-stress gradient on wall-normal velocity profiles
and turbulence intensities with Reτ up to 600, while Klotz et al. (2017) focused on PCP
flows with zero mean advection velocity in a reference frame where one wall is stationary.
In a reference frame with equal and opposite wall velocities ±Uc, this corresponds to an
average streamwise flow speed equal to Uc.

Turbulence behaviour of wall-bounded flows, including PCP flows, at extreme Reynolds
numbers is of general interest in both research and industrial application settings.
High-Reynolds-number asymptotic behaviour has been discussed by Nagib, Chauhan &
Monkewitz (2007) and Pullin, Inoue & Saito (2013). A universal velocity profile for pipe
flow was proposed by Cantwell (2019). The Re → ∞ limit is a mean velocity plug flow.
This limit is presently of interest for PCP flow. Subrahmanyam, Cantwell & Alonso (2022)
extended this profile analysis to boundary layers both with and without pressure gradients.

The present work aims to provide a systematic study of some aspects of statistically
stationary PCP flow using DNS, wall-resolved LES (WRLES), wall-modelled LES
(WMLES) and empirical mean-flow modelling. In § 2, we define PCP flow in terms of
two independent Reynolds numbers for the special case φ = 0, and also define the main
dependent parameters of interest. The numerical method and LES models, including the
subgrid scale (SGS) model and the wall model, are also briefly discussed. Simulations
performed with DNS, WRLES and WMLES are summarized in § 2.3. General features
and properties of PCP flows are discussed in § 3. Section 4 describes mean-flow modelling
in both the plane Couette- and Poiseuille-type domains, leading to predictions for the
mean-flow velocity profiles and the mean skin-friction variation on both walls as functions
of the defining flow Reynolds numbers. In § 5, we describe the general behaviour of PCP
flow across the range of (Re, θ) covered by DNS and WRLES, with emphasis on the
comparison between numerical results and the modelling. The transition from Couette- to
Poiseuille-type flow is discussed in § 6, which includes some elements of instantaneous
flow visualization, while in § 7, attention is focused on PCP flows for which the skin
friction on the lower wall is zero. Concluding remarks and a summary of the work done
are provided in § 8.

2. Flow description, numerical method and physical models

2.1. Description of PCP flow
We consider only the special case for PCP flow where the velocity-difference vector is
aligned with the externally applied pressure gradient. In Cartesian coordinates (x, y, z)
with y wall-normal, x streamwise and z spanwise, the parallel plane walls are at y = ±h.
The flow configuration is shown in figure 1, where the lower/upper walls move in the
x-direction with speeds Uc and −Uc, respectively. The pressure-gradient vector points
in the negative x-direction, so the mass-flow rate is positive. This configuration contains
all possible PCP flows with φ = 0. To illustrate general flow behaviour, three sketched
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Figure 1. Sketch of PCP flow showing two parallel walls with separation distance Ly = 2h. Lower and upper
walls move with velocities ±Uc, respectively. Negative mean pressure gradient dP/dx results in a mean bulk
flow with positive mass-flow rate in the x-direction. Sketched velocity profiles: dashed line for laminar Couette
flow, solid line for flow with zero skin friction on bottom wall, and dash-dotted line for flow with stronger
pressure gradient.

velocity profiles are shown. The dashed line denotes a laminar Couette flow with zero
pressure gradient, the solid line profile shows zero skin friction (ZSF) on the bottom wall,
and the dash-dotted line represents a Poiseuille-type flow with a stronger pressure gradient.

The flow is assumed to be statistically stationary with bulk wall-parallel mean velocity
M/(2h), where M > 0 is the volume flow rate. Two independent Reynolds numbers can
then be defined as

Rec = Uch
ν

, ReM = M
2ν

= 1
2ν

∫ h

−h
U( y) dy, (2.1a,b)

where ν is the kinematic viscosity, and U( y) is the streamwise mean velocity.
It is convenient to work in polar coordinates (Re, θ) defined by Rec = Re cos θ ,
ReM = Re sin θ , so that

Re =
√

Re2
c + Re2

M, tan θ = ReM

Rec
, (2.2a,b)

where Re is the defining Reynolds number. The PC and PP limits correspond to θ = 0◦,
θ = 90◦, respectively. If we write Re = U0h/ν, then this defines an effective general
outer velocity scale U0 = Uc/ cos θ = M/(2h sin θ) for PCP flow. The nominal singularity
Uc/ cos θ as θ → 90◦ and M/(2h sin θ) as θ → 0◦ is noted, but this does not compromise
the utility of U0 as an outer velocity over the range θ ∈ [0◦, 90◦].

A specific flow is defined by given Re and θ . Skin-friction velocities for both walls are
defined as

uτ,t =
√

ν |ηh|sgn(−ηh), uτ,b =
√

ν |η−h|sgn(η−h), (2.3a,b)

with ηy = dU/dy|y as the velocity gradient at y. Corresponding skin-friction Reynolds
numbers are

Reτ,t = uτ,th
ν

, Reτ,b = uτ,bh
ν

. (2.4a,b)

With these definitions, Reτ,t > 0 for all PCP flows, while Reτ,b < 0 for PC flow (θ =
0◦) and Reτ,b > 0 (θ = 90◦) for PP flow. Hence when θ increases in (0◦, 90◦) at fixed
Re, Reτ,b must change sign at least once. We define flow regions in the first quadrant
of the (Rec, ReM) plane as Couette-type for Reτ,b < 0 and Poiseuille-type for Reτ,b > 0.
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Plane Couette–Poiseuille flow

The curve Reτ,b(Re, θ) = 0 corresponds to θ = θc. We refer to θc as the PC ↔ PP critical
angle. This will be seen later to be a single-valued function θc(Re).

Another Reynolds number based on pressure gradient can also be defined as Rep =
(−(dP/dx)h3)1/2/ν, where P ≡ p/ρ, with p the pressure and ρ the constant fluid density.
Using the streamwise pressure–skin-friction balance, this can be expressed as

Re2
p = 1

2 (Reτ,t|Reτ,t| + Reτ,b|Reτ,b|). (2.5)

Since, as will be seen, Reτ,t and Reτ,b are both functions of (Re, θ) only, Rep is also a
function of (Re, θ).

2.2. Numerical methods and LES models
Simulations are reported using an incompressible Navier–Stokes solver for a channel
domain with dimensions Lx × Ly × Ls (streamwise, wall-normal and spanwise directions,
respectively). Boundary conditions are spatially periodic streamwise and spanwise, with
Dirichlet velocity boundary conditions on y = ±h. Both DNS and LES are performed.
The generically filtered incompressible Navier–Stokes equations are

∂ ũi

∂t
+ ∂ ũiũj

∂xj
= − ∂P̃

∂xi
+ ν

∂2ũi

∂x2
j

− ∂Tij

∂xj
,

∂ ũi

∂xi
= 0, (2.6)

q̃ =
∫ ∞

−∞
q(x′) G(x − x′) dx′, (2.7)

where G(η) is a general filter. Boundary conditions are

ũi = (Uc + ub, vb, wb), at the bottom wall, (2.8)

ũi = (−Uc + ut, vt, wt), at the upper wall. (2.9)

The DNS mode uses the unfiltered Navier–Stokes equations, while LES requires modelling
for the SGS tensor Tij = ũiuj − ũiũj with the added assumption that filtered fields are
identified with computed resolved-scale fields. Explicit filtering is used nowhere presently.
For DNS and WRLES, (ub, vb, wb) and (ut, vt, wt) are zero, while for WMLES, a
wall model provides consistent slip velocity boundary conditions at a virtual wall. The
fractional-step method is used to solve the equations with a third-order Runge–Kutta
method for temporal evolution. The staggered grid strategy ensures the conservation of
kinetic energy, which corresponds to a skew-symmetric form of the convective term. The
pressure Poisson equation is reduced to a series of one-dimensional linear equations by
Fourier expansion in the streamwise and spanwise directions. In simulations, the time step
	t satisfies dynamically that a Courant–Friedrichs–Lewy number be unity.

For LES, Tij is evaluated using the stretched-vortex SGS model, which represents
subgrid motion using stretched vortices in each computational cell (Chung & Pullin
2009), with directional unit vector ev aligned with the principal extensional rate-of-strain
eigenvector of the local resolved flow, giving

Tij = (δij − ev
i ev

j )K, K =
∫ ∞

kc

E(k) dk, (2.10a,b)

where K is the subgrid kinetic energy, and E(κ) is the SGS energy spectrum. Closure of
E(k) uses the stretched-spiral vortex solution of the Navier–Stokes equation (Lundgren
1982). See Chung & Pullin (2009).
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For WMLES, the virtual-wall model (VWM) is used (Chung & Pullin 2009). This
consists first of an ordinary differential equation for uτ (x, z, t) at each wall point, derived
from an integration in the wall-normal direction of the local streamwise momentum
equation over a thin wall-adjacent layer 0 ≤ y ≤ δ and given by

duτ

dt
= uτ

ũ|δ

(
−∂ ũu

∂x

∣∣∣∣
δ

−∂ ũw
∂z

∣∣∣∣
δ

−∂P̃
∂x

∣∣∣∣∣
δ

− 1
δ

ũv|δ + ν

δ

∂ ũ
∂y

∣∣∣∣
δ

− 1
δ

u2
τ

)
. (2.11)

With uτ (x, y, t) known, the VWM then provides a slip-velocity boundary condition at a
virtual wall of y = δ0 < δ as

ũ(δ+
0 ) = uτ

(
1
κ

ln

(
δ+

0

δ+
ν

)
+ δ+

ν

)
, (2.12)

with κ = γ K1/2uτ /(−2Txy) and where δ+
ν is an effective offset parameter. See Chung &

Pullin (2009) and Saito, Pullin & Inoue (2012) for computational details and sensitivity
testing. Where at a wall uτ is very small compared with the outer velocity scale, the VWM
is turned off.

2.3. Simulations performed
We report two series of simulations, the first for general PCP flow, and the second focused
on a subset of flows with Reτ,b = 0 on the bottom wall (ZSF flows). Pirozzoli et al.
(2011) reported DNS of PCP at Reτ ≈ 250 with a relatively small wall-parallel domain
approximately (Lx × Lz) = (12πh × 4πh). Pirozzoli et al. (2014) suggested that a domain
(Lx × Lz) = (60h × 16h) is generally required to eliminate spurious flow confinement
effects, a rule generally followed in simulations by Avsarkisov et al. (2014), Lee &
Moser (2018) and Cheng et al. (2022). Lee & Moser (2018) report that the spanwise
domain has a non-negligible effect on some mean profile diagnostics, for example the
velocity gradient at the channel centre, which shows an almost 20 % relative error at
around Reτ ≈ 220. The computational domain for all present simulations is chosen as
Lx × Ly × Lz = 20πh × 2h × 6πh.

Direct numerical simulation flows include Re = 4000, 6000, while WRLES is
implemented for Re = 10 000, 20 000. For each Re, θ = 0◦, 15◦, 30◦, 35◦, 37.5◦, 40◦,
42.5◦, 45◦, 47.5◦, 50◦, 60◦, 75◦ and 90◦. Simulation flow parameters are summarized in
figure 2, showing both the (Re, θ) and (ReM, Rec) planes. For each Re, a specific mesh is
employed. For DNS at Re = 4000 and 6000, we have Nx × Ny × Nz = 2048 × 256 × 1024
and Nx × Ny × Nz = 3072 × 320 × 1536, respectively. For WRLES at Re = 10 000, we
have Nx × Ny × Nz = 2048 × 128 × 1024, while for Re = 20 000, we have Nx × Ny ×
Nz = 3072 × 160 × 1536. For both DNS and WRLES, grid-stretching in the wall-normal
direction is used as described in Cheng et al. (2022). For WMLES, the grid is uniform in
all directions. Validation studies of both WRLES and WMLES for PC flow were conducted
by Cheng et al. (2022), who also reported on the effect of spanwise domain size on flow
diagnostics at Reτ = 500.

Table 1 summarizes Re, the mesh resolution and the corresponding numerical
methodology for ZSF flow simulations. Also shown are calculated values of Reτ,t. Values
of both Reτ,t and Reτ,b reported presently were obtained as time-planar averages over a
time window Γt, defined as Nt × max(|uτ,b|, |uτ,t|)h/ν, consisting of many wall-transit
times through the computational domain. Here, Nt ≈ 20 for DNS, and Nt ≈ 50 for
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ReM

25 000

20 000

15 000

10 000

5000

0

45°

5000 10 000 15 000 20 000 25 000

Rec θ

25 000

20 000

15 000

10 000

5000

0
0 10 20 30 40 50 60 70 80 90

Re

(a) (b)

Figure 2. Parameters for general PCP flow: simulation points in (a) the (ReM, Rec) plane, (b) the (Re, θ) plane.
Each symbol denotes a specific simulation. Here, Rec = Uch/ν, ReM = M/(2ν), Re ≡ (Re2

c + Re2
M)1/2 =

U0h/ν and θ = arccos(Rec/Re). Blue � indicates DNS at Re = 4000 with mesh 2048 × 256 × 1024. Red
� indicates DNS at Re = 6000 with mesh 3072 × 320 × 1536. Black � indicates WRLES at Re = 10 000
with mesh 2048 × 128 × 1024. Blue � indicates WRLES at Re = 20 000 with mesh 3072 × 160 × 1536.

Re Nx Ny Nz Method Reτ,t θc

100 512 96 256 DNS 13.9 18.4
300 512 96 256 DNS 23.9 18.4
1000 768 128 384 DNS 89.8 33.5
4000 2048 256 1024 DNS 304 36.0
6000 3072 320 1536 DNS 433 36.7

10 000 2048 128 1024 WRLES 685 37.0
20 000 3072 160 1536 WRLES 1256 37.7

105 576 96 192 WMLES 5.42 × 103 39.9
106 576 96 192 WMLES 4.55 × 104 40.9
107 576 96 192 WMLES 3.90 × 105 41.5
108 576 96 192 WMLES 3.41 × 106 42.0
109 576 96 192 WMLES 3.03 × 107 42.4
1010 576 96 192 WMLES 2.72 × 108 42.7

Table 1. Simulations for PCP flows with ZSF on the bottom wall, where Re is fixed for each simulation, with θ

such that the bottom-wall frictional Reynolds number is Reτ,b ≈ 0. The final two columns show the computed
top-wall frictional Reynolds number Reτ,t and the ZSF angle θc, respectively. The computational domain is
(Lx/h, Ly/h, Lz/h) = (18π, 2, 6π).

WRLES and WMLES. Several low-Re DNS cases are included in table 1, including
laminar flow at Re = 100 and 300, and an incipient turbulent flow at Re = 1000.
Simulations reported include Re = 4000 and 6000 (DNS), and Re = 10 000 and 20 000
(WRLES). To access higher Re, WMLES were performed for Re = 105, 106, 107, 108, 109

and 1010.
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c)

/U
0

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0
y/h

(U
 –

 U
c)

/U
0

1.5

0.5

–0.5

–1.5
–1.0 –0.8 –0.6 –0.4 –0.2 0

y/h

(a) (b)

Figure 3. (a) Velocity U + Uc in the upper-wall reference frame. (b) Mean velocity U − Uc in the bottom-wall
reference frame. Solid lines with blue symbols: �, θ = 0◦; �, θ = 15◦; �, θ = 30◦; �, θ = 45◦; �, θ =
60◦; �, θ = 75◦; •, θ = 90◦. Dashed lines with black symbols: �, θ = 35◦; �, θ = 37.5◦; �, θ = 40◦; �,
θ = 42.5◦.

3. Background features of turbulent PCP flow

We first discuss the mean streamwise velocity profiles at Re = 6000 in order to provide
background for mean-flow modelling to be described.

3.1. Velocity statistics at Re = 6000
Figure 3 shows profiles in velocity-difference form to highlight changes in the near-wall
velocity gradients as θ changes at fixed Re. Figure 3(a) shows (U( y) − Uc)/U0 for flow
near the bottom wall, while figure 3(b) depicts (U + Uc)/U0 for flow near the upper wall.
The velocity gradient on the top wall reaches a maximum at around θ ≈ 45◦, while the
bottom-wall velocity gradient changes sign at θ ≈ 37.5◦, corresponding to Re = 6000.
This is the general change from Couette-type to Poiseuille-type flow.

Wall-relative mean velocity profiles for the top wall in the form U+
t = (U + Uc)/uτ,t

versus d+
t = (h − y)uτ,t/ν are shown in figure 4(a) for seven values of θ . For flow near

the bottom wall, plots of U+
b = (U − Uc)/uτ,b versus d+

b = (h + y)|uτ,b|/ν in figure 4(b)
show negative and positive wall-relative velocity for Couette-type and Poiseuille-type flow,
respectively. The velocity gradient indicator function Ξ(d+) is shown in figure 5. Near the
top wall and the bottom walls, Ξt and Ξb are defined respectively as

Ξt = d+
t

dU+
t

d(d+
t )

, Ξb = d+
b

dU+
b

d(d+
b )

. (3.1a,b)

In figure 5(a), all flows indicate the presence of a logarithmic region with Ξt ≈ 2.5,
with reasonable collapse over the whole range of θ in figure 4(a). In figure 5(b), nearly
constant Ξt regions are apparent only for θ near or at θ = 0◦ and 90◦. As θ moves
between these limit values, the logarithmic-like region breaks and then rebuilds during
the transition from PC flow to PP flow. This can be seen clearly in the mean profiles
in figure 4(b).

For a model log profile of the form U+ = ln(d+)/κ + A, Lee & Moser (2015) suggested
κ = 0.384 and A = 4.27 obtained from DNS of PP flow, while Pirozzoli et al. (2014) found
that κ = 0.41 and A = 5 provide a good fit for PC flow. Later DNS of PC flow by Lee &
Moser (2018) found similar values. In figure 4(b), we use these different values for the log
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Ut
+
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+

Ub
+

20
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–10

–20
10310210110010–1

db
+

(a) (b)

Figure 4. Mean streamwise velocity profiles at Re = 6000. (a) Scaling with the upper-wall friction velocity
uτ,t: U+

t = (U + Uc)/uτ,t, d+
t = (h − y)uτ,t/ν. (b) Scaling with the bottom-wall friction velocity uτ,b: U+

b =
(U − Uc)/uτ,b, d+

b = (h + y)|uτ,b|/ν. Symbols as in figure 3. Reference log law: U+ = ln(d+)/κ + A. Dashed
lines indicate κ = 0.41 and A = 5.1. Dash-dotted lines indicate κ = 0.384 and A = 4.27.

6

5

4

3Ξt Ξb

2

1

0
10310210110010–1

6

3

0

–3

–6
10310210110010–1

dt
+ db

+

(a) (b)

Figure 5. Scaled velocity gradient Ξ at Re = 6000. (a) Scaling with the upper-wall friction velocity uτ,t:
Ξt = d+

t d(U+
t )/d(d+

t ). (b) Scaling with the bottom-wall friction velocity uτ,b: Ξb = d+
b d(U+

b )/d(d+
b ).

Symbols as in figure 3. Reference dashed lines: Ξ = ±2.5.

lines shown in the PP and PC flow limits, respectively. In figure 4(a), the PC values are
used.

3.2. Turbulent kinetic energy budget at Re = 6000
In the transition from PC flow to PP flow, the velocity deviation from the log law for some
cases indicates that the flow deviates from behaviour typical of canonical wall-bounded
turbulence. To evaluate the flow near the bottom wall, we investigate the turbulent kinetic
energy budget. The transport equation for the turbulent kinetic energy e = u′2 + v′2 + w′2
can be obtained by multiplying the Navier–Stokes momentum equations by ui, subtracting
the equation for the mean momentum equation, and taking a time-planar average. For
statistically stationary flow, this can be expressed as

P + T + Π + D + ε = 0, (3.2)
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0.001
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–0.001

10010–110–210–310–4

(y + h)/h

(a) (b)

Figure 6. Turbulent kinetic energy budget near the bottom wall for Re = 6000: (a) θ = 0◦, pure Couette flow;
(b) θ = 37.5◦, with small skin-friction magnitude on the bottom wall. Red �, P turbulence production; blue ◦,
Π pressure transport; blue �, T turbulent transport; black �, D diffusion; blue ♦, ε dissipation.

with P, T , Π , D and ε denoting the turbulent production, turbulent transport, pressure
transport, viscous diffusion and dissipation terms, respectively. These are given by

P( y) ≡ −u′v′ dU
dy

, T( y) ≡ −d(ev′)
dy

, Π( y) ≡ −d( pv′/ρ)

dy
,

D( y) ≡ ν
d2ē

dy2 , ε( y) ≡ −ν

(
∂ui

∂xj

)2

,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.3)

with the overbar referring to a plane and time average to be defined explicitly later, in
(5.1a,b).

Figures 6(a,b), respectively, show profiles of these terms over the bottom half-channel
for two cases: pure Couette flow θ = 0◦ and also θ = 37.5◦, where the bottom-wall
skin friction is almost zero. All are normalized on outer scales as U3

c h−1. Pure Couette
flow displays the well-known near-wall balance of diffusion with dissipation, changing
to an inertial-range balance between turbulent production and dissipation at larger
wall-normal distances. For θ = 37.5◦, all terms are reduced by an order of magnitude. A
diffusion–dissipation balance is again present in the near-bottom-wall flow, while farther
out, the production almost vanishes. Flow with θ = 0◦ shows a generally similar balance
profile to the corresponding case reported by Pirozzoli et al. (2011), while our flow with
θ = 37.5◦ shows smaller production near the centreline than that of their SL (shearless)
flow.

Figure 7 shows wall-normal profiles of the production–dissipation ratio P/ε at Re =
6000. In figure 7(a), with θ from 0◦ to 42.5◦, all profiles collapse near the upper wall.
Away from this wall, there is rapid increase to approximately P/ε ≈ 2, with further
decrease to P/ε ∼ 1 in the inertial region. Near the bottom wall, the peak value decreases
monotonically with increasing θ . For θ = 37.5◦, no obvious peaks are found, with P/ε

increasing slowly with distance from the bottom wall. Further increasing θ gives negative
P/ε, so that production becomes negative in the near-bottom-wall region. At θ = 42.5◦,
P/ε again becomes positive close to the bottom wall.

The appearance of negative P/ε over 37.5◦ � θ � 45◦ generally represents energy
transfer from unsteady fluctuations to the mean flow. This implies that the kinetic
energy of the fluctuating (unsteady) flow is suppressed, and that the near-wall flow has
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(a) (b)

Figure 7. Distribution of the ratio of turbulent production and dissipation for Re = 6000. Each line
corresponds to a different θ . (a) Blue symbols: �, θ = 0◦; �, θ = 15◦; �, θ = 30◦. Black symbols: �, θ = 35◦;
�, θ = 37.5◦; �, θ = 40◦; �, θ = 42.5◦. (b) Black symbol: �, θ = 42.5◦. Blue symbols: �, θ = 45◦; �,
θ = 60◦; �, θ = 75◦; •, θ = 90◦.

effectively laminarized. Negative P/ε first appears across the ZSF boundary (see § 7 for
more discussion) near θ = 37.5◦, where dU/dy changes sign, while u′v′ remains small
but negative. At around θ ≈ 42.5◦, u′v′ changes sign in the near-bottom-wall flow, which
regenerates positive production, although the corresponding peak value of P/ε remains
small.

Figure 7(b) shows P/ε profiles in the range 42.5◦ ≤ θ ≤ 90◦. For these flows, the
regenerated peak value increases from near zero to P/ε ≈ 2 at θ = 60◦. Further increase in
θ leads to the re-establishment of production–dissipation balance as the near-bottom-wall
flow re-transitions to a classical wall-bounded turbulent state.

3.3. Mean velocity profile near ZSF on the bottom wall
Averaging and wall-normal integration of the streamwise momentum equation in (−h, y)
gives the relation between the stress u′v′( y) and the mean velocity gradient as

u′v′( y) − ν
∂ ū
∂y

∣∣∣∣
y
= −S u2

τ,b − dP
dx

( y + h), S = sgn
(

dU( y)
dy

∣∣∣∣−h

)
, (3.4a,b)

where S = −1 for Couette-type flows, and S = 1 for Poiseuille-type flows. In obtaining
(3.4a,b), possible non-homogeneity in the spanwise direction is ignored. This is not
important presently, and will be discussed later. In figure 8, we plot the distribution of
the Reynolds stress u′v′. Figure 8(a) shows u′v′/u2

τ,t for all θ at Re = 6000 using top-wall
inner scaling, while figure 8(b) shows u′v′/u2

τ,b using bottom-wall inner scaling, for flows
near uτ,b = 0. In figure 8(a), the stress distribution near the top wall shows a collapse
in inner scaling, while near but not very close to the bottom wall, the stress distribution
shows a consistent tendency of decreasing magnitude, from a plateau of u′v′/u2

τ,t ≈ 1 for
θ = 0◦, to almost zero for θ ≈ 40◦, with further decrease to u′v′/u2

τ,t ≈ −1 for θ = 90◦.
This tendency is similar to the distribution of u′v′/U2

0, which is not shown presently. Near
the ZSF condition, there is no observable collapse for u′v′/u2

τ,t. In figure 8(b), the Reynolds
stress is plotted using bottom-wall inner scaling, showing large scatter.
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Figure 8. Profile of Reynolds stress u′v′ versus y/h for Re = 6000: (a) u′v′/u2
τ,t for all θ flows; (b) u′v′/u2

τ,b
for simulations near the ZSF flow. Symbols as in figure 3.

0.2
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–1.0 –0.9 –0.8 –0.7 –0.6

y/h

U
−

U
c
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10−1 100 101
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+
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v
′ /u

2 τ,
t

(a) (b)

Figure 9. Balance of wall-normal integral of the streamwise momentum equation. (a) Equation (3.4a,b).
Symbols: close-up of u′v′/u2

τ,t for near-ZSF flows. Solid lines: (−u2
τ,b − (dP/dx)( y + h))/u2

τ,t for
corresponding θ . (b) Balance of (3.6). Symbols: simulation U − Uc for near-ZSF flows. Solid lines:
(1/ν)(S u2

τ,b(y + h) − ((u2
τ,t + S u2

τ,b)/4h)( y + h)2) for corresponding θ . Black symbols: �, θ = 37.5◦; �,
θ = 40◦; �, θ = 42.5◦. Blue symbol: �, θ = 45◦.

A near-wall close-up of figure 8(a) is shown in figure 9(a) for θ = 40◦, 42.5◦, 45◦ near
but above the ZSF condition. Solid lines are the scaled right-hand side of (3.4a,b) as
(−S u2

τ,b − (dP/dx)( y + h))/u2
τ,t. Up to some distance from the bottom wall, the velocity

gradient term and the pressure term contribute strongly to the balance of (3.4a,b).
Further integration of the streamwise momentum equation in (−h, h) and elimination

of dP/dx from (3.4a,b) gives

u′v′( y) − ν
∂ ū
∂y

∣∣∣∣
y
= h + y

2h

(
u2
τ,t + S u2

τ,b

)
− S u2

τ,b. (3.5)

Integration of (3.5) in (−h, y) then leads to an expression for the mean velocity profile as

U( y) − Uc = 1
ν

(
S u2

τ,b(y + h) − u2
τ,t + S u2

τ,b

4h
( y + h)2 +

∫ y

−h
u′v′(ξ) dξ

)
. (3.6)

Figure 9(b) shows the velocity profiles near the bottom wall for three cases,
θ = 40◦, 42.5◦, 45◦, which, from figure 8, have Reτ,b > 0. Equation (3.6) is also plotted
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Plane Couette–Poiseuille flow

using uτ,t and uτ,b from the simulations but with u′v′ ≡ 0. This shows a qualitatively
similar shape to simulation profiles: a near-wall peak is indicated with increasing
maximum and with location that moves off from the wall with increasing θ at fixed
Re = 6000.

In summary, with Re fixed and sufficiently large for Poiseuille/Couette flow turbulence
to exist, the flow near the top wall remains in a turbulent state while θ increases in 0◦ ≤
θ ≤ 90◦. Near the bottom wall, the turbulence gradually weakens as θ is increased. Both
production and dissipation reduce, with production becoming negative over a small range
37.5◦ � θ � 42.5◦. Taken together with the loss of a log-like region, this indicates that
the near-bottom-wall flow has laminarized perhaps over a range θ ≈ 30◦ − 50◦. Further
increase in θ re-establishes near-bottom-wall turbulence up to the Poiseuille limit θ =
90◦. During flow laminarization, the pressure gradient effect is small for θ < θc, while
it produces a near-wall mean velocity maximum with almost laminar flow between the
maximum and the wall for θ > θc. Shear stresses on both walls contribute to the form of
this profile. The general profile shape indicates laminar flow near the bottom wall for small
θ − θc > 0.

4. Mean-flow modelling

The friction Reynolds numbers Reτ,t and Reτ,b defined by (2.4a,b) take the sign of
the frictional force exerted on the walls by the fluid. For pure Couette flow with θ =
0◦, Reτ,t > 0 and Reτ,b < 0, while for pure Poiseuille flow with θ = 90◦, both Reτ,t
and Reτ,b are positive. We expect Reτ,t = ft(Re, θ) and Reτ,b = fb(Re, θ). Here, we
show that relatively simple, empirically based mean-flow modelling enables approximate
determination of these functions. Three different models are developed for three different
flow regimes. The first model, denoted CT, is for Couette-type flow with Reτ,b < 0.
The second is PT-I for strongly Poiseuille-type flow. These are considered high-Re
approximations. The third model is denoted PT-II for weakly Poiseuille-type flow, with
Reτ,b > 0 but sufficiently small in magnitude that the flow near the bottom wall can be
modelled as laminar flow as indicated by earlier discussion. The three models use the
same approach, so quantitative details are given here only for the CT model. The models
employ log profiles. In numerical calculations, the possible distinctions between PP and
PC flows are ignored, and the nominal values κ = 0.4 and A = 5.0 are utilized.

4.1. CT: Couette-type flow, Reτ,b < 0
For Couette-type flow, we assume that the composite mean velocity profile comprises two
pure log profiles (relative to the top and bottom walls) that join at a location y = y0 to be
determined.

For −h < y ≤ y0,

Ub( y) = Uc + uτ,b

(
1
κ

ln
(

(h + y) |uτ,b|
ν

)
+ A

)
. (4.1)

For y0 ≤ y < h,

Ut( y) = −Uc + uτ,t

(
1
κ

ln
(

(h − y)uτ,t

ν

)
+ A

)
, (4.2)
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where κ is the Kármán parameter, and A is the offset constant. For θ < θc but θ − θc small,
the profiles are not accurate. But because this is a high- Re model, it is expected to have a
small effect, which is verified in what follows.

When expressed in terms of Reynolds numbers, with Re, θ given, there are three
unknowns, Reτ,b, Reτ,t and y0/h. Two equations are obtained from matching U( y) and
dU/dy at y = y0 using the above profiles:

Ub( y0) = Ut( y0),
dUb

dy

∣∣∣∣
y0

= dUt

dy

∣∣∣∣
y0

. (4.3a,b)

Using (4.1) and (4.2), these give, respectively, after some algebra,

2κ Re cos(θ) − Aκ
(
Reτ,t − Reτ,b

)+ Reτ,b ln
(|Reτ,b| (1 + Y0)

)
−Reτ,t ln

(
Reτ,t(1 + Y0)

) = 0, (4.4)

Y0 = −Reτ,t + Reτ,b

Reτ,t − Reτ,b
, (4.5)

where Y0 = y0/h. A third equation is obtained by substituting (4.1) and (4.2) into the
second equation of (2.1a,b) to give

ReM ≡ Re sin θ = 1
2ν

[∫ y0

−h
Ub( y) dy +

∫ h

y0

Ut( y) dy
]

. (4.6)

The integrations can be done, and the resulting equation, with Re and θ given, is

Reτ,t + Reτ,b − Y0
(
Reτ,t − Reτ,b

)
+ κ

[
2 Re sin(θ) − 2Y0 Re cos(θ) + A

(−Reτ,t − Reτ,b + Y0
(
Reτ,t − Reτ,b

))]
− (1 + Y0) Reτ,b ln

[|Reτ,b| (1 + Y0)
]− (Y0 − 1) Reτ,t ln

[
Reτ,t(1 − Y0)

] = 0. (4.7)

Equations (4.4), (4.5) and (4.7) describe Couette-type flow with Reτ,b < 0. Near-wall
viscous sublayer regions can be included at the cost of additional complexity, but the
effect is negligibly small at values of Re presently considered, even for near-bottom-wall
flow when |Reτ,b| is small.

For θ = 0◦, these equations have the exact solution Reτ,b = −Reτ,t, Y0 = 0 and

Reτ,t = κ Re
W(eAκ κ Re)

, (4.8)

corresponding to pure Couette flow, where W(Z) is the ProductLog function or Lambert
function, which is the solution of Z = W ln(W). For given Re and θ > 0, they must
generally be solved numerically, which is straightforward. Their validity extends to
Reτ,b = 0, θ = θc, which is the limit of Couette-type flow. Putting Reτ,b = 0, Y0 = −1
leads to a considerable simplification. The resulting equations can be solved approximately
by putting θc = π/4 + ε, ε 
 1. Linearizing in ε and solving the resulting equations gives

Reτ,t(Re) =
√

2 κ Re

W(2
√

2 eAκ−1 κ Re)
, (4.9)

θc(Re) = π

4
− 1

W(2
√

2 eAκ−1 κ Re)
+ HOT, (4.10)

with HOT representing ‘higher-order terms’. As Re → ∞, θc → π/4 = 45◦. A physical
interpretation of this limit will be discussed later.
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4.2. PT-I: strongly Poiseuille-type flow, Reτ,b � 0
For strongly Poiseuille-type flow with Reτ,b > 0, owing to the expected maximum in U( y),
we employ a modelling ansatz with different features to that used for Reτ,b < 0. In place
of pure log profiles, we use the log-wake profile of Jones, Marusic & Perry (2001), which
takes the form

U
uτ

= 1
κ

ln
(yuτ

ν

)
+ A − 1

3κ

( y
h

)3 + 2
Π

κ

( y
h

)2 (
3 − 2

( y
h

))
, (4.11)

where Π is the Coles wake parameter. This profile automatically has zero slope at y = h.
For Poiseuille-type flow, (4.11) is adapted as follows.

For −h < y ≤ y0,

Ub( y) = Uc + uτ,b

[
1
κ

ln
(

( y + h)uτ,b

ν

)
+ A

− 1
3κ

(
y + h
y0 + h

)3

+ 2
Π

κ

(
y + h
y0 + h

)2 (
3 − 2

y + h
y0 + h

)]
. (4.12)

For y0 ≤ y < h,

Ut( y) = −Uc + uτ,t

[
1
κ

ln
(

(h − y)uτ,t

ν

)
+ A

− 1
3κ

(
h − y
h − y0

)3

+ 2
Π

κ

(
h − y
h − y0

)2 (
3 − 2

h − y
h − y0

)]
, (4.13)

which automatically gives zero slope for both expressions at y = y0. The velocity matching
condition is again Ub( y0) = Ut( y0). The slope matching condition is here replaced by
matching the second derivatives at y = y0, giving

uτ,b

(h + y0)2 = uτ,t

(h − y0)2 . (4.14)

The third equation is (4.6), where U( y) in the two ranges of integration is now given by
(4.12) and (4.13), respectively. The integrations can again be performed analytically.

These three equations can again be cast in terms of independent variables (Re, θ)

and dependent variables (Reτ,t, Reτ,b, Y0). These are summarized in Appendix B. With
θ > θc, their numerical solutions are straightforward. For θ = 90◦, corresponding to
pure Poiseuille flow, the model equations simplify and can be solved analytically, giving
Reτ,b = Reτ,t, Y0 = 0 and

Reτ,t = κ Re
W(exp(−13/12 + Π + Aκ) κ Re)

. (4.15)

Again, the limit Reτ,b = 0, θ = θc can be explored. The resulting equations can be
solved approximately by putting θc = π/4 − ε, ε 
 1. Linearizing in ε and solving the
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resulting equations gives

Reτ,t =
√

2 κ Re

W(2
√

2 exp(Aκ − 13/12 + Π) κ Re)
, (4.16)

θc = π

4
− ε(Re), (4.17)

where ε(Re) is a known but complicated function of Re that approaches 0 when Re → ∞.
Equation (4.16) does not agree with (4.9), but the mismatch is small and within the
accuracy of the overall model. The reason is that velocity profiles with a wake component
are used (and required) for Poiseuille flow θ > θc, but not for Couette-type flow θ < θc.
The above model ignores the existence of a viscous sublayer expected near both walls
when both ln[Reτ,t] � 1 and ln[Reτ,b]| � 1. This can be included, but makes negligible
difference in numerical results when both ln(Re) � 1, ln[Reτ,b] � 1. This is, however,
included near the bottom wall in the following model variation.

4.3. PT-II: weakly Poiseuille-type flow, Reτ,b ∼ 0
It will be shown later that for Reτ,b > 0 small relative to its value for θ → 90◦, model
PT-I gives poor agreement with the present numerical simulation. This is because
re-laminarization, when θ − θc is positive but small, begins to be strongly affected by
the pressure gradient, generating a near-wall maximum in the mean-flow velocity, as
shown previously. To account for this, model PT-II replaces (4.13) with an approximate
laminar profile obtained by putting u′v′ = 0 in the otherwise exact (3.6). Equation (4.12) is
retained, as is the volume flow condition (4.6). The velocity matching condition at y = y0
is unchanged, and the slope or gradient matching is now that dU( y)/dy = 0 at y = y0
using the modified (3.6). This provides three closed equations for Reτ,b, Reτ,t and Y0,
which are given in Appendix B. Numerical solutions are again straightforward. We note
that as θ → θc from above, the gradient d(Reτ,b)/dθ is singular as (θ − θc)

−1/2. This
does not pose numerical problems. As with models CT and PT-I, the limit Re → ∞ gives
θc = π/4.

4.4. Infinite Re limit
The limiting velocity in the bulk flow can be obtained by taking the Re → ∞ limit of
the velocity profiles given above. The analysis is similar for all cases, so we sketch one
example to illustrate. With Y = y/h, (4.13) can be expressed as

Ut( y)
U0

= − cos(θ)

+ Reτ,t

Re

(
A − (Y − 1)2 (Y − 1 + 6 Π(1 + 2Y − 3Y0))

3κ(Y0 − 1)3 + ln[Reτ,t(1 − Y)]
κ

)
. (4.18)

In the large-Re limit, only the ln[Reτ,t] term inside the large parentheses survives, giving

Ut( y)
U0

= − cos(θ) − Reτ,t ln(Reτ,t)

κ Re
+ O

(
Reτt

Re

)
, (4.19)

independent of Y . This is true for all PCP flows considered presently. The large ln(Re)
limit of the equation defining the solution for Reτ,t is

Reτ,t ln(Reτ,t) − Re κ(sin θ + cos θ) = 0. (4.20)
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Figure 10. Friction Reynolds numbers for two walls, Reτ,t (blue �) and Reτ,b (blue �): (a) Re = 4000,
(b) Re = 6000, (c) Re = 10 000, (d) Re = 20 000. Dash-dot-dotted lines indicate model CT; dashed lines
indicate model PT-I; dash-dotted lines indicate model PT-II.

Using this result in (4.19) and taking the limit Re → ∞ gives the plug-flow limiting
velocity profile in the following alternative forms:

Ut( y)
U0

= sin(θ),
Ut( y)

Uc
= tan(θ),

Ut( y)
M/(2h)

= 1, (4.21a–c)

which is consistent with ReM = Re sin θ . This result can be obtained for both Couette- and
Poiseuille-type flow for all 0◦ ≤ θ < 90◦. Detailed calculations are straightforward but are
not developed presently. This gives the infinite-Re limiting velocity profile as plug flow for
−h < y < h, except in vanishingly small viscous-type regions near both walls.

5. Properties of PCP flow

5.1. Skin friction variation
Figure 10 shows Reτ,b and Reτ,t versus θ for four Re values, consisting of DNS at
Re = 4000, 6000 and WRLES data at Re = 10 000, 20 000. A general observation is that
at the top wall, Reτ,t is always positive; it varies slowly with increasing θ , but is not
constant. For the bottom wall, Reτ,b is equal and opposite to Reτ,t at θ = 0◦, but then
increases monotonically as θ increases, passing through zero, and further increasing until
θ = 90◦, where Reτ,b = Reτ,t for the turbulent Poiseuille-flow state. Model results are
also shown. For Reτ,t, both the CT and PT-I turbulent models give accurate estimates
over the whole range of θ . In calculating Reτ,t, differences between the PT-II and PT-I
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Figure 11. (a) Scaling of friction Reynolds numbers using values at θ = 90◦: Reτ,t/Reτ,t(90◦) for the top wall,
and Reτ,b/Reτ,b(90◦) for the bottom wall. (b) Reynolds number based on pressure, Rep, where: � indicates
DNS of Re = 4000; � indicates DNS of Re = 6000; � indicates WRLES of Re = 10 000; � indicates WRLES
of Re = 20 000. Model prediction at Re = 108: dash-dot-dotted line indicates CT model; dashed line indicates
PT-I model.

models are negligible. The maximum value of the relative error for Reτ,t(θ), between the
model prediction and the simulation data, is around 2–3 %, and it slowly decreases with
increasing Re. At the bottom wall, the CT model results show satisfactory agreement with
simulation data for Reτ,b up to θ = θc, where Reτ,b = 0.

For Poiseuille-type flow (θ > θc), the PT-I model agrees well with simulation for θ >

60◦ but does not capture a hump in the Reτ,b profile that appears for all four Re values
for θ somewhat larger than θc. This is associated with a near-wall maximum in the mean
velocity profile with laminar near-wall flow. For this range of θ where θ − θc is greater
than 0 but small, the PT-II model captures this sudden increase in Reτ,b reasonably well,
including its reduction in amplitude as Re increases. But PT-II is not appropriate for large
θ owing to the assumed laminar profile near the bottom wall, so results using this model
are shown over only a small θ range. A blended PT-I/PT-II model, uniformly valid for
Reτ,b > 0, can be constructed but is not described presently. Both simulation and model
indicate that θc(Re) increases with increasing Re, albeit very slowly. This will be revisited
later when WMLES results for θ = θc are discussed.

Figure 11(a) shows plots of both Reτ,t/Reτ,t(θ = 90◦) and Reτ,b/Reτ,b(θ = 90◦) versus
θ , together with CT and PT-I model calculations for Re = 108. Reasonable collapse is
obtained.

We have chosen ReM , instead of the Reynolds number based on pressure gradient Rep,
as the independent parameter associated with mass flow generated by the finite pressure
gradient. In figure 11(b), we show Rep versus θ obtained from (2.5). Shown are numerical
data from four Re values and one model prediction at Re = 108. The data are also scaled
by their corresponding values at the Poiseuille case θ = 90◦. Again, a reasonable collapse
is obtained.

5.2. Streamwise velocity change with (Re, θ)

Figure 12 shows streamwise, mean velocity distributions U( y/h)/U0 at Re = 6000 and
20 000 in 0◦ ≤ θ ≤ 90◦ with increment 15◦. Symbols show the simulation data. Profiles
obtained from the three models are displayed as dashed lines. The Couette-type (Reτ,b <

0) model agrees quite well with the numerical results for θ = 0◦, 15◦ and 30◦, while the
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Figure 12. Comparison of streamwise velocity U/U0 between model prediction and numerical results:
(a) Re = 6000, (b) Re = 20 000. Symbols for numerical results: 	, θ = 0◦; �, θ = 15◦; �, θ = 30◦; �,
θ = 45◦; �, θ = 60◦; �, θ = 75◦; •, θ = 90◦. Red dashed lines indicate model prediction profiles.
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Figure 13. Comparison of streamwise velocity U/U0 between model prediction and numerical results:
(a) Re = 6000, (b) Re = 20 000. Symbols for numerical results: 	, θ = 35◦; �, θ = 40◦; �, θ = 42.5◦; �,
θ = 45◦. Red dashed lines indicate model prediction profiles.

strong Poiseuille-dominant model (PT-I, Reτ,b � 0) shows a good match with numerical
data for θ = 90◦, and deviations appear near the bottom wall at θ = 60◦, 75◦. To illustrate
model performance near θ = θc, figure 13 shows U( y/h)/U0 for θ = 35◦, 40◦, 42.5◦
and 45◦ for both Re = 6000 and 20 000. For flows with Reτ,b > 0, model PT-II provides
satisfactory velocity profiles across the whole channel height.

5.3. Turbulence intensities
It is known that PC flow turbulence is generally not homogeneous in the spanwise direction
owing to the existence of spanwise coherent rolls (Pirozzoli et al. 2014; Cheng et al. 2022).
Two distinct spanwise averages can be defined. The first consists of streamwise, spanwise
and time averaging, while the second excludes the spanwise average in order to recognize
the spanwise non-homogeneity. For any instantaneous field Φ(x, y, z, t), with uniform time
stepping, these are respectively

Φ̄( y) ≡ 1
Nt

1
Nx

1
Nz

∑
z,x,t

Φ(x, y, z, t), Φ̂( y, z) ≡ 1
Nt

1
Nx

∑
x,t

Φ(x, y, z, t), (5.1a,b)
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Figure 14. Distribution of streamwise turbulence intensities for Re = 6000: (a) u′u′/U2
0 , (b) u′u′/u2

τ,t. For
symbol key, see figure 3.

with Nt the number of averaged time steps. The fluctuation field can also be defined in two
ways:

Φ ′(x, y, z, t) ≡ Φ(x, y, z, t) − Φ̄( y), Φ•(x, y, z, t) ≡ Φ(x, y, z, t) − Φ̂( y, z). (5.2a,b)

Further applying the Φ̄ operator produces two distinct Reynolds stress distributions:
u′

iu
′
j( y) and u•

i u•
j ( y). The first describes fluctuations in a global sense, while the second

shows only local fluctuations without recognition of variation that could be attributed to
spanwise inhomogeneity.

The first distribution of streamwise turbulence intensity is shown in figure 14, for
Re = 6000 across 0 ≤ θ ≤ 90◦ in outer scaling as u′u′/U2

0 and in top-wall inner scaling
as u′u′/u2

τ,t. The profile variations are symmetrical about y = 0 for θ = 0◦ and 90◦, but
show substantial variation otherwise. A sharp maximum typical of wall-bounded turbulent
flows is always present near the top wall. As θ increases, the magnitude of this peak in
outer scaling first increases, reaches a local maximum at or very near the critical θc, and
then decreases, behaviour similar to the variation of Reτ,t(θ). Using uτ,t scaling, the peak
magnitude decreases monotonically. Over the range 0◦ ≤ θ ≤ 45◦, this can be ascribed
to the attenuation of the large-scale rolls present for Couette-type flows, to be discussed
subsequently. Over 45◦ ≤ θ ≤ 90◦, it corresponds to the monotonic decrease of Reτ,t.
Outboard of the peak, the general behaviour u′u′/u2

τ,t follows the peak as a monotonic
decrease with increasing θ .

Near the bottom wall, the variation of the turbulence intensities with θ is qualitatively
similar for both scalings, suggesting that they are not strongly influenced by the upper
wall turbulence. The local maximum reduces rapidly as θ increases towards θ = θc, then
vanishes as the flow laminarizes locally for θ near θc. The peak reappears as the near-wall
flow re-transitions to a turbulent state when θ → 90◦. Scaling with uτ,b is inappropriate
across the whole range of θ owing to the laminar near-wall flow near θ = θc.

6. Transition from Couette-type to Poiseuille-type flow

It is known that large-scale spanwise rolls exist in PC flow (Pirozzoli et al. 2014; Lee &
Moser 2018; Cheng et al. 2022) that enhance the turbulent mixing. These are not present
for pure Poiseuille flow. Here, we explore flow changes as θ increases with Re fixed, and
the flow transitions from a Couette-type to a Poiseuille-type state.
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Figure 15. Cross-flow plane average diagnostics: (a) Er, (b) R. Symbols: red 	, Re = 4000; black �,
Re = 6000; blue �, Re = 10 000; black �, Re = 20 000.

6.1. Average diagnostics

For a velocity component Φ̂( y, z) defined by (5.2a,b), we define its mean-flow energy as

EΦ = 1
4hLz

∫ h

−h

∫ Lz/2

−Lz/2

(
Φ̂( y, z)

U0

)2

dz dy. (6.1)

The choices Φ̂ = û, v̂, ŵ then give the mean-flow energies Eu, Ev, Ew associated
respectively with the streamwise, wall-normal and spanwise directions. The sum Er =
Ev + Ew is the energy in the mean flow in the ( y, z) plane resulting from the presence (or
otherwise) of large-scale spanwise rolls. Specifically, Er(Re, θ) can be interpreted as the
kinetic energy of the cross-flow, while Eu(Re, θ) is the streamwise energy.

In figure 15(a), we show Er(θ). It is clear that the roll energy Er generally declines
to a small value at around the critical angle θc where Reτ,b ∼ 0, and further decreases at
around θ ≈ 45◦. This suggests that the large-scale spanwise rolls generally exist only in the
Couette-type flow domain. For θ > 45◦, the cross flow energy is finite but small. This can
probably be attributed to the existence of residual break-up structures from spanwise rolls
until θ ≈ 75◦. The present trend of Er(θ) is consistent with the time-averaged, cross-flow
field obtained by Gandía-Barberá et al. (2018), where the roll structure gradually decays
with increasing pressure gradient.

A further interesting diagnostic is the difference between the two turbulence intensities.
An appropriate integral definition of the sum of the three difference components is

R = 1
2h

∫ h

−h

(
u′

iu
′
i( y) − u•

i u•
i ( y)

U2
0

)
dy. (6.2)

In figure 15(b), we show the variation of R with θ for all four Re values. This shows a
generally similar trend to the variation of Er(θ) but with more statistical scatter.

6.2. Instantaneous skin friction coefficient
The instantaneous surface skin-friction field provides a useful indicator of the near-wall
flow character. The two components of the skin-friction vector on the wall surface are Cfx
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and Cfz. For the top and bottom walls, we define

Cfx,b = ν

U2
0

∂u
∂y

∣∣∣∣−h
, Cfz,b = ν

U2
0

∂w
∂y

∣∣∣∣−h
, Cfx,t = ν

U2
0

∂u
∂y

∣∣∣∣
h
, Cfz,t = ν

U2
0

∂w
∂y

∣∣∣∣
h
.

(6.3a–d)

Figure 16 shows colour-contour plots of Cfx,b at a time instant for five flows with Re =
6000 and θ = 0◦, 37.5◦, 45◦, 60◦ and 90◦. For pure Couette flow with θ = 0◦, footprints of
the large-scale counter-rotating streamwise-oriented rolls with spanwise spacing of order
4h − 5h can be seen clearly. There are also small-scale structures that generally occupy
the dividing region between large-scale rolls. Compared to Poiseuille flow at θ = 90◦,
those small-scale structures in Couette flow are more ordered, in both the streamwise
and spanwise directions. At θ = 37.5◦ where uτ,b ∼ 0, the roll structures are clearly
attenuated and are hardly observable. In fact, the skin-friction portrait appears to show
small-scale structures oriented randomly in the plane. For θ = 45◦, rolls are no longer
visible. At θ = 60◦, streamwise, streak-like structures have appeared, and at θ = 90◦,
these are fully developed with a spanwise spacing of order 100 viscous wall units, typical
of classical wall-bounded turbulent flows. For clarity, we also show the corresponding
colour-contour plots of Cfz,b at the five θ values in figure 17. These show somewhat
different structural features to the Cfx,b portraits, but similar qualitative changes with
increasing θ .

At Re = 6000, θc ≈ 36.7◦, where Reτ,b ≈ 0. Here, in the frame of reference of the
moving wall there is no mean-flow shear in both streamwise and spanwise directions.
In figure 18, we show an image of the vector field lines of the instantaneous vector
skin-friction coefficient (Cfx,b, Cfz,b) on the bottom wall, which are also limiting
near-surface streamlines in the frame of reference where the bottom wall is stationary.
For clarity, only a small rectangular domain of the bottom wall surface is shown. Bundles
of separatrix-like structures together with spiral and saddle critical points (where Cfx,b =
Cfz,b = 0) are visible, indicating local, small-scale separation–reattachment events.
Orientations appear random. This near-bottom-wall flow is essentially random, unsteady
three-dimensional laminar flow.

Figure 19 depicts the probability distribution functions (p.d.f.s) of both components
of the skin-friction coefficients on the bottom wall across the range of θ for Re = 6000.
In figure 19(a), as θ increases from 0◦ to 45◦, the p.d.f. of Cfx,b marches to the right
towards zero mean at θ = θc (black solid curve) with reducing variance and enhanced
symmetry. The arrow indicates the trend with increasing θ . With θ increasing from 45◦
to 90◦, the p.d.f. in figure 19(b) continues marching to the right with increasing variance
and asymmetry. For Cfz,b in figures 19(c,d), the p.d.f. curves remain symmetrical but show
minimum variance at θ = θc. Skin-friction distributions at the upper wall in figure 20
show different behaviour. For θ increasing in (0◦, 45◦), the p.d.f. of Cfx,t marches to the
right but retains left-leaning skewness. This trend is reversed as θ continues to increase
in (45◦, 90◦). The p.d.f. for Cfz,t shows a variation with increasing θ that is reversed
compared to that shown by Cfz,b. In the two limits – θ = 0◦ for pure Couette flow, and
θ = 90◦ for pure Poiseuille flow – the p.d.f. curves of both skin-friction coefficients have
very similar shapes except that p.d.f. curves of Cfx,b are mirror-images for pure Couette
flow.
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Figure 16. Colour contours of streamwise skin friction coefficient Cfx,b on the bottom wall at Re = 6000:
(a) θ = 0◦, (b) θ = 37.5◦, (c) θ = 45◦, (d) θ = 60◦, (e) θ = 90◦.

6.3. Flow visualization
Visualizations such as iso-surface structures can provide a three-dimensional perspective.
In figure 21, we compare iso-surface plots of the wall-normal velocity v at v = −0.02U0
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Figure 17. Colour contours of spanwise skin friction coefficient Cfz,b on the bottom wall for Re = 6000:
(a) θ = 0◦, (b) θ = 37.5◦, (c) θ = 45◦, (d) θ = 60◦, (e) θ = 90◦.

obtained from time-window-averaged flow fields at Re = 4000, with visualization over
the whole computational domain. The average time frame is approximately one turnout
time, approximately UcT/Lx cos θ = 1. Five cases include θ = 0◦, 15◦, 45◦, 60◦ and 75◦.
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Figure 18. Instantaneous skin friction lines on the bottom wall for θ = 37.5◦ at Re = 6000.

P
.d

.f
.

1800

1200

600

0
–0.008 –0.006 –0.004 –0.002 0 0.002

Cf x,b

1800

1200

600

0
–0.002 0 0.002 0.004 0.006 0.008

Cf x,b

P
.d

.f
.

2400

1800

1200

600

0
–0.002 –0.001 0 0.001 0.002

Cf z,b

2400

1800

1200

600

0
–0.002 –0.001 0 0.001 0.002

Cf z,b

(a) (b)

(c) (d )

Figure 19. P.d.f.s of skin-friction coefficients at the bottom wall: (a) Cfx,b from θ = 0◦ to 45◦; (b) Cfx,b from
θ = 45◦ to 90◦; (c) Cfz,b from θ = 0◦ to 45◦; (d) Cfz,b from θ = 45◦ to 90◦. Dashed lines: black, θ = 0◦; blue,
θ = 15◦; red, θ = 30◦. Solid lines: black, θ = 37.5◦; blue, θ = 45◦; red, θ = 60◦. Dash-dotted lines: black,
θ = 75◦; blue, θ = 90◦.

For Couette-type flows of θ = 0◦ and θ = 15◦, the signatures of streamwise structures
are clearly visible, while for θ = 45◦, these structures have been greatly attenuated. Cases
θ = 60◦ and θ = 75◦ show almost no identifiable structure.
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Figure 20. P.d.f.s of skin-friction coefficients at the top wall: (a) Cfx,t from θ = 0◦ to 45◦; (b) Cfx,t from
θ = 45◦ to 90◦; (c) Cfz,t from θ = 0◦ to 45◦; (d) Cfz,t from θ = 45◦ to 90◦. For line types, refer to figure 19.

7. Flow with zero skin friction on the bottom wall

Here, we discuss flow properties along the trajectory in the (Re, θ) plane where Reτ,b = 0.
These are referred to as zero skin friction (ZSF) flows. This is done to limit computational
expenditure for a two-parameter flow yet provide simulation data that characterize an
interesting example of a wall-bounded turbulent flow over a range of Re that exceeds
bounds attainable with DNS and with WRLES. Simulations were performed at Re values
shown in table 1, where the methodology is also indicated.

In simulation, the ZSF condition is enforced by fixing Re and employing a control
algorithm to vary the mean pressure gradient to control θ dynamically during simulation
until Reτb(θ) ≈ 0 is found. The control algorithm consists of a penalty method
implementation which dynamically adjusts the mean pressure gradient at every time step
to optimize the averaged velocity gradient on the bottom wall. As discussed earlier,
experiences with the PT-II model and numerical simulation suggest that at θ = θc,
d(Reτ,b)/dθ on the Poiseuille side is singular as (θ − θc)

−1/2 when Reτ,b → 0. This, plus
the fact that the time-planar average used for wall shear stresses itself exhibits inevitable
fluctuations, has the effect that convergence to Reτ,b = 0 to machine precision has not
been achieved. In practice, an accuracy |Reτb |/Reτt ∼ O(10−3) is obtained. For WMLES,
the wall model is turned on only at the upper wall.
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Figure 21. Visualization of time-averaged vertical velocity fields v with colouring by spanwise velocity w at
Re = 4000: (a) θ = 0◦, (b) θ = 15◦, (c) θ = 45◦, (d) θ = 60◦, (e) θ = 75◦.
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Figure 22. Scaled velocity profile near the bottom wall: U− versus d−
b . Symbols: blue �, 4000; black �,

6000; red �, 10 000; blue �, 20 000. Dash-dotted line indicates U− = −(d−
b )2/2.

7.1. Bottom wall (U−, d−
b ) scaling

For ZSF flows, uτ,b = 0, indicating the absence of a local wall-velocity scale. Following
Stratford (1959), Coleman et al. (2017) investigated the near-bottom-wall flow at Rec up to
1.2 × 104 in terms of the alternative, pressure-gradient-based scaling

U− ≡ u(db) − Uc

up
= f (d−

b ), d−
b ≡ db up

ν
, up ≡

(
ν

∣∣∣∣ d
dx

(
p
ρ

)∣∣∣∣)1/3

. (7.1a–c)

From the integrated skin-friction–pressure-gradient balance for the whole channel, we find
that

up =
(

ν u2
τ,t

2h

)1/3

,
up

uτ,t
= 1(

2 Reτ,t
)1/3 . (7.2a,b)

Using (3.6) with uτ,b = 0, neglecting the Reynolds stress term and normalizing using the
(U−, d−

b ) scaling, gives

U−= − 1
2

(
d−

b
)2

. (7.3)

Figure 22 shows the present DNS/WRLES mean velocity profiles near the bottom wall
in (U−, d−

b ) scaling. The profiles collapse well and agree with (7.3) over almost two
decades of d−

b . Our WMLES do not provide sufficient near-wall resolution to test this
scaling.

7.2. Streamwise velocity profiles for ZSF flows
Streamwise velocity profiles are shown in figure 23(a) in top-wall inner scaling units.
A logarithmic profile with U+ = 1/0.4 ln y+ + 5.0 is also displayed. For our smallest
Re = 100 and 300, the channel flow is essentially laminar, as shown in the kicked-up
profiles at small d+

t . At larger Re up to Re = 1010 with Reτt ≈ 2.72 × 108, the velocity
profiles match the log profile across almost the whole channel height of 2h. Figure 23(b)
shows velocity profiles in outer scaling as U( y/h)/(Uc versus y/h, where it is noted that
θc = θc(Re) varies with Re. Also shown are mean-flow model predictions using PT-II.
Model predictions are also shown for Re = 1020, 1050, 10100. These show an asymptotic
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Figure 23. Streamwise velocity profiles of ZSF flows: (a) U+, where the dashed line is the logarithmic line
U+ = 1/0.4 ln y+ + 5.0; (b) model prediction of velocity profiles up to Re = 10100, where the dashed line is
the model prediction profile for corresponding Re. Symbols for Re values: black �, 100; red ◦, 300; blue �,
4000; black �, 6000; red �, 10 000; blue �, 20 000; red �, 105; black �, 106; blue �, 107; red �, 108; black
�, 109; blue •, 1010. Cases with only model prediction: dash-dotted line, 1020; dash-dot-dotted line, 1050; solid
line, 10100.

approach to U/U0 = sin θ when Re → ∞ as stated by (4.21a–c). Since, as discussed
subsequently, θc → 45◦ when Re → ∞, the limit streamwise velocity for ZSF flows is
U( y/h) → Uc except in a thin viscous layer at the top wall. The thickness of this layer as
a function of Re can be estimated, an exercise left to the reader. Approach to the limit is
extremely slow. Further, for ZSF flows, (2.5) gives Rep = Reτ,t/

√
2 so that Rep/Re → 0

as Re → ∞.
Figure 23(b) also suggests a simple interpretation of the result θc → 45◦ when Re → ∞

for flows with Reτ,b = 0. The limiting plug-flow velocity U( y) = Uc is the only velocity
that satisfies both the Dirichlet boundary and also dU/dy = 0 on the bottom plate. Then
if U( y) = Uc, the volume flow rate is M = 2hUc. So then Rec = Uch/ν and ReM =
M/(2ν) = Uch/ν. So in the large-Re limit, Rec = ReM for ZSF flows, which means
θ = 45◦.

7.3. Skin friction and mean-flow square velocity
The variation of the critical angle θc(Re) is shown in figure 24(a), where the square
symbols are DNS results, the two triangles give WMLES results, and the circles show
the six WMLES results. For strictly laminar PCP flow, θc ≈ 18.4◦ (see Appendix A)
independent of Re. Simulations at Re = 100 and 300 show consistency with this value.
At Re = 1000, θc ≈ 33◦, while at Re = 4000, the bulk flow has transitioned to turbulence
with θc ≈ 36◦. As Re increases further, the simulations show a monotonic increase in θc.
Predictions for the three models CT and PT-I are shown. All models indicate θc → 45◦
as Re → ∞, but it is apparent that the limit approach is sub-logarithmic as indicated
by (4.10). The top-wall skin-friction variation for ZSF flows is displayed in figure 24(b),
where again both laminar and the present model profiles are shown for comparison. The
two models agree to plotting accuracy .

Using the model skin friction law and velocity profile, an estimate of the streamwise
mean-flow square velocity can be made. For strict PC flow at θ = 0◦, the Re → ∞
asymptotic velocity in the bulk flow is 0 except in thin viscous-dominated layers near
the two moving walls. In the frame of reference of the moving bottom wall, the asymptotic
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Figure 24. Skin-friction property of ZSF flows: (a) critical angle θc; (b) skin-friction Reτ,t/Re. Dashotted line
indicates laminar exact solution. Turbulent modelling prediction: dash-dot-dotted line, CT model; dashed line,
PT-I model. Symbols: red �, DNS; black �, WRLES; blue •, WMLES.

mean velocity profile for ZSF flow is U( y) → 0 except in the thin layer near the top wall.
Using the model velocity profile (4.18) corrected for the bottom-wall reference frame, and
the asymptotic expression (4.9), a scaled mean-flow streamwise square velocity for ZSF
flow in the limit Re → ∞ can be obtained as

E = 1
2h

∫ h

−h

(
U( y)
uτ,t

)2

dy → 2
κ2 . (7.4)

This result states that in the frame of reference of the asymptotic, plug-flow velocity, the
streamwise mean-flow square velocity scales on u2

τ,t. This agrees with similar analysis for
pure Couette flow.

7.4. Turbulence intensities
For ZSF flows, we expect turbulence intensity profiles to be typical of boundary layer
flows except perhaps near the bottom wall, where the flow is laminar over a small region
of extent that reduces with respect to the channel width as Re increases. These are shown
in figure 25(a) for the four DNS/WRLES values of Re. They show an expected inner peak,
with its magnitude growing slowly with increasing Re, existing at approximately constant
d+

t ≈ 15 together with an incipient plateau forming at Re = 20 000. The DNS/WRLES
do not reach sufficiently large Re to test the appearance of an outer peak. Intensities for
WMLES are displayed together with DNS/WRLES profiles in outer coordinate scaling
in figure 25(b). All results show good collapse away from the top wall. Near the bottom
wall, all profiles display a steep decrease from approximately u′u′/u2

τ,t ∼ 1 to 0 over the
near-wall laminar flow.

8. Conclusion

We have investigated the properties of turbulent PCP flow between two moving
plates separated by distance 2h, where the plate velocity difference and the applied
pressure gradient are aligned. Both numerical simulation and mean-flow modelling are
used in a two-dimensional parameter space with plate velocity and volume-flow-rate
Reynolds numbers (Rec, ReM), respectively, or equivalently, (Re, θ) with Rec = Re cos θ ,
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Figure 25. Streamwise turbulence intensity profiles for ZSF flows: (a) u′u′/U2
τ,t versus d+

t ; (b) u′u′/U2
τ,t versus

(h − y)/h. Symbols: blue �, Re = 4000; blue �, Re = 6000; black �, Re = 10 000; black •, Re = 20 000.
Solid lines: red, Re = 105; black, Re = 106; blue, Re = 107. Dashed lines: red, Re = 108; black, Re = 109;
blue, Re = 1010.

ReM = Re sin θ . The simulations use DNS, WRLES and WMLES. The stretched-spiral
vortex SGS model provides the subgrid scale turbulence effect in WRLES and WMLES.

The present numerical modelling of parallel PCP flow covers a fairly wide range of
Reynolds numbers. This includes DNS at Re = 4000 and 6000, WRLES at Re = 10 000
and 20 000, and WMLES cases for flows with zero skin friction on the bottom wall
with Re up to 1010. The goal has been to provide a comprehensive picture of PCP flows
on the (Re, θ) parameter plane together with a focused study of PCP flow with one
zero-skin-friction wall, over a larger Reynolds number range.

The general behaviour of PCP flow is characterized by a competition between the
dominance of the applied pressure gradient and flow shear provided by the forced plate
velocity difference. At fixed Re in the bulk-flow turbulence regime, as θ increases from
0◦ to 90◦, the flow undergoes a change from a Couette- to a Poiseuille-type state. On
the lower wall, the shear stress passes through zero at an angle θc that depends on Re.
Velocity profiles away from this wall and towards the top wall are always turbulent, with
a consistently elongated logarithmic region. As θ passes through θc, the flow near the
bottom wall de-transitions to a laminar state where the effects of the pressure gradient and
shear provided by the plate velocity difference are in approximate balance. Over a small
range of θ , the production of energy associated with unsteady, fluctuation flow becomes
negative, at least for Re = 6000. With further increase in θ , the near-bottom-wall flow then
re-transitions to turbulence in the Poiseuille-type region of the (Re, θ) plane. This change
of state is accompanied by the rapid attenuation and quashing of streamwise-oriented and
spanwise-spaced flow rolls present in Couette-type flow. This observation is supported by
energy-based diagnostics and flow visualization.

Three relatively simple three-equation mean-flow models are developed based on
standard log-wake laws, and for one model, an approximate near-wall laminar velocity
profile. It is argued that the models are physically appropriate in various regions on
the (Re, θ) plane with changeover near the curve where the skin friction on the lower
wall is zero. The models are shown to give good estimates of mean-flow properties
as obtained from the numerical simulations. These include mean-flow velocity profiles,
skin-friction Reynolds numbers on both walls, and the functional variation of θc(Re).
Model extrapolation to the infinite Re limit indicates plug-like mean flow for all cases.

955 A4-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1023


W. Cheng, D.I. Pullin, R. Samtaney and X. Luo

DNS, WRLES and WMLES are used to study the subset of PCP flows where the skin
friction on the lower wall is zero, up to Re = 1010. Very near the bottom wall, the mean
velocity profiles show collapse on a velocity scale that depends on both the viscosity
and the magnitude of the applied pressure gradient, and that agrees with a quadratic
variation, based on locally laminar flow, with the dimensionless wall-normal distance.
These zero-friction flows show an overall log-like mean velocity region based on the
upper-wall friction velocity that extends over much of the flow domain. Their mean-flow
properties are well predicted by the models developed. The ratio of the upper-wall friction
Reynolds number to Re follows an inverse ProductLog dependence on Re and θc → 45◦
when Re → ∞.
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Appendix A. Laminar PCP flow

The laminar-flow solution is the superposition of PC and PP flow. This can be written as

U( y)
U0

= −Y cos θ + 3
2

(1 − Y2) sin θ, (A1)

where Y = y/h and U0 = Uc/ cos θ . Laminar-flow friction Reynolds numbers can then be
obtained as

Reτ,t = (Re(cos θ + 3 sin θ))1/2 , (A2)

Reτ,b = (Re(cos θ − 3 sin θ))1/2 , θ < arctan(1/3), (A3)

Reτ,b = (Re(− cos θ + 3 sin θ))1/2 , θ > arctan(1/3), (A4)

and for laminar flow, θc = arctan(1/3) = 18.435◦ independent of Re. Alternative
expressions are

Reτ,t = (3ReM + Rec)
1/2 , Reτ,b = 3ReM − Rec

|3ReM − Rec|1/2 . (A5a,b)

When Reτ,b = 0, (A6) can be written as

U( y)
U0

= 3√
10

(
−Y + 1

2
(1 − Y2)

)
. (A6)

Also, Rep of (2.5) is Re2
p = 3ReM , while Reτ,t = (2Rec)

1/2 = (6ReM)1/2.
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Appendix B. Equations for PT-I and PT-II models

B.1. PT-I model
The velocity matching equation is

6κ Re cos θ + (6Π + 3Aκ − 1)
(
Reτ,b − Reτ,t

)
+ 3Reτ,b ln[Reτ,b(1 + Y0)] − 3Reτ,t ln[Reτ,t(1 − Y0)] = 0, (B1)

while the matching of the second velocity gradients at y = y0 gives

Y0 = Re1/2
τ,b − Re1/2

τ,t

Re1/2
τ,b + Re1/2

τ,t

. (B2)

The equation obtained from the definition of ReM is

24κ Re(sin θ − Y0 cos θ) − Reτ,b(1 + Y0)
(−13 + 12Aκ + 12Π + 12 ln[Reτ,b(1 + Y0)]

)
+Reτ,t(−1 + Y0)

(−13 + 12Aκ + 12Π + 12 ln[Reτ,t(1 − Y0)]
)
, (B3)

where Y0 is given by (B2).

B.2. PT-II model
The velocity matching equation is

4(6Π − 1) Reτ,t + 3κ
(−8 Re cos θ + Re2

τ,b (Y0 − 3)(Y0 + 1)

+ Reτ,t (4 A + Reτ,t(1 + Y0)
2)
)+ 12 Reτ,t ln[Reτ,t (1 − Y0)], (B4)

while the matching of the second velocity gradients at y = y0 gives

Y0 = Re2
τ,b − Re2

τ,t

Re2
τ,b + Re2

τ,t
. (B5)

The equation obtained from the definition of ReM is

(12Π − 13)(Y0 − 1) Reτ,t + κ(24 Re (sin θ − Y0 cos θ)

+ Re2
τ,b (Y0 − 5)(1 + Y0)

2 + Reτ,t
(
12 A(Y0 − 1)

+ Reτ,t (Y0 + 1)3)
)+ 12Reτ,t(Y0 − 1) ln[Reτ,t (1 − Y0)], (B6)

where Y0 is given by (B5).
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