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Abstract

Background. Less than a third of patients with depression achieve successful remission with
standard first-step antidepressant monotherapy. The process for determining appropriate
second-step care is often based on clinical intuition and involves a protracted course of
trial and error, resulting in substantial patient burden and unnecessary delay in the provision
of optimal treatment. To address this problem, we adopt an ensemble machine learning
approach to improve prediction accuracy of remission in response to second-step treatments.
Method. Data were derived from the Level 2 stage of the STAR*D dataset, which included
1439 patients who were randomized into one of seven different second-step treatment strat-
egies after failing to achieve remission during first-step antidepressant treatment. Ensemble
machine learning models, comprising several individual algorithms, were evaluated using
nested cross-validation on 155 predictor variables including clinical and demographic
measures.
Results. The ensemble machine learning algorithms exhibited differential classification per-
formance in predicting remission status across the seven second-step treatments. For the
full set of predictors, AUC values ranged from 0.51 to 0.82 depending on the second-step
treatment type. Predicting remission was most successful for cognitive therapy (AUC =
0.82) and least successful for other medication and combined treatment options (AUCs =
0.51–0.66).
Conclusion. Ensemble machine learning has potential to predict second-step treatment. In
this study, predictive performance varied by type of treatment, with greater accuracy in pre-
dicting remission in response to behavioral treatments than to pharmacotherapy interven-
tions. Future directions include considering more informative predictor modalities to
enhance prediction of second-step treatment response.

Introduction

Antidepressant monotherapy, such as selective serotonin reuptake inhibitors (SSRIs), repre-
sents the most common first-step treatment for depression, accounting for 87% of delivered
treatment modalities (Olfson, Blanco, & Marcus, 2016). Unfortunately, only 28–33% of indi-
viduals receiving SSRI monotherapy achieve successful remission (Trivedi et al., 2006), indicat-
ing that a majority of patients are still symptomatic and require further treatment.

There are limited guidelines to determine which treatment strategy would be optimal for a
given individual who does not successfully respond to an initial course of SSRI. Unfortunately,
available guidelines are derived from nomothetic evidence collected across group averages,
which obfuscates individual differences that are better addressed by more idiographic
approaches. Common principles of these nomothetic guidelines, as embodied in Bennabi
et al. (2019) and Gelenberg et al. (2010), have included switching treatment after no response
to initial treatment and augmenting treatment after partial response to initial treatment.
Such recommendations are often general in nature and are applied in combination with clin-
ical intuition. In practice, the sequencing of treatment selection frequently results in a
protracted process of trial and error in identifying the most appropriate treatment for an indi-
vidual patient. As a consequence, burden is exacerbated both in terms of duration of illness and
number of provider visits (Cusin & Peyda, 2019; Kazdin & Blase, 2011).

Recently, mental health research has increasingly embraced precision medicine as a frame-
work for personalizing treatment using more computationally rigorous procedures (Bernardini
et al., 2017). A precision medicine approach leveraging machine learning may facilitate the
effort to reduce the amount of time required to identify the optimal second-step treatment
strategy. Commonly collected information from a routine psychiatric assessment visit (e.g.
demographics, questionnaires, diagnostic information, prior treatment history, etc.) could be
provided to machine learning algorithms to predict whether a specific second-step treatment
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strategy (i.e. augmentation or switching) would improve the prob-
ability of remission. Such a machine learning framework fosters a
more idiographic approach to second-step treatment selection
relative to standard nomothetic guidelines.

Prior efforts to apply machine learning as a precision medicine
approach to depression treatment have illustrated how disease
burden can be mitigated. One study validated a machine learning
algorithm for initial treatment remission for depression that out-
performed the baseline remission rate by 11% (Mehltretter et al.,
2020). Assuming five visits per treatment for each patient, it was
estimated that this improvement in prediction could result in
approximately 1772 fewer doctor’s visits and decreased duration
of disease burden.

The current study introduces a computationally principled
framework for improving predictions about patient treatment
remission using ensemble machine learning with the super
learner algorithm. A principal advantage of ensemble learners
is that they leverage several individual algorithms to obtain bet-
ter performance than any of the constituent learners alone.
Specifically, ensemble machine learning using a super learner
approach involves consolidating several individual machine
learning algorithms into an ensemble algorithm that represents
a weighted average of all individual learners (e.g. random forest,
elastic net regression, neural network, etc.). Thus, rather than
performing predictive modeling with several individual
machine learning algorithms and selecting the best performing
algorithm, as is common practice, the ensemble approach capi-
talizes on the individual strengths of several disparate learning
algorithms by including them all in the final model. The ensem-
ble machine learning algorithms will be applied to the largest,
multi-center clinical trial ever conducted on treatments for
depression: the STAR*D study. To date, machine learning
approaches to depression treatment have been primarily used
for first-step interventions of standard care (e.g. SSRI mono-
therapy) (Chekroud et al., 2016; Mehltretter et al., 2020). This
project represents the first study to employ an ensemble
machine learning approach to improve predictions of treatment
response to one of seven second-step interventions for depres-
sion. Precision medicine may facilitate more expeditious provi-
sion of care that is personalized to specific depressed
individuals. Specifically, this study has the potential to inform
efforts to develop clinical decision-support tools that could
improve patient outcomes.

Methods

The current study is a secondary data analysis of the STAR*D
study, which was a multicenter longitudinal NIMH-sponsored
study. STAR*D was designed to determine the short- and long-
term effects of different sequences of medication and/or psycho-
therapy for the treatment of unipolar depression that has not
responded adequately to an initial standard antidepressant trial.
In particular, STAR*D compared the effectiveness of different
sets of treatment options: (1) augmenting the first antidepressant
with another medication or psychotherapy, (2) switching to
another antidepressant or psychotherapy.

Trial design

At Level 1, patients initially received citalopram (CIT) for a min-
imum of 8 weeks. Patients who did not remit during Level 1 were
offered Level 2 treatment, which represented two overall treatment

strategies: (1) Medication or Psychotherapy Switch – switching
from CIT to another antidepressant medication or Cognitive
Psychotherapy (CT), and (2) Medication or Psychotherapy
Augmentation – augmenting CIT with a second medication or
CT. For those who switch treatments at Level 2, sertraline (SER)
(a second SSRI), venlafaxine (VEN) (an antidepressant with
both noradrenergic and serotonergic effects), bupropion (BUP)
(an antidepressant with both noradrenergic and dopaminergic
effects), or CT were available. Likewise, within the Medication
or Psychotherapy Augmentation strategy, the three treatments
for augmenting CIT were BUP, buspirone (BUS) (an antianxiety
medication), or CT.

Study inclusion and exclusion criteria

Inclusion criteria permitted outpatients who were 18–75 years of
age and had a nonpsychotic major depressive episode determined
by a baseline HAM-D score ⩾14. They were eligible if their clin-
icians determined that outpatient treatment with an antidepres-
sant medication was both safe and indicated. Patients who were
pregnant or breast-feeding and those with a primary diagnosis
of bipolar, psychotic, obsessive-compulsive, or eating disorders
were excluded from the study, substance dependence (only if it
required inpatient detoxification) or a clear history of nonre-
sponse or intolerance to any protocol antidepressant in the first
two treatment steps were also exclusionary. To ensure broad
and inclusive eligibility criteria, co-morbidity with other Axis I
anxiety and emotional disorders was permitted. Diagnostic cri-
teria were assessed with a clinician administered checklist measur-
ing Axis I symptoms of the Diagnostic and Statistics Manual,
fourth edition revised (Trivedi et al., 2006).

Participants

In Level 1 of STAR*D, 4041 depressed patients enrolled, and, after
exclusion criteria were applied and study discontinuation was
considered, 2876 patients were included in the Level 1 results.
In Level 2, 1439 patients were randomized to one of the seven
treatment options deemed acceptable to each participant.
Patients were 63.7% female, and the mean age was 40.8 (S.D. =
13). Regarding self-reported ethnicity, 75.8% of patients were
white, 17.6% were African American, and 6.6% identified as
other.

Measures

In the current analysis, the predictor variables were all assessed
prior to initiation of Level 2 treatments. Specifically, demographic
predictors were collected at the very onset of the STAR*D study
design, and clinical assessment variables were collected subse-
quent to Level 1 treatment, but prior to Level 2 treatment. The
outcome variable (i.e. treatment remission) was estimated post-
treatment for each Level 2 intervention.

Predictor variables

Demographic and psychosocial variables
Includes age, sex, race, marital status, education in years, occupa-
tional employment status, comorbid disorders, age of depression
onset, and length of illness.
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Clinical assessment variables
Includes the Quick Inventory of Depressive Symptomatology
(QIDS; Rush et al., 2003), Hamilton Rating Scale for
Depression (HAMD; Hamilton, 1960), Short-Form Health
Survey (SF-12; Ware, Kosinski, and Keller, 1996), Work and
Social Adjustment Scale (WSAS; Mundt, Marks, Shear, and
Greist, 2002), Work Productivity and Activity Impairment
Questionnaire (WPAI; Reilly, Zbrozek, and Dukes, 1993),
Quality of Life Enjoyment and Satisfaction Questionnaire
(Q-LES-Q; Endicott, Nee, Harrison, and Blumenthal, 1993), and
the first 100 items of the Psychiatric Diagnostic Symptom
Questionnaire (PDSQ; Zimmerman and Mattia, 2001).

Outcome variables

Treatment remission
Consistent with the original study (Trivedi et al., 2006), treatment
remission is defined as a post-treatment score of ⩽ 7 on the total
HAM-D scale, treated as a binary, dummy-coded outcome vari-
able (i.e. remitted = 1, non-remitted = 0).

Data analysis

To predict treatment remission, machine learning algorithms
were evaluated using all the available predictor variables listed
above (total = 115). Listwise deletion was applied prior to final
analyses, as the machine learning strategy currently used requires
no missing data. Specifically, a super learner approach was
adopted to optimize prediction performance. Super learning
involves consolidating several individual machine learning algo-
rithms into a stacked ensemble algorithm, representing a weighted
average of all individual learners (Polley, LeDell, Kennedy, &
Laan, 2021; Van der Laan, Polley, & Hubbard, 2007; Van der
Laan & Rose, 2011). The final aggregate model is at least as accur-
ate as the best individual algorithm included in the ensemble
(Boehmke & Greenwell, 2019). The ensemble model combined
several well-established algorithms designed for categorical out-
comes that cover a variety of analytical assumptions: elastic net
binomial regression, ranger random forest, support vector
machine, neural network, extreme gradient boosting, Bayesian
generalized linear regression, and the overall mean (Boehmke &
Greenwell, 2019). For a brief description of each procedure please
refer to online Supplementary Appendix I in the Supplementary
Materials. Furthermore, a t test variable filtering procedure was
employed for only the training sample folds to identify the top
ten predictors for each treatment condition. In brief, t test variable
filtering examines the relationship between the binary outcome
variable and the predictor variables in the training folds by pre-
forming t tests with the binary outcome variable of the machine
learning model now being used as the independent variable.
The rank order of the t test p values are determined across all
of the machine learning predictor variables, and the top ten
most significant predictor variables were retained. The reasons
for variable filtering were twofold. First, variable filtering can
mitigate the influence of excessive irrelevant and non-informative
predictors, which can undermine model performance and
increase error for several algorithms (Kuhn & Johnson, 2019).
Second, deriving models with fewer predictors can facilitate future
implementation.

When predicting categorical classification outcomes, it is
important to consider the presence of potential class imbalances
in the outcome variable. Large class imbalances can bias machine

learning results toward favoring prediction of the more frequent
outcome. Class imbalances (i.e. minority class representing less
than 25%) were observed for the CITCT and CT conditions. To
address this, we implemented the Synthetic Minority
Over-sampling Technique (SMOTE), which combines over-
sampling of the minority class and under-sampling of the major-
ity class to promote a more balanced class structure for the
outcome variable (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).

Machine learning models were examined using nested cross-
validation, which partitions the sample into outer loop and an
inner loop subsets. For the outer loop, ten folds were specified,
of which nine are used in the training process and final predic-
tions are made in the remaining subset. This process is repeated
for each of the remaining subsets, and results are averaged to pro-
duce a single estimate. The inner loop also contains ten folds. The
inner loop is used to build the ensemble estimator and the weight-
ing of the constituent individual learners, whereas the outer loop
test set is used to provide a final estimation of the performance of
the ensemble model. Nested cross-validation ensures that the final
testing folds are not contaminated as a consequence of data leak-
age. Variable filtering and SMOTE procedures were applied to
only the training folds. Separate ensemble machine learning mod-
els were estimated for each of the seven treatment conditions.

Performance metrics included area under the receiver operator
curve (AUC, a measure of model discrimination), sensitivity, spe-
cificity, positive predictive value (PPV, i.e. the probability that a
patient predicted to achieve remission actually does so), negative
predictive value (NPV i.e. the probability that a patient predicted
to not achieve remission actually does not), and accuracy (the pro-
portion of total outcomes – remitted v. not remitted--classified
correctly). PPV and NPV were determined using the sensitivity
and specificity values empirically estimated from the final
model performance for each model. The class probability thresh-
old was 0.50 or greater for determining predicted remission status.
Analyses were performed using the following R packages: nes-
tedcv (Lewis, Spiliopoulou, & Goldmann, 2022), SuperLearner
(Polley et al., 2021), and Caret (Kuhn, 2022).

Results

Model performance with full predictor Set

Results of the final ensemble models with nested cross-validation
revealed differential classification performance across treatment
type (Table 1). These results are visually depicted in Fig. 1.
Discrimination was significantly better-than-chance for CT
(AUC = 0.82, 95% CI 0.64–0.99) and BUP (AUC = 0.66, 95% CI
0.58–0.74). However, sensitivity was poor for the BUP model
(5%) and moderate (33%) for the CT model. The remaining
super learner models yielded AUCs that did not outperform
chance: CITBUP (AUC = 0.52, 95% CI 0.45–0.59), CITBUS
(AUC = 0.55, 95% CI 0.44–0.63), CITCT (AUC = 0.51, 95% CI
0.36–0.66), SER (AUC = 0.57, 95% CI 0.48–0.66), and VEN
(AUC = 0.57, 95% CI 0.49–0.65).

Model performance with filtered predictor set

As a consequence of the t test filter, each super learner model was
trained on the top ten predictors most associated with remission.
In Table 2, the top ten predictors are displayed for each interven-
tion. Of note, the variables that were most commonly predictive
across the treatments include (1) work and social related
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impairment (WSAS), which was predictive for four treatments
(i.e. BUP, CITBUS, SER, and VEN); (2) quality of life (QLESQ),
which was predictive for four treatments (i.e. BUP, CITBUS,
CITCT, and VEN); depression symptomatology as measured by
the QIDS (QVTOT), which was predictive for four treatments
(i.e. BUP, CITBUS, CT, and SER); and overall depression severity
as measured by the HDRS (HDTOT), which was predictive for
three treatments (i.e. CITBUP, SER, and VEN).

For models with the top ten filtered variables, results revealed
classification performance as significantly better than chance for
five of the second-step treatments (Table 3). These results are
visually depicted in Fig. 2. The best predictive performance was
still associated with the CT (AUC = 0.72, 95% CI 0.504–0.94)
and BUP (AUC = 0.70, 95% CI 0.62–0.79) treatments.
Furthermore, statistically significant prediction was obtained for
CITCT (AUC = 0.65, 95% CI 0.501–0.81), VEN (AUC = 0.60,
95% CI 0.51–0.68), and SER (AUC = 0.59, 95% CI 0.51–0.67).
The remaining two super learner models were associated with
AUC performance that did not outperform chance: CITBUP
(AUC = 0.55, 95% CI 0.47–0.62) and CITBUS (AUC = 0.53,
95% CI 0.46–0.61).

Discussion

The current study constitutes the first comprehensive effort to
predict second-step treatment outcomes for MDD using ensemble
machine learning algorithms. There exists relatively little prognos-
tic information about what factors are predictive of successful
pharmacotherapy and cognitive therapy for patients who do not
achieve remission after an initial trial of SSRI treatment.
Consistent with a precision psychiatry framework (Bernardini
et al., 2017), efforts such as ours can be useful for developing clin-
ical decision-support tools to guide treatment of depression. In
the current study, prediction of treatment remission was evaluated
with ensemble super learner algorithms, including models trained
on the full set of predictor variables and on a more parsimonious
subset of the top ten predictors.

Results of the final super learner models demonstrated differ-
ential predictive performance dependent on the particular inter-
vention. AUC values ranged from 0.51 to 0.82 for the models
trained on the full predictor set. The best predictive performance
was associated with the cognitive therapy (AUC = 0.82) and
bupropion (AUC = 0.66) second-step treatments, whereas predic-
tion of remission status failed to significantly outperform the
chance for the remaining five treatment strategies. For cognitive
therapy, both the positive predictive value (0.75) and negative pre-
dictive value (0.88) were good, indicating that a high proportion
of the machine learner’s predictions of remitters and non-
remitters were accurate. For bupropion, the positive predictive
value (0.50) indicated that roughly half of the learner’s predictions
of being a remitter were accurate, whereas the negative predictive
value (0.75) indicted that a majority of the learner’s predictions of
being a non-remitter were accurate.

Of note, training super learner models on a more parsimoni-
ous subset of features, identified by a univariate filtering feature
selection process, resulted in statistically significant prediction
for more treatments. Again, predictive performance was best for
cognitive therapy (AUC = 0.72) and bupropion (AUC = 0.70),
and statistically significant prediction was also obtained for com-
bined citalopram and cognitive therapy (AUC = 0.65), venlafaxine
(AUC = 0.60), and sertraline (AUC = 0.59). For every treatment
except the combined citalopram and bupropion intervention,
the positive predictive values were regularly lower than the
negative predictive values, indicating predictions of being a non-
remitter may be more accurate than predictions of being a remit-
ter. Submitting the models to such feature selection processes may
have augmented successful prediction for more treatments, as

Table 1. Predictive performance with full predictor set

Treatment AUC
AUC

95% CI Sensitivity Specificity
Positive predictive

value
Negative predictive

value Accuracy
Accuracy
95% CI

BUP 0.66*** 0.58–0.74 0.05 0.98 0.50 0.75 0.74 0.68–0.80

CITBUP 0.52 0.45–0.59 0.08 0.93 0.42 0.62 0.60 0.54–0.66

CITBUS 0.55 0.44–0.63 0.04 0.98 0.43 0.67 0.67 0.61–0.73

CITCT 0.51 0.36–0.66 0.10 0.85 0.18 0.74 0.66 0.55–0.76

CT 0.82*** 0.64–0.99 0.33 0.98 0.75 0.88 0.88 0.76–0.95

SER 0.57 0.48–0.66 0.00 0.98 0.00 0.73 0.72 0.65–0.77

VEN 0.57 0.49–0.65 0.00 0.99 0.00 0.74 0.73 0.67–0.79

Note: *** = p < 0.001; AUC, area under the curve; CI, confidence interval; BUP, Bupropion; CITBUP, Citalopram + Bupropion; CITBUS, Citalopram + Buspirone; CITCT, Citalopram + Cognitive
Therapy; CT, Cognitive Therapy; SER, Sertraline; VEN, Venlafaxine.

Figure 1. ROC curve for models with full predictor set.
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Table 2. Top ten filtered variables

BUP CITBUP CITBUS CITCT CT SER VEN

1

Work and
social
impairment
(WSAS) 0.93*

Overall
mental health
(SF-12) 1.02*

Work and
social
impairment
(WSAS) 0.98

Believe better
off dead 12.07***

Depression
severity (QIDS) 0.79

Total
depression
(HAMD) 0.97

Total
depression
(HAMD) 0.93*

2
Anxiety
travelling 0.29*

Obsessions
about acting
violently 0.67

Quality of life
(QLESQ) 1.01

Quality of life
(QLESQ) 1.10*** Inattention 0.08*

Paranoia
about being in
danger 0.16

Belief of being
controlled by
some force 0.14

3
Anxiety in
open spaces 0.20

Total
depression
(HAMD) 0.97

Overall
physical health
(SF-12) 1.01 Sadness 0.29 Restlessness 0.07

Washing
compulsions 0.36

Anxiety in
open spaces 0.20

4
Depression
severity (QIDS) 0.97

Suicidal
thoughts 0.66

Anxiety leaving
home 0.57 Tiredness 0.34 Indecisiveness 1.07

Inattention
and indecision 0.56

Work and
social
impairment
(WSAS) 0.97

5
Anxiety being
home alone 0.41

Obsessions
about
forgetting 0.72

Depression
severity (QIDS) 0.97 Insomnia 1.30 Reduced joy 0.23

Specific
suicide plan 0.43

Avoid situation
to prevent
panic attack 0.76

6

See/hear
things other
people didn’t 0.34

Anxiety of
shortness of
breath 0.64

Avoidance of
trauma 0.74

Disgust after
overeating 0.30 Panic attacks 0.10

Depression
severity (QIDS) 1.00

Quality of life
(QLESQ) 1.00

7
Quality of life
(QLESQ) 0.99 Sex 1.87* Aches/pains 0.68

Drinking
causing
marriage
problems 14.82

Social anxiety
at parties 0.26 Guilt 0.68

Cutting down
on drinking 0.42

8

Activity
Impairment
(WPAI) 1.00 Suicidal plans 0.78

Trauma
reminders that
cause shaking 0.85

Upset after
eating binge 0.21

Avoidance of
social
situations 0.16

Low
self-esteem 0.65

Panic attacks
leading to
avoidance 0.75

9 Strict diet 0.23

Concern
about drug
problem 0.46 Nervousness 0.92

Suicidal
thoughts 1.12

Reduced
interest 0.80

Work and
social
impairment
(WSAS) 0.98

Years of
schooling 1.13*

10

Obsessions
about acting
violently 0.62

Obsessions
about
checking 0.75

Trauma
flashbacks 0.87

Pessimistic
thoughts 6.22

Years of
schooling 1.46

Seriously
considering
suicide 0.60

Anxiety in
crowded
places 0.90

BUP, bupropion; CITBUP, citalopram + Bupropion; CITBUS, citalopram + cuspirone; CITCT, citalopram + cognitive therapy; CT, cognitive therapy; SER, sertraline; VEN, venlafaxine.
Variables are filtered based on the ranking of the smallest t test p values. Unless otherwise specified (i.e. HAMD, QIDS, WSAS, QLESQ, QPAI, SF-12, sex, and years of schooling), all variables denote individual items from the PDSQ.
Note: Exponentiated coefficients (i.e. odds ratios) are presented from the Bayesian generalized linear model algorithm to facilitate interpretation. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

Psychological
M
edicine

2365

https://doi.org/10.1017/S0033291724000497 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0033291724000497


feature selection filtering can mitigate potential overfitting and
enhance model accuracy by reducing noise or redundancy in
the predictor set (Kuhn & Johnson, 2013). Simulations have illu-
strated how including non-informative predictors can undermine
model performance for various algorithms (Kuhn & Johnson,
2019). Thus, variable filtering procedures reducing non-
informative predictors may have enhanced model performance
in the current study.

Among all the second-step treatment options, the super
learner models yielded the best performance for cognitive therapy
using both the full and parsimonious predictor set. These results
are broadly consistent with extant literature on moderators and
predictors of psychotherapy and pharmacotherapy for depression,
suggesting that traditional demographic and self-report clinical
variables have attained variable success in predicting treatment
outcomes in general (Kessler, 2018; Papakostas & Fava, 2008;
Perlman et al., 2019; Spielmans & Flückiger, 2018). With the
exception of bupropion, it appears that machine learning algo-
rithms afforded worse prediction for interventions involving
pharmacotherapy. There is no obvious reason why prediction of
remission status of cognitive therapy was more successful than

that of pharmacotherapy. Overall, these results underscore the
need to improve precision medicine approaches for pharmaco-
therapy treatments. Future research may consider adopting pre-
dictor sets that extend beyond self-report psychological
constructs such as genetic variables, inflammatory markers, neu-
roimaging substrates, blood lab markers, and electronic health
record data. Comprehensive reviews have identified such features
as having potential prognostic value for antidepressant outcomes
(Perlman et al., 2019), and it may be profitable for machine learn-
ing models to complement traditional psychosocial variables with
such predictors. Furthermore, electronic health record data has
demonstrated clinical utility in predicting important clinical out-
comes (e.g. first-line antidepressant response, treatment resist-
ance, treatment dropout, etc.; Hughes et al., 2020; Lage, McCoy,
Perlis, & Doshi-Velez, 2022; Pradier, McCoy, Hughes, Perlis, &
Doshi-Velez, 2020; Sheu et al., 2023).

Of the top predictors identified as part of the feature selection
filters, work and social impairment, quality of life, and depression
severity were the most common predictors shared across all treat-
ment strategies. This pattern of results is consistent with treat-
ment moderators identified in prior reviews (Papakostas &
Fava, 2008; Perlman et al., 2019). Indeed, the original evaluation
of first-step citalopram treatment revealed that these same con-
structs differentiated remission status in the STAR*D trial
(Trivedi et al., 2006). It is noteworthy that these factors are also
broadly predictive of second-step treatment outcomes across sev-
eral different intervention options, attesting to their clinical utility
and value.

One other striking feature of the results is that all the models
were associated with high specificity and relatively modest sensi-
tivity, irrespective of whether the models were trained on the full
predictor set or filtered predictor set. Moreover, the models
demonstrated better negative predictive value rates relative to
positive predictive value rates. In terms of interpretability, this
pattern would indicate that the predictions classified as non-
remitters have greater accuracy, which fosters more confidence
in instances when the algorithm predicts someone to be a non-
remitter. This balance of performance metrics warrants a nuanced
perspective for potential clinical implementation.

Embracing a precision medicine perspective has the potential
to transform our approach to second-step care for depression.
Within the overall context of machine learning in psychiatry,
model performance in terms of AUC for several of the treatments
in the current study was similar to that of other machine learning
studies predicting treatment outcomes for depression (Chekroud

Table 3. Predictive performance with top ten predictors

Treatment AUC
AUC

95% CI Sensitivity Specificity
Positive predictive

value
Negative

predictive value Accuracy
Accuracy
95% CI

BUP 0.70*** 0.62–0.79 0.21 0.94 0.57 0.78 0.76 0.70–0.81

CITBUP 0.55 0.47–0.62 0.22 0.82 0.43 0.63 0.59 0.52–0.65

CITBUS 0.53 0.46–0.61 0.12 0.92 0.42 0.68 0.66 0.59–0.71

CITCT 0.65* 0.501–0.81 0.30 0.85 0.78 0.25 0.71 0.60–0.81

CT 0.72* 0.504–0.94 0.33 0.89 0.38 0.88 0.80 0.68–0.89

SER 0.59* 0.51–0.67 0.03 0.94 0.18 0.72 0.70 0.63–0.76

VEN 0.60* 0.51–0.68 0.03 0.95 0.18 0.74 0.71 0.65–0.77

Note: * = p < 0.05; *** = p < 0.001; AUC, area under the curve; CI, confidence interval; BUP, bupropion; CITBUP, citalopram + bupropion; CITBUS, citalopram + buspirone; CITCT, citalopram +
cognitive therapy; CT, cognitive therapy; SER, sertraline; VEN, venlafaxine.

Figure 2. ROC curve for models with top ten predictors.
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et al., 2016; Nie, Vairavan, Narayan, Ye, & Li, 2018). Notably, the
current study is the first to comprehensively evaluate the utility of
super learner algorithms across a wide array of second-step treat-
ment options. Future efforts to develop accurate machine learning
models predicting treatment outcomes can facilitate clinical
decision-making. Machine learning algorithms can be incorpo-
rated into clinical support tools that provide clinicians with the
predicted probability of remission from a given treatment,
which can better inform treatment planning and discussions
with patients about the relative benefits of an intervention.

A principal strength of the current study is that it examines
prediction of outcomes for multiple treatments rather than predic-
tion of a single intervention, as is commonplace for most research
(Perlman et al., 2019). By developing predicative algorithms for
multiple treatments, as opposed to a single treatment, patient
data can be submitted as predictive features to several different
treatment algorithms simultaneously to determine the probability
of remission in response to each intervention. This approach may
promote a more informed decision-making process between
patients and providers about what treatment protocol may be
preferable, after considering a confluence of factors such as pre-
dictive modeling results for each treatment, patient preference,
potential side-effects, as well as other relevant information.
Obtaining the predictive probability of success for each treatment
strategy better facilitates these types of more in-depth patient-
provider conversations and decision-making, which has advan-
tages over a winner-take-all approach in which machine learning
is used to recommend only one treatment strategy based on the
highest predictive probability value. This latter approach can
obscure important information and deter thoughtful consider-
ation of the value of these other factors that influence treatment
preference.

Given the relatively higher negative predictive value perform-
ance of the models, the machine learning algorithms can afford
insight into which specific second-step treatments may not confer
clinical benefit. Furthermore, the results the present study are
noteworthy in light of the fact that models were trained only on
self-reported demographic and clinical symptom data, which
represents a more feasible approach in comparison to using
more expensive and burdensome data sources for machine learn-
ing models such as neuroimaging or biomarker data (Lee et al.,
2018).

Notwithstanding the strengths of the current study, certain
limitations warrant mention. First, although some models evinced
good predicative performance, AUC values were not statistically
better than chance in predicting remission status for several treat-
ments. Thus, it would be contraindicated to recommend the cur-
rent models for clinical use in their current form, as the
predictions from certain models suffer from poor accuracy and
may incur a potential risk of misclassification. Given that the cur-
rent study leveraged the largest clinical trial of second-step
depression treatments, the current results provide an important
evidence base about the strengths and limitations of machine
learning prediction models in this setting. Future research may
be able to improve model accuracy by considering other potential
predictors that were not available in the STAR*D study (e.g. gen-
etic factors, neuroimaging substrates, electronic health record
data, etc.). Second, the sample size for some treatment conditions
was relatively modest in the context of machine learning research.
That notwithstanding, the STAR*D trial represents the most
extensive and well-powered study examining second-step treat-
ments for depression, and machine learning studies have resulted

in success using smaller sample sizes (e.g. Flygare et al., 2020). To
mitigate this, we applied nested cross-validation, which can
reduce bias in models with limited sample sizes. Third, for
three of the treatment conditions, the remission status outcome
was imbalanced and adversely influenced model performance.
To address this, we used the SMOTE procedure to produce a
more balanced class profile for model training. Fourth, results
might be influenced by the nature of randomization for the
STAR*D trial, as patients willing to accept randomization to dif-
ferent treatment strategies may exhibit differences that could
influence the difference across the treatment groups.

The current study constitutes the most comprehensive examin-
ation to date of super learning ensemble models in predicting
remission across an extensive variety of different second-step
treatments for depression. Before translating predictive modelling
to clinical practice, improvements in model performance will be
needed and might be achieved through using a more diverse
array of multimodal predictors (e.g. self-report, biomarker data,
etc.). In conclusion, the current study illustrates a
proof-of-concept approach using machine learning as a tool for
improving personalized second-step treatment for depression
and provides insight into important next steps for future precision
medicine research on depression.
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