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THE RAMSEY PROPERTY FOR FAMILIES OF GRAPHS
WHICH EXCLUDE A GIVEN GRAPH

V.RODL AND N. SAUER

ABSTRACT.  For graphs A, B and a positive integer r, the relation A — (B)} means
that whenever A is an r-colouring of the vertices of A, then there is an embedding ¢ of
B into A such that A o ¢ is constant. A class of graphs ¥ has the Ramsey property if,
forevery B € F, thereis an A € F such that A — (B)}. For a given finite graph G, let
Forb(G) denote the class of all finite graphs which do not embed G. It is known that, if
G is 2-connected, then Forb(G) has the Ramsey property, and Forb(G) has the Ramsey
property if and only if Forb(G) also has the Ramsey property. In this paper we show
that if neither G nor its complement G is 2-connected, then either (i) G has a cut point
adjacent to every other vertex, or (ii) G has a cut point adjacent to every other vertex
except one. We show that Forb(G) has the Ramsey property if G is a path of length 2
or 3, but that Forb(G) does not have the Ramsey property if (i) holds and G is not the
path of length 2.

1. Introduction. We only consider finite, undirected, simple graphs, K, denotes
the complete graph on n vertices. If A is a graph and X is a subset of the set of vertices
V(A), we denote by A|X the induced subgraph on X, also we write A — X instead of
AI(V(A) - X). For any vertex x of A we denote by ['s(x) the subgraph Al{y : {x,y} an
edge of A}. As usual A denotes the complement of the graph A. A graph is connected if
any two vertices may be joined by a path. The graph A is k-connected if A—X is connected
for any set X C V(A) with |X| < k. If A is not a complete graph, the connectivity of A
is the largest integer k such that A is k-connected. If A is connected, a cutpoint of A is a
vertex u such that A — u is not connected. For graphs A, B, an embedding of A in B is
a map ¢: V(A) — V(B) such that Va, a’ € V(A), {a,a’} is an edge of A if and only if
{#(a), #(a’)} is an edge of B; in other words if A is isomorphic to some induced subgraph
of B.

For graphs A, B and a positive integer r, the relation A — (B)! means that whenever
A is an r-colouring of the vertices of A, then there is an embedding ¢ of B into A such
that A o ¢ is constant. A class of graphs F has the Ramsey property if, for every B € F,
there is an A € F such that A — (B)). It is easily seen that if F is Ramsey, then it has
the seemingly stronger property that, for any positive integer r, for every B € F, there
isanA € F suchthatA — (B)}‘ It also follows immediately from the definition that F
is Ramsey if and only if the class ¥ = {A : A € F} of complementary graphs is also
Ramsey. For a set of graphs L we denote by Forb(L) the family of all graphs A which
do not embed any member L € L. In particular, if L = {G} we write Forb(G) instead
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of Forb(L). It is known [2] (see Theorem 1.2 below) that, if G is a 2-connected graph,
then the class of graphs Forb(G) is Ramsey.

A hypergraph # is a pair (V, E), where V = V(¥ ) is the set of vertices, and E =
E(H) C (V) is the set of edges of H. H is r-uniform if |e| = r for every e € E. A
circuit of length n in H is a finite sequence of distinct vertices xj, . .., X, such that there
are distinct hyperedges ey, .. ., e, such that x;, x;1; C e;, where x,,,; = x;. In particular, if
two hyperedges intersect in two or more points, they form a circuit of length 2. The girth
of # is the length of the smallest circuit in #. A subset X C V(#) is independent if
it contains no hyperedge of # . The chromatic number of H is the least cardinal k such
that V(%) is a union of k independent subsets.

We shall make frequent use of the following theorem of Erdos & Hajnal [1].

THEOREM 1.1 ([1]). Forany positive integersr, k, | there is an r-uniform hypergraph
H of girth I with no independent set of size % |V(H)| (and so has chromatic number > k).

To illustrate how Theorem 1.1 is used in the present context, we begin by reproving
the fact mentioned above.

THEOREM 1.2 [2]. If L is a finite set of 2-connected graphs, then Forb(L) is Ramsey.

PROOF. Let B € Forb £, and let H be a |B|-uniform hypergraph of chromatic num-
ber 3 and girth g, where g > 3 and g exceeds the number of vertices of every L € L.
Consider the graph A on V(%) in which an isomorphic copy of B is placed in each hy-
peredge of H; note that two distinct hyperedges meet in only one point, so that A can
be constructed in this way. Obviously A — (B)} since  is 3-chromatic. We need only
check that A € Forb L. Suppose for a contradiction that A embeds some L € L. Since B
does not embed L and L is 2-connected, A must contain vertices which form a circuit in
. But this contradicts the fact that g exceeds the number of vertices of L. [

The question arises whether there is an graph G such that Forb(G) is not Ramsey?

2. Graphs such that G and G are not 2-connected. To answer the question stated
at the end of the last section, we need only consider those graphs G such that neither
G nor its complement G is 2-connected. In this section we give a description of such
graphs.

Denote by M the class of those graphs G with the property that there is a cut point
u € V(G) which is joined by an edge to every other vertex. Also, denote by X the class
of graphs G such that there is a cut point u € V(G) which is joined by an edge to every
other vertex except one. For example, P, € M and P; € K, where P, denotes the path
of length of n.

We say that the graph G is n-partite if there is a partition of V(G) into n disjoint non-
empty sets A; (1 < i < n) such that {x,y} is an edge of G whenever x,y belong to
different A;’s.
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LEMMA 2.1.  If G is disconnected, then either G € M or G has connectivity k > 1.

PROOF. Since G is disconnected, G is n-partite for some n > 2. Therefore G is
connected and has connectivity k > 1. If k = 1, then there is a cut point u. Therefore,
G — u is disconnected and its complement G — u = G — u is connected. It follows that
{u} is a component of G, and hence G € M. =

THEOREM 2.2. Ifneither G nor G is 2-connected, then G € M UM U K U K.

PROOF. By Lemma 2.1 we can assume that G and G are both connected and have
connectivity 1. Let u be a cutpoint of G and v a cutpoint of G. Then u # v since G — v
is connected and G — u is not, and by Lemma 2.1 either G — u € M or G — u has
connectivity k > 2.

Suppose that G — u € M. Then there is a vertex w joined in G to all other points of
G—{u,w},and G—{u, w} is disconnected. Since G is connected, it follows that {u, w} is
an edge of G. If u is joined to every other vertex by an edge of G, then G € M. Suppose
that u is not joined to all other pointsin G. If w = v, then G € X, and so G € K. On the
other hand, if w # v, then G — v has the two components {u} and G — {u, v}. Therefore,
u is joined to every vertex in G — v, and since {u, v} is not an edge of G, it follows that
GeX.

Suppose then that G — u is 2-connected. Then G — {u, v} is connected, and so the
components of G — v are {u} and G — {u,v}. Therefore, u is joined to all points of
G — {u, v} by edges of G. But {u, v} is not an edge of G since G is connected. Since u is
a cut point of G it follows that G € XK. (]

3. Amalgamation properties. The family of graphs F has the join-embedding

property if

(€)) VA,Be F3Ce€ F (dembeddings ¢:A — C,vy:B— C).
F has the amalgamation property if

) VA,B € F,a € V(A),b € V(B)3C € F(3 embeddings

¢:A — C,1p: B— C such that ¢(a) = ¥(b)).
If the condition in (2) holds, we say that C amalgamates A and B on a ~ b. Finally, we
say that F has the disjoint amalgamation property if ¢, ¢ in (2) can be chosen so that,
in addition,
o(V(A —a)) Ny(V(B— b)) = 0.
and, in this case we say that C disjointly amalgamates A and B on a ~ b.
LEMMA 3.1.  For any graph G, Forb(G) has the join-embedding property.

PROOF. Let A,B € Forb(G). We can assume that V(A) and V(B) are disjoint. If G
is connected, then the disjoint sum A @& B € Forb(G). If G is disconnected A@ B €
Forb(G). =

For the next theorem we need the following known fact which follows easily by in-
duction on k: If the outdegrees in a directed graph ‘D are at most k, then the chromatic
number of D is at most 3¥.
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THEOREM 3.2. If F is Ramsey and has the join-embedding property, then F has the
disjoint amalgamation property.

PROOF. WEe first show that F has the ordinary amalgamation property. Suppose for
a contradiction that this is false. Then there are A,B € F,a € V(A), b € V(B) which
witness this failure. Since F has the join-embedding property and is Ramsey, there are
C,D € ¥ such that C — (D)} and D embeds both A and B. Colour a vertex x of C
blue if there is an embedding ¢: B — C such that ¢(b) = x; otherwise, colour x red. Now
consider any embedding 1: D — C. By our choice of D, there are embeddings a: A — D,
B: B — D. Clearly, w(ﬂ(b)) is blue. If x = w(a(a)) is coloured blue, then there is some
embedding ¢: B— C such that x = ¢(b). Since ¢ o « is also an embedding of A into C
with d)(a(a)) = x, this contradicts our assumption that A, B cannot be amalgamated on
a ~ binany graph C € F. It follows therefore, that x = w(a(a)) is red. This shows that
every copy of D in C contains both blue and red vertices, and this contradicts the fact
that C — (D)}.

We now show that F has the stronger disjoint amalgamation property. As above, we
assume that this is false and that A,B € F, a € V(A), b € V(B) witness this, so that
no C € ¥ disjointly amalgamates A and B on a ~ b. Since ¥ has the amalgamation
property and is Ramsey, there are C,D € ¥ such that C — (D)!, where r = 3I8I-1,
and D amalgamates A and Bona ~ b. Let a:A — D, 3:B — D be embeddings
such that a(a) = B(b). For x € V(C), if there is an embedding ¢: D — C such that
w(a(a)) = w(ﬁ(b)) = x, then we choose one such embedding, say 1, and define T, =
wx(ﬁ(B — b)); if there is no such 1, we put T, = (). Now consider the directed graph
D on V(C) in which there is a directed edge from x to y if and only if y € T,. The
outdegree of each vertex of D is at most |B| — 1, and so the chromatic number is at most
31B-1 Let A: V(C) — 3/BI-! be any vertex colouring of 9 such that no two vertices
having the same colour are joined in D. Now let x: D — C be any embedding and let
x = X(B(b)) = X(a(a)). Since C does not disjointly amalgamate A and B on a ~ b,
it follows that there is some y € x(a(A — a)) N ¥:(B(B — b)). Now y € T; and so
A(x) # A(y). Thus x(D) contains two vertices x, y with different colours for the colouring
A. But this contradicts the fact that C — (D)} .

4. Forb(P,) and Forb(P3) are both Ramsey. The fact that Forb(P;) is Ramsey fol-
lows immediately from the fact that G € Forb(P,) if and only if G is a disjoint union of
complete graphs. For, if B € Forb(P;) and B has k components each of size at most /,
then A — (B)}, where A is the graph consisting of 2k — 1 disjoint copies of the complete
graph Ky, ;. The fact that Forb(P3) is Ramsey is not quite so obvious.

For disjoint subsets U, V of V(G) let [U,V] = {{u,v} : u € U,v € V}. A series-
parallel partition of G is a partition V(G) = U U V into two disjoint, non-empty sets
U, V such that either [U, V] C E(G) or [U, V] C E(G). The next theorem gives a useful
characterization of P3-free graphs.
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THEOREM 4.1. If G € Forb(P3) and |V(G)| > 1, then there is a series-parallel
partition of G.

PROOF. The proof is by induction on | V(G)|. Since P; = P;, we may assume that G
is connected and that |V(G)| > 2. Let a € V(G). By the induction hypothesis, V(G—a) =
U UV, where U, V are non-empty disjoint sets and either [U, V] C E(G) or [U,V,] C
E(G). If a is joined to every other vertex of G, then {a} U (V(G) - {a}) is a series-
parallel partition of V(G). Thus we may assume that there are are u € U, v € V such that
{a,u} & E(G), {a,v} € E(G). Suppose that [U, V] C E(G). Then, since G is connected,
there is a path u = xp,...,x, = a, v which is an induced subgraph of G, and so G
embeds P3. Therefore, [U,V] C E(G). Let W = {z € V: {a,z} € EG)}.IfW =V
then [UU{a}, V] is a series-parallel partition, so we can assume that W, V — W are both
non-empty. Suppose there are x € W and y € V — W such that {x,y} € E(G). Then a, x,
u, y is an induced P3. Therefore, [W,V — W] C E(G), and so [UU(V — WU {a}, W] is
a series-parallel partition of G. n

THEOREM 4.2. Forb(P3) is Ramsey.

PROOF.  As before we shall denote by A@ B the disjoint sum of the graphs A, B. Also,
we shall denote by A ® B the graph on A X B in which two vertices (a, b), (a’,b’) are
joined by an edge if and only if either (i)b = b’ and {a,a’} € E(A), or (ii){b,b'} € E(B).

We first show that Forb(Ps) is closed under the operation ©. Suppose for a contradic-
tion that A, B are Ps3-free and that (ag, by), (ai, b1), (a2, by), (a3, b3) is an induced path in
A ©® B. If the b; are all equal, then ay, .. ., a3 is an induced P3 in A. Similarly, if all the b;
are distinct, then by, ..., b3 is an induced P; in B. Hence there are {i,j,k} C {0, 1,2,3}
such that b; = b; # by and |k —i| = 1, |k —j| > 1. Therefore, {b;, b} € E(B), and since
bj = b;, it follows that {a;, b;} is joined to {ay, b} in A ® B; but this is a contradiction
since |k — j| > 1.

Let B € Forb(P3). We want to show that there is some A € Forb(P3) such that A —
(B);. If there is such an A we denote one such graph by R(B). Note that if B|,B; €
Forb(P3) and if R(B;), R(B;) both exist, then R(B;) ® R(B;) — (B; ® Bz);. For consider
any two-colouring A: V(R(Bl)) X V(R(Bz)) — 2. For each vertex y of R(B,) let V(y) =
{(.y) : x € V(R(B1)) }. Then R(B1) ® R(B,)|V(y) is isomorphic to R(B;) and so there
are €, € {0, 1} and an embedding ¢, of B; into R(B;) such that A((by(x),y) =€ (Vx €
V(B, )). Also, there are € € {0, 1} and an embedding v of B, into R(B,) such that € ,) =
€ (Vy € V(B, )). Now consider the embedding x of B; ® B; into R(B) ® R(B;) given by
X(6,3) = (Gp)®), (). Clearly, A(x(x,y)) = €y = €.

We now show that R(B) exists for all B € Forb(P3) by induction on |B| = |V(B)|. By
Theorem 4.1, since P; & P;, we can assume that B = C @ D is the disjoint union of
two non-empty sugraphs. By the induction hypothesis R(C) and R(D) both exist. Clearly,
F— Do D);, where F = R(D) & R(D) é R(D), and by the above, A = R(C) ® F —
(Co@@D)),.But CoO (D® D)= (CGD)& (CO D), and since C® D embeds both
C and D, it follows that A — (C & D)}, i.e. A — (B)}. n
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5. Graphs G such that Forb(G) is not Ramsey. In the last section we proved that
Forb(G) is Ramsey for G = P, or G = P3. The main result, which will be proved in this
and the next section, is that Forb(G) is not Ramsey if G € M — {P,}. It is not known if
the same is true for G € K — {Ps}, although Zhu and Sauer [4] have proved this for a
certain subset of these G’s.

THEOREM 5.1.  Forb(G) is not Ramsey if G € M — {P,}.

PROOF. Let G € M — {P,}, |V(G)| = n. By Lemma 3.1 and Theorem 3.2, in order
to show that Forb(G) is not Ramsey, it will be enough to construct two graphs A(G),
B(G) € Forb(G) and two vertices a, b in these graphs such that A(G) and B(G) cannot be
disjointly amalgamated on a ~~ b.

Since G € M, there is a cutpoint u of G which is adjacent to every other vertex of G.
Let K be a component of G — u of minimum cardinality and let C = V(G) — (K U {u}).
For an integer r > 2, let #, be a | C|-uniform hypergraph having chromatic number r + 1
and girth > 4, and let W = V(#;). For each hyperedge E of #,, let 1¢ be a fixed 1 — 1
map from E onto C. We now define a graph A,(G) € Forb(G) as follows. The vertex set
of A,(G) is WU {x}, where x ¢ W. Two distinct vertices y, y’ of A,(G) are joined by an
edge if and only if either (i) x € {y,y'}, or (ii) {y,y'} & E for any E € E(H,), or (iii)
v,y € E € H; and {¢£(y), YY)} € E(G). Thus A(G)|E = G|C for any hyperedge E.

We need to show that A,(G) does not embed G. Suppose for a contradiction that « is
an embedding of G into A,(G). Assume first that K contains at least two different vertices.
If a, b belong to different components of G — u, then a(a) and a(b) must belong to the
same hyperedge E of H,. It follows that a(V(G - u)) C E. But this is impossible since
|E| = |C| < |V(G — u)|. Let us now assume that V(K) = {v}. Let T be a largest induced
subgraph of C such that T is a connected component of C. Observe that to every vertex
a € V(T) there is an edge E, of H which contains both vertices a(v) and a(a). Because
the girth of H is at least four there is only one such edge E, for every vertex a € V(T). If
a,b € V(T) are two vertices for which E, # Ej, then a(a) and a(b) are adjacent in A,(G)
because H does not contain a circle of length three. Then a and b are adjacent vertices of
T. But this means that V(T| a(Ea)) is disconnected from V(T] a(EB)) in T in contradiction
to T being connected. Hence there is some edge E of H such that V(a(T)) U{a(} C
E. There is an embedding ¢ from A,(G)|E to C. Observe that the complement of the

graph A,(G) ‘ (V(a(T)) U {a(v)}) is connected. Hence the complement of the graph
ok (A,(G) ‘ (V(a(T))U{a(v)})) is connected. This is in contradiction to the choice of
T as a largest connected component of C.

The remainder of the proof splits into several different cases.

CASE 1: |[K| = 1. Inthis case we put A(G) = An(G), where m = 3(n — 1). Also, we
let B(G) be the graph on m+ 1 points {xo, ..., X } in which {x;, x; } is an edge if and only
if either |i —j| = lori = 3r,j = 3s and {f(r),f(s)} € E(G), wheref:n—1 — V(G —u)
is a fixed surjection.
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We have already shown that A(G) € Forb(G). We now verify that B(G) € Forb(G)
also. Suppose (3 is an embedding of G in B(G). Then 3(u) = x3, for some p since u has
degree greater than two. But the size of the largest component of B(G)| { y: {x3,y} €
E(B(G))} is max{1,r— 1}, where  is the size of the largest component in G — u. Thus
there cannot be an embedding unless ¢ = 1. But in this case G — u has no edges, B(G) is
a path and x3, has degree at most two.

We now show that if D is any graph in which A(G) and B(G) can be disjointly amal-
gamated on x ~ xp, where x is the special vertex of A(G) joined to every other vertex,
then D ¢ Forb(G). Without loss of generality we may assume that V(A(G)), V(B(G)) -
V(D), x = xo and V(A(G)) N V(B(G)) = {x} and that the identity maps on A(G) and
B(G) are embeddings in D. If v € V(D) — V(B(G)) is such that {v,x;} € E(D) for
all i < m, then D|{v} U {x3; : i < n} is an isomorphic copy of G. Therefore, for
eachv € V(D) — V(B(G)), there is a least index i(v) < m such that {v, x,,} & E(D).
Note that i(a) # 0 ifa € V(A(G) — x) since x = Xxp is joined to every other vertex
of A(G). Consider the vertex colouring of A(G) — x in which a is coloured i(a). Since
V(A(G) — x) = W = V(H,) and H,, has chromatic number m + 1, thereare 1 <i <m
and some hyperedge E of H,, such that {a,x;} & E(D) and {a,x;_;} € E(D) for all
a € E. But D|E is isomorphic to G|C. Therefore, D|E U {x;_, x;} is isomorphic to G. =

Before considering the other cases in detail we give a construction which will be
useful for these cases.

For graphs D, Z we say that Z is t-dense in D if, for any subset Y C V(D) of cardinality
|Y| > 1|V(D)|, there is an embedding of Z into D|Y; this is stronger than the assertion
that D — (2)!.

For an integer t > 1 let M, be an (n—1)-uniform hypergraph with girth > 4 and having
no independent set of size 1 |V(M)|. For each hyperedge E of M, let ¢ be a surjective
map from E onto V(G — u). Let D, be a graph such that V(D,) = V(M,) and {a, b} is an
edge if and only if {a,b} C E for some hyperedge E and {¢£(a), pe(b)} € E(G). Since
M, contains no ‘large’ independent set, it follows that G — u is t-dense in D,. We also
have the following fact.

LEMMA 5.2. D = D, does not embed G — K.

PROOF. Suppose « is an embedding of G — K inD. Let £ = {E : a(u) € E €
E(M)}. Since M has girth > 4, it follows that ENE' = {a(u)} for E # E' in E,
and whenever {a,b} € E(G — K) there is some E € E such that {a(a), a(b)} C E.
Thus o maps each connected component of G — K into a unique £ € E. If B # K is
a component of G — u of largest size, then there is some E € E such that a(B) C E.
Thus a(B) U {a(u)} is a subset of some connected component, say A, in D|E. But this is
impossible since |A| > | B| and there is an embedding ¢ of D|E into G — u. .

CASE 2: G — u HAS JUST TWO COMPONENTS EACH ISOMORPHIC TO K. Lett = k+1,
D = D,,d = |D|,m = d(k + 1), and let V(D) = {a; : i € d}. In this case we define
the graph B(G) on the set {x; : i € m} in which {x;, x;} is an edge if and only if either
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1 <|i—j| <korifi =jmod k+1 and {ay,a,} € E(D,), where p = [i/k+ 1] and
g = [j/k+ 1] (and [x] is the integer part of x). Thus, B(G) embeds k + 1 disjoint copies
of D;,.

Note that, since the hyperedges of M; interesect in at most one point, for any vertex
a of Dy, the graph I'p,(a) consists of a number of disjoint copies of K;_;. Therefore, for
any vertex x; of B(G), the graph I'p)(x;) does not contain two vertex-disjoint K, ’s, and
so B(G) does not embed G.

For this case we let A = A(G) be the complete graph K~ ;, and x any vertex of A(G).
We claim that A and B = B(G) cannot be disjointly amalgamated at x =~ x; in any graph
J € Forb(G). Assume to the contrary that there is such a graph J. We may assume that
A, B are induced subgraphs of J with the single common vertex x = xy. Consider the
colouring A of A — x which associates to ever vertex a of A — x the set of all x; € V(B)
adjacent toa in J. Let S C V(B) be any subset with the property that there is some x; € S
such that i +k < mand SN {x : i <j < i+k} = 0. Then |[A"!(S)| < k. For, if
T C A(S)and |T| = k, then J|(T U {x; : i <j <i+k})is isomorphic to G. It follows
that there is some vertex y € V(A) such that A(y) is not such a set S. Since xg € A(y), it
follows that, for every set of indices / C m consisting of k consecutive integers, there is
some i € I such that x; is joined to y in J. Thus [A(y)| > % and so A(y) contains at least

o = % > g vertices from one of the k + 1 disjoint copies of D, in B. Since G — u
is t-dense in Dy, it follows that A(y) embeds G — u. This contradicts our assumption that
J € Forb(G). s

6. The remaining cases. In order to complete the proof in the remaining cases we
will define three graphs By, B, B, (which depend upon G). These three graphs will have
a common vertex set V and a special vertex xo € V, and will be increasing in the sense
that E(Gg) C E(G1) C E(G2). We do not claim that these three graphs all belong to
Forb(G), but, in each case, at least one of them is a member of Forb(G). We will also
define a graph A = A(G) € Forb(G) and x € V(A), and show that, for each i € 3, A and
B; cannot be disjointly amalgamated on x ~~ xp in any graph J € Forb(G). The theorem,
of course, follows from this.

For the remainder of the proof we let t = k*, D = D,, d = |V(D)|, where D, is
the graph defined in the preceding section after Lemma 5.2. We put A = A,(G), where
r = (k+2)¢, and, as before, x is the special vertex of A joined to every other vertex.

We now proceed to describe the three graphs By, B, B>. The common vertex set is
V={x}UYUZ whereY = {y;:i€djecktandZ= {z;:i €d,j € k,] € k}.
LetY, = {y;:j€k},Zj={zy:1 €ktand Py = {z;;: i €d}. Foreachi €d,j €k,
l€klet¢;: Y, — K, 0: Zij — K, Yy: Py — V(D) be surjective maps; assume also that
¢:i(yio) and o(z;0) are vertices of K having minimal degree, and that ¢;(y;) is a vertex
of K having maximal degree.

The edges of By are as follows. Two distinct vertices a,b € V are joined by an edge
of By if and only if one of the following conditions is satisfied:

e {a,b} C Y, for some i € d and {¢;(a), p«(b)} € E(G).
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e {a,b} C Z;forsomei € d,j € kand {o;(a),0;(b)} € E(G).
o {a,b} C P for some j,I € k and {v;(a), V;(b)} € E(D).
e {a,b} = {xo,y} forsomey € Y.
o {a,b} = {yj,z} forsomei€d,jeck €k
{a, b} is an edge of B, if and only if it is an edge of By, or
o {a,b} = {ye0,y0} for some e,f € d (e # f).
Finally, {a, b} is an edge of B, if and only if it is an edge of B;, or
o {a,b} = {yijs1,zjo} forsome i €d,j € k (and j + 1 is taken modulo k).

We now show that, if A is as described at the beginning of this section, and if B = B;
for some i € 3, then A and B cannot be disjointly amalgamated on a ~ b in any graph
J € Forb(G).

Assume for a contradiction that A, B are induced subgraphs of J € Forb(G) and that
x = xo. For each vertexa € W = V(#;), we shall define a functionf,: d — {x}UYU{q},
where g ¢ V = V(J), as follows. Let i € d. If a is not joined to any vertex of ¥; in J,
put f,(i) = x. Suppose now that a is joined to some vertex y € Y;. If there is some j € k
such that {a,y;} € E(J) and a is not joined (in J) to some z € Zj, then put f,(i) = yj,
where j is the least index with this property. If, on the other hand, a is joined to some
Z € Z; whenever a is joined to y;;, then put f(i) = q. This defines the function f, for
each a € W. Suppose for some hyperedge E € E(H,), we have f,(i) = x for some i € d
and all a € E. Then J|[EU {x} UY; is isomorphic to G, a contradiction. Similarly, if there
are a hyperedge E € E(#,) and i € d, j € k such that f,(i) = y;, then J|[EU {y;} U Z;
is an isomorphic copy of G, again a contradiction. Because of this, and because #, has
chromatic number greater than r = (k + 2)4, it follows that, for some a € W, fa is the
function which assumes the constant value g. Therefore, for some j € kand l € k, a is
adjacent to at least ;15 of the vertices in P;;. Since J|P; = D and G — u is k*-dense in D,
it follows that J contains an isomorphic copy of G.

All that remains is to prove our earlier claim that, if G is not one of the graphs covered
in Cases 1 & 2, then one of the graphs B; (i € 3) belongs to Forb(G).

CASE 3: THE CONNECTED COMPONENTS OF G — u ARE NOT ALL ISOMORPHIC. In
this case we show B = By € Forb(G). Suppose not and that o defines an embedding
of G into B. Let J be a connected component of C which is not isomorphic to K. Since
the connected components of 'p(xp) are all isomorphic to K, it follows that a(u) # x.
The connected components of I'g(y;;) are Q = {xo} U (Y,- N FB(yij)), and Z;. Thus, if
a(u) = y;j, then G — u has just the two connected components J and K. Moreover, K
is isomorphic to B|Z;, and so J is isomorphic to B|Q. It follows that Q has exactly k
elements, so that y; must be adjacent to every other vertex of ¥; in B. Therefore, since
Xo is also adjacent to every other vertex in Q, it follows that J & B|Q = B|Y; & K, and
this is a contradiction. The only remaining possibility is that a(u) = z;; for some i € d,
Jj € k, I € k. However, I'p(z;;) € Pj U Z; U {y;}. Since P; = D it does not embed
G — K by Lemma 5.2, and it follows that there is some component L % K of G such that
a(L) Z Pj;. Consequently, (L) C Z; U {y;}. But, since |L| > |K| = k this implies that
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z;1 is joined to every other vertex of Z; so that L = J|(Z; — {zu}) U {yy} = J|Z; 2 K,
and this is a contradiction. L]

CASE 4: THE CONNECTED COMPONENTS OF G — u ARE PAIRWISE ISOMORPHIC TO K,
K > 1, AND EITHER G — u HAS AT LEAST THREE COMPONENTS OR K HAS NO VERTEX
OF DEGREE k — 1. 'We will prove in this case that B = B; € Forb(G). Suppose for a
contradiction that o is an embedding of G into B. Suppose a(u) = xp. Since I'g(xp) = ¥,
it follows that a(K) N S # (), where S = {yo : i € d}. Since B|S is a complete graph, it
follows that a(L)NS = { for every other component L of G—u. But this is a contradiction
since the connected components of B|Y — S have cardinality at most k — 1.

Suppose that a(u) = y;y for some i € d. The connected components of I'g(y;9) are Zy
and T = (S — {yio}) U {xo} U U, where U is the set of vertices in ¥; adjacent to y;. If
xo & a(G), then the only possible connected components of (G — u) are P, Q, R, where
PCS—{yo}, QC UandR C Zj. We must have Q = () since |U| < k, and s0 G — u
has two components each isomorphic to K;, and this was dealt with in Case 2. Similarly,
if xp € a(G), then G — u must have two connected components each isomorphic to K
and, moreover, K must contain a vertex joined to every other vertex.

Suppose that a(u) = y; for some i € d and j € k — {0}. The connected components
of Tg(y; }) are (¥; — {y;) U {x0} and Z;. Again we see that xy is in the image of G and
so K contains a vertex adjacent to every other vertex.

Finally, if a(u) = z;; forsome i € d,j € k, [ € I, we use exactly the same argument
as for the preceding case.

CASE 5: G — u HAS TWO CONNECTED COMPONENTS EACH ISOMORPHIC TO K, K
IS NOT A COMPLETE GRAPH AND HAS A VERTEX OF DEGREE k — 1. In this case we
show that B = B, € Forb(G). Assume that the two components of G — u are K and
K’, and that &: G — B is an embedding. The same argument used in Case 4 shows that
a(u) # xp. Suppose a(u) = yjp. Since yjo has degree < k — 1 in B|Y;, we can assume
it is not adjacent to y;;_; and so «(K) and a(K") are subsets either of Zip U {z;z_10} or
of ({xo} UY;US) — {yin} where, as before, § = {y,0 : r € d}. If xo & a(G — u), then
a(G — u) fails to have two components of size k. So we can assume that xy € o(K) and
a(K)NS # 0, and also that zipg € a(K"). Therefore, y; & o(G) since it is adjacent ot zg.
Since y; is adjacent to yj, it follows that |a(K)NY;| < p, where p < k—1 is the minimum
degree of a vertex in the graph K. Since K is not a complete graph, a(K) N Y; 3 () and
5o B|a(K) contains a vertex of degree < p, and therefore is not isomorphic to K.

Suppose a(u) = y; for some i € d,j € k — {0}. In this case «(KUK’') C {xo} U
(Yi —{ysHUZ; U{zij-10}. Suppose Z; = a(K"). Then y;jr1 & a(KUK’') since y;j is
adjacent to z;j. Therefore, we must have a(K) = {xo} U (Y — {yyj» yij+1 D U{zij—10}. It
follows that K has a vertex of degree one, and hence exactly one vertex of degree k — 1.
Therefore, we must have j = 1. But then B|{xo } U (Y; — {yij, yij«1 }) U {zij~1,0} contains
no vertex of degree k — 1, and this is a contradiction. Similarly, if Z; Z a(K UK"), then
yij+1 together with points of Z; must form one component of a(G — u), say a(K’). But
then we are led to conclude, just as before, that o(K) contains a vertex of degree one and
so K has just one vertex of degree k — 1, whereas a(K) contains no vertex of degree k— 1.
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The only remaining possibility is that a(u) = z;; for some i € d,j € k, [ € k. In this
case, since I's(z51) C {yij, yij+1} U Zy U Py, for some connected component of G — u,
say K', it must be the case that a«(K”) C P;. But this is impossible since Pj; = D and, by
Lemma 5.2, D does not embed G — K. n
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