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THE RAMSEY PROPERTY FOR FAMILIES OF GRAPHS 
WHICH EXCLUDE A GIVEN GRAPH 

V. RÔDL AND N. SAUER 

ABSTRACT. For graphs A, B and a positive integer r, the relation A —• (B)l
r means 

that whenever A is an r-colouring of the vertices of A, then there is an embedding <f> of 
B into A such that A o <j> is constant. A class of graphs J has the Ramsey property if, 
for every B G !F, there is an A € f such that A —> (B)\ • For a given finite graph G, let 
Forb(G) denote the class of all finite graphs which do not embed G. It is known that, if 
G is 2-connected, then Forb(G) has the Ramsey property, and Forb(G) has the Ramsey 
property if and only if Forb(G) also has the Ramsey property. In this paper we show 
that if neither G nor its complement G is 2-connected, then either (i) G has a cut point 
adjacent to every other vertex, or (ii) G has a cut point adjacent to every other vertex 
except one. We show that Forb(G) has the Ramsey property if G is a path of length 2 
or 3, but that Forb(G) does not have the Ramsey property if (i) holds and G is not the 
path of length 2. 

1. Introduction. We only consider finite, undirected, simple graphs, Kn denotes 
the complete graph on n vertices. If A is a graph and X is a subset of the set of vertices 
V(A), we denote by A\X the induced subgraph on X, also we write A — X instead of 
A\ ( V(A) — X). For any vertex x of A we denote by TA(x) the subgraph A\ {y : {JC, v} an 
edge of A}. As usual Â denotes the complement of the graph A. A graph is connected if 
any two vertices may be joined by a path. The graph A is ̂ -connected if A—X is connected 
for any set X Ç V(A) with |X| < k. If A is not a complete graph, the connectivity of A 
is the largest integer k such that A is ^-connected. If A is connected, a cutpoint of A is a 
vertex u such that A — u is not connected. For graphs A, B, an embedding of A in B is 
a map <f>: V(A) —• V(B) such that Va, a' G V(A), {a, a'} is an edge of A if and only if 
{4>(a), <j>(a')} is an edge of B\ in other words if A is isomorphic to some induced subgraph 
of B. 

For graphs A, B and a positive integer r, the relation A —> {B)\ means that whenever 
A is an r-colouring of the vertices of A, then there is an embedding <j> of B into A such 
that À o (j) is constant. A class of graphs J has the Ramsey property if, for every B G ^F, 
there is an A G IT such that A —> (#)£. It is easily seen that if F̂ is Ramsey, then it has 
the seemingly stronger property that, for any positive integer r, for every B G ^F, there 
is an A G J such that A —• (B)\. It also follows immediately from the definition that J 
is Ramsey if and only if the class J — \A : A G jF} of complementary graphs is also 
Ramsey. For a set of graphs L we denote by Forb(X) the family of all graphs A which 
do not embed any member L G L. In particular, if X = {G} we write Forb(G) instead 
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RAMSEY PROPERTY 1051 

of Forb(X). It is known [2] (see Theorem 1.2 below) that, if G is a 2-connected graph, 
then the class of graphs Forb(G) is Ramsey. 

A hypergraph 9i is a pair (V,£), where V = W{H) is the set of vertices, and E = 
E{0f) Ç p(V) is the set of edges of 0~C. H is r-uniform \f\e\ = r for every e G E. A 
circuit of length n in Of is a finite sequence of distinct vertices jq , . . . , xn such that there 
are distinct hyperedges e\,...9en such that JC,-, Jt/+i Ç ef-, where jcn+i = JCI . In particular, if 
two hyperedges intersect in two or more points, they form a circuit of length 2. The girth 
of Of is the length of the smallest circuit in Of. A subset X Ç V(0f) is independent if 
it contains no hyperedge of Of. The chromatic number of #" is the least cardinal k such 
that V(0f) is a union of k independent subsets. 

We shall make frequent use of the following theorem of Erdôs & Hajnal [1]. 

THEOREM 1.1 ( [ 1 ] ). For any positive integers r, k} I there is an r-uniform hypergraph 
Of of girth I with no independent set of size \ \ V(Of)\ (and so has chromatic number > k). 

To illustrate how Theorem 1.1 is used in the present context, we begin by reproving 
the fact mentioned above. 

THEOREM 1.2 [2]. If Lis a finite set of 2-connected graphs, then Forb(L) is Ramsey. 

PROOF. Let B G Forb L, and let Oi be a \B\ -uniform hypergraph of chromatic num­
ber 3 and girth g, where g > 3 and g exceeds the number of vertices of every L G L. 
Consider the graph A on V(0f) in which an isomorphic copy of B is placed in each hy­
peredge of Of', note that two distinct hyperedges meet in only one point, so that A can 
be constructed in this way. Obviously A —» (B)\ since 9i is 3-chromatic. We need only 
check that A G Forb L. Suppose for a contradiction that A embeds some L£ L. Since B 
does not embed L and L is 2-connected, A must contain vertices which form a circuit in 
H. But this contradicts the fact that g exceeds the number of vertices of L. m 

The question arises whether there is an graph G such that Forb(G) is not Ramsey? 

2. Graphs such that G and G are not 2-connected. To answer the question stated 
at the end of the last section, we need only consider those graphs G such that neither 
G nor its complement G is 2-connected. In this section we give a description of such 
graphs. 

Denote by M the class of those graphs G with the property that there is a cut point 
u G V(G) which is joined by an edge to every other vertex. Also, denote by 3£ m e c l a s s 

of graphs G such that there is a cut point u G V(G) which is joined by an edge to every 
other vertex except one. For example, ?2 G M and P3 G K, where Pn denotes the path 
of length of n. 

We say that the graph G is n-partite if there is a partition of V(G) into n disjoint non­
empty sets At (1 < i < n) such that {JC, y} is an edge of G whenever x,y belong to 
different A/'s. 
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1052 V. RODL AND N. SAUER 

LEMMA 2.1. If Gis disconnected, then either G G 9rf.orG has connectivity k > 1. 

PROOF. Since G is disconnected, G is n-partite for some n > 2. Therefore G is 
connected and has connectivity k > l.lfk= 1, then there is a cut point w. Therefore, 
G — w is disconnected and its complement G — u~ G — «is connected. It follows that 
{w} is a component of G, and hence G G #f. • 

THEOREM 2.2. If neither G nor G is 2-connected, then G G 9rf' U M' U 3C U f£. 

PROOF. By Lemma 2.1 we can assume that G and G are both connected and have 
connectivity 1. Let M be a cutpoint of G and v a cutpoint of G. Then u ^ v since G — v 
is connected and G — u is not, and by Lemma 2.1 either G — u G fAf or G — M has 
connectivity k>2. 

Suppose that G — u £ 9rf. Then there is a vertex w joined in G to all other points of 
G—{w, w}, and G— {w, w} is disconnected. Since G is connected, it follows that {w, w} is 
an edge of G. If M is joined to every other vertex by an edge of G, then G G fW. Suppose 
that u is not joined to all other points in G. If w — v, then G G ^C, and so G G ^ \ On the 
other hand, if w ^ v, then G — v has the two components {u} and G — {w, v}. Therefore, 
u is joined to every vertex in G — v, and since {w, v} is not an edge of G, it follows that 
G G 3 C 

Suppose then that G — u is 2-connected. Then G — {w, v} is connected, and so the 
components of G — v are {u} and G — {«, v}. Therefore, « is joined to all points of 
G — {w, v} by edges of G. But {«, v} is not an edge of G since G is connected. Since u is 
a cut point of G it follows that G G ^G • 

3. Amalgamation properties. The family of graphs J has the join-embedding 
property if 

(1) VA,£E J 3 C G J (3embeddingS(/>:A->C,^:5^C). 

jF has the amalgamation property if 

(2) VA,Bef,ae V(A), b G V(£) 3C G ^ ( 3 embeddings 

0: A -+ C, ̂ : fl —• C s u c h t h a t <W<0 = V>0))-
If the condition in (2) holds, we say that C amalgamates A and B on a ~ b. Finally, we 
say that J' has the disjoint amalgamation property if <j>9 ijj in (2) can be chosen so that, 
in addition, 

</>(V(A - a)) H i/j(V(B ~ b)) = 0. 

and, in this case we say that C disjointly amalgamates A and B on a ^ b. 

LEMMA 3.1. For any graph G, Forb(G) has the join-embedding property. 

PROOF. Let A,B e Forb(G). We can assume that V(A) and V(B) are disjoint. If G 
is connected, then the disjoint sum A 0 B G Forb(G). If G is disconnected Â 0 B G 
Forb(G). • 

For the next theorem we need the following known fact which follows easily by in­
duction on k\ If the outdegrees in a directed graph (D are at most k, then the chromatic 
number of D is at most 3k. 
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THEOREM 3.2. If y is Ramsey and has the join-embedding property, then 7 has the 
disjoint amalgamation property. 

PROOF. We first show that 7 has the ordinary amalgamation property. Suppose for 
a contradiction that this is false. Then there are A, B G 7, a G V(A), b G V(B) which 
witness this failure. Since 7 has the join-embedding property and is Ramsey, there are 
C,D G 7 such that C —+ (D)\ and D embeds both A and B. Colour a vertex x of C 
blue if there is an embedding </>: Z? —> C such that <f)(b) = x\ otherwise, colour x red. Now 
consider any embedding iji'.D —• C By our choice of D, there are embeddings a: A —* D, 
[3:B—>D. Clearly, t/; (/?(£?)) is blue. If x = ^(oc{a)^ is coloured blue, then there is some 
embedding </>:/?—> C such that x = (f>(b). Since xjj o a is also an embedding of A into C 
with ip(a(a)) = x, this contradicts our assumption that A, 5 cannot be amalgamated on 
a ~ bin any graph C G jF. It follows therefore, that JC = ^(#(0)) is red. This shows that 
every copy of D in C contains both blue and red vertices, and this contradicts the fact 
that C-*{D)\. 

We now show that 7 has the stronger disjoint amalgamation property. As above, we 
assume that this is false and that A,B G 7, a G V(A), b G V(B) witness this, so that 
no C G 7 disjointly amalgamates A and B on a ~ b. Since jF has the amalgamation 
property and is Ramsey, there are C,D G 7 such that C —* (Z))J, where r = 3lfll_1, 
and D amalgamates A and B on a ~ b. Let a: A —» D, (3:B —• D be embeddings 
such that a(tf) = /3(&). For x G V(Q, if there is an embedding I/J:D —• C such that 
V>(<x(a)) = V>(/?(&)) = *, then we choose one such embedding, say if)x, and define Tx — 
^x(/3(B — Z?)); if there is no such \p, we put Tx = 0. Now consider the directed graph 
(D on V(C) in which there is a directed edge from x to y if and only if v G 7^. The 
outdegree of each vertex of (D is at most |2?| — 1, and so the chromatic number is at most 
3 ' 5 ' - 1 . Let A: V(C) —• 3^~l be any vertex colouring of 2) such that no two vertices 
having the same colour are joined in (D. Now let x- D ~y C be any embedding and let 
x = X(/?(&)) = X(<*(#))• Since C does not disjointly amalgamate A and B on a ~ b, 
it follows that there is some y G x ( a ( ^ ~ a)) H ^x(f3(B — fe)). Now v G T̂  and so 
A(JC) ^ A(y). Thus x(^) contains two vertices JC, y with different colours for the colouring 
A. But this contradicts the fact that C —-• (D)*. • 

4. F o r b ^ ) and Forbid) are both Ramsey. The fact that ForbC^) is Ramsey fol­
lows immediately from the fact that G G FortKT^) if and only if G is a disjoint union of 
complete graphs. For, if B G Forb(P2) and B has k components each of size at most /, 
then A —•> (B)\, where A is the graph consisting of 2k — 1 disjoint copies of the complete 
graph K2/_i. The fact that Forb(P3) is Ramsey is not quite so obvious. 

For disjoint subsets U, V of V(G) let [U9V] = {{w, v} : u G U, v G V}. A series-
parallel partition of G is a partition V(G) — U U V into two disjoint, non-empty sets 
U, V such that either [U, V] C E(G) or [U, V] C E(G). The next theorem gives a useful 
characterization of /Vfree graphs. 
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THEOREM 4.1. IfGe Forb(P3) and \V(G)\ > 1, then there is a series-parallel 
partition of G. 

PROOF. The proof is by induction on | V(G)\. Since P3 = P3, we may assume that G 
is connected and that | V(G)\ > 2. Let a G V(G). By the induction hypothesis, V(G-a) = 
f/UV, where U, V are non-empty disjoint sets and either [U, V\ Ç E(G) or [U, V, ] Ç 
E(G). If a is joined to every other vertex of G, then {a} U (V(G) — {a}) is a series-
parallel partition of V(G). Thus we may assume that there are are u G U, v G V such that 
{a, w} £ £(G), {a, v} G £(G). Suppose that [£/, V] Ç E(G). Then, since G is connected, 
there is a path u = JCO, . . . ,xr = a, v which is an induced subgraph of G, and so G 
embeds P3. Therefore, [I/, V] Ç £(G). Let W = {z G V : {a,z} G £(G)}. If W = V 
then [£/ U {a}, V] is a series-parallel partition, so we can assume that W, V — W are both 
non-empty. Suppose there are JC G W and y G V — W such that {JC, v} G £(G). Then «, JC, 
w, v is an induced P3. Therefore, [W,V-W]C E(G), and so [U U (V - WU {a}, W] is 
a series-parallel partition of G. • 

THEOREM 4.2. Forb(P3) is Ramsey 

PROOF. AS before we shall denote by A 0 # the disjoint sum of the graphs A, B. Also, 
we shall denote by A 0 B the graph on A x B in which two vertices (a, &), (a', b') are 
joined by an edge if and only if either (i)b — b' and {a, a'} G E(A), or (n){fc, &'} G £(#). 

We first show that Forb(P3) is closed under the operation 0 . Suppose for a contradic­
tion that A, B are P3-free and that (ao, &O), fai» ̂ I ) , (#2, W» («3, ^3) is an induced path in 
A © 5. If the fr, are all equal, then ao,..., a?, is an induced P3 in A. Similarly, if all the bt 
are distinct, then bo,..., £3 is an induced P3 in #. Hence there are {ij, k} Ç {0,1,2,3} 
such that b( = bj ̂  bk and \k — i\ = l,\k—j\ > 1. Therefore, {&/, ft*} G E(B), and since 
fy = bt, it follows that {ay, Z?7} is joined to {a^ ^ } i n A 0 B ; but this is a contradiction 
since |&— j | > 1. 

Let B G Forbid). We want to show that there is some A G Forbid) such that A —• 
(B)\. If there is such an A we denote one such graph by R(B). Note that if B\,B2 £ 
Forb(P3) and if R(B{), R(B2) both exist, then R(BX) 0 #(£2) —> (#i © B2)\. For consider 
any two-colouring A: v(R(BiJ) x V(/?(£2)) —• 2. For each vertex y of R(B2) let V(y) = 
{(x,y) : JC G V(R(B\))}. Then /?(#i) © #(£2)| V(y) is isomorphic to fl(#i) and so there 
are ey G {0,1} and an embedding <j>y ofB\ into R(B\) such that A(<j>y(x),y) = e^Vjc G 
V{B\ )). Also, there are e G {0,1} and an embedding t/> of B2 into /?(#2)

 s u c n tn a t e^) = 
e(Vy G V(B2)). Now consider the embedding \ of £1 © #2 into fl(#i) © fl(fl2) given by 

\(x,y) = (^(y)W»^(y)). Clearly, A(x(x,y)) - e^) = 6. 
We now show that R(B) exists for all B G Forb(P3) by induction on \B\ = | V(B)\. By 

Theorem 4.1, since P3 = P3, we can assume that B = C 0 D is the disjoint union of 
two non-empty sugraphs. By the induction hypothesis R(Q and R(D) both exist. Clearly, 
F^(D® D)\, where F = R{D) 0 R{D) 0 /?(£>), and by the above, A = R(Q © F —• 
( C 0 ( D 0 D))*. But C © (D 0 D) ^ (C © D) 0 (C © D), and since CQD embeds both 
C and D, it follows that A-*(C® D% i.e. A -+ {B)\. m 

https://doi.org/10.4153/CJM-1992-064-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-064-7


RAMSEY PROPERTY 1055 

5. Graphs G such that Forb(G) is not Ramsey. In the last section we proved that 
Forb(G) is Ramsey for G = P2 or G = P3. The main result, which will be proved in this 
and the next section, is that Forb(G) is not Ramsey if G G M — {Pi}- It is not known if 
the same is true for G G % — {P3}, although Zhu and Sauer [4] have proved this for a 
certain subset of these G's. 

THEOREM 5.1. Forb(G) is not Ramsey ifGeM - {P2}. 

PROOF. Let G G M - {P2}, \ V(G)\ = n. By Lemma 3.1 and Theorem 3.2, in order 
to show that Forb(G) is not Ramsey, it will be enough to construct two graphs A(G), 
B(G) G Forb(G) and two vertices a, b in these graphs such that A(G) and B(G) cannot be 
disjointly amalgamated ona~ b. 

Since G G fW, there is a cutpoint « of G which is adjacent to every other vertex of G. 
Let K be a component of G — u of minimum cardinality and let C = V(G) — (K U {«}). 
For an integer r > 2, let 9^ be a \C\-uniformhypergraph having chromatic number r+ 1 
and girth > 4, and let W — V{9-Ç). For each hyperedge E of i^ , let ipE be a fixed 1 — 1 
map from E onto C. We now define a graph Ar(G) G Forb(G) as follows. The vertex set 
of Ar{G) is W U {JC}, where x $ W. Two distinct vertices v, / of Ar(G) are joined by an 
edge if and only if either (i) JC G {y , /} , or (ii) {y , /} £ £ f° r any £ G £(.?£), or (iii) 
y,y' G £ G .?£ and {V>sO0, V^(/)} € £(G). Thus Ar(G)|£ = G|C for any hyperedge £. 

We need to show that Ar(G) does not embed G. Suppose for a contradiction that a is 
an embedding of G into Ar(G). Assume first that K contains at least two different vertices. 
If a, b belong to different components of G — w, then a{a) and a{b) must belong to the 
same hyperedge E of ^ . It follows that oc(V(G — w)) Ç E. But this is impossible since 
\E\ — IC\ < I V(G —u)\. Let us now assume that V(K) = {v}. Let Tbe a largest induced 
subgraph of C such that f is a connected component of C. Observe that to every vertex 
a G V(T) there is an edge Ea of H which contains both vertices a(v) and a(a). Because 
the girth of H is at least four there is only one such edge Ea for every vertex a G V(T). If 
a, b G V(F) are two vertices for which Ea ^ Eb, then a(a) and a(£) are adjacent in Ar(G) 
because H does not contain a circle of length three. Then a and b are adjacent vertices of 
T. But this means that V(T\ ot(Ea)) is disconnected from v(T\ a(EB)) in f in contradiction 
to t being connected. Hence there is some edge E of H such that V(oc(T)\ U {a(v)} Ç 
E. There is an embedding </>£ from Ar(G) |2i to C. Observe that the complement of the 
graph Ar(G) I ( V(a(TJ) U {a(v)} j is connected. Hence the complement of the graph 

<\>E [Ar(G) I ( V(a(r))u{a(v)} j j is connected. This is in contradiction to the choice of 

T as a largest connected component of C. 
The remainder of the proof splits into several different cases. 

CASE 1: \K\ = 1. In this case we put A(G) = Am(G), where m = 3(n — 1). Also, we 
let B(G) be the graph onm+1 points {xo,... ,xm} in which {xt,Xj} is an edge if and only 
if either |i -j\ = 1 or i = 3rJ = 3s and {f(r)J(s)} G £(G), where/: n - 1 —• V(G -11) 
is a fixed surjection. 
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We have already shown that A(G) G Forb(G). We now verify that B(G) G Forb(G) 
also. Suppose (3 is an embedding of G in B{G). Then f3(u) — x^p for some p since u has 
degree greater than two. But the size of the largest component of B(G)\ [y : {JC3/7, V} G 
Elsie)) \ is max{l, t — 1}, where f is the size of the largest component in G — u. Thus 
there cannot be an embedding unless t — 1. But in this case G — u has no edges, B(G) is 
a path and x^p has degree at most two. 

We now show that if D is any graph in which A(G) and B(G) can be disjointly amal­
gamated on x ~ JCO, where x is the special vertex of A(G) joined to every other vertex, 
then D g Forb(G). Without loss of generality we may assume that V(A(G)), V(B(G)) Ç 
V(D\ x = xo and V(A(G)) n V(B(G)) = {x} and that the identity maps on A(G) and 
B(G) are embeddings in D. If v G V(D) - V(B(G)) is such that {V,JC,-} G £(D) for 
all / < m, then £>|{v} U {x^ : i < n} is an isomorphic copy of G. Therefore, for 
each v G V(D) - V(B(G)), there is a least index i(v) < m such that {V,JC/(V)} ^ £(D). 
Note that i(a) ^ 0 if a G V(A(G) — JC) since x — xo is joined to every other vertex 
of A(G). Consider the vertex colouring of A(G) — x in which a is coloured i(a). Since 
VÇA(G) — JC) = W= V(Hn) and ^ 4 has chromatic number m + 1, there are 1 < / < m 
and some hyperedge E of Hn such that {a,;c/} ^ £"(D) and {a,;c/_i} G E(D) for all 
a € E. But D|£ is isomorphic to G|C. Therefore, D\EU {JC,_I, JC,} is isomorphic to G. • 

Before considering the other cases in detail we give a construction which will be 
useful for these cases. 

For graphs D, Z we say that Z is t-dense in D if, for any subset Y Ç V{D) of cardinality 
I 11 ^ 71 V(Z))|, there is an embedding of Z into D\ Y; this is stronger than the assertion 
thatD—•(Z),1. 

For an integer f > 1 let 51^ be an (n— 1 )-uniformhypergraph with girth > 4 and having 
no independent set of size -t \ V(fW)|. For each hyperedge E of lAf, let <\>E be a surjective 
map from E onto V(G — u). Let Dr be a graph such that V(Dt) = V(Mt) and {a, b} is an 
edge if and only if {a, b} C E for some hyperedge E and {</>£(a), <t>E(b)} G £(G). Since 
fWJ contains no 'large' independent set, it follows that G — u is f-dense in D,. We also 
have the following fact. 

LEMMA 5.2. D = Dt does not embed G - K. 

PROOF. Suppose a is an embedding of G — K in D. Let *E = {E : a(w) G E G 
£(#/ )} . Since fW has girth > 4, it follows that E H Ef = {a(u)} for E ^ £' in £ , 
and whenever {a, 6} G £(G — K) there is some E G *£ such that {a(a), a(Z?)} Ç £. 
Thus a maps each connected component of G — K into a unique E G *£. If B ^ A' is 
a component of G — w of largest size, then there is some E G £ such that a(#) Ç £. 
Thus a(F) U {a(«)} is a subset of some connected component, say A, in D\E. But this is 
impossible since \A\ > \B\ and there is an embedding <\>E of D\E into G — u. m 

CASE 2:G-U HAS JUST TWO COMPONENTS EACH ISOMORPHIC TO K*. Let t = fc +1, 

D — Dt,d — \D\,m = d(k + 1), and let V(D) = {at : / G d}. In this case we define 
the graph B{G) on the set {JC, : / G m} in which {JC,-,Xj} is an edge if and only if either 
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1 < I*' —j\ < k or if / = y mod k + 1 and {ap,aq} G E(Dt\ where/? = [//& + 1] and 
g = [//£ + 1] (and [x] is the integer part of x). Thus, i?(G) embeds k + 1 disjoint copies 
of A . 

Note that, since the hyperedges of Mt interesect in at most one point, for any vertex 
a of A , the graph Tot(a) consists of a number of disjoint copies of K*_i. Therefore, for 
any vertex xt of #(G), the graph TB(G)(xi) does not contain two vertex-disjoint K^'s, and 
so B(G) does not embed G. 

For this case we let A — A(G) be the complete graph K^m*, and x any vertex of A(G). 
We claim that A and B — B(G) cannot be disjointly amalgamated at x ?± XQ in any graph 
J G Forb(G). Assume to the contrary that there is such a graph J. We may assume that 
A, B are induced subgraphs of J with the single common vertex x = XQ. Consider the 
colouring À of A — x which associates to ever vertex a of A — x the set of all xt G V(B) 
adjacent to a in J. Let S Ç V(B) be any subset with the property that there is some JC, G S 
such that i + k < m and 5 H {XJ : i < j < i + k} = 0. Then |A_1(S)| < k. For, if 
I C A - 1 (S) and | T\ = k, then J\(TU {XJ : / < j < i + £}) is isomorphic to G. It follows 
that there is some vertex y G V(A) such that A(v) is not such a set 5. Since XQ G A(y), it 
follows that, for every set of indices I Cm consisting of k consecutive integers, there is 
some i G / such that xt is joined to y in J. Thus | A(v)| > j and so A(v) contains at least 
WiT) — Î > ï+ï v e r t i c e s fr°m o n e °f the /: + 1 disjoint copies of Dt in 5. Since G — u 
is r-dense in Df, it follows that A(y) embeds G — u. This contradicts our assumption that 
/ G Forb(G). • 

6. The remaining cases. In order to complete the proof in the remaining cases we 
will define three graphs B0, B\, #2 (which depend upon G). These three graphs will have 
a common vertex set V and a special vertex x0 G V, and will be increasing in the sense 
that E(Go) Ç E(G\) Ç E(G2). We do not claim that these three graphs all belong to 
Forb(G), but, in each case, at least one of them is a member of Forb(G). We will also 
define a graph A — A(G) G Forb(G) and x G V(A), and show that, for each / G 3, A and 
Bi cannot be disjointly amalgamated on JC ~ xo in any graph J G Forb(G). The theorem, 
of course, follows from this. 

For the remainder of the proof we let t = k2, D = Du d — | V(D)|, where Dt is 
the graph defined in the preceding section after Lemma 5.2. We put A = Ar(G), where 
r — (k + 2)d, and, as before, x is the special vertex of A joined to every other vertex. 

We now proceed to describe the three graphs Bo, B\,Bi. The common vertex set is 
V = {jc0}UFUZ, where Y = {ytj : i G dj G k} <mdZ= {ztji : i G dj G kj G k}. 
Let Yt — {ytj : j G k}, Zy = {ztji : / G k} and Pjt = {zy : 1 G d}. For each 1 G dj G A:, 
/ G A: let (/>,: F/ —> A', a/,: Zy —• K, ty: P;7 —•»• V(D) be surjective maps; assume also that 
0/(Vio) and crtjiztjo) are vertices of A' having minimal degree, and that 0,-(y,-i) is a vertex 
of A' having maximal degree. 

The edges of Z?o are as follows. Two distinct vertices a, b G V are joined by an edge 
of Bo if and only if one of the following conditions is satisfied: 

• {a, b} Ç Yt for some i G d and {0,-(a), &(&)} e £(G). 
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• {a, b} Ç Zij for some / G dj G k and {a//(tf), &ij(b)} G E(G). 
• {a, b} Ç Pfl for some y, / G it and {^-/(a), ̂ ji(b)} G £(D). 
• {a, b} = {jco,y} for some y G F. 
• {a,£} = {yijjZiji} for some / G d,y G &, / G k. 

{a, b} is an edge of B\ if and only if it is an edge of BQ, or 

• {a,b} = {yeo,y/o} f o r s o m e eJ € d (e ¥f)-
Finally, {a, b} is an edge of #2 if and only if it is an edge of B\, or 

• {a, b} — {ytj+i,Zijo} for some / G dj G k (and y + 1 is taken modulo k). 
We now show that, if A is as described at the beginning of this section, and if B — Bt 

for some / G 3, then A and B cannot be disjointly amalgamated on a ~ b in any graph 
J G Forb(G). 

Assume for a contradiction that A, P are induced subgraphs of J G Forb(G) and that 
JC = JCO. For each vertex a G W = V(i^), we shall define a functioned—* {JC}UFU{#}, 

where q $ V = V(7), as follows. Let / G d. If a is not joined to any vertex of F, in 7, 
put/a(/) = JC. Suppose now that a is joined to some vertex y G F,-. If there is somey G /: 
such that {a,yy} G £(7) and a is not joined (in J) to some z G Zy, then put/a(/) = y*/, 
where y is the least index with this property. If, on the other hand, a is joined to some 
z G Zij whenever a is joined to Vy, then put/fl(/) = q. This defines the function fa for 
each a G W. Suppose for some hyperedge E G E(?Ç), we have/a(/) = x for some i G J 
and all a G £. Then 7|2s U {JC} U F/ is isomorphic to G, a contradiction. Similarly, if there 
are a hyperedge E G £(.?£) and i E dj e k such that/a(/) = y,y, then J\E U {y/,-} U Zy 
is an isomorphic copy of G, again a contradiction. Because of this, and because tHr has 
chromatic number greater than r — (k + 2)d, it follows that, for some a G W, / a is the 
function which assumes the constant value q. Therefore, for some y G k and / G fc, a is 
adjacent to at least -̂  of the vertices in Py/. Since 7|Py7 = D and G — w is k2-dense in D, 
it follows that / contains an isomorphic copy of G. 

All that remains is to prove our earlier claim that, if G is not one of the graphs covered 
in Cases 1 & 2, then one of the graphs #, (/ G 3) belongs to Forb(G). 

CASE 3: THE CONNECTED COMPONENTS OF G - u ARE NOT ALL ISOMORPHIC. In 

this case we show B = #0 G Forb(G). Suppose not and that a defines an embedding 
of G into B. Let J be a connected component of C which is not isomorphic to K. Since 
the connected components of r#(jco) are all isomorphic to K, it follows that a(u) ^ JCO. 
The connected components of TB(yij) are Q = {JCO} U (F, D TB(yij)), and Zy. Thus, if 
a(u) = ytj, then G — u has just the two connected components J and K. Moreover, K 
is isomorphic to B\Ztj, and so J is isomorphic to B\Q. It follows that Q has exactly k 
elements, so that y y must be adjacent to every other vertex of Yt in B. Therefore, since 
JCO is also adjacent to every other vertex in Q, it follows that J = B\Q = B\ Yt = K, and 
this is a contradiction. The only remaining possibility is that a(u) — ztji for some i G d, 
j G k, l G k. However, Tsiztji) Q Pji U Zy U {y//}. Since P,/ = D it does not embed 
G — K by Lemma 5.2, and it follows that there is some component L^KofG such that 
a(L) Ç. Pji. Consequently, a(L) Ç Ztj U {y*/}. But, since \L\ > \K\ = k this implies that 
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Ziji is joined to every other vertex of Z# so that L = 3\{Zy - {z^}) U {y^} = J\Ztj = K, 
and this is a contradiction. • 

CASE 4: THE CONNECTED COMPONENTS OF G - M ARE PAIRWISE ISOMORPHIC TO Ky 

K > 1, AND EITHER G - M HAS AT LEAST THREE COMPONENTS OR K HAS NO VERTEX 
OF DEGREE k - 1. We will prove in this case that B = B\ G Forb(G). Suppose for a 
contradiction that a is an embedding of G into B. Suppose a(u) = xo. Since TB(XO) = F, 
it follows that a(K) n S ^ 0, where 5 = {y,o : / G J} . Since B\S is a complete graph, it 
follows that a(L)(lS = 0 for every other component LofG—u. But this is a contradiction 
since the connected components of B\ Y — S have cardinality at most k — 1. 

Suppose that a(u) — v,o for some i G J. The connected components of ^(y/o) are Z/o 
and T = (5 — {v,o}) U {*o} U £/, where (7 is the set of vertices in F, adjacent to y,o- If 
xo $ a(G), then the only possible connected components of a(G — u) are P, Q, R, where 
PCS- {v/o}, Q Ç U and R C Zi0. We must have Q = 0 since |£/| < A:, and so G - M 
has two components each isomorphic to K*, and this was dealt with in Case 2. Similarly, 
if xo G a(G), then G — u must have two connected components each isomorphic to K 
and, moreover, K must contain a vertex joined to every other vertex. 

Suppose that a(u) = y y for some / G d and y G & — {0}. The connected components 
of rfl(yy }) are (F; — {v/,) U {JCO} and Zy. Again we see that xo is in the image of G and 
so K contains a vertex adjacent to every other vertex. 

Finally, if a(u) = Ziji for some / G dj G k,l G /, we use exactly the same argument 
as for the preceding case. 

CASE 5: G - u HAS TWO CONNECTED COMPONENTS EACH ISOMORPHIC TO K, K 

IS NOT A COMPLETE GRAPH AND HAS A VERTEX OF DEGREE k - 1. In this case we 

show that B = B2 G Forb(G). Assume that the two components of G — u are K and 
K\ and that a: G —> B is an embedding. The same argument used in Case 4 shows that 
a(u) 7̂  xo. Suppose a(u) = y,o- Since y® has degree < & — 1 in Z?|F;, we can assume 
it is not adjacent to y^-i and so a(K) and a(K') are subsets either of Z/o U {zIïJt—1,0} or 
of ({;co} U F; U S) — {yio} where, as before, S — {VK) : r G d}. If JC0 ^ <*(G — w), then 
a(G — w) fails to have two components of size k. So we can assume that xo G ot(K) and 
a(K)HS ^ 0, and also that zm € a(A^)- Therefore, yl7 ^ a(G) since it is adjacent ot zm-
Since yl7 is adjacent toy/o, it follows that I a(^)nF, I <P, where/? < fc—1 is the minimum 
degree of a vertex in the graph K. Since # is not a complete graph, a(K) Pi F; ^ 0 and 
so 2?I a(K) contains a vertex of degree < /?, and therefore is not isomorphic to K. 

Suppose a(u) — ytj for some / G dj G k — {0}. In this case a (# U A'7) Ç {JC0} U 
(yi ~ {^y})uz//-u {^V-1,0}. SupposeZ/,- = a(K'). Then 3̂ +1 £ «(ATU £') sincey/j/+i is 
adjacent to Zip. Therefore, we must have a(K) — {xo} U (Yv- — {yij,yij+\ })U {zi,/-i,o}- It 
follows that A' has a vertex of degree one, and hence exactly one vertex of degree k—\. 
Therefore, we must have y = 1. But then Z?| {;to} U (F; — {y^ytj+i})^ {zij-1,0} contains 
no vertex of degree k — 1, and this is a contradiction. Similarly, if Z,y 2 oc(KUKf)9 then 
Vy+i together with points of Zy must form one component of a(G — w), say a{K'). But 
then we are led to conclude, just as before, that a(K) contains a vertex of degree one and 
so K has just one vertex of degree k—1, whereas a(K) contains no vertex of degree k—l. 
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The only remaining possibility is that a(u) — ztji for some / G dj G /c, / G k. In this 
case, since TB(Ziji) Ç {yij,ytj+i} U Zy U Pjl9 for some connected component of G — w, 
say Kf, it must be the case that a(Kf) Ç Pjh But this is impossible since Py = D and, by 
Lemma 5.2, D does not embed G — K. m 
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