THE RAMSEY PROPERTY FOR FAMILIES OF GRAPHS WHICH EXCLUDE A GIVEN GRAPH

V. RÖDL AND N. SAUER

ABSTRACT. For graphs A, B and a positive integer r, the relation $A oup (B)_r^1$ means that whenever Δ is an r-colouring of the vertices of A, then there is an embedding ϕ of B into A such that $\Delta \circ \phi$ is constant. A class of graphs $\mathcal F$ has the *Ramsey property* if, for every $B \in \mathcal F$, there is an $A \in \mathcal F$ such that $A \to (B)_2^1$. For a given finite graph G, let Forb(G) denote the class of all finite graphs which do not embed G. It is known that, if G is 2-connected, then Forb(G) has the Ramsey property, and Forb(G) has the Ramsey property if and only if Forb(G) also has the Ramsey property. In this paper we show that if neither G nor its complement G is 2-connected, then either (i) G has a cut point adjacent to every other vertex, or (ii) G has a cut point adjacent to every other vertex except one. We show that Forb(G) has the Ramsey property if G is a path of length 2 or 3, but that Forb(G) does not have the Ramsey property if (i) holds and G is not the path of length 2.

For graphs A, B and a positive integer r, the relation $A \to (B)_r^1$ means that whenever Δ is an r-colouring of the vertices of A, then there is an embedding ϕ of B into A such that $\Delta \circ \phi$ is constant. A class of graphs $\mathcal F$ has the Ramsey property if, for every $B \in \mathcal F$, there is an $A \in \mathcal F$ such that $A \to (B)_2^1$. It is easily seen that if $\mathcal F$ is Ramsey, then it has the seemingly stronger property that, for any positive integer r, for every $B \in \mathcal F$, there is an $A \in \mathcal F$ such that $A \to (B)_r^1$. It also follows immediately from the definition that $\mathcal F$ is Ramsey if and only if the class $\tilde{\mathcal F} = \{\bar A : A \in \mathcal F\}$ of complementary graphs is also Ramsey. For a set of graphs $\mathcal L$ we denote by Forb($\mathcal L$) the family of all graphs A which do not embed any member $L \in \mathcal L$. In particular, if $\mathcal L = \{G\}$ we write Forb(G) instead

The second author has been supported in part by NSERC grant 63-1325.

Received by the editors October 30, 1990.

[©] Canadian Mathematical Society 1992.

of Forb(\mathcal{L}). It is known [2] (see Theorem 1.2 below) that, if G is a 2-connected graph, then the class of graphs Forb(G) is Ramsey.

A hypergraph \mathcal{H} is a pair (V, E), where $V = V(\mathcal{H})$ is the set of vertices, and $E = E(\mathcal{H}) \subseteq \wp(V)$ is the set of edges of \mathcal{H} . \mathcal{H} is *r-uniform* if |e| = r for every $e \in E$. A *circuit* of length n in \mathcal{H} is a finite sequence of distinct vertices x_1, \ldots, x_n such that there are distinct hyperedges e_1, \ldots, e_n such that $x_i, x_{i+1} \subseteq e_i$, where $x_{n+1} = x_1$. In particular, if two hyperedges intersect in two or more points, they form a circuit of length 2. The *girth* of \mathcal{H} is the length of the smallest circuit in \mathcal{H} . A subset $X \subseteq V(\mathcal{H})$ is *independent* if it contains no hyperedge of \mathcal{H} . The *chromatic number* of \mathcal{H} is the least cardinal k such that $V(\mathcal{H})$ is a union of k independent subsets.

We shall make frequent use of the following theorem of Erdös & Hajnal [1].

THEOREM 1.1 ([1]). For any positive integers r, k, l there is an r-uniform hypergraph \mathcal{H} of girth l with no independent set of size $\frac{1}{k}|V(\mathcal{H})|$ (and so has chromatic number > k).

To illustrate how Theorem 1.1 is used in the present context, we begin by reproving the fact mentioned above.

THEOREM 1.2 [2]. If \mathcal{L} is a finite set of 2-connected graphs, then Forb(L) is Ramsey.

PROOF. Let $B \in \operatorname{Forb} \mathcal{L}$, and let \mathcal{H} be a |B|-uniform hypergraph of chromatic number 3 and girth g, where g > 3 and g exceeds the number of vertices of every $L \in \mathcal{L}$. Consider the graph A on $V(\mathcal{H})$ in which an isomorphic copy of B is placed in each hyperedge of \mathcal{H} ; note that two distinct hyperedges meet in only one point, so that A can be constructed in this way. Obviously $A \to (B)_2^1$ since \mathcal{H} is 3-chromatic. We need only check that $A \in \operatorname{Forb} \mathcal{L}$. Suppose for a contradiction that A embeds some $L \in \mathcal{L}$. Since B does not embed B and B is 2-connected, B must contain vertices which form a circuit in B. But this contradicts the fact that B exceeds the number of vertices of B.

The question arises whether there is an graph G such that Forb(G) is not Ramsey?

2. Graphs such that G and \bar{G} are not 2-connected. To answer the question stated at the end of the last section, we need only consider those graphs G such that neither G nor its complement \bar{G} is 2-connected. In this section we give a description of such graphs.

Denote by \mathcal{M} the class of those graphs G with the property that there is a cut point $u \in V(G)$ which is joined by an edge to every other vertex. Also, denote by \mathcal{K} the class of graphs G such that there is a cut point $u \in V(G)$ which is joined by an edge to every other vertex except one. For example, $P_2 \in M$ and $P_3 \in K$, where P_n denotes the path of length of n.

We say that the graph G is *n*-partite if there is a partition of V(G) into n disjoint nonempty sets A_i $(1 \le i \le n)$ such that $\{x,y\}$ is an edge of G whenever x,y belong to different A_i 's. **LEMMA 2.1.** If \bar{G} is disconnected, then either $G \in \mathcal{M}$ or G has connectivity k > 1.

PROOF. Since \bar{G} is disconnected, G is n-partite for some $n \geq 2$. Therefore G is connected and has connectivity $k \geq 1$. If k = 1, then there is a cut point u. Therefore, G - u is disconnected and its complement $\overline{G - u} = \bar{G} - u$ is connected. It follows that $\{u\}$ is a component of \bar{G} , and hence $G \in \mathcal{M}$.

THEOREM 2.2. If neither G nor \bar{G} is 2-connected, then $G \in \mathcal{M} \cup \bar{\mathcal{M}} \cup \mathcal{K} \cup \bar{\mathcal{K}}$.

PROOF. By Lemma 2.1 we can assume that G and \bar{G} are both connected and have connectivity 1. Let u be a cutpoint of G and v a cutpoint of \bar{G} . Then $u \neq v$ since G - v is connected and G - u is not, and by Lemma 2.1 either $\bar{G} - u \in \mathcal{M}$ or $\bar{G} - u$ has connectivity $k \geq 2$.

Suppose that $\bar{G} - u \in \mathcal{M}$. Then there is a vertex w joined in \bar{G} to all other points of $\bar{G} - \{u, w\}$, and $\bar{G} - \{u, w\}$ is disconnected. Since G is connected, it follows that $\{u, w\}$ is an edge of G. If u is joined to every other vertex by an edge of G, then $G \in \mathcal{M}$. Suppose that u is not joined to all other points in G. If w = v, then $\bar{G} \in \mathcal{K}$, and so $G \in \bar{\mathcal{K}}$. On the other hand, if $w \neq v$, then $\bar{G} - v$ has the two components $\{u\}$ and $\bar{G} - \{u, v\}$. Therefore, u is joined to every vertex in G - v, and since $\{u, v\}$ is not an edge of G, it follows that $G \in \mathcal{K}$.

Suppose then that $\bar{G} - u$ is 2-connected. Then $\bar{G} - \{u, v\}$ is connected, and so the components of $\bar{G} - v$ are $\{u\}$ and $\bar{G} - \{u, v\}$. Therefore, u is joined to all points of $G - \{u, v\}$ by edges of G. But $\{u, v\}$ is not an edge of G since \bar{G} is connected. Since u is a cut point of G it follows that $G \in \mathcal{K}$.

3. Amalgamation properties. The family of graphs $\mathcal F$ has the *join-embedding* property if

(1)
$$\forall A, B \in \mathcal{F} \exists C \in \mathcal{F} \quad (\exists \text{ embeddings } \phi: A \to C, \psi: B \to C).$$

 \mathcal{F} has the amalgamation property if

(2)
$$\forall A, B \in \mathcal{F}, a \in V(A), b \in V(B) \exists C \in \mathcal{F} \big(\exists \text{ embeddings}$$

 $\phi: A \to C, \psi: B \to C \text{ such that } \phi(a) = \psi(b) \big).$

If the condition in (2) holds, we say that C amalgamates A and B on $a \simeq b$. Finally, we say that \mathcal{F} has the disjoint amalgamation property if ϕ , ψ in (2) can be chosen so that, in addition,

$$\phi(V(A-a)) \cap \psi(V(B-b)) = \emptyset.$$

and, in this case we say that C disjointly amalgamates A and B on $a \simeq b$.

LEMMA 3.1. For any graph G, Forb(G) has the join-embedding property.

PROOF. Let $A, B \in \text{Forb}(G)$. We can assume that V(A) and V(B) are disjoint. If G is connected, then the disjoint sum $A \oplus B \in \text{Forb}(G)$. If G is disconnected $\overline{A} \oplus \overline{B} \in \text{Forb}(G)$.

For the next theorem we need the following known fact which follows easily by induction on k: If the outdegrees in a directed graph \mathcal{D} are at most k, then the chromatic number of \mathcal{D} is at most 3^k .

THEOREM 3.2. If \mathcal{F} is Ramsey and has the join-embedding property, then \mathcal{F} has the disjoint amalgamation property.

PROOF. We first show that \mathcal{F} has the ordinary amalgamation property. Suppose for a contradiction that this is false. Then there are $A, B \in \mathcal{F}$, $a \in V(A)$, $b \in V(B)$ which witness this failure. Since \mathcal{F} has the join-embedding property and is Ramsey, there are $C, D \in \mathcal{F}$ such that $C \to (D)^1_2$ and D embeds both A and B. Colour a vertex x of C blue if there is an embedding $\phi \colon B \to C$ such that $\phi(b) = x$; otherwise, colour x red. Now consider any embedding $\psi \colon D \to C$. By our choice of D, there are embeddings $\alpha \colon A \to D$, $\beta \colon B \to D$. Clearly, $\psi(\beta(b))$ is blue. If $x = \psi(\alpha(a))$ is coloured blue, then there is some embedding $\phi \colon B \to C$ such that $x = \phi(b)$. Since $\psi \circ \alpha$ is also an embedding of A into C with $\psi(\alpha(a)) = x$, this contradicts our assumption that A, B cannot be amalgamated on $a \simeq b$ in any graph $C \in \mathcal{F}$. It follows therefore, that $x = \psi(\alpha(a))$ is red. This shows that every copy of D in C contains both blue and red vertices, and this contradicts the fact that $C \to (D)^1_2$.

We now show that \mathcal{F} has the stronger disjoint amalgamation property. As above, we assume that this is false and that $A, B \in \mathcal{F}$, $a \in V(A)$, $b \in V(B)$ witness this, so that no $C \in \mathcal{F}$ disjointly amalgamates A and B on $a \simeq b$. Since \mathcal{F} has the amalgamation property and is Ramsey, there are $C, D \in \mathcal{F}$ such that $C \to (D)^1_r$, where $r = 3^{|B|-1}$, and D amalgamates A and B on $a \simeq b$. Let $\alpha: A \to D$, $\beta: B \to D$ be embeddings such that $\alpha(a) = \beta(b)$. For $x \in V(C)$, if there is an embedding $\psi: D \to C$ such that $\psi(\alpha(a)) = \psi(\beta(b)) = x$, then we choose one such embedding, say ψ_x , and define $T_x =$ $\psi_x(\beta(B-b))$; if there is no such ψ , we put $T_x = \emptyset$. Now consider the directed graph \mathcal{D} on V(C) in which there is a directed edge from x to y if and only if $y \in T_x$. The outdegree of each vertex of \mathcal{D} is at most |B|-1, and so the chromatic number is at most $3^{|B|-1}$. Let $\Delta: V(C) \to 3^{|B|-1}$ be any vertex colouring of \mathcal{D} such that no two vertices having the same colour are joined in \mathcal{D} . Now let $\chi: D \to C$ be any embedding and let $x = \chi(\beta(b)) = \chi(\alpha(a))$. Since C does not disjointly amalgamate A and B on $a \simeq b$, it follows that there is some $y \in \chi(\alpha(A-a)) \cap \psi_x(\beta(B-b))$. Now $y \in T_x$ and so $\Delta(x) \neq \Delta(y)$. Thus $\chi(D)$ contains two vertices x, y with different colours for the colouring Δ . But this contradicts the fact that $C \rightarrow (D)_r^1$.

4. Forb(P_2) and Forb(P_3) are both Ramsey. The fact that Forb(P_2) is Ramsey follows immediately from the fact that $G \in \text{Forb}(P_2)$ if and only if G is a disjoint union of complete graphs. For, if $B \in \text{Forb}(P_2)$ and B has k components each of size at most l, then $A \to (B)_2^1$, where A is the graph consisting of 2k - 1 disjoint copies of the complete graph \mathbf{K}_{2l-1} . The fact that Forb(P_3) is Ramsey is not quite so obvious.

For disjoint subsets U, V of V(G) let $[U,V] = \{\{u,v\} : u \in U, v \in V\}$. A seriesparallel partition of G is a partition $V(G) = U \cup V$ into two disjoint, non-empty sets U,V such that either $[U,V] \subseteq E(G)$ or $[U,V] \subseteq E(\bar{G})$. The next theorem gives a useful characterization of P_3 -free graphs.

THEOREM 4.1. If $G \in \text{Forb}(P_3)$ and |V(G)| > 1, then there is a series-parallel partition of G.

PROOF. The proof is by induction on |V(G)|. Since $P_3 \cong \overline{P_3}$, we may assume that G is connected and that |V(G)| > 2. Let $a \in V(G)$. By the induction hypothesis, $V(G-a) = U \cup V$, where U, V are non-empty disjoint sets and either $[U, V] \subseteq E(G)$ or $[U, V,] \subseteq E(\overline{G})$. If a is joined to every other vertex of G, then $\{a\} \cup (V(G) - \{a\})$ is a seriesparallel partition of V(G). Thus we may assume that there are are $u \in U$, $v \in V$ such that $\{a, u\} \not\in E(G)$, $\{a, v\} \in E(G)$. Suppose that $[U, V] \subseteq E(\overline{G})$. Then, since G is connected, there is a path $u = x_0, \ldots, x_r = a$, v which is an induced subgraph of G, and so G embeds P_3 . Therefore, $[U, V] \subseteq E(G)$. Let $W = \{z \in V : \{a, z\} \in E(G)\}$. If W = V then $[U \cup \{a\}, V]$ is a series-parallel partition, so we can assume that W, V - W are both non-empty. Suppose there are $x \in W$ and $y \in V - W$ such that $\{x, y\} \in E(\overline{G})$. Then a, x, u, y is an induced P_3 . Therefore, $[W, V - W] \subseteq E(G)$, and so $[U \cup (V - W \cup \{a\}, W]$ is a series-parallel partition of G.

THEOREM 4.2. Forb(P_3) is Ramsey.

PROOF. As before we shall denote by $A \oplus B$ the disjoint sum of the graphs A, B. Also, we shall denote by $A \odot B$ the graph on $A \times B$ in which two vertices (a, b), (a', b') are joined by an edge if and only if either (i)b = b' and $\{a, a'\} \in E(A)$, or $(ii)\{b, b'\} \in E(B)$.

We first show that Forb(P_3) is closed under the operation \odot . Suppose for a contradiction that A, B are P_3 -free and that (a_0, b_0) , (a_1, b_1) , (a_2, b_2) , (a_3, b_3) is an induced path in $A \odot B$. If the b_i are all equal, then a_0, \ldots, a_3 is an induced P_3 in A. Similarly, if all the b_i are distinct, then b_0, \ldots, b_3 is an induced P_3 in B. Hence there are $\{i, j, k\} \subseteq \{0, 1, 2, 3\}$ such that $b_i = b_j \neq b_k$ and |k - i| = 1, |k - j| > 1. Therefore, $\{b_i, b_k\} \in E(B)$, and since $b_j = b_i$, it follows that $\{a_j, b_j\}$ is joined to $\{a_k, b_k\}$ in $A \odot B$; but this is a contradiction since |k - j| > 1.

Let $B \in \operatorname{Forb}(P_3)$. We want to show that there is some $A \in \operatorname{Forb}(P_3)$ such that $A \to (B)_2^1$. If there is such an A we denote one such graph by R(B). Note that if $B_1, B_2 \in \operatorname{Forb}(P_3)$ and if $R(B_1), R(B_2)$ both exist, then $R(B_1) \odot R(B_2) \to (B_1 \odot B_2)_2^1$. For consider any two-colouring Δ : $V(R(B_1)) \times V(R(B_2)) \to 2$. For each vertex y of $R(B_2)$ let $V(y) = \{(x,y) : x \in V(R(B_1))\}$. Then $R(B_1) \odot R(B_2)|V(y)$ is isomorphic to $R(B_1)$ and so there are $\epsilon_y \in \{0,1\}$ and an embedding ϕ_y of B_1 into $R(B_1)$ such that $\Delta(\phi_y(x), y) = \epsilon_y(\forall x \in V(B_1))$. Also, there are $\epsilon \in \{0,1\}$ and an embedding ψ of B_2 into $R(B_2)$ such that $\epsilon_{\psi(y)} = \epsilon(\forall y \in V(B_2))$. Now consider the embedding χ of $B_1 \odot B_2$ into $R(B_1) \odot R(B_2)$ given by $\chi(x,y) = (\phi_{\psi(y)}(x), \psi(y))$. Clearly, $\Delta(\chi(x,y)) = \epsilon_{\psi(y)} = \epsilon$.

We now show that R(B) exists for all $B \in \operatorname{Forb}(P_3)$ by induction on |B| = |V(B)|. By Theorem 4.1, since $\bar{P}_3 \cong P_3$, we can assume that $B = C \oplus D$ is the disjoint union of two non-empty sugraphs. By the induction hypothesis R(C) and R(D) both exist. Clearly, $F \to (D \oplus D)_2^1$, where $F = R(D) \oplus R(D) \oplus R(D)$, and by the above, $A = R(C) \odot F \to \left(C \odot (D \oplus D)\right)_2^1$. But $C \odot (D \oplus D) \cong (C \odot D) \oplus (C \odot D)$, and since $C \odot D$ embeds both C and D, it follows that $A \to (C \oplus D)_2^1$, i.e. $A \to (B)_2^1$.

5. Graphs G such that Forb(G) is not Ramsey. In the last section we proved that Forb(G) is Ramsey for $G = P_2$ or $G = P_3$. The main result, which will be proved in this and the next section, is that Forb(G) is not Ramsey if $G \in \mathcal{M} - \{P_2\}$. It is not known if the same is true for $G \in \mathcal{K} - \{P_3\}$, although Zhu and Sauer [4] have proved this for a certain subset of these G's.

THEOREM 5.1. Forb(G) is not Ramsey if $G \in \mathcal{M} - \{P_2\}$.

PROOF. Let $G \in \mathcal{M} - \{P_2\}$, |V(G)| = n. By Lemma 3.1 and Theorem 3.2, in order to show that Forb(G) is not Ramsey, it will be enough to construct two graphs A(G), $B(G) \in \text{Forb}(G)$ and two vertices a, b in these graphs such that A(G) and B(G) cannot be disjointly amalgamated on $a \simeq b$.

Since $G \in \mathcal{M}$, there is a cutpoint u of G which is adjacent to every other vertex of G. Let K be a component of G - u of minimum cardinality and let $C = V(G) - (K \cup \{u\})$. For an integer $r \geq 2$, let \mathcal{H}_r be a |C|-uniform hypergraph having chromatic number r+1 and girth ≥ 4 , and let $W = V(\mathcal{H}_r)$. For each hyperedge E of \mathcal{H}_r , let ψ_E be a fixed 1-1 map from E onto C. We now define a graph $A_r(G) \in \text{Forb}(G)$ as follows. The vertex set of $A_r(G)$ is $W \cup \{x\}$, where $x \notin W$. Two distinct vertices y, y' of $A_r(G)$ are joined by an edge if and only if either (i) $x \in \{y, y'\}$, or (ii) $\{y, y'\} \not\subseteq E$ for any $E \in E(\mathcal{H}_r)$, or (iii) $\{y, y' \in E \in \mathcal{H}_r$ and $\{\psi_E(y), \psi_E(y')\} \in E(G)$. Thus $A_r(G)|E \cong G|C$ for any hyperedge E.

We need to show that $A_r(G)$ does not embed G. Suppose for a contradiction that α is an embedding of G into $A_r(G)$. Assume first that K contains at least two different vertices. If a, b belong to different components of G - u, then $\alpha(a)$ and $\alpha(b)$ must belong to the same hyperedge E of \mathcal{H}_r . It follows that $\alpha(V(G-u)) \subseteq E$. But this is impossible since |E| = |C| < |V(G - u)|. Let us now assume that $V(K) = \{v\}$. Let T be a largest induced subgraph of C such that \bar{T} is a connected component of \bar{C} . Observe that to every vertex $a \in V(T)$ there is an edge E_a of H which contains both vertices $\alpha(v)$ and $\alpha(a)$. Because the girth of H is at least four there is only one such edge E_a for every vertex $a \in V(T)$. If $a, b \in V(T)$ are two vertices for which $E_a \neq E_b$, then $\alpha(a)$ and $\alpha(b)$ are adjacent in $A_r(G)$ because H does not contain a circle of length three. Then a and b are adjacent vertices of T. But this means that $V(T|\alpha(E_a))$ is disconnected from $V(T|\alpha(E_B))$ in \bar{T} in contradiction to \bar{T} being connected. Hence there is some edge E of H such that $V(\alpha(T)) \cup \{\alpha(v)\} \subseteq$ E. There is an embedding ϕ_E from $A_r(G)|E$ to C. Observe that the complement of the graph $A_r(G) \mid (V(\alpha(T)) \cup {\{\alpha(v)\}})$ is connected. Hence the complement of the graph $\phi_E(A_r(G) \mid (V(\alpha(T)) \cup {\{\alpha(v)\}}))$ is connected. This is in contradiction to the choice of T as a largest connected component of \bar{C} .

The remainder of the proof splits into several different cases.

CASE 1: |K| = 1. In this case we put $A(G) = A_m(G)$, where m = 3(n-1). Also, we let B(G) be the graph on m+1 points $\{x_0, \ldots, x_m\}$ in which $\{x_i, x_j\}$ is an edge if and only if either |i-j| = 1 or i = 3r, j = 3s and $\{f(r), f(s)\} \in E(G)$, where $f: n-1 \to V(G-u)$ is a fixed surjection.

We have already shown that $A(G) \in \operatorname{Forb}(G)$. We now verify that $B(G) \in \operatorname{Forb}(G)$ also. Suppose β is an embedding of G in B(G). Then $\beta(u) = x_{3p}$ for some p since u has degree greater than two. But the size of the largest component of $B(G)|\{y:\{x_{3p},y\}\in E(B(G))\}$ is $\max\{1,t-1\}$, where t is the size of the largest component in G-u. Thus there cannot be an embedding unless t=1. But in this case G-u has no edges, B(G) is a path and x_{3p} has degree at most two.

We now show that if D is any graph in which A(G) and B(G) can be disjointly amalgamated on $x \simeq x_0$, where x is the special vertex of A(G) joined to every other vertex, then $D \not\in Forb(G)$. Without loss of generality we may assume that $V(A(G)), V(B(G)) \subseteq V(D), x = x_0$ and $V(A(G)) \cap V(B(G)) = \{x\}$ and that the identity maps on A(G) and B(G) are embeddings in D. If $v \in V(D) - V(B(G))$ is such that $\{v, x_i\} \in E(D)$ for all $i \leq m$, then $D|\{v\} \cup \{x_{3i} : i < n\}$ is an isomorphic copy of G. Therefore, for each $v \in V(D) - V(B(G))$, there is a least index $i(v) \leq m$ such that $\{v, x_{i(v)}\} \not\in E(D)$. Note that $i(a) \neq 0$ if $a \in V(A(G) - x)$ since $x = x_0$ is joined to every other vertex of A(G). Consider the vertex colouring of A(G) - x in which a is coloured $a \in V(A(G) - x) = W = V(\mathcal{H}_m)$ and $a \in V(A(G) - x) = V(A(G) - x)$ is isomorphic to $a \in V(A(G) - x)$. Before considering the other cases in detail we give a construction which will be

Before considering the other cases in detail we give a construction which will be useful for these cases.

For graphs D, Z we say that Z is *t-dense* in D if, for any subset $Y \subseteq V(D)$ of cardinality $|Y| \ge \frac{1}{t}|V(D)|$, there is an embedding of Z into D|Y; this is stronger than the assertion that $D \to (Z)_t^1$.

For an integer $t \ge 1$ let \mathcal{M}_t be an (n-1)-uniform hypergraph with girth ≥ 4 and having no independent set of size $\frac{1}{t}|V(\mathcal{M})|$. For each hyperedge E of \mathcal{M} , let ϕ_E be a surjective map from E onto V(G-u). Let D_t be a graph such that $V(D_t) = V(\mathcal{M}_t)$ and $\{a,b\}$ is an edge if and only if $\{a,b\} \subseteq E$ for some hyperedge E and $\{\phi_E(a),\phi_E(b)\} \in E(G)$. Since \mathcal{M}_t contains no 'large' independent set, it follows that G-u is t-dense in D_t . We also have the following fact.

LEMMA 5.2. $D = D_t$ does not embed G - K.

PROOF. Suppose α is an embedding of G-K in D. Let $\mathcal{E}=\{E:\alpha(u)\in E\in E(\mathcal{M})\}$. Since \mathcal{M} has girth ≥ 4 , it follows that $E\cap E'=\{\alpha(u)\}$ for $E\neq E'$ in \mathcal{E} , and whenever $\{a,b\}\in E(G-K)$ there is some $E\in \mathcal{E}$ such that $\{\alpha(a),\alpha(b)\}\subseteq E$. Thus α maps each connected component of G-K into a unique $E\in \mathcal{E}$. If $B\neq K$ is a component of G-u of largest size, then there is some $E\in \mathcal{E}$ such that $\alpha(B)\subseteq E$. Thus $\alpha(B)\cup\{\alpha(u)\}$ is a subset of some connected component, say A, in D|E. But this is impossible since |A|>|B| and there is an embedding ϕ_E of D|E into G-u.

CASE 2: G-u HAS JUST TWO COMPONENTS EACH ISOMORPHIC TO \mathbf{K}_k . Let t=k+1, $D=D_i$, d=|D|, m=d(k+1), and let $V(D)=\{a_i:i\in d\}$. In this case we define the graph B(G) on the set $\{x_i:i\in m\}$ in which $\{x_i,x_j\}$ is an edge if and only if either

 $1 \le |i-j| \le k$ or if $i \equiv j \mod k+1$ and $\{a_p, a_q\} \in E(D_t)$, where $p = \lfloor i/k+1 \rfloor$ and $q = \lfloor j/k+1 \rfloor$ (and $\lfloor x \rfloor$ is the integer part of x). Thus, B(G) embeds k+1 disjoint copies of D_t .

Note that, since the hyperedges of M_t interesect in at most one point, for any vertex a of D_t , the graph $\Gamma_{D_t}(a)$ consists of a number of disjoint copies of \mathbf{K}_{k-1} . Therefore, for any vertex x_i of B(G), the graph $\Gamma_{B(G)}(x_i)$ does not contain two vertex-disjoint \mathbf{K}_k 's, and so B(G) does not embed G.

For this case we let A = A(G) be the complete graph $\mathbf{K}_{2^m,k}$, and x any vertex of A(G). We claim that A and B = B(G) cannot be disjointly amalgamated at $x \simeq x_0$ in any graph $J \in \operatorname{Forb}(G)$. Assume to the contrary that there is such a graph J. We may assume that A, B are induced subgraphs of J with the single common vertex $x = x_0$. Consider the colouring Δ of A - x which associates to ever vertex a of A - x the set of all $x_i \in V(B)$ adjacent to a in J. Let $S \subseteq V(B)$ be any subset with the property that there is some $x_i \in S$ such that i + k < m and $S \cap \{x_j : i < j \le i + k\} = \emptyset$. Then $|\Delta^{-1}(S)| < k$. For, if $T \subseteq \Delta^{-1}(S)$ and |T| = k, then $J|(T \cup \{x_j : i \le j \le i + k\})$ is isomorphic to G. It follows that there is some vertex $y \in V(A)$ such that $\Delta(y)$ is not such a set S. Since $x_0 \in \Delta(y)$, it follows that, for every set of indices $I \subseteq m$ consisting of k consecutive integers, there is some $i \in I$ such that x_i is joined to y in J. Thus $|\Delta(y)| \ge \frac{m}{k}$ and so $\Delta(y)$ contains at least $\frac{m}{k(k+1)} = \frac{d}{k} > \frac{d}{k+1}$ vertices from one of the k+1 disjoint copies of D_t in B. Since G - u is t-dense in D_t , it follows that $\Delta(y)$ embeds G - u. This contradicts our assumption that $J \in \operatorname{Forb}(G)$.

6. **The remaining cases.** In order to complete the proof in the remaining cases we will define three graphs B_0 , B_1 , B_2 (which depend upon G). These three graphs will have a common vertex set V and a special vertex $x_0 \in V$, and will be increasing in the sense that $E(G_0) \subseteq E(G_1) \subseteq E(G_2)$. We do not claim that these three graphs all belong to Forb(G), but, in each case, at least one of them is a member of Forb(G). We will also define a graph $A = A(G) \in Forb(G)$ and $x \in V(A)$, and show that, for each $i \in 3$, A and B_i cannot be disjointly amalgamated on $x \simeq x_0$ in any graph $J \in Forb(G)$. The theorem, of course, follows from this.

For the remainder of the proof we let $t = k^2$, $D = D_t$, d = |V(D)|, where D_t is the graph defined in the preceding section after Lemma 5.2. We put $A = A_r(G)$, where $r = (k+2)^d$, and, as before, **x** is the special vertex of A joined to every other vertex.

We now proceed to describe the three graphs B_0 , B_1 , B_2 . The common vertex set is $V = \{x_0\} \cup Y \cup Z$, where $Y = \{y_{ij} : i \in d, j \in k\}$ and $Z = \{z_{ijl} : i \in d, j \in k, l \in k\}$. Let $Y_i = \{y_{ij} : j \in k\}$, $Z_{ij} = \{z_{ijl} : l \in k\}$ and $P_{jl} = \{z_{ijl} : i \in d\}$. For each $i \in d, j \in k$, $l \in k$ let $\phi_i : Y_i \to K$, $\sigma_{ij} : Z_{ij} \to K$, $\psi_{jl} : P_{jl} \to V(D)$ be surjective maps; assume also that $\phi_i(y_{i0})$ and $\sigma_{ij}(z_{ij0})$ are vertices of K having minimal degree, and that $\phi_i(y_{i1})$ is a vertex of K having maximal degree.

The edges of B_0 are as follows. Two distinct vertices $a, b \in V$ are joined by an edge of B_0 if and only if one of the following conditions is satisfied:

• $\{a,b\} \subseteq Y_i$ for some $i \in d$ and $\{\phi_i(a),\phi_i(b)\} \in E(G)$.

- $\{a,b\} \subseteq Z_{ij}$ for some $i \in d, j \in k$ and $\{\sigma_{ij}(a), \sigma_{ij}(b)\} \in E(G)$.
- $\{a,b\} \subseteq P_{il}$ for some $j,l \in k$ and $\{\psi_{il}(a),\psi_{il}(b)\} \in E(D)$.
- $\{a,b\} = \{x_0,y\}$ for some $y \in Y$.
- $\{a,b\} = \{y_{ij}, z_{iil}\}$ for some $i \in d, j \in k, l \in k$.

 $\{a,b\}$ is an edge of B_1 if and only if it is an edge of B_0 , or

• $\{a,b\} = \{y_{e0}, y_{f0}\}$ for some $e, f \in d \ (e \neq f)$.

Finally, $\{a, b\}$ is an edge of B_2 if and only if it is an edge of B_1 , or

• $\{a,b\} = \{y_{i,j+1}, z_{ij0}\}$ for some $i \in d, j \in k$ (and j + 1 is taken modulo k).

We now show that, if A is as described at the beginning of this section, and if $B = B_i$ for some $i \in 3$, then A and B cannot be disjointly amalgamated on $a \simeq b$ in any graph $J \in \text{Forb}(G)$.

Assume for a contradiction that A, B are induced subgraphs of $J \in Forb(G)$ and that $x = x_0$. For each vertex $a \in W = V(\mathcal{H}_r)$, we shall define a function $f_a : d \to \{x\} \cup Y \cup \{q\}$, where $q \notin V = V(J)$, as follows. Let $i \in d$. If a is not joined to any vertex of Y_i in J, put $f_a(i) = x$. Suppose now that a is joined to some vertex $y \in Y_i$. If there is some $j \in k$ such that $\{a, y_{ij}\} \in E(J)$ and a is not joined (in J) to some $z \in Z_{ij}$, then put $f_a(i) = y_{ij}$, where j is the least index with this property. If, on the other hand, a is joined to some $z \in Z_{ij}$ whenever a is joined to y_{ij} , then put $f_a(i) = q$. This defines the function f_a for each $a \in W$. Suppose for some hyperedge $E \in E(\mathcal{H}_r)$, we have $f_a(i) = x$ for some $i \in d$ and all $a \in E$. Then $J|E \cup \{x\} \cup Y_i$ is isomorphic to G, a contradiction. Similarly, if there are a hyperedge $E \in E(\mathcal{H}_r)$ and $i \in d$, $j \in k$ such that $f_a(i) = y_{ij}$, then $J|E \cup \{y_{ij}\} \cup Z_{ij}$ is an isomorphic copy of G, again a contradiction. Because of this, and because \mathcal{H}_r has chromatic number greater than $r = (k + 2)^d$, it follows that, for some $a \in W$, f_a is the function which assumes the constant value q. Therefore, for some $j \in k$ and $l \in k$, a is adjacent to at least $\frac{1}{k^2}$ of the vertices in P_{jl} . Since $J|P_{jl} \cong D$ and G - u is k^2 -dense in D, it follows that J contains an isomorphic copy of G.

All that remains is to prove our earlier claim that, if G is not one of the graphs covered in Cases 1 & 2, then one of the graphs B_i ($i \in 3$) belongs to Forb(G).

CASE 3: THE CONNECTED COMPONENTS OF G-u ARE NOT ALL ISOMORPHIC. In this case we show $B=B_0\in \operatorname{Forb}(G)$. Suppose not and that α defines an embedding of G into B. Let J be a connected component of C which is not isomorphic to K. Since the connected components of $\Gamma_B(x_0)$ are all isomorphic to K, it follows that $\alpha(u)\neq x_0$. The connected components of $\Gamma_B(y_{ij})$ are $Q=\{x_0\}\cup \big(Y_i\cap \Gamma_B(y_{ij})\big)$, and Z_{ij} . Thus, if $\alpha(u)=y_{ij}$, then G-u has just the two connected components J and K. Moreover, K is isomorphic to $B|Z_{ij}$, and so J is isomorphic to B|Q. It follows that Q has exactly k elements, so that y_{ij} must be adjacent to every other vertex of Y_i in B. Therefore, since x_0 is also adjacent to every other vertex in Q, it follows that $J\cong B|Q\cong B|Y_i\cong K$, and this is a contradiction. The only remaining possibility is that $\alpha(u)=z_{ijl}$ for some $i\in d$, $j\in k$, $l\in k$. However, $\Gamma_B(z_{ijl})\subseteq P_{jl}\cup Z_{ij}\cup \{y_{ij}\}$. Since $P_{jl}\cong D$ it does not embed G-K by Lemma 5.2, and it follows that there is some component $L\not\cong K$ of G such that $\alpha(L)\not\subseteq P_{jl}$. Consequently, $\alpha(L)\subseteq Z_{ij}\cup \{y_{ij}\}$. But, since $|L|\geq |K|=k$ this implies that

 z_{ijl} is joined to every other vertex of Z_{ij} so that $L \cong J | (Z_{ij} - \{z_{ijk}\}) \cup \{y_{ij}\} \cong J | Z_{ij} \cong K$, and this is a contradiction.

CASE 4: THE CONNECTED COMPONENTS OF G-u ARE PAIRWISE ISOMORPHIC TO K, K>1, AND EITHER G-u HAS AT LEAST THREE COMPONENTS OR K HAS NO VERTEX OF DEGREE k-1. We will prove in this case that $B=B_1\in {\rm Forb}(G)$. Suppose for a contradiction that α is an embedding of G into B. Suppose $\alpha(u)=x_0$. Since $\Gamma_B(x_0)=Y$, it follows that $\alpha(K)\cap S\neq\emptyset$, where $S=\{y_{i0}:i\in d\}$. Since B|S is a complete graph, it follows that $\alpha(L)\cap S=\emptyset$ for every other component L of G-u. But this is a contradiction since the connected components of B|Y-S have cardinality at most k-1.

Suppose that $\alpha(u) = y_{i0}$ for some $i \in d$. The connected components of $\Gamma_B(y_{i0})$ are Z_{i0} and $T = (S - \{y_{i0}\}) \cup \{x_0\} \cup U$, where U is the set of vertices in Y_i adjacent to y_{i0} . If $x_0 \notin \alpha(G)$, then the only possible connected components of $\alpha(G - u)$ are P, Q, R, where $P \subseteq S - \{y_{i0}\}$, $Q \subseteq U$ and $R \subseteq Z_{i0}$. We must have $Q = \emptyset$ since |U| < k, and so G - u has two components each isomorphic to K_k , and this was dealt with in Case 2. Similarly, if $x_0 \in \alpha(G)$, then G - u must have two connected components each isomorphic to K and, moreover, K must contain a vertex joined to every other vertex.

Suppose that $\alpha(u) = y_{ij}$ for some $i \in d$ and $j \in k - \{0\}$. The connected components of $\Gamma_B(y_{ij}\}$) are $(Y_i - \{y_{ij}\}) \cup \{x_0\}$ and Z_{ij} . Again we see that x_0 is in the image of G and so K contains a vertex adjacent to every other vertex.

Finally, if $\alpha(u) = z_{ijl}$ for some $i \in d, j \in k, l \in l$, we use exactly the same argument as for the preceding case.

CASE 5: G - u HAS TWO CONNECTED COMPONENTS EACH ISOMORPHIC TO K, K IS NOT A COMPLETE GRAPH AND HAS A VERTEX OF DEGREE k-1. In this case we show that $B = B_2 \in \text{Forb}(G)$. Assume that the two components of G - u are K and K', and that $\alpha: G \to B$ is an embedding. The same argument used in Case 4 shows that $\alpha(u) \neq x_0$. Suppose $\alpha(u) = y_{i0}$. Since y_{i0} has degree < k-1 in $B|Y_i$, we can assume it is not adjacent to $y_{i,k-1}$ and so $\alpha(K)$ and $\alpha(K')$ are subsets either of $Z_{i0} \cup \{z_{i,k-1,0}\}$ or of $(\{x_0\} \cup Y_i \cup S) - \{y_{i0}\}$ where, as before, $S = \{y_{r0} : r \in d\}$. If $x_0 \notin \alpha(G - u)$, then $\alpha(G - u)$ fails to have two components of size k. So we can assume that $x_0 \in \alpha(K)$ and $\alpha(K) \cap S \neq \emptyset$, and also that $z_{i00} \in \alpha(K')$. Therefore, $y_{il} \notin \alpha(G)$ since it is adjacent of z_{i00} . Since y_{il} is adjacent to y_{i0} , it follows that $|\alpha(K) \cap Y_i| < p$, where p < k-1 is the minimum degree of a vertex in the graph K. Since K is not a complete graph, $\alpha(K) \cap Y_i \neq \emptyset$ and so $B|\alpha(K)$ contains a vertex of degree < p, and therefore is not isomorphic to K.

Suppose $\alpha(u) = y_{ij}$ for some $i \in d, j \in k - \{0\}$. In this case $\alpha(K \cup K') \subseteq \{x_0\} \cup (Y_i - \{y_{ij}\}) \cup Z_{ij} \cup \{z_{i,j-1,0}\}$. Suppose $Z_{ij} = \alpha(K')$. Then $y_{i,j+1} \not\in \alpha(K \cup K')$ since $y_{i,j+1}$ is adjacent to z_{ij0} . Therefore, we must have $\alpha(K) = \{x_0\} \cup (Y_{ij} - \{y_{ij}, y_{i,j+1}\}) \cup \{z_{i,j-1,0}\}$. It follows that K has a vertex of degree one, and hence exactly one vertex of degree k-1. Therefore, we must have j=1. But then $B|\{x_0\} \cup (Y_i - \{y_{ij}, y_{i,j+1}\}) \cup \{z_{i,j-1,0}\}$ contains no vertex of degree k-1, and this is a contradiction. Similarly, if $Z_{ij} \not\subseteq \alpha(K \cup K')$, then $y_{i,j+1}$ together with points of Z_{ij} must form one component of $\alpha(G-u)$, say $\alpha(K')$. But then we are led to conclude, just as before, that $\alpha(K)$ contains a vertex of degree one and so K has just one vertex of degree k-1, whereas $\alpha(K)$ contains no vertex of degree k-1.

The only remaining possibility is that $\alpha(u) = z_{ijl}$ for some $i \in d, j \in k, l \in k$. In this case, since $\Gamma_B(z_{ijl}) \subseteq \{y_{ij}, y_{i,j+1}\} \cup Z_{ij} \cup P_{jl}$, for some connected component of G - u, say K', it must be the case that $\alpha(K') \subseteq P_{jl}$. But this is impossible since $P_{ijl} \cong D$ and, by Lemma 5.2, D does not embed G - K.

REFERENCES

- 1. P. Erdős and A. Hajnal, On chromatic number of graphs and set systems, Acta. Math. Acad. Sci. Hung. 17(1966), 61–99.
- 2. J. Nešetřil and V. Rödl, Partitions of vertices, Comment. Math. Univ. Carolina 17(1976), 85–95.
- 3. _____, Partitions of finite relational and set systems, J. Combin. Theory (A) 22, 289–312.
- 4. N. Sauer and X. Zhu, Graphs which do not embed a given graph and the Ramsey property, manuscript.

Emory University Atlanta, Georgia U.S.A.

University of Calgary Calgary, Alberta