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1.1	 Introduction

Significant changes in the physical properties of materials occur as any of a sample’s 
dimensions are reduced from the bulk (>50 μm) to the nanometer scale. An underlying 
reason for this change is the increased influence of the surface, for example, the relative 
contribution of the surface energy to the electrochemical potential.

The electrochemical potential for electrons (also termed the Fermi level) in a solid 
is a thermodynamic measure (containing the electrostatic contribution) of the energy 
required to add or remove an electron from the valence band to the vacuum level.

It has been reported that the changes begin when the surface to volume ratio of 
atoms in the particle approaches 0.5 [1]. If the size of the particle approaches the de 
Broglie wavelength of the electron (the ratio of the Planck constant, h, to the electron’s 
momentum, p), then quantum size effects can occur. The deviation from bulk behavior 
and, in particular, the magnetic characteristics, depend not only on the particle size 
but also on features such as the surface morphology, particle shape, dimensionality, 
and interactions, among others. For example, the shape of ferro/​ferrimagnetic particles 
influences the preferred direction of their magnetization (magnetic anisotropy) and is 
therefore crucial for the development of magnetic recording. More recently, magnetic 
nanoparticles have been used in a range of medical applications, such as drug delivery 
and MRI contrast imaging, as discussed in Chapter  4, Section 4.2 and Chapter 7,  
respectively. Their occurrence in natural phenomena, such as sediments and biological 
organisms, as described in Chapter  8, further enhances their importance. Several 
comprehensive reviews about synthesis, functionalization, and magnetic properties 
of nanoparticles are available [1–​9]. In most cases, the nanoparticles contain transi-
tion metals, and the following discussion will be restricted to this group of materials, 
although nanoparticles containing rare-​earth elements also exhibit a rich variety of mag-
netic phenomena [10, 11].
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1.2	 Fundamental Concepts

1.2.1	 Quantum Mechanical Concepts

The origins of magnetism arise from quantum mechanical effects. Therefore, a brief intro-
duction to concepts and notation of quantum mechanics is required. Based on the real-
ization in the early twentieth century that particles can behave like waves and vice versa, 
the theory of wave mechanics was proposed. Combined with the concept of quantization, 
from the observation that the emission spectra of atoms were composed of spectral lines 
of discrete energies, a quantum mechanical description of the atom was formulated.

To quantify the discrete energy levels of electrons orbiting around a positively 
charged nucleus, Erwin Schrödinger proposed a description of the electrons in the 
atomic orbitals as standing waves, represented by a state or wavefunction ψ. The time-​
independent Schrödinger equation states that

	 H En
ψ ψ= ,	 (1.1)

where H is the Hamiltonian of the system including the kinetic and potential energy 
contributions and En is the energy of the nth electron shell. In this description, the 
Hamiltonian is conceived as an operator, which acts on the wavefunction ψ; for the 
Schrödinger Hamiltonian, stationary states (such as electrons in stable atomic orbitals) 
are the “eigenstates” of the system. This means that if a wavefunction ψ is an eigenstate, 
the result of the operation of H on ψ is simply the same wavefunction ψ multiplied by 
a proportionality constant, which is En. The concept can be extended to time-​dependent 
problems or to slight modifications of the potential energy contribution, which are seen 
as small perturbations to the stationary case above.

For describing quantum states, one can use the bra ψ ψ( ) − ( )ket  notation as 

introduced by Paul Dirac. For example, the bra, ψ ψ= ( )∫ , ,*

V

t dr r  could represent the
 

integral over the volume V of the complex-​conjugated wavefunction ,*ψ r t( ), which is 
dependent on the position r in three-​dimensional (3D) space and time t. Conversely, 

the ket ϕ ϕ= ( )∫ ,
V

t dr r, will be the volume integral over the wavefunction ϕ r, t( ). The
 

overlap expression ψ ϕ|  will give the probability amplitude of the state φ to collapse 
into ψ.

Measurable quantities or observables in a quantum mechanical system are represented 
by operators such as H, and the probabilistic result of a measurement of the observ-
able is known as the expectation value of the corresponding operator. The expect-
ation value of H, when the system is in the state ψ, is defined as  ψ ψ| |H .

Strictly speaking, solving the time-​independent Schrödinger equation yields 
accurate and discrete energy levels solely for a two-​body system, such as an elec-
tron orbiting a proton (the hydrogen model). For three or more body problems, 
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approximations have to be introduced into the potential energy term, reflecting the 
interaction on each particle by the mean field created by all the other particles (the 
crystal field). A very widely used approximation is the Hartree–​Fock method, which 
provides the wavefunction and energies for many body quantum systems.

1.2.2	 Atomic Magnetic Moments

The magnetic properties of materials can be classified in accordance with their response 
to an applied magnetic field. This response will usually change as a function of add-
itional external influences, such as pressure or temperature, and except for very low 
temperatures (< 4 K) it arises from the electronic degrees of freedom (the distribution of 
electrons into the available energy levels of the atom or the band structure of the solid). 
In the simplest case, this response may originate from a single isolated atom giving rise 
to paramagnetism. More complex behavior will arise from atoms coupling in a solid, 
which can exhibit cooperative phenomena, such as ferromagnetism [12]. A classical 
picture of the origin of the magnetic moment can be obtained from Ampère’s law, which 
states that an electric charge in circular motion will generate a magnetic field. In the 
case of each electron orbiting an atom, there are two contributions to the total magnetic 
moment. One contribution comes from the motion of the electron around the atomic 
nucleus, the orbital angular momentum, ℏl, and the other from the electron’s intrinsic 
angular momentum or spin, ℏs. The orbital moment is

	
μ= =e

me
B



2
l l,µ

	 (1.2)

where e is the elementary charge, me is the mass of the electron, ħ is the reduced Planck 
constant, where h = 2πħ, and we introduce the Bohr magneton μB, defined as

	 µB
e

e

m
= = × −

2
9 27 10 24. J/T.	

(1.3)

Equivalently, the Bohr magneton has a value of 5.79 × 10–​5 eV/​T. For comparison, a mag-
netic moment of 1 μB in a field of 5 Tesla has an equivalent temperature T = E/​kB ~ 3.4 K 
(where E is the energy of the system and kB is the Boltzmann constant) and so the statistical 
mechanics of magnetic systems is dominated by thermal energies. The spin moment is

	 μs s Bg= µ s,	 (1.4)

where gs is the electron spin g-​factor (approximately 2.002319 [13]).
In a similar fashion to the spin-​only situation above, we can define the Landé g-​factor 

gJ for the total angular momentum J:

	

g
J J S S L L

J J
g

J J S S L L

J J
J s=

+( ) − +( ) + +( )
+( ) +

+( ) + +( ) − +( )
+

1 1 1

2 1

1 1 1

2 11

1
1 1 1

2 1

( )
≈ +

+( ) + +( ) − +( )
+( ) .

J J S S L L

J J 	

(1.5)
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The first term in Eq. (1.5) represents the orbital contribution and the second term 
arises from the electron spin. If the total orbital angular momentum L = 0, the Landé 
g-​factor is 2, and if the total spin angular momentum S = 0, gJ is 1. Hence the total 
atomic moment is μtotal = μorbital + μspin = μB(𝓁 + 2s).  For multi-​electron atoms, moment 
formation occurs through filling the energy levels of the atom in a manner consistent 
with the Pauli exclusion principle.

The Pauli exclusion principle states that the total quantum mechanical wavefunction 
of two identical fermions (particles with non-​integer spin, such as electrons) must be 
antisymmetric upon exchange of the two fermions. This implies that not all of the 
four quantum numbers can be the same for two electrons in an atom.

The four quantum numbers are as follows:

	1.	 the principal quantum number n (an integer representing the energy level or electron 
shell, alternatively labeled with upper case letters K, L, M, N, O, etc.);

	2.	 the orbital (or azimuthal) quantum number 𝓁 (representing the subshell, with values 
ranging from 0 to n –​1, conventionally labeled with lower case letters s, p, d, f, g, 
etc.);

	3.	 the magnetic quantum number m𝓁 (representing a specific orbital within the subshell, 
and thus the projection of the total orbital angular momentum L along the z-​axis, 
with values ranging from –​ 𝓁 to +𝓁); and

	4.	 the spin quantum number s (representing the projection of the total spin  
angular momentum S along the z-​axis, with values ranging from  –​s to +s). For 
example, the 3d electrons reside in the “d” (𝓁 = 2) subshell of the third (n = 3, or “M”)  
shell.

For electrons orbiting an atom, the Pauli exclusion principle requires that two 
electrons occupying the same atomic orbital must have antiparallel spins.

Except for heavy atoms, the total orbital and spin angular momenta are related by 
Russell–​Saunders coupling [12], governed by ℏL = ℏΣl and ℏS = ℏΣs. The resultant 
L and S then combine to give the total angular momentum J = L + S as in Figure 1.1. 
The z-​components of J, mJ, may take any value from |L-​ S| to |L + S|, each (2J + 1)-​fold 
degenerate, thus producing a multiplet in which the separation of the levels is determined 
by the spin-​orbit coupling λL S⋅ , where λ is the spin-​orbit coupling constant. The values 
of S, L, and J for the lowest energy state are given by Hund’s rules, which are applied 
in the following sequence:
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	1.	 S takes the maximum value permitted by the Pauli exclusion principle. Each 
subshell is given one “spin-​up” electron before pairing it with a “spin-​down” 
electron, starting from the lowest energy subshell (smallest m𝓁 value).

	2.	 L takes the maximum value consistent with this value of S.
	3.	 For a half filled shell J = |L -​ S| and for a shell more than half full J = |L + S|.

Hund’s rules for electrons in d-​orbitals (for which 𝓁=2 and m𝓁 can take the values  
–2, –1, 0, 1, and 2) in doubly ionized Mn2+, Fe2+, Co2+, Ni2+, and Cu2+ (i.e. 3d5, 3d6, 3d7, 
3d8, and 3d9) lead to the following angular momentum and magnetic moments shown 
in Table 1.1.

It can be seen that the experimental effective Bohr magneton numbers (pexp) are closer 
to the spin-​only values (pS). However, the situation becomes more complex when the 
atoms come together to form a solid. Since the 3d electrons are the outermost (valence) 
electrons, they can participate in the bonding. In ionic solids these electrons are perturbed 
by the inhomogeneous electric field Ec produced by neighboring ions (termed the crystal 
field or sometimes the ligand field), which breaks the coupling between L and S so 
that the states are no longer specified by J. Under the influence of the crystal field, the  

Figure 1.1  The relationship between angular momenta S, L and J and the magnetic moment μ as 
well as their projections Jz and μz along the z-​axis.
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(2L + 1) degenerate orbital states in the free atom will be split. If this degeneracy is 
entirely lifted, then in a non-​centrosymmetric field, the orbital angular momenta are 
no longer constant and may average to zero. This is conventionally called quenching 
of the orbital angular momentum (L  =  0). However, in reality, the differences from 
the spin-​only formula for the magnetic moment still arise from omitting the orbital 
angular momentum and spin-​orbit coupling; hence, we can only really speak of partial 
quenching (L ≈ 0). A more detailed description is given in [14, 15].

If the neighboring ions are treated as point charges, which assumes no overlap or 
hybridization of their electron orbitals, then the crystal field (or ligand field) potential 
Vc satisfies Laplace’s equation, ∇ = −∇ =2 0V Ec c . Since the electric field E Vc c= −∇ ,  
this implies that the gradient of the crystal field Ec is constant. Hence, the solutions 

are the Legendre polynomials, and the potential V r A r Yc
l m

l
m l

l
m

l

l l, , ,θ ϕ θ ϕ( ) = ( )∑∑  can be 

expanded in spherical harmonics Yl
ml θ ϕ,( ). The energy-​level scheme and the occupation 

are governed by the symmetry of the crystal field, and the relative scales of the energies 
are given in Table 1.2. Note that the Coulomb interaction between the electrons and the 
atomic nucleus yields energy level spacings of the order of eVs, much larger than avail-
able thermal energies, which allows the total magnetic moment to be thermally stable. 
For an octahedral field, the five m𝓁 states are split into two groups: a doubly degenerate 
eg multiplet and a triply degenerate t2g multiplet, which are separated by the crystal field 
energy Δ, with the latter multiplet being lower in energy, as shown in Figure 1.2. Their 
occupation depends on the relative importance of the energy Δ and spin-​orbit energy 
λ(L·S). If Δ >> λ(L·S), Hund’s rules do not apply, and for Fe2+, the six d-​electrons pair 
up and occupy the t2g states producing S = 0. This represents the low-​spin or strong-​
field configuration. For Δ << λ(L·S), the six electrons occupy the t2g and eg states in 
accordance with Hund’s rules, giving rise to the high-​spin or weak-​field situation.

If the overlap of the 3d wavefunctions between neighboring atoms is significant, 
then the electrons that carry the magnetic moments are delocalized (itinerant) and 
form continuous bands [16]. The magnetic electrons now participate in the conduction 
and their itinerancy can be characterized by the band width W, that is, the electrons 
spend a time t ~ ħ/​W in the atom. Thus, the experimental moment values depend on the 
time constant of the technique used to determine them. The results given in Table 1.3 
were obtained from magnetization, neutron diffraction, and X-​ray magnetic circular 
dichroism (XMCD) measurements and represent time-​averaged values. It is clear that 

Table 1.1  Electronic configurations and effective Bohr magneton numbers pJ (total) and pS (spin-​only) 
for some doubly ionized elements.

S L J gJ p g J JJ J= +( )1 p g S SS S= +( )1 pexp

Mn2+ 5/​2 0 5/​2 2 5.92 5.92 5.9

Fe2+ 2 2 4 1.50 6.7 4.9 5.4

Co2+ 3/​2 3 9/​2 1.33 6.63 3.87 4.8

Ni2+ 1 3 4 1.25 5.59 2.83 3.2

Cu2+ 1/​2 2 5/​2 1.20 3.55 1.73 1.9
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moments arise predominantly from the spin and are non-​integer, a feature explained 
by band theory. For example, the value for Ni is less than the fundamental unit of  
1 μB. Electronic structure calculations have been carried out using different computa-
tional approaches and approximations for the exchange interaction describing coupling 
between spins (see Section 1.2.4.3 (Exchange Interactions)).

1.2.3	 Macroscopic Considerations

In a solid, the periodic arrangement of atoms into a crystal (or lattice) can be described 
by the repetition of a unit cell containing a certain number of atoms (or chemical for-
mula units) and characterized by a set of lattice parameters a, b, and c (for a cubic 
unit cell a = b = c). It is often more convenient to use the concept of reciprocal (or 
momentum) space, which correlates the unit real-​space lattice vectors x, y, z by Fourier 
transformation into their reciprocal space counterparts x' y' z', ,  [17]:

Figure 1.2  The energy levels and associated orbitals of a d electron in an octahedral field split 
into a doubly degenerate eg multiplet (dx

2
-​y

2, d3z
2

-​r
2) and a triply degenerate t2g multiplet  

(dxy, dyz, dzx) separated by the crystal field energy Δ.

Table 1.2  Energy contributions as wavenumbers (spatial frequency of a wave in cycles per unit distance) associated 
with 3d ions, where 1 cm–​1 = 1.23984×10−4 eV. The Coulomb energy provides the ground state, the degeneracy of 
which can be lifted by the crystal field, the spin-​orbit interaction or the Zeeman interaction in the presence of an 
applied magnetic field B = μ0H in vacuum [17].

Coulomb energy Crystal field Spin-​orbit Zeeman

Vc(r, θ, φ) λ(L·S) -​gJμBmJB

10–​40 × 103 cm–​1 10–​20 × 103 cm–​1 100–​800 cm–​1 1 cm–​1

Table 1.3  Theoretical and observed magnetic moments given in μB [18]. The measured X-​ray values are compiled 
from various references given in the reference section.

μS(calc) μL(calc) μS(obs)neutron μL(obs)neutron μS(obs)X-​ray μL(obs)X-​ray

Fe 2.21 0.06 2.13 0.08 2.246 0.051

Co 1.57 0.14 1.52 0.14 1.639 0.078

Ni 0.61 0.07 0.57 0.05 0.647 0.051
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	 x' y z
x y z

y' z x
y z x

z' x y
z x y

=
×

⋅ ×( ) =
×

⋅ ×( ) =
×

⋅ ×( )2 2 2π π π, , .	 (1.6)

The reciprocal space unit cell is called the Brillouin zone; for a simple cubic unit cell 
with a real-​space lattice parameter a, the Brillouin zone is also simple cubic, with a 
reciprocal lattice parameter 2π/​a.

The close proximity of the atoms in the lattice results in significant overlap (hybrid-
ization) of atomic orbitals of the outermost electrons, which will form continuous energy 
bands. The motion of the conduction electrons through the periodic energy landscape 
can be described using an ideal Fermi gas model, that is, a collection of non-​interacting 
fermions. This motion can be described as a Bloch wave (momentum in a crystal). The 
Bloch wave has the form

	 ψ( ) ( ) ,r r k r= ⋅u ei 	 (1.7)

where u(r) is a function with the same periodicity as the crystal and k is the crystal 
wavevector related to the crystal momentum p = ℏk. The components of k = (kx, ky, kz) 
may be related to the real-space lattice vectors by a reciprocal-space transformation as 
shown in Eq. 1.6. Electrons described by Bloch waves behave almost as free particles 
in vacuum, just with a modified or effective mass m*, as long as they reside in para-

bolic bands, that is, the dispersion relation is E
m

( )
*

k
k

=
( )

2

2
.

For a collection of magnetic moments, for example, in a crystal, the macroscopic mag-

netization M is the net magnetic dipole moment per unit volume, defined as M =∑
i

μ,  

where μi is the time averaged atomic magnetic moment located on lattice site i. The 
sum is carried out over all lattice sites in the crystal. The magnetic induction (magnetic 
flux density) B is defined in terms of the torque Τ exerted on a dipole by a magnetic 
field: Τ = μ × B. The units are [N/​Am], which can also be written as [Vs/​m2], where the 
volt-​second is the Weber (Wb) and so the units become Tesla [T]‌. The flux density and 
magnetization are related to the magnetic field H [A/​m] through the equation B = μo(H 

+ M), where μ0 is the vacuum permeability with a value of µ πo
oc

Vs

Am
= = × 





−1
4 10

2
7


.  

For a macroscopic sample, the magnetization is often linearly proportional to the  
applied field strength with the constant of proportionality being the magnetic suscep-
tibility χ, M  =  χH. If the directional dependence becomes important, for example, 
in a single crystal, the full symmetry of the magnetic susceptibility tensor has to 
be considered: M = χB. Without any additional assumptions, the tensor χ is a 3 × 3 
symmetric matrix with nine independent components. In general, the susceptibility 
is a tensor quantity and represents the temporal and spatial variation in M, that is,  
χ = χ(k, ω), where the angular frequency ω and magnitude of the wavevector k are 
given by the reciprocal relations ω = 2π/​t and k = 2π/​r. As will be discussed in Section 
1.4.6, the susceptibility can be related to the neutron scattering function, and hence 
determined by neutron diffraction.

https://doi.org/10.1017/9781139381222.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139381222.002


Magnetism, Magnetic Materials, and Nanoparticles 9

9

1.2.4	 Calculation of Atomic Susceptibilities

The change in the energy of electrons located in an atom in a uniform magnetic field B 
is given by

	

ΔE g
g

E E

e

m
B

B f f
i f

B f i

f i

f

= ⋅ + +
⋅ +

−

+

≠
∑µ ψ ψ

µ ψ ψ

ψ

B L S
B L S

| |
| |

 

 

2

2
2

8
|| |

n
n n fx y∑ +( )ˆ ˆ ,2 2 ψ 	

(1.8)

where Ef is the final state (ψf) energy, Ei is the initial state (ψi) energy, e and m are the 
charge and mass of the electron, respectively, and ˆ , ˆx yn n  are position operators defining 
its spatial coordinates. From this equation, the magnetization and susceptibility can be 
calculated.

1.2.4.1	 Diamagnetism
Based on an atomic application of Lenz’s law, which states that a current loop induced 
by a changing magnetic field produces a magnetic moment, which opposes the applied 
field, a diamagnetic susceptibility is always negative. All materials show a diamagnetic 
response but the weakness of the effect means that it is only measurable in the absence 
of any other magnetic behavior.

For atoms with closed shells, such as He, Ne, and Ar, there is no net spin or orbital 
angular moment following Hund’s rules. Hence, there is no permanent magnetic moment 
located on the atom, and for the ground state ψ0, the expectation values of the orbital and 

spin angular momentum operators ( )ψ ψ0 0 1| |L = +L L  and ( )ψ ψ0 0 1| |S = +S S  

are both zero. The applied magnetic field produces a flux density B, which in turn 
causes a screening current to flow and so the magnetization M is obtained from 

M B
V

E B

B
o( ) = −

∂ ( )
∂

1
 and the susceptibility from χ µ µ

=
∂ ( )

∂
= −

∂ ( )
∂o

o oM B

B V

E B

B

2

2
. The 

Larmor diamagnetic susceptibility is negative and has the form

	
χ µ µ ψ ψLarmor

i
i

N

V

E B

B

N

V

e

m
r= −

∂ ( )
∂

= − ∑0

2
0

2 0

2

0
2

06
ˆ ,

Δ
	

(1.9)

where N is the number of atoms or ions and V the volume. Magnetic susceptibil-
ities are often quoted as molar susceptibilities, based on the magnetization per 
mole rather than per volume. The conversion is made by multiplying the volume 

susceptibility by the factor 
N

N V
A

/( ) , where NA  =  6.02214086  × 1023 is Avogadro’s 

constant. The expectation value ψ ψ0
2

0
i

ir∑  is the square of the most probable 

radius of the outermost electron shell and can only be properly evaluated by a full 
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quantum-​mechanical treatment. However, we can make estimates of the electron 
shell radius by various means. From semi-​classical models of the hydrogen atom, 
the most probable distance between the proton and the electron can be defined as the 
Bohr radius a0 = 0.529 Å. For ions of substances like the alkali halides (e.g. F, Br, 
and Cl) or the solid forms of the noble gases, the mean square ionic radius can be

 

defined as r
Z

r
i

i
2

0
2

0

1= ∑ψ ψ , where Z is the atomic number (the total number of
 

electrons in the atom or ion), and <(r/​a0)2> is of order unity. However, for metals, as 
the electrons are delocalized, a commonly used measure is the free electron radius rs, 
which is the radius of a sphere the volume of which is equal to the volume per con-
duction electron. If the sample of interest has atomic mass A and mass density ρm, 
the number of moles per cubic metre is ρm/​A (if ρm is given in grams per m3). There 
are NA atoms per mole and if each atom contributes Zi conduction electrons, there are 
(NAZiρm)/​A conduction electrons per unit volume (in m3). As each conduction elec-
tron occupies a sphere of volume (4πrs

3)/​3, rs is therefore given by

	
4

3

3

4

3
1

3π
ρ π ρ

r A

N Z
r

A

N Z
s

A i m
s

A i m

= ⇒ =






.	
(1.10)

Examples of diamagnets are (solid) noble gases, simple ionic crystals, such as 
alkali halides, graphite, many good metallic conductors (superconductors are perfect 
diamagnets as they offer no resistance to the formation of current loops), and a number 
of substrate materials, for example, GaAs. To a first approximation, the contributions of 
the various ions add for the halides.

Note that, in general, the magnetic susceptibility of conduction electrons is composed 
of several contributions that are difficult to separate experimentally. For metallic solids, 
there are two different ‘sources of diamagnetism’, namely the filled electronic shells of 
the ions (these give rise to the Larmor diamagnetism, as discussed above) and the dia-
magnetic contribution of the free conduction electrons (which give rise to Landau dia-
magnetism). The angular momentum in a plane perpendicular to the applied magnetic 
field is quantized, giving rise to a set of discrete energy levels. The statistical thermal 
occupation of these Landau levels gives rise to the Landau susceptibility:

	 χ ρ µLandau F BE
m

m
= − ( ) 





2

3
2

2

*
,	 (1.11)

where ρ(EF) is the density of states (DOS) at the Fermi energy EF and the last term 
accounts for the fact that the Bohr magneton is defined for free electrons, rather than 
those in a band. The Fermi energy is the energy difference between the highest and 
lowest occupied single particle states at 0 K, and for a metal, it is the energy diffe-
rence between the Fermi level and the bottom of the conduction band. Except for very 
low temperatures and high magnetic fields, at which the de Haas–​van Alphen effect 
(oscillations of the magnetic moment in a metal with magnetic field) may be observed, 
χLandau is essentially temperature independent.
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1.2.4.2	 Paramagnetism
The metallic elements that are paramagnetic have a weakly temperature-​dependent sus-
ceptibility, but in contrast to diamagnets, it is positive (M increases with H) [22]. In the 
Hartree–​Fock approximation, the susceptibility is given by the occupation of the elec-

tronic states: χ µ
p J B

k

d d

d

g

V

f f

E E
=

−∑ − +

+

2 2
k k k

k k k
, where the sum runs over all wavevectors k and 

considers the effect on the occupation probability f and energy E of a small variation dk. 
At T = 0 K, assuming a parabolic energy momentum relation (as in Section 1.2.3), this 
expression reduces to the Pauli susceptibility:

	 χ µ ρ ρo
p J B

F F
F

g
E E

N

E
= ( ) ( ) = ,

2 2

2

3

2
and 	 (1.12)

which results from the Zeeman splitting, which is a relative shift in the conduction band 
for spin-​up and spin-​down electrons in an applied magnetic field. Since the Fermi level 
must be the same for both subbands, there will be a surplus of electrons in one of them 
and hence a net spin polarization. The variation at finite temperatures depends on the 
details of the DOS at the Fermi energy. At temperature T, the DOS ρ E( ) must now be 

multiplied by the Fermi function:  f E

e
E E

k T
F

B

( ) =
+

−( )
1

1

, which gives the statistical occupa-

tion of the electronic states at energy E. The room temperature paramagnetic suscepti-
bility of some relevant elements is given in Table 1.5.

There is yet another contribution to the paramagnetic susceptibility, which is the 
temperature-​independent Van Vleck paramagnetism. If the ground state of the system, 
ψ0, hybridizes with an excited state, ψe, separated from it in energy by Δ, and Δ k TB , 

then the contribution can be written as χ
ψ µ ψ

VV
e zN

=
ˆ2 0

2

Δ
, where N is the number 

of atoms per unit volume and µ̂z is the magnetic moment operator projected onto the 
z-​axis (the assumed magnetic field direction).

Table 1.4  Diamagnetic susceptibility of some materials around 293 K χdiamag
molar  in (10–​6 cm3 mol–​1) [19, 20, ​21].

Cu Ag Au Si Ge Graphite B SiC SiO2 Al2O3 GaAs GaN

–5.46 –​19.5 –28 –3.12 –11.6 –6.0 –6.7 –12.8 –29.6 –37 –33.15 –34.9

Table 1.5  Observed paramagnetic susceptibility of some transition metals around 293 K χpara
obs  in (10–​4 cm3 mol–​1) [19].

Zr Nb Ru Rh Pd Hf Ta W Pt

1.2 2.08 0.39 1.02 5.4 0.71 1.54 0.53 1.93
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1.2.4.3	 Ferromagnetism and Antiferromagnetism
Susceptibility of Local Moments
A collection of N identical atoms per unit volume with total angular momentum J in 

an applied field B = μ0H has a magnetization M Ng JB xJ B J= ( )µ , where x
g JB

k T
J B

B

=
µ

 is 

the ratio between Zeeman and thermal energies, and BJ(x) the Brillouin function (see  
Eq. (1.14)), which was tabulated for different J values in [23]. In the classical limit, 
J→∞, it approaches the Langevin function used in the analysis of superparamagnets:

	 L x x
x

( ) = −coth ,
1

	 (1.13)

For x  1,

	 coth cothB x x x xJ ( ) =
+ +

− ≅
+J

J

J

J J J

J

J

2 1

2

2 1

2

1

2

1

2

1

3 	 (1.14)

	 ⇒ =
+( )

M
N g J J

k T
BB J

B

µ2 2 1

3
.	 (1.15)

The susceptibility then becomes

	 χ
µ µ

= =
+( )

=
M

H

N g J J

k T
B J

B

0
2 2 1

3

C

T
,	

(1.16)

where C is the Curie constant. Plotting the inverse of χ against temperature yields a straight 
line passing through the origin, with slope C–​1. This allows the effective paramagnetic 

moment µ
µ µeff

B

B

k C

N
=

3

0
2

 to be compared to the theoretical value, µeff Jg J J= +( )1 .

Allowing interaction between the moments leads to a phase transition and a coopera-
tive ground state, the nature of which depends on the details of the interaction. Using 
a mean field approach (first introduced as the Weiss molecular field), the interaction is 
assumed to be an internal field Hint proportional to the magnetization M, where Hint = λM 
and λ is independent of temperature. Above the transition temperature TC the induced 
magnetization is M = χ(H + Hint), and so MT = C(H + λM) and

	 χ
λ

= =
−( )

M

H

C

T C
.	

(1.17)

This is the Curie–​Weiss law (see Figure 1.3). It indicates that a plot of χ–​1 versus T 
will give an intercept at a temperature TC, sometimes referred to as the Weiss constant or 
the paramagnetic Curie temperature. When T = TC = Cλ, the susceptibility χ is singular. 
The value of the mean field constant λ can be obtained from the Curie constant:

	 λ
µ µ

= =
+( )

T

C

k T

Ng J J
C B C

J B

3

10
2 2

.	 (1.18)
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For example, for bulk iron, TC = 1043 K, gJ = 2, and J ~ S = 1 gives λ ~ 589. With 
a saturation magnetization Ms (at 0 K) = 1752 emu·cm–​3 = 22016 G, Hint ~ 13 x 106 G 
(104 G ≡ 1T). Thus, this ‘internal field’ Hint is very much larger than the magnetic field 
produced by neighboring moments, which can be estimated as μB/​a3 ~ 5309 G, where 
a = 0.28 nm is the lattice parameter of iron. From this analysis, it becomes clear that the 
magnetism in materials such as iron cannot arise from a classical picture of interacting 
magnetic dipoles.

Exchange Interactions
Ferromagnets, such as Fe, require an additional phenomenon that causes the magnetic 
moments to align in parallel spontaneously below TC, even in the absence of an applied 
magnetic field. We can explain this behavior by first introducing an exchange integral, 
Jex, related to the charge distributions of two atoms on different lattice sites i and j, each 
with uncompensated spins. The Pauli exclusion principle introduced earlier dictates that 
the charge distribution of a system of two spins depends on whether the spins are par-
allel or antiparallel. Hence, the electrostatic energy of a system depends on the relative 
orientation of the spins. The difference in energy between the two cases defines the 
exchange energy.

The coupling between localized spins, on different lattice sites i and j, which gives 
rise to cooperative phenomena is usually mediated by the ‘Heisenberg’ exchange mech-
anism described by the Hamiltonian:

	
H J J

J i j
Heis

i j
ij
ex

i j ij
ex

ex
 = − =⋅

≠
∑2

0
s s ,

,

,

if and are neighbors

otheerwise





,
	 (1.19)

where Jij
ex is the exchange constant between two spins si and sj. Although originally 

derived for localized moments using the Heitler–​London approximation [17], it is gen-
erally also applied to metallic systems. The exchange interaction can be positive, Jij

ex > 0,   
or negative, Jij

ex < 0, giving rise to parallel (ferromagnetic, FM) or antiparallel   
(antiferromagnetic, AF) alignment of the spins. Ferrimagnetism occurs if two 

χ–1
without
interactions

with
interactions

TCλ

Figure 1.3  The thermal variation of the inverse susceptibility for a system of non-​interacting local 
moments (Curie paramagnet) and for the mean field approximation (Curie–​Weiss paramagnet).
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ferromagnetic sublattices of unequal moments are coupled antiferromagnetically. An 
estimate of the strength of the interactions is given by the transition temperatures, 
known as the Curie temperature TC for ferromagnets, which for Fe, Co, and Ni are 1043, 
1395, and 633 K, respectively, and the Néel temperature TN for antiferromagnets, which 
for Cr and NiO are 311 and 513 K, respectively. Again, these values are considerably 
higher than those predicted on the basis of pure dipole-​dipole interactions, for which the 
Hamiltonian has the form

	
H

r r
dip

ij

i ij j ij

ij

 =
⋅

−
⋅( ) ⋅( )









µ
π
0

3 54
3

μ μ μ μi j r r
,
	

(1.20)

where rij is the separation between magnetic moments μi and μj located at positions ri 
and rj. By using Eq. (1.17), this interaction yields transition temperatures of the order 
of only 1 K.

We can estimate the relation between Jex and TC through the gain in potential energy 
of the magnetic moment μj in the magnetic field Hi produced by the moment μi as

	 E j i i j= − = − 





⋅⋅μ H s sgs B2
1

2
2 2μ λ 	 (1.21)

	 ⇒ =
+

J
k T

nS S
ex B c3

2 1( )
,	 (1.22)

where now n represents solely the number of the nearest neighbors, each connected with 
the central atom j by Jex (for all other atoms Jex =0).

The shortcoming of this model lies in its assumption that the interacting electrons 
are strongly localized to the atoms, so it does not accurately describe ferromagnetism 
in materials such as Fe, Co, and Ni, where the magnetic moment-​carrying electrons 
are delocalized in the conduction band. Predictions of the Curie temperature TC and Jex 
given by Eq. (1.22) above are either of the wrong sign or too small. For those cases, a 
better model was proposed by Edmund Stoner that takes into consideration the band 
structures of the materials.

Here the bands are spontaneously split into two subbands depending on their 
spin-​orientation. The energy dispersion relation is now spin-​dependent and can be 
expressed as

	 E E I
n n

n n↑
↑ ↓

↑ ↓

( ) = ( ) −
−
+

k k0 ,	 (1.23)

	 E E I
n n

n n↓
↑ ↓

↑ ↓

( ) = ( ) +
−
+

k k0 ,	 (1.24)

where E0(k) is the unperturbed band, n↑ and n↓ are the number of spin-​up and spin-​
down electrons, and I the Stoner parameter. The parameter is defined as I = Δ / ​μ, 
where Δ is the difference in energy between the spin-​up and spin-​down bands, and  
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μ the magnetic moment in units of μB per atom. The condition for ferromagnetism, 

that is, the spin polarization P
n n

n n
=

−
+

≠↑ ↓

↑ ↓

0, is then given by the Stoner criterion:

	 I EFρ( ) > 1,	 (1.25)

where ρ
ρ

E
E

N
F

F( ) =
( )
2

 is the density of states per atom per spin orientation at EF. Usually, 

s and p electrons are delocalized, 4f electrons are localized, and 5f and 3d/​4d electrons 
are somewhere in between. In materials with contributions to the magnetic interaction 
from both delocalized and localized electrons (e.g. Gd), the Ruderman–​Kittel–​Kasuya–​
Yosida (RKKY) model is the currently accepted mechanism.

In this model, which accounts for an indirect exchange mechanism, the localized 
moment (e.g. of the Gd 4f electrons), polarizes the electrons in the 6s/​5d hybridized 
conduction band, which then couple to more distant moments. Assuming that gJ = 2, the 
exchange is given by [17]

	
J R

J

E

k R k R k R

k R
RKKY

F

F F F

F

( ) = −
( ) ( ) − ( )

( )
9

8

2 2 2

2
0
2

4

π �cos
,

sin
	

(1.26)

where R is the distance between localized (l) and itinerant electron (i), kF is the 
wavevector at the Fermi energy, and J0 is the exchange integral between localized and 
itinerant electron wavefunctions at zero momentum transfer, that is, q = kl –​ ki = 0. 
From  Eq. (1.26), we see that the exchange oscillates between AF and FM coup-
ling, and the amplitude decreases rapidly with increasing distance (see Chapter  6, 
Section 6.2.1.2).

Indirect exchange interaction can also give rise to helical magnetic order, such as 
in the rare-​earth element Eu, while in insulating compounds, such as NiO and MnO, 
it usually gives rise to antiferromagnetism. Depending upon the crystal structure, 
both cation-​cation and cation-​anion-​cation interactions can occur. For superexchange 
interaction, the wavefunctions of the outermost electrons on the cation admix with 
those on the anion, thus enabling two cations to couple indirectly. For example, in 
NiO, superexchange arising from hybridization between 3d Ni2+ and 2p O2–​ states 
leads to AF order. An extension of the model, double exchange, was proposed to 
account for transport properties in compounds such as the ferrimagnet Fe3O4  
(magnetite) in which the cations have two different valencies, that is, Fe3+ and Fe2+. 
In contrast to superexchange, where the electrons remain in their respective ions, in 
double exchange they can move between the two cations through the intermediate 
anion, giving rise to metallic conductivity.

Magnons
We can also use the mean field approach as introduced in Sections 1.2.1 and 1.2.4.3 
(Susceptibility of Local Moments) to describe the temperature dependence of the satur-
ation magnetization Ms of a ferromagnet below TC. However, this time we need to use the 
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whole expression for the Brillouin function BJ(x) as given in Eq. (1.14), remembering 
that the magnetization is given by M = NgJμBJBJ(x). For J = S =1/​2 and gJ = 2, we 

have M N
B

k T
N

M

k T
s B

B

B
B

B

B

=






=






µ µ µ µ λ
tan h tan h , if we assume the magnetic field B 

to be solely the internal field Hint, which can be solved numerically for 0 ≤ T ≤ Tc. As 
the temperature increases, the magnetization smoothly decreases and vanishes com-
pletely at TC, reminiscent of a second-​order phase transition from a ferromagnetic to a 
paramagnetic state.

The decrease of the saturation magnetization with increasing temperature is driven 
by the thermal excitations (spin waves). In the simplest model, one can picture a one-​
dimensional chain in which all the spins are ferromagnetically aligned, except for one 
spin that has been flipped. As the spin is quantized (up or down), so is the excitation, 
which is termed a magnon. The exchange energy as described by the Heisenberg model 
in Eq. (1.19) to completely reverse a single spin amounts to 8JexS2, which is relatively 
high. The energy of the excitation can be considerably reduced by spatially distributing 
the magnon through a continuous gradual rotation of the magnetic moments of many 
neighboring spins in the chain. This gives the magnon a continuous wavelike character.

In localized antiferromagnets or ferromagnets, which can be approximated by the 
Heisenberg model, magnons propagate through the Brillouin zone with a dispersion rela-
tion (the dependence of the angular frequency ω on the crystal momentum k) given by

	 ω k( ) = −( )≈( )cos4 1 2 2 2J S ka J Sa kex ex 	 (1.27)

for a ferromagnet, where a is the lattice constant and D =  (2JexSa2) is the spin wave 
stiffness constant, and

	 ω k( ) = ≈sin4 4S J ka SJ akex ex 	 (1.28)

for an antiferromagnet. In both cases, the approximation assumes ka « 1, that is, the 
wavelength is large compared to a.

In the Heisenberg model, the transition from the ferromagnetic to paramagnetic phase is 
driven by transverse fluctuations of the moment, with its magnitude remaining fixed. This 
is in contrast to the Stoner model in which the paramagnetic phase is driven by amplitude 
fluctuations, with the moment decreasing as the temperature increases until it vanishes at TC.

1.3	 Magnetization Processes

1.3.1	 Magnetic Anisotropies

In single crystalline ferromagnets, the magnetization depends on the magnitude and 
direction, with respect to the crystallographic axes, of the externally applied magnetic 
field. This gives rise to easy and hard directions of magnetization (the anisotropy being 
greater the lower the crystal symmetry). The origin of this magneto-​crystalline anisot-
ropy is the spin-​orbit interaction. For cubic crystals, for example, body-​centered cubic 
(bcc) Fe, and face-​centered cubic (fcc) Ni, the anisotropy energy density, EK, is usually 

https://doi.org/10.1017/9781139381222.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139381222.002


Magnetism, Magnetic Materials, and Nanoparticles 17

17

expressed in terms of the directional cosines αi, which are the cosines of the angles 
between the magnetization M and the three crystallographic axes x, y, z, namely

	 E K K KK o= + + +( ) + ( ) +1 1
2

2
2

2
2

3
2

3
2

1
2

2 1
2

2
2

3
2α α α α α α α α α higher orrder terms.	 (1.29)

The magneto-​crystalline anisotropy constants Ki can be obtained from magnetization 
measurements using single crystals by making use of the work done in the magnetiza-

tion process 
0

Ms

d∫ ⋅H M , which represents the area between M = Ms and the magnetiza-

tion curve for the crystallographic direction of interest. If the third term is zero, then the 
easy axes are <100> for K1 > 0 (as for Fe) and <111> for K1 < 0 (as for Ni). For uni-
axial systems, for example, hexagonal closed packed (hcp) Co, the expression in polar 
coordinates becomes

	 ,E K K sin K sinK o= + + +1
2

2
4θ θ higher order terms 	 (1.30)

where θ is the angle between the magnetization and the hexagonal axis. If K1 = K2 = 0, 
the magnetization is isotropic. For K1 > 0 and K2 > –​K1, the easy axis of magnetization 
is the hexagonal axis and for K1 > 0 and K2 < –​K1, it is fixed in the basal plane. In all 
cases, K0 is chosen to make EK zero along the easy axis. Some measured values of the 
magneto-​crystalline anisotropy constants for Fe, Co, and Ni are given in Table 1.6.

The values decrease with increasing temperature, vanishing at TC. The variation is 
predicted [24] to be

	
K T

K

M T

M
1

1 0 0

( )
( ) =

( )
( )









 ,

δ

	
(1.31)

where δ = 3 or 10 for uniaxial and cubic ferromagnets, respectively.
Nanoparticles or films in the ultrathin limit of a few nms are usually assumed to have 

a uniaxial crystalline anisotropy given by

	 E K VB u= sin .2 θ 	 (1.32)

This has minima at θ = 0 and π that are separated by an energy barrier EB of height 
KuV, as shown in Figure  1.4. However, other types of anisotropy may dominate. 
Classically, the magnetization must overcome this energy barrier to reverse, although 
the possibility of quantum mechanical tunneling has also been considered [25]. When 
a ferromagnet or ferrimagnet is placed in a magnetic field, magnetic poles of opposite 

Table 1.6  Magneto-​crystalline anisotropy constants.

K1 × 104Jm–​3 K2 × 104Jm–​3

Fe (4.2K) 4.8 ± 0.5

Ni (4.2K) −0.50 −0.20

Co (300K) 45.0 15.0
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signs are induced at the ends of the specimen and a demagnetizing field is established 
that opposes the direction of the externally applied field. The demagnetizing field is 
responsible for the magnetostatic energy, which depends on the direction of the magnet-
ization and the shape of the specimen, which is why it is also termed the shape anisot-
ropy. For a prolate spheroid with the semi-​major axis c and the semi-​minor axes a = b, 
the magnetostatic energy is given by

	 E M V N N sinshape o s a c= −( ) ,
1

2
2 2µ θ 	 (1.33)

where Na and Nc are demagnetization factors in the a and c directions, and θ is the angle 
between the magnetization and the c axis. For spheres, Na = Nc and Eshape = 0, but for 
non-​spherical particles, Eshape can be significantly larger than the magneto-​crystalline 
anisotropy.

In addition, magneto-​elastic anisotropy occurs when strains in the specimen give 
rise to a non-​uniform structure. The strains may arise during fabrication via defects 
or dislocations, epitaxial growth on a substrate with a different lattice constant, or can 
be purposely externally applied, for example, with a pressure cell. The magnetization 
process gives rise to magnetostriction with an associated energy, which for an isotropic 
system is given by

	 E cosstrain s= −
3

2
2λ σ θ,	 (1.34)

in which λs is the saturation magnetostriction, σ is the stress, and θ the angle between 
the magnetization and the strain.

Exchange (bias) anisotropy occurs when a sample containing an interface between 
a ferromagnet and an antiferromagnet is cooled below the antiferromagnet’s Néel 

H
EB

EB

θ θ
0 π/2 π 0 π/2 π

Figure 1.4  A representation of the energy of a uniaxial magnetic nanoparticle as a function of the 
direction of the magnetization. The height of the barrier EB characterizing the thermally induced 
magnetization reversal is given by KV, where K is the magnetic anisotropy constant and V the 
particle volume. Changes in the energy landscape in the (a) absence and (b) presence of an 
applied external magnetic field are indicated schematically.
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temperature TN, where the TC of the ferromagnet is significantly higher than TN. This was 
originally observed in ferromagnetic Co particles covered by a shell of AF CoO [26]. 
When the cooling takes place in a magnetic field, an exchange bias occurs, in which 
the magnetization versus applied field curve (M-​H loop or hysteresis loop) is displaced 
along the field axis in the direction that opposes the applied field. An increased coer-
civity (or coercive field, the applied field required to reduce the total magnetization to 
zero) is also observed after cooling, which disappears together with the exchange bias 
as TN is approached.

1.3.2	 Magnetic Domains

The magnetization process of a ferromagnet is shown in Figure 1.5. In the virgin 
state and in the absence of an applied field, the macroscopic magnetization is gener-
ally significantly less than maximum saturation owing to the presence of domains. 
Within each domain, the magnetization is saturated, but its direction in neighboring 
domains is different. The domain structure [27] can be imaged using Bitter patterns, 
optically using Faraday or Kerr rotation, XMCD photoemission electron micros-
copy (PEEM) [28, 29] or, more recently, magnetic force microscopy (MFM) [30, 
31]. Similarly, upon cooling below the Néel temperature, AF domains emerge. AF 
domains have been extensively studied using neutron diffraction [32], X-​ray and 
neutron diffraction topography [33], and X-​ray magnetic linear dichroism (XMLD) 
PEEM [34].

From neutron scattering, it is known that upon entering an ordered magnetic phase, 
additional diffraction peaks emerge that are not present in the paramagnetic phase, such 
as the (½,½,½) peak of NiO presented in Figure  1.6. The reason for this is that the 
magnetic lattice has a lower symmetry than the crystal lattice (which can represent the 
pure paramagnetic phase), adding a new degree of freedom to the system to lower its 
total magnetostatic energy by breaking up the magnetic phase into domains. In terms of 

HC HK

M M M

MR
MS

H

Figure 1.5  The magnetization M as a function of field H for a (a) superparamagnet, (b) soft 
ferromagnet, and (c) hard ferromagnet. Hc, HK, MR, and Ms are the coercive field, the anisotropy 
field, the remanence and the saturation magnetization, respectively.
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symmetry groups, if the order of the paramagnetic group is p and that of the magnetic 
group is m, then the number of different domains will be p/​m.

Magnetic domains can be classified into the following groups depending on the sym-
metry lost upon magnetic ordering:

	1.	 configuration domains –​ translational symmetry;
	2.	 180° domains –​ time inversion symmetry;
	3.	 orientation domains –​ rotational symmetry; and
	4.	 chirality domains –​ centrosymmetry.

Configuration domains occur whenever the propagation vector τ in reciprocal space 
describing the magnetic structure is not transformed into itself or itself plus a recip-
rocal lattice vector by all the symmetry operators of the paramagnetic group. The 
presence of 180° domains in a crystal implies that τ = 0 and the directions of the mag-
netic moments in one domain are reversed with respect to corresponding moments in 
the other and hence, the perpendicular magnetization is reversed. Orientation domains 
occur when the magnetic space group is not congruent with the group describing the 
configurational symmetry, that is, the magnetic configuration from one domain into 
another cannot be transformed through rotation. If the paramagnetic space group is 
centro-​symmetric, for example, bcc, but the magnetic structure is not, then chirality 
domains can occur [35].

1.3.2.1	 Domain Walls
The transition region between neighboring domains is known as a domain wall, over 
which the magnetization continuously changes from its value in one domain to that in the 
other. Similar to the spin wave argument (Section 1.2.4.3 (Magnons)), the entire rotation 
of the magnetization between domains takes place gradually over many atomic planes, 
as the exchange energy is lower when the change is distributed over many spins. For a 
Bloch wall, the magnetization rotates out of the plane defined by the magnetizations of 

Figure 1.6  The nuclear (2 2 0) peak at 550 K and the AF magnetic (½½½) peak at 5 K with 
Gaussian fits convoluted with the instrument resolution function used to determine the particle 
and magnetic sizes.
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the two domains (Figure 1.7) and is thus most common in ferromagnetic bulk samples 
or thick films.

The width δdw of the wall separating neighboring 180° (π) domains is governed by 
contributions from both the exchange interaction Jex and the magnetic anisotropy K, which 
prevents the domain wall from extending over the whole sample, and is given by [11]:

	 δ π πdw

exA

K

NJ S

Ka
= 





= 





1
2 2

1
2

,	 (1.35)

where a is the length of the side of the unit cell and A is the exchange stiffness constant 
given by

	 A
NJ S

a

ex

=
2

,	 (1.36)

where N is the number of atoms per unit cell. For bcc Fe, Jex = 2.16 × 10–​21 J, S = 1, 
a = 2.9 × 10–​10 m and N = 2, so that A = 1.49 × 10–​11 Jm–​1. Measured values of A for Co, 
Ni, and Fe as determined by spin-​wave resonance [17] are shown in Table 1.7. Typically, 
δdw is of the order 30 nm in Fe at room temperature (around 100 unit cells). The energy 
stored in the domain wall is given by

	 E AK
NJ S K

a
dw

ex

= ( ) = 





2 2
1

2
2

1
2

π π .	 (1.37)

Under the application of a magnetic field, the volumes of domains whose directions 
are closest to that of the field reversibly increase. Owing to crystal imperfections, this 
growth becomes irreversible at higher fields with the magnetization finally rotating into 
the field direction. The overall process gives rise to hysteresis, as shown in Figure 1.5. 
The ratio of the remanence MR (the remanent magnetization after saturation in the 

Figure 1.7  Schematic depicting (a) a Néel and (b) a Bloch domain wall within the box.
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absence of any applied field) over the saturation magnetization Ms is often used to indi-
cate the ‘squareness’ of the hysteresis when assessing materials and optimizing their 
hysteresis for particular technical applications. For example, permanent magnets require 
a high coercive field Hc and remanence MR, whereas transformers need a narrow hyster-
esis to reduce energy loss MdH

∫  (the area enclosed by the hysteresis loop) as afforded 
by the high relative permeability μr in soft ferromagnets. Note that the relation between 
B and H in vacuum is thus modified to B = μrμ0H in a medium.

As the magnetic configuration is governed by exchange on the short scale and dipolar 
energy at a larger scale, the competition between these energies results in a characteristic 
distance below which exchange dominates and above which magnetostatic interactions 
dominate. This very important distance is the length scale over which the perturbation 
due to the switching of a single spin decays in a soft magnetic material, and is termed 
the ferromagnetic exchange length [36]:

	 L
A

M
ex

o s

=
µ 2

,	 (1.38)

which represents the ratio between the square roots of the exchange energy and the 
magnetostatic energy, and is typically 3  nm in Fe-​ and Co-​based alloys. Whether a 
material is considered magnetically ‘hard’ or ‘soft’ is defined by a dimensionless par-
ameter κ, the ratio of Lex and δdw:

	 κ π
δ µ

= =
L K

M
ex

dw o s
2

.	 (1.39)

For hard magnetic materials, κ approaches unity, whereas it tends to zero for soft 
ferromagnets.

1.3.2.2	 Magnetization Reversal
Magnetization Reversal in Thin Films and Particles
As the dimensions of the specimen are reduced, the energy required to form a domain 
wall becomes greater than the reduction in magnetostatic energy as indicated by Lex. 
As a result, for thin films whose thickness approaches that of the domain wall width, 
a different type of wall, a Néel wall [37], is established in which the magnetization 
rotates within the plane defined by the magnetizations of the two domains (Figure 1.7). 
Eventually, with further reduction in dimensions, a particle will form that consists of a 

Table 1.7  Measured exchange stiffness constants [17].

A × 10–​11 Jm–​1

Fe (295K) 2.5

Ni (295K) 0.75

Co (295K) 1.3

Co (4K) 1.43
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single domain. For a particle with uniaxial anisotropy Ku, the critical radius rc for this 
to occur is [11]:

	 r
E

M
L

AK

M
c

dw

o s
ex

u

o s

= = =
9

2
9

9
2 2µ

πκ
π
µ

.	 (1.40)

Values for the critical diameter dc and domain wall energy Edw of various ferro-​ and 
ferri-​magnetic materials are given in Table 1.8. Depending on the material, the critical 
radius lies in the range 2.5–​500 nm.

The effect of particle size on the coercivity has been investigated by a number of 
groups, as shown in Figure 1.8 [39–​42] and the schematic variation of Hc as d varies [41] 
is shown in Figure 1.9. The increase in Hc as the particle size decreases was predicted 
in the Stoner–​Wohlfarth model to arise from the coherent rotation of the magnetization, 
when domain wall formation is energetically impossible due to the small size of the par-
ticle [43]. However, the observed values of Hc are generally smaller than those predicted 
by the model. This may be accounted for if it is assumed that degrees of freedom other 
than simple rotation are involved, such as fans and swirls. Pure coherent rotation is only 

Co
er
ci
vi
ty
H
c
(A
/c
m
)

Grain Size d

d6

d–1

Figure 1.8  Log10-​log10 plot of the coercivity Hc versus grain size d for several soft magnetic 
systems. ■ permalloy, □ 50NiFe alloys, ○ FeSi6.5 alloys, ● nanocrystalline materials,  
+ amorphous alloys. Adapted from [41].

Table 1.8  Critical diameter dc and domain wall energy for Fe, Co, Ni, γ-​Fe2O3, and Fe3O4 [1, 38].

dc [nm] Edw [mJ/​m2]

Fe 14 3

Co 70 8

Ni 55 1

γ-​Fe2O3 166

Fe3O4 128
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possible in homogeneous magnetic particles with zero surface anisotropy. For multi-​
domain particles, the rotation can be associated with domain boundary movement. 
However, this mechanism becomes less important as the particle size decreases and 
a single-​domain is formed. Thus, Hc increases as d becomes smaller down to dc. For 
single-​domain particles the role of thermal fluctuations becomes important and so Hc 
decreases for d less than dc.

Magnetization Dynamics
The decay rate of the remanent magnetization MR is an important parameter. For example, 
it indicates the stability of data stored in magnetic recording. In a simple experiment a 
sample of non-​interacting particles is cooled in a magnetic field which is then abruptly 
switched off at a particular temperature T. The thermoremanent (TRM) magnetization 
M(T) is then measured as a function of time with the approach to equilibrium given by:

	 M t M exp
t

R
N

( ) = −






,
τ 	 (1.41)

with τN , the “Néel” relaxation time, being given by the Néel–​Brown equation [44, 45]:
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
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,0 0 	 (1.42)

where the anisotropy energy density K = HcMs / ​2 and EB = KVa represent the energy bar-
rier height for magnetization reversal, which depend on the activation volume Va. For a 
single domain particle, Va is the entire volume of the particle; for a domain wall, Va is 
the volume swept by a single jump between two pinning centers. Often the quantity τ0 
is given as a constant, usually taken to lie between 10–​9 and 10–​11s, but its value, as Néel 
has shown, depends very strongly on the ratio between V and T [44]:

	
τ

λ
π

0 2

1

3 2
=

+
,

me

c s s

B

eH G DM

Gk T

V 	 (1.43)

Single-domain Multi-domain

dc d

Hc

super-
para-
magnetic

blocked

Figure 1.9  The qualitative dependence of the coercivity Hc on the particle diameter d, indicating 
blocked and superparamagnetic regions below the critical diameter dc.
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where me is the mass of an electron, e is the electron charge, G is the modulus of rigidity, 
λs is the saturation magnetostriction constant averaged over three crystallographic axes, 
and D is a numerical coefficient that considers the shape of the particles (for a sphere, 
4π/​5). The process is characterized by thermal activation over energy barriers, and for 
real systems, the barrier heights and widths vary because of the particle size distribution. 
For a rectangular barrier distribution (all particles capable of activation are identical, 
with the same activation energies) a logarithmic dependence of the relaxation of M with 
t is observed [46]:

	 M t M S ln tR m( ) = − ( ),	 (1.44)

where Sm is the magnetic viscosity:

	 S
k TM

V K
f H Tm

B s

a

= ( , ),	 (1.45)

and where f(H,T) is a function determined by the precise nature of the magnetization 
process. Experimentally, Sm can be determined as the slope of the plot of M(t) versus 
log10(t). In general, f(H,T) has maxima at the coercive field Hc and at the Curie tempera-
ture Tc (the Hopkinson effect).

An alternative method of investigating the validity of the Néel–​Brown equation 
(Eq. (1.42)) is to measure the mean switching field (or coercive field) Hsw at different 
temperatures and magnetic field sweep rates (ν  =  dH/​dt). The variation of Hsw is 
predicted to be [47]:
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(1.46)

where Hsw
0  is the switching field at 0 K, EB is the energy barrier as given in  

Eq. (1.42), c
k H

E
B sw

B

=
0

0τ κ
, and the reduced field h

H

Hsw

= −




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. When plotted as Hsw versus 

Tln
cT

hυ κ

κ

−











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1

, the data has been found to scale for 65 nm diameter Ni nanowires with
 

the exponent κ = 1.5 [48], indicating a reversal via the motion of a rigid domain wall 
[47]; for an ideal single domain particle κ = 2.

The equilibrium magnetic properties in small particles and thin films are generally 
modeled by solving the Landau–​Lifshitz–​Gilbert (LLG) equation (Eq. (1.47)) under 
different boundary conditions. A wide range of software packages, for example, OOMMF 
[49] or mumax3 [50], are available which have enabled parameters, such as the coercive 
field, switching times, interlayer coupling strength, domain wall characteristics, and 
vortex motion to be studied. The LLG is a dynamical model to describe the precessional 
motion of the magnetization with time in the response to an effective field Heff containing 
applied, demagnetizing field, and quantum mechanical corrections, such as anisotropy. 

https://doi.org/10.1017/9781139381222.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139381222.002


Adrian Ionescu, Justin Llandro, and Kurt R. A. Ziebeck26

26

The first term describes the precession and the second, a dissipative (or damping) term, 
which describes the relaxation of the magnetization M(t) as it aligns with Heff:

	
d t

dt
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M
t t

G
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G s
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M H M M H

( )
=

+( ) ( ) ×  −
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γ
α

α γ
α1 12 2
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(1.47)

where γ µ
=

gs B



 is the electron gyromagnetic ratio, the ratio between the magnetic  

dipole moment and angular momentum of the free electron, and αG is the Gilbert 
damping parameter, which depends on the material.

1.3.3	 Magnetization of Nanoparticles

A schematic representation of the magnetization as a function of temperature for 
nanoparticles is shown in Figure 1.10. The precise variation depends on the nature of 
the particles, such as shape, size distribution, interactions, magneto-​crystalline anisot-
ropy constant, and details of the measurement, for example, thermal history or method 
of measurement. It is usual to measure the magnetization in a low field while warming 
from helium temperatures (4.2 K), the sample previously having been cooled either in 
zero field (zero field cooled (ZFC)) or in a small field (field cooled (FC)).

At high temperatures, the two magnetizations coincide, but at low temperatures, a 
bifurcation occurs at the irreversibility temperature Tir when the MZFC curve falls below 
that of MFC. A  maximum occurs in MZFC at a temperature Tmax, which for a sample 
containing a range of particle sizes is related to the average blocking temperature <TB>. 
The blocking temperature TB of a single domain particle is the temperature at which the 
magnetic relaxation time τmag increases to the same order as the duration of the experi-
ment τexp (measurement time) [51]:

T (K)

M
(a
.u
.)

TirTmax

ZFC
FC

Figure 1.10  Schematic of the temperature dependence of the magnetization M for zero field 
cooled (ZFC) and field cooled (FC) measurements for a system of nanoparticles.
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= ( )ln /
.

τ τ 	 (1.48)

Below TB the moments in the ZFC sample are assumed to be frozen in random 
directions (blocked). Then Tir is taken to be TB for the largest particles. At low 
temperatures the coercivity decreases with increasing temperature up to TB where it 
becomes zero. For large particles the temperature dependence of the coercive field 
Hc is given by [36, 51]:

	
H T H

T

T
c c

B

( ) = −






( ) ,0 1

	 (1.49)

where Hc(0) is the coercive field at 0 K. A similar power law is predicted for the field 
dependence of the blocking temperature:
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where δ = 2 in low fields and 2/​3 in high fields, and Hc = 2K/​Ms. The analysis of the 
magnetization is usually carried out using the Langevin equation (Eq. (1.13)), which is 
applicable for particles in thermal equilibrium and for which all directions of the mag-
netization are energetically equivalent. Hence, the magnetic anisotropy is considered 
negligible. For this case, the Langevin function can be rewritten as [52]:
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(1.51)

where M is the mass magnetization, H is the applied field, Np is the number of 
particles per gram, n is the number of Bohr magnetons per particle, and hence, 
Ms = NpnμB. Therefore, fitting this equation estimates the average magnetic moment 
per particle and the number of nanoparticles in the sample. Based on this analysis, 
the reduced magnetization (M/​Ms) at different temperatures should fall on a common 
curve when plotted as a function of H/​T. This relation is often taken as evidence for 
superparamagnetism.

Superparamagnetism appears in ferromagnetic or ferrimagnetic nanoparticles when 
the magnetization is thermally excited and randomly flips its direction. The time 
between two flips is called the Néel relaxation time τN (Eq. (1.42)). If the measure-
ment time is longer than τN, the particles’ magnetization seems to be zero, on average, 
in the absence of an applied field. The magnetization with applied field mimics that 
of a paramagnet; however, a superparamagnet saturates at much lower fields. In this 
picture, a nanoparticle’s magnetization acts as a macroscopic moment or macrospin.
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The magnetic moment, μ  =  mμB, obtained from this analysis is associated with a 
large cluster of atoms and so can reach ~104 μB. The large moments produce dipole 

interactions with a dipole-​dipole energy E
d

dip
o=

µ µ
π

2

34
, where d is the distance between 

neighboring dipoles, giving potential transition temperatures T
E

k
tr

dip

B

≈  ~ 30 K or even 

higher for concentrated systems [53]. Depending on the nature of the media in which 
the particles are suspended, or the proximity of particles, exchange coupling may also 
occur. Furthermore, the large moments and low transition temperatures mean that μμ0H 
is of the order of kBT at room temperature, and so the magnetization can approach satur-
ation in normal laboratory fields, in contrast to a paramagnet.

For very small clusters of atoms, the influence of particle size, number of atoms 
and coordination number on the magnitude of the Fe, Co, and Ni moments has been 
investigated in a Stern–​Gerlach type experiment [54]. The results are presented in 
Figure 1.11. The magnetic moments of the three elements depend on the number of 
atoms per cluster N. For small N, the observed moments approach the atomic values, 
whereas for high N, the bulk values are observed. For very small Fe clusters containing 
12 atoms, a magnetic moment per atom of 5.4±0.4 μB has been reported, reducing  
to ~3 μB for a 13 atom cluster [55]. It has been noted that the per-​atom moments of such 
small Fe clusters are substantially higher than the spin-​only value of 3 μB, indicating that 
orbital angular momentum is not completely quenched in these cases. As the particle 
size becomes smaller, the band width is reduced and the 3d electrons spend more time at 
a particular atom and adopt a more localized character. Electronic structure calculations 
show that both the atomic structure and nearest neighbor interactions are of paramount 
importance in such systems.

Although the surface anisotropy becomes increasingly important as the particle size 
decreases, for a qualitative description of the magnetization, only a uniaxial component 
will be considered as described in Eq. (1.32). On cooling below TB in the absence of an 
applied field, the zero-​field cooled magnetization MZFC of nanoparticles with uniaxial 
anisotropy Ku will be fixed along the easy axis of magnetization (θ = 0 or π). Hence, the 
macroscopic magnetization is zero, assuming all magnetic moments of the particles are 
blocked in random directions. If a magnetic field H is applied at angle φ to the easy axis, 
then for (θ–​ϕ) < π/​2, the moments will rotate to a minimum energy given by:

	 E K V M HVu sθ θ θ ϕ( ) = + −( )sin cos2 	 (1.52)

to produce a small magnetization M. However, the moments for which (θ–​ϕ)>π/​2 need 
to overcome the potential barrier KuV in order to reach the equilibrium direction. The 
system is then in a metastable state, with an essentially temperature independent mag-

netization M
M H

K
s

u

≈
2

0

3

µ
, which was derived initially by Stoner and Wohlfarth [56]. If 

the applied field H is lower than the switching field Hsw, that is, Hc, the minima in 
E(θ) occur at different levels separated by barriers with varying heights that are propor-
tional to TB, as shown in Figure 1.4(b). Hence, when H is larger than Hsw, it enables the 
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magnetization to rotate irreversibly. The particle anisotropy can be determined by meas-
uring Hsw as a function of ϕ, which mathematically represents an astroid [57]:

	

H
H

sin

sw
K=

+



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2

3

2

3

3

2

ϕ ϕcos

,

	

(1.53)

where HK = 2Ku/​Ms is the anisotropy field (see Figure 1.5), the field at which the gra-
dient of the hysteresis loop changes (for fields applied along the magnetic easy axis, 
HK = Hc).

Figure 1.11  The average magnetic moment <μ> per atom in μB for Ni and Co clusters at 78 K 
and Fe clusters at 120 K as a function of the number of atoms N in the cluster as the bulk value 
is approached. Adapted from [54].
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On warming above TB, a stable superparamagnetic state is attained with a magnetiza-

tion M T
M HV

k T
s

B

( ) ≈
2

0

3

µ
, as approximated by a series expansion of the Langevin function 

(Eq. (1.51)) and setting mμB = MsV. The same formula applies to the field cooled meas-
urement above TB; however, below TB, the magnetization does not change over the 
period of measurement, and so it is essentially constant. A detailed description on fitting 
ZFC/​FC nanoparticle magnetization curves assuming a log-​normal size distribution was 
given by Hansen and Mørup [58].

The thermal fluctuations of non-​interacting nanoparticle moments with uniaxial anisot-
ropy were first described by Néel and later extended by Brown, the relaxation time being 
given by an Arrhenius law (Eq. (1.42)). For small particles, KuV can be comparable to 
thermal energies, enabling the magnetization to fluctuate between the two minima with 
opposite magnetization directions. This phenomenon is known as superparamagnetic 
relaxation and is a limiting factor for the use of nanoparticles in magnetic recording. The 
results obtained for the relaxation depend sensitively on the experimental technique used. 
If the measurement time τexp of the experimental technique is long compared to the relax-
ation time τmag characterizing the magnetic fluctuations, then a time average is obtained 
(as in paramagnetic measurements). If τexp is short compared to τmag, then an instantan-
eous measurement is obtained. At low temperatures KuV >> kBT, thermal equilibrium 
occurs only after a long time. The relaxation also depends on the particle size, which 
gives rise to different anisotropy and hence, barrier heights. If KuV << kBT, the relaxation 
time becomes very short and there is no magnetic hysteresis as the ensemble will behave 
like a paramagnet composed of misaligned ferromagnetic particles.

For nanoparticles in suspension (colloids or ferrofluids), in addition to the Néel relax-
ation mechanism, that is, the rotation of the magnetization within the particle, the par-
ticle can physically rotate to align its magnetization to the applied field. This is termed 
Brownian relaxation, with a characteristic time τB [52]:

	 τ η
B

B

V

k T
=

3
,	 (1.54)

where η is the viscosity of the medium. In the presence of both mechanisms, the attempt 
frequency ω0 to reverse the magnetization will be given by:

	
ω

τ τ τ0

1 1 1
= = + ,

mag B N
	

(1.55)

The relaxation has been investigated in a wide range of samples using techniques with 
different intrinsic time characteristics.

1.4	 Magnetic Measurements

1.4.1	 Magnetometers

Various types of magnetometers are currently used [22] to determine the magnetiza-
tion as a function of applied field and temperature. Those that make use of the force or 
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induction techniques are usually calibrated using a standard sample of known magnet-
ization or susceptibility (see Tables 1.4 and 1.5). An advantage of instruments based on 
the superconducting quantum interference device (SQUID) is that the measured flux is 
quantized in units of the magnetic flux quantum (h/​2e) enabling the absolute magnet-
ization to be determined directly. The magnetization in thin films is often studied using 
magneto-​optical techniques, such as the magneto-​optical Kerr effect (MOKE), which 
has the advantage of permitting in situ measurements. This effect exploits the interaction 
between the polarization of incident photons, such as those emitted by a laser, and the 
magnetization. For a magnetized sample, the permittivity tensor acquires off-​diagonal 

elements Q xy

xx

=
ε
ε

 and hence the Kerr rotation ϕK (the rotation of the polarization) and 

the Kerr ellipticity ηK are given by −
−


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−
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1 2
, respectively, where 

n is the refractive index. ϕK and ηK are often combined to give an overall Kerr effect:

	 ΦK K K= + .ϕ η2 2 	 (1.56)

As shown in Figure 1.12, for the polar MOKE geometry, the magnetization M lies 
perpendicular to the reflecting surface. This arrangement gives rise to the largest rota-
tion of the polarization. For the longitudinal geometry, the magnetization lies in the 
plane of the reflecting surface and in the plane containing the incident (ki) and reflecting 
(kr) beams. The rotation is significantly smaller than for the polar configuration and is 
zero for normal incidence. In the transverse geometry, the magnetization is also in the 
plane of the reflecting surface, but is perpendicular to the plane containing the incident 
and reflected beams. In this case, there is no rotation of the polarization of the reflected 
beam, but there is a modification of the intensity.

1.4.2	 Dependence of the Magnetization on Temperature

1.4.2.1	 Spontaneous Magnetization
Ferromagnets have a spontaneous magnetization that gives rise to magnetic hysteresis. 
The details require consideration of the demagnetization factor associated with the 
shape of the specimen. Once a single domain has been established, the magnetization 
of an isotropic ferromagnet approaches saturation Ms. Dependent on the magnetization 
process, the available magnetic field may not be sufficient to attain a saturation, M(H =∞,T). 
For metallic ferromagnets, this is often attributed to the polarization of the band struc-
ture. Therefore, it is more usual to determine the spontaneous magnetization at absolute 
zero M00, that is, at H = 0 and T = 0, which is obtained by low temperature extrapolation 
using the Bloch spin wave formula:

	 M M aTT0 00

3

21= −





,	 (1.57)

where a
c

S

k

SJ
B

ex
= 



2

3

2
 and c is a constant depending on the form of the unit cell, that is, 

0.1187 for a simple cubic, 0.1187/​2 for bcc, and 0.1187/​4 for fcc structures [17]. This is 
also known as the Bloch T3/​2 law.
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From M00, the magnetic moment per formula unit μ00 is given by:

	 µ
µ00
00=

M

N B
.	 (1.58)

Measurements of magnetization as a function of temperature in a low applied field 
∂
∂





 →

M

T H 0

 enable the existence of phase transitions to be determined. If the meas-

urement is performed for both heating and cooling cycles, magnetic and structural 
phase transitions can be distinguished. Thus, the temperature ranges of interest can be 
established, allowing the magnetic isotherms (a curve on the M versus H plot joining 
points measured at the same temperature) to be concentrated in those regions. For para-
magnetic and AF specimens, the isotherms will be linear, and measuring the gradient 
allows the uniform susceptibility χ(T) to be established. Field-​dependent isotherms 
may indicate the presence of ferromagnetic impurities, superparamagnetism, or non-​
collinear antiferromagnetism. For an isotropic ferromagnet, the magnetization MHT at 
low temperatures usually saturates in modest fields. The spontaneous magnetization M0T 
can then be obtained by extrapolating the linear part of the isotherm to H = 0. However, 
as the temperature is raised, the isotherms become curved, and it is no longer possible 
to carry out a linear extrapolation to determine the spontaneous magnetization (and 
thereby the Curie temperature).

1.4.2.2	 Magnetocaloric Effect
An alternative method to measure the magnetization in a low applied field is linked to 
the adiabatic change in temperature associated with an increase in the magnetization 
with the applied field, which is known as the magnetocaloric effect. This method has 
been used to reach ultra-​low temperatures via magnetization and demagnetization of 
a paramagnetic insulator (mK for cerium magnesium nitrate salt or ~μK by nuclear 

M

M

M

ki kf

ki kf

ki kf

Figure 1.12  The scattering arrangement for the (a) polar, (b) longitudinal, and (c) transverse Kerr 
geometries.
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demagnetization). To reach such low temperatures, the thermodynamic system (the 
sample and the refrigerant) must be isolated from its environment without the possi-
bility of transfer of heat or matter, and therefore, the process is referred to as adiabatic 
demagnetization [11].

The effect is obtained from the magnetic isotherms in the form of the isobaric-​
isothermal magnetic entropy, SM, which is derived from the thermodynamic potential 
(free energy) Gf:

	 G U TS PV BMVf M= − + − ,	 (1.59)

where U is the internal energy and P is the pressure. For magnetic materials, the total 
work done, W, is dW = –​PdV + Bd(MV). Here, we assume that the induced magnetic field 
is small, hence B = μ0H, and that M is homogeneous and parallel to B. Furthermore, as 
the magnetic work is much greater than PdV, we may omit this term for simplicity and 
treat the processes as if they occur at constant pressure.

This leads to the following Maxwell relations:

	
∂ ( )

∂






=
∂ ( )

∂






S T B

B

M T B

T
M

T B

, ,
,
	

(1.60)

which after integration becomes:
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∫ ∫,
,

.
	

(1.61)

Thus, the change in entropy is given by the derivative of the magnetization with 
respect to temperature (for ferromagnets). In general, it has a maximum at the mag-
netic ordering temperature at which the magnetization undergoes a substantial 
change over a narrow temperature range. For antiferromagnets and ferrimagnets, 
we can perform the same analysis by treating them as two ferromagnetic sublattices 
with magnetizations M+>0 and M–​<0 for spins pointing up and down, respectively, 
enabling us to define the staggered magnetization M+-​M–​. For these systems, it is 
the derivative of the staggered magnetization with respect to temperature that is 
maximized at the ordering temperature. Eq. (1.61) provides an indirect method of 
determining the magnetocaloric effect via the adiabatic temperature change, ΔTad:

	
ΔT

T

C T B

M T B

T
dBad

B

B

B Bi

f

= − ( )






∂ ( )

∂




∫ ,

,
,
	

(1.62)

where C(T,B) is the heat capacity at constant pressure and magnetic field. Materials that 
are currently being considered as working refrigerants are those with large moments 
with phase transitions close to room temperature, such as moment collapse or meta-​
magnetism (a transition from an antiferro to a ferromagnetic state upon applying a 
moderate magnetic field). Depending on the applied field, cooling powers of between 
200 and 600 W have been reported. The variation of magnetization and the associated 
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change in entropy of MnAs is shown in Figures 1.13 and 1.14. MnAs undergoes a struc-
tural (martensitic) phase transition at 318 K, below which the manganese atoms order 
ferromagnetically.

An estimate of the Curie temperature may be obtained from the derivative of the 

low-​field magnetization 
∂
∂





 →

M

T B 0

or from the thermal variation of ΔSM(T), but it is
 

more usual to make use of Arrott plots derived from a Landau expansion of the free 
energy [59].

Figure 1.13  Magnetic isotherms for the ferromagnet MnAs in the vicinity of the Curie 
temperature Tc = 318 K.

Figure 1.14  The thermal variation of the magnetic entropy change in MnAs.
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1.4.2.3	 Arrott Plots
Except for chromium, the majority of magnetic phase transitions (order-​disorder) are 
continuous throughout the material and are characterized by a diverging susceptibility, 
and are hence classified as second order. Therefore, the free energy can be written in 
terms of an order parameter, a thermodynamic quantity, which is different in the ordered 
and disordered phases on either side of the transition. The order parameter is the mag-
netization for a ferromagnet and the staggered magnetization for an antiferromagnet. 
For a ferromagnet, the free energy density, g(r), can be written as an expansion in the 
order parameter (the magnetization) following Landau’s general theory [60]:

	 g g T B M a T M b M c Mr r r r r r( ) = ( ) ( ) ( ) + ( ) ( )  + ( )  + ∇0

2 4 2
– ( ) ,	 (1.63)

where b and c are constants with temperature and g0(T) is a constant free energy density 
(by symmetry g(r) remains the same for M(r) and –​M(r), hence odd powers of M(r) 
vanish). The second term describes the effects of an applied field and the next two terms 
arise from spin-​spin interactions. The final term represents the amount of work neces-
sary to twist the magnetization, which has the effect of making the free energy larger 
when M(r) varies in space.

The most probable value of M is determined by minimization of g(r), which for an 
isotropic ferromagnet gives:

	 B a bM M= +[ ]2 4 2 .	 (1.64)

If B = 0, then M is either zero or ±(–​a/​2b)½. The positive non-​zero solution minimizes 
the free energy if a > 0, and if a < 0, it is the negative solution. For a magnetically 
ordered system in the absence of a field B, a(T) can be written as a(T) = aʹ(T –​ Tc), where 
aʹ is a constant.

To determine the susceptibility (χ ~ ∂M/​∂B), the spontaneous magnetization, M00, and 
the Curie temperature, TC, the case for B ≠ 0 must be considered. In this case, from Eq. 
(1.64):

	
B

M
a bM M

b

B

M

a

b
= + ⇔ = −2 4

1

4 2
2 2 .	 (1.65)

Hence, plotting M2 versus B/​M (Arrott plots shown in Figure  1.15) yields linear 
isotherms [59], the slopes of which do not change as a consequence of the assumption 
that b is temperature independent and the only coefficient changing with temperature is 
a. As one determines the intersection with either the x or the y-​axis the lines are shifted 
parallel to one another as a function of temperature. The isotherm going through the 
origin defines the Curie temperature and the intercept on the M2 axis (y-​axis) enables 
the spontaneous magnetization in the ordered state to be determined. The intercept on 
the B/​M axis provides the reciprocal of the susceptibility in the paramagnetic state. For 

T > TC, χ = =
′ −( )

1

2

1

2a a T TC

, which is consistent with the molecular field theory and 

represents the Curie–​Weiss law (Eq. (1.17)).
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For an antiferromagnet, the transition occurs at the Néel temperature TN and there are 
no anomalies at TN in the Arrott plots. Instead of crossing the origin below the AF phase 
transition, the Arrott plots shift back in the opposite direction as compared to the case of 
the ferromagnet. An external magnetic field produces an additional shift in the AF phase 
transition, which has a quadratic dependence on the magnitude of the field, that is, ΔTN 
is proportional to B2.

It should be noted that the Landau theory on which this analysis is based is essentially 
a mean field description of the magnetic phase transition. Thus, magnetic fluctuations 
are neglected, even though close to the critical point of the phase transition they have 
large amplitudes and long lifetimes, and therefore cannot strictly be treated as small  
perturbations.

1.4.3	 Critical Phenomena

As the transition at TC is approached, the principal interest is the behavior of the thermo-
dynamic properties that are assumed to have a simple power law dependence on the 

reduced temperature ε =
−T T

T
C

C

 and are characterized by a set of critical exponents 

[66]. A high degree of precision in the determination of both the order parameter and 
the temperature is required, and therefore the establishment of TC is not straightforward. 
Furthermore, any comparison between measurements should be confined to results 
obtained within the same temperature interval Δε.

1.4.3.1	 Thermal Dependence of the Order Parameter
In the limit of a small applied field, the spontaneous magnetization MHT goes continu-
ously to zero as TC is approached. The thermal variation is given by [61]:

	 M M H THT
Hi

= ∝
→

lim ( , ) ,
0

εβ
	 (1.66)

B/M

M2

T = TC

T < TC

T > TC

Figure 1.15  Schematic Arrott plots for an isotropic ferromagnet above and below the Curie 
temperature.
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where the critical exponent β is observed to be < 1, typically taking values from 0.32 
to 0.39 depending on the type of phase transition. We have introduced here the internal 
field Hi, given by [59]:

	 H H N M H Ti demag= − ( ), ,	 (1.67)

in which Ndemag is the demagnetization factor and H the applied field.

1.4.3.2	 Thermal Dependence of the Initial Susceptibility
As the temperature decreases toward TC, the initial susceptibility diverges in a manner 
given by:

	
χ ε γ

i
i H

M

H
i

=
∂
∂







∝
→

−

0

,
	

(1.68)

where the critical exponent γ  typically takes values from 1.3 to 1.4.

1.4.3.3	 The Field Dependence of the Order Parameter along the Critical 
Isotherm
At the critical isotherm, TC, the spontaneous magnetization is not a smooth function of 
the magnetic field but follows:

	 M H T Hc i, ,( ) ∝
1

δ 	 (1.69)

where the critical exponent δ typically takes values from 4.3 to 4.7. Reliable values of 
δ can only be obtained close to the critical point where ε is small, that is, if ε < −10 2. 
According to Widom [62], the exponents β, γ, and δ should satisfy the relation γ = β (δ–1).

1.4.3.4	 The Specific Heat
A singularity is observed in the specific heat at TC in zero field, which can also be 
described by a power law:

	
C

C T T

C T T
C

C

∝
>

− <




↑
−

↓
−

ε
ε

α

α
.’ 	 (1.70)

The constants C↑ and C↓ are observed to be different, whereas the exponents α and αʹ 
are found to be the same within the experimental error. Typical values of α and αʹ lie 
between 0.11 and 0.19.

1.4.3.5	 The Thermal Variation of the Spin Density Fluctuations close to TC

In order to describe neutron scattering, in 1954 van Hove [63, 64] introduced the concept 
of the pair distribution function G between the atomic spin S0 at lattice position zero, 
considered at time zero, and the atomic spin Sr, at lattice position r, considered at time t:

	 G t tT r T
r S S, . ,( ) = ( ) ( )0 0 	 (1.71)
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where <…>T denotes the average over the thermal distribution. This pair distribution 
was included into the response (scattering) function S( , )q ω  used to calculate the partial 
differential cross section for neutron scattering:

	

d

d d

2

0
2σ ω

Ω E
Nr

k

k
S

f

f

i

= ( , ),q
	

(1.72)

where q = ki –​ kf is the neutron wave vector change between initial to final state momenta, 
N is the number of unit cells in the sample, and r0 = −5.4 fm = γn(e2/​mec2) is the value of 
the neutron magnetic moment (γn = −1.913) multiplied by the classical electron radius, 
e2/​mec2 = 2.82 fm.

Van Hove [63] had already shown that due to large thermal fluctuations of the spin 
density as the temperature decreases toward TC the neutron response function for mag-
netic scattering becomes:

	
�

�
S

N
e t ti t

T
q S q S q, , ( , ) ,ω

π
ω α β( ) = −( )⋅

−∞

∞
−∫

1

2
0 d 	 (1.73)

where α and β are Cartesian coordinates x, y, and z.
In the static or quasi-​static limit, assuming a localized model and neglecting the mag-

netic Bragg scattering contribution ~ Sα
T

2
, which is close to zero at TC (paramagnetic 

scattering), the Fourier transform of the pair distribution function is given by:

	
� � �Γ q q S r S S Sqr( ) = ( ) = ( ) −( )⋅ ( ) −( )
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d d

	 (1.74)

where the average spin density <S> is zero unless T<TC or the applied field B ≠ 0. Thus 
(S(r) − <S>) represents fluctuations around the mean value of the magnetization. As T 
approaches TC and q → 0, Γ



q( ) diverges since both (S(r) − <S>) and (S(0) − <S>) remain 
correlated over large distances, with the range becoming infinite at TC. Therefore, from 
Eq. (1.71), the static pair distribution or correlation function between a spin at position 
0 and another at position r that is distance R away, in zero magnetic field is generally 
assumed to be isotropic, given by:

	
G

f
R

R
T T
r S S r( ) = ( )⋅ ( ) =





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+
0

1

ξ
η

.	 (1.75)

The critical exponent η characterizes the behavior of the correlation function at TC. 
Its magnitude is small and consequently, difficult to determine. For a classical model, 
η = 0. The correlation length ξ characterizes the spatial extent of the correlations and 
has a dependence on the reduced temperature ε given by ξ ∝ ε–​ν

. The magnitude of 
the critical exponent ν depends on the range of momentum transfer over which the 
measurements are made to determine ξ; typical values of ν are between 0.63 and 0.72. 

For T > TC, the function f
R

ξ




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 is assumed to have the form f
R

Ae
R

ξ
ξ



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=
−





 , where the 

constant A is only weakly dependent on ε.
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As mentioned before, most magnetic transitions are second order, characterized 
by a continuous variation across the transition of the order parameter (the magnet-
ization M0T for ferromagnets and the staggered magnetization for ferrimagnets and 
antiferromagnets). This implies that the system is in a unique critical phase at the transi-
tion and long-​range fluctuations cannot be neglected; Ginzburg showed this caused the 
general Landau mean-​field theory of phase transitions to give incorrect predictions in 
the region near the transition. Work on the problem by researchers such as Widom [62], 
and Wilson and Kadanoff [65] on homogeneity, scaling laws, and renormalization gave 
rise to renormalization-​group theory. This showed that continuous phase transitions all 
fall into one of a small number of classes with the same critical behavior, governed 
not by microscopic details of the system but its fundamental symmetries, such as the 
number of degrees of freedom n (of the spins for a magnetic system) and the number of 
spatial dimensions d.

A very important consequence is that all transitions in the same universality class 
should have the same critical exponents; for example, studying the superfluid phase 
transition in He4 (where the order parameter is the wavefunction describing the fraction 
of He atoms in the superfluid state, the amplitude and phase of which give two degrees 
of freedom) can provide useful information about the critical behavior of an planar 
ferromagnet or a superconductor, as all three systems are in the same universality 
class (where n = 2 and d = 3). Another consequence of the theory is that there must be 
relations between the critical exponents: any three critical exponents can be related by 
an inequality. Some of these inequalities are summarized below [66]:

	

α β γ
α β δ

γ ν η
α ν

+ + =
− = +( )

= −( )
− =

2 2

2 1

2

2

;

;

;

.d
	

(1.76)

In order to obtain actual predictions of the critical exponents, renormalization-​group 
theory was applied to models consisting of discrete spins arranged in a regular lattice, 
which interact with the external field and their nearest neighbors only. The features of 
the most important models are briefly introduced below and their critical exponents are 
collected in Table 1.9.

2D Ising (n = 1, d = 2): The spins sit on the sites of a two-​dimensional (2D) lattice 
(e.g. square and honeycomb) and are constrained to have only values si = ±1 pointing 
along a particular direction (e.g. up or down along the z-​axis). The 2D Ising model is the 
only one on this list which has an exact solution.

2D XY (n = 2, d = 2): The spins are still confined to a single plane as for the 2D Ising 
model but can now point along any direction within that plane.

3D Ising (n = 1, d = 3): The spins now sit on the sites of a regular 3D lattice (e.g. 
simple cubic); they still interact with their nearest neighbors only and still take only 
values si = ±1 along one axis.

3D XY (n = 2, d = 3): The planes of 2D XY spins are stacked on top of each other; 
although the spins can only rotate in their own plane or layer, they can interact with the 
spins in the next adjacent layer.
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Heisenberg (n = 3, d = 3): The spins can point in any direction in space and spin-​spin 
interactions must therefore also be considered in three dimensions. This model is appro-
priate for isotropic ferromagnets.

It is worth noting that it is only possible to obtain the exact values of the critical 
exponents of the 2D Ising model in zero magnetic field. An exact solution in non-​zero 
field for the behavior of the 2D Ising model or any of the 3D models are still open 
research questions; the critical exponents are therefore calculated numerically and are 
constantly being refined [67].

1.4.4	 AC Susceptibility

The time-​varying (dynamic) magnetization processes can be investigated using AC sus-
ceptibility measurements, where AC driving fields with frequencies ω between 10–​2–​105 
s–​1 are superimposed on a DC background. If the magnetization M is subject to an alter-
nating magnetic field H H ei t= 0

ω , it is generally delayed by the phase angle δ ω δ,T( ) =  
because of energy losses in the reversal process and is hence expressed as M M ei t= −

0
( )ω δ .  

The complex susceptibility χ ω,T
M

H
( ) =

∂
∂

 can then be written as [11]:

	 χ ω δ δ χ ω χ ωδ, (cos sin ) , , ,T
M

H
e

M

H
i T i Ti( ) = = − = ′ ( ) − ′′ ( )−0

0

0

0
	 (1.77)

where χʹ and χʺ are the in-​phase (real) and out-​of-​phase (imaginary) susceptibility 
components, χʺ being proportional to the energy absorbed. For nanoparticles above 
the blocking temperature TB, introduced in Section 1.3.3, χʺ is small and χʹ(ω,T) gener-
ally follows the Curie law ′ ∝ −χ T 1, as expected for paramagnetic behavior. Assuming 

Table 1.9  Critical exponents of phase transitions calculated for various magnetic models and compared to measured 
values from real substances [66]–​[68]. Values are exact for the mean-​field theory and 2D Ising models.

Degrees of 
freedom

Exponents β δ η α α= ’ γ γ= ’ ν ν= ’

T < Tc at T = Tc α γ ν’ ’ ’, ,  (T < Tc); α γ ν, ,  (T > Tc)

Models

Mean-​field ½ 3 0 0 1 ½

n = 1 2D Ising ⅛ 15 ¼ 0 1¾ 1

n = 1 3D Ising 0.3265 4.789 0.0364 0.110 1.2372 0.6301

n = 2 3D XY 0.34861 4.7801 0.03812 –​0.01513 1.31782 0.67171

n = 3 Heisenberg
(S = ½)

0.36893 4.7833 0.03755 0 1.39609 0.71125

Measured

n = 1 Xe, Ar 0.341 –​ 0.0426 0.11 1.145 0.623

n = 2 4He, Gd2IFe2 0.347 –​ -​ –​0.0127 1.320 0.6676

n = 3 Ni 0.395 4.35 -​ –​0.11 1.345 –​
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a single particle size from the slope of 1/​χʹ versus T, the blocking temperature can 
be obtained and the particle volume can be estimated [69]. While the variation of χʹ 
is similar to that of χZFC, χʺ peaks at TB. However, the peak position and hence the 
measured value of TB depend on the drive frequency (i.e. inverse measurement time) 
following Eq. (1.48). Comparison of the observed frequency dependence of TB to the 
predictions given by the Néel–​Brown equation (Eq. (1.42)) enables the presence of 
interparticle interactions, such as clustering due to dipole-​dipole interaction to be identi-
fied. The presence of interparticle interactions gives rise to a stronger frequency depend-
ence of the susceptibility [6, 70]. For non-​interacting particles, both χʹ and χʺ are shifted 
to higher temperatures with increasing frequency. For interacting particles, the shift is 
more significant, as is the effect on the shape and height of the χʺ line shapes.

1.4.5	 Mössbauer Spectroscopy

Mӧssbauer spectroscopy [71]–​[74], which has a characteristic time scale τm ~ ns, has 
been used to investigate a number of systems using the isotope 57Fe. Nuclei of this iso-
tope emit gamma rays as they relax from their 3/​2 excited state to the 1/​2 ground state. 
By moving the 57Fe source back and forth with a linear drive, the energy of the emitted 
gamma rays can be scanned via the Doppler effect to a very high degree of precision 
so as to enable recoilless (energy conservation) absorption by an Fe-​containing sample. 
A typical range of velocities for a 57Fe source is ±11 mm/​s (1 mm/​s = 48.075 neV) with 
a resolution down to ~1 neV. If the transmission spectrum versus source velocity is 
measured, a characteristic series of dips is observed. Below TB, the relaxation time of the 
magnetization is long compared to τm and the spectrum is comprised of six lines due to 
the Zeeman splitting of the nuclear energy levels produced by the magnetic (hyperfine) 
field generated by the electrons. In a paramagnetic state this reduces to a single dip. By 
varying the sample temperature and measuring the area beneath the sextet of lines, TB 
is estimated as the temperature at which the measured area beneath the sextet of lines is 
the same as the area beneath the superparamagnetic “central” dip.

The form of the time averaged magnetization M T( )  can be understood by real-
izing that the spins in a single domain nanoparticle act collectively as a macrospin, 
that is, they have a uniform precession angle. Therefore, it acts as a classical magnetic 
moment and the magnetization component along the quantization axis, Ms cosθ, can be 
calculated by Maxwell–​Boltzmann statistical treatment and by using Eq. (1.32) [72]:
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(1.78)

For particles with uniaxial anisotropy, the magnetic hyperfine field Bhf is proportional to 
the average magnetization and is given by:

	 B B
k T

KV
hf o

B= −





1
2

,	 (1.79)
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where Bo is the saturation hyperfine field, that is, the magnetic field acting on the nucleus 
in the absence of superparamagnetic relaxation. If a large field is applied above TB 
and below TC, the superparamagnetic relaxation is inhibited and the spectrum again 
comprises six lines. The average magnetic hyperfine splitting of the Mӧssbauer spec-

trum is then proportional to the high-​field approximation 
µ( )T B

k TB

>






2  of the Langevin 

function (Eqs. (1.13) and (1.51)) [74]:

	 B B
k T

T B
Bhf o

B= −






−1
µ( )

,	 (1.80)

where μ(T) = mμB = M(T)V is the magnetic moment of the particle, V is the particle 
volume, M(T) is the magnetization, and B is the applied field. A plot of B Bhf +  versus 
B–​1 yields a linear dependence, the gradient of which gives the moment, or if this is 
already established, the particle volume V = μ(T)/​Ms.

1.4.6	 Neutron Scattering

Neutron diffraction and XMCD can be used to determine the magnitude, direction, and 
anisotropy of atomic magnetic moments. Within the Born approximation, the differ-
ential cross section for elastic neutron scattering from the magnetic potential is given 
by [75]:

	

∂
∂

= ′ × ( ) ×( )( )⋅ ∫
σ
Ω

r S dr Sf in0
2 3

2
2

k e M r e e kq q
iq r, , ,.

�
� �S

	
(1.81)

where r0 was introduced in Eq. (1.72), S n is the spin-​operator for the neutron, eq is the 
unit vector along q, and M r( ) is the operator of the spatially dependent total magnet-
ization, in which the neutron spin states S and Sʹ may change. The magnetic structure 

factor operator Q q M q� �( ) ( )= −
1

2µB

 is related to M q( ), the Fourier transform of M r( ). 

Since M q( ), also called the magnetic form factor, is a vector, each component may be 
complex:

	 M q M r q r ( ) = ( )∫ ⋅e dri 3.	 (1.82)

The scattering cross section is proportional to ′ ⋅ ( )⊥S Sn
2

2

�
� �S Q q , where the mag-

netic interaction vector operator is Q q e Q q eq q
 

⊥ = × ×( )( ) ( ) . A consequence of this rela-
tion is that neutrons only see the components of the magnetization perpendicular to the 
scattering vector. If the initial direction of the neutron spin is taken to be parallel to e z , the 
direction of a magnetic field applied to the sample, then the cross section for scattering 
without change of the spin direction (non-​spin-​flip) is given by ,e z zQ⋅ ( ) = ( )⊥ ⊥Q q q

2 2
 

and with a change of direction (spin-​flip) by e z × ( )⊥Q q
2
. The precise determination of 
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the magnetization distribution in ferromagnetic materials makes use of the interference 
between the nuclear and magnetic scattering in which the sample is magnetized par-
allel to the spin direction of the incident polarized neutron beam. Assuming here that 

both the nuclear structure factor N e eb
d

d
i Wdq q r( ) = ∑ ⋅ −  (where bd is the average nuclear 

scattering length at atomic position d and Wd the Debye–​Waller factor), and the mag-
netic structure factor Q(q) are real, the non-​spin-​flip scattering cross section is pro-

portional to N N Q Qz zq q q q( ) ± ( ) ( ) + ( )⊥ ⊥
2 2

2 , , . The plus or minus sign refers to the 

neutron spin direction being parallel or anti parallel, respectively, to Q z⊥ ( ), q  and the 
quantity measured is the ratio of the two cross sections, namely the ‘polarization ratio’ 

R =
+ +
− +

1 2

1 2

2

2

γ γ
γ γ

, where γ =
( )

( )
⊥,Q

N
z q
q

. This enables a precise determination of Q z⊥ ( ), q , 

which can then be compared directly with electronic structure calculations.
Neutron scattering with an intrinsic time scale of 10–​14–​10–​7 s is particularly appro-

priate for studying the wavevector k and frequency ω of magnetic fluctuations [76]. 
Below TB the magnetic response is not significantly affected by superparamagnetism, but 
relaxation and collective processes may occur. Relaxation processes are characterized 
by a quasi-​elastic response centered on zero energy transfer (ω = 0), whereas collective 
excitations have a finite energy transfer [77]. For isotropic bulk ferromagnets, the long 
wavelength (k → 0)  limit of the spin wave dispersion is ħω = Dk2, as shown in Eq. 
(1.27). This defines a magnon wavelength given by:

	 λ π
ω

= 2
D



,	 (1.83)

which for iron at 5 K corresponds to ~7 nm. Owing to the finite size of the particle, 
the collective excitation spectrum is quantized and therefore discrete. This may be 
demonstrated by considering the modes within a cuboid of side d. The spin wave ener-
gies are given by:

	 E Dk D
n

d
nn n= = 





=2

2

1 2 3
π

, , , ,...with 	 (1.84)

Thus, a spin wave gap Δ is produced given by:

	 Δ = 





D
d

π 2

,	 (1.85)

which for 5 nm iron particles is about 11 meV. The presence of this gap significantly 
influences the thermodynamics of the particles. Hence, the low temperature thermal 
variation of the saturation magnetization is no longer given by the Bloch T3/​2 spin wave 
formula (Eq. (1.57)). On the basis of experimental results, a power law variation has 
been proposed:

	 M T M BTs( ) = −[ ]1 β ,	 (1.86)
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where β depends on the particle size, varying between 2 down to 1.5 for bulk 
samples. On the basis of neutron scattering measurements, both quasi-​elastic and 
inelastic features have been reported, the details of which are dependent on the 
system studied.

Through the fluctuation dissipation theorem [78], the imaginary part of the generalized 
susceptibility χ(q, ω) = χʹ(q, ω) + iχʺ(q, ω) is related to the response function for mag-

netic scattering �
�

S q q, ,ω χ
ω

ω( ) =
−








′′
−

( )1 1

1
π

e k TB

. Hence, the frequency ω and wavevector 

dependence q of the response can be determined by neutron scattering. The uniform 
susceptibility (static q = 0 value) is often defined as per unit mass (χρ) or per mole (χmol) 
and can be either positive or negative.

1.4.7	 X-​ray Magnetic Circular Dichroism (XMCD)

The XMCD technique is element specific while also allowing the spin and orbital 
contributions to the magnetic moment to be separated. In this process, a core elec-
tron in the examined material is excited to an empty valence state and the energy 
required is specific to the atomic species. In addition, due to the spin-​orbit inter-
action, the X-​ray absorption of a ferromagnet depends also on the relative orientation 
of the magnetization with respect to the direction of the incident photon spin. Since 
the transitions are governed by the Δ𝓁 = ±1 selection rule, d band transition metals 
are usually studied using the L2,3 absorption edges (2p → 3d) [79, 80]. The spin and 
orbital moments are related to the absorption spectra σ+ and σ–​ obtained with right-​
handed and left-​handed circularly polarized X-​rays by [81, 82]:

	
m L n
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+ −
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+ −
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(1.87)
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(1.88)

where <TZ> is the expectation value of the dipole operator, nh is the number of vacancies 
in the valence band (holes), σ0 = ½(σ ++σ –​) and the integral over the adsorption edges  

L2 and L3, and 
L L

dE
3 2+
∫  is the sum of the areas under the absorption curves at the L2 and L3 

energies. The number of holes, which can significantly differ from bulk for thin films or 
particles, can be determined by measuring the white line intensity by X-​ray absorption 
spectroscopy. This involves taking an extra spectrum with linearly polarized X-​rays in 
addition to the absorption spectra σ+ and σ–​ required for XMCD.
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1.5	 Structural Analysis

Analysis of the microstructure is usually investigated using diffraction techniques, 
but real space imaging is also often employed. As a result of the X-​ray adsorption 
in XMCD, secondary electrons are emitted, which can be analyzed by PEEM [83] 
to provide resolutions of up to ~10 nm. Transmission electron microscopy (TEM) 
provides information on the size and morphology of particles and the structure of 
thin films. If high resolution TEM is used, then atomic planes within samples can be 
imaged and possible imperfections, such as dislocations, identified. TEM has also 
been used to determine the size distribution of nanoparticles, which severely affects 
the magnetic properties and is a limiting factor in the interpretation of results. The 
volume distribution is generally found to follow a logarithmic-​normal distribution 
of the form:

	
f V exp

V( ) = −
( ) −









1

2 2

2

2σ π
µ

σ
( )

,
ln

	
(1.89)

where σ is the standard deviation, σ2 is the variance and μ is the mean of the variable’s 
natural logarithm. These are correlated to the mean, m, and variance, v, of the real 
sample values by:

	
µ σ=

+







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


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1

2

2
2

, .
	

(1.90)

When diffraction techniques are employed, X-​rays [84] and neutrons [85] provide com-
plementary measurements; in general, X-​rays provide a better spatial resolution than 
neutrons. The broadening of diffraction peaks can arise from the domain size or micro-
scopic strain. The broadening is usually characterized by the full width at half the max-
imum intensity (FWHM) of the Bragg peaks. The integral width, βsi (in radians), of a 
Bragg peak with index i at a scattering angle, 2θi, due to a small domain size is estimated 
by the Scherrer formula [86]:

	 β λ
θsi

V i

K

D
=

cos
,	 (1.91)

where DV is the volume-​weighted domain size, λ is the wavelength of the incoming 
beam and K is a dimensionless shape factor with a value of about 0.9, which, however, 
varies with the actual shape of the crystallites. The integral width, βdi, due to microstrain 
can be approximated as [87]:

	 β θdi i= 4 tan ,	 (1.92)
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where ε is the microstrain. Assuming a Cauchy-​shaped profile (Lorentz distribution) 
for both the size and strain components, the corresponding integral widths are linearly 
additive:

	 β β β β θ λ θtot si di tot i
V

i

K

D
sin= + ⇔ = +cos .4 	 (1.93)

Thus, a plot (Williamson–​Hall) [88] of β θtot icos  versus sinθi for as many θi as possible 

should be linear, with the intercept giving 
K

DV

λ
 and the gradient yielding 4ε.

An alternative method involves the convolution of the instrumental resolution D(θ) 
with a function (often a modified Voigt profile) representing the intrinsic line shape h(θ) 
to give the observed line shape I(θ), ( ) ( )I h Dθ θ θ( ) = ⊗ . If the intrinsic and instrumental 
line shapes can both be represented by Gaussian functions, then the observed width βobs 
is given by:

	 β β βobs intr inst= +( )2 2
1

2 ,	 (1.94)

where β βintr instand  are the intrinsic and instrumental integral widths. The instrumental 
resolution can be established using a standard sample.

Profile refinement programs, such as Fullprof [85], enable the full diffraction pattern 
to be analyzed, and possible anisotropic particle shapes and strains to be identified. 
Neutron diffraction also enables the possible magnetic structure of the particles to be 
established. If the particles are ferromagnetic, the magnetic scattering occurs at the 
nuclear positions. Heating above the Curie temperature will render the Bragg peaks 
entirely nuclear in origin, but this may change the nuclear structure. Alternatively, it 
may be possible to align the moments along the scattering vector to extinguish the mag-
netic Bragg component (Section 1.4.6). For some specific problems, the use of polarized 
neutrons may be required to uniquely extract the nuclear and magnetic contributions. 
However, if the particles have an AF structure, then, in general, the magnetic peaks 
occur at different Bragg positions. This distinction enables the nuclear and magnetic 
particle sizes to be established at the same temperature in the antiferromagnet NiO [89]. 
The spherical 6.5 nm particles have been found to have a 5.1 nm AF core with an outer 
shell of significantly reduced magnetization.

Sample Problems

Question 1

	(a)	 Using Table 1.1, Eq. (1.5), and Hund’s rules, calculate S, L, J, pJ, and pS for a Ti2+ 
ion (e.g. in a metallo-​organic complex) and comment on how pJ and pS compare 
to the experimental value.

	(b)	 In similar fashion, calculate S, L, J, pJ, and pS for a V2+ (or Mn4+) ion.
	(c)	 In similar fashion, calculate S, L, J, pJ, and pS for a Mn3+ (or Cr2+) ion.
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Question 2

	(a)	 By using Eq. (1.9), the expression for the mean square ionic radius 

r
Z

r
i

i
2 21

0 0= ∑ , and the substitution r a2
0
2= , calculate the value of the 

Larmor (molar) diamagnetic susceptibility for graphite (Z = 6) and compare it to 
the experimental value given in Table 1.4. Remember that the values in Table 1.4 
are in CGS units, so the magnetic units conversion table in the Appendix should 
be used to convert from SI units.

	(b)	 Repeat the exercise in (a)  for Cu (Z  =  29). Comment on the quality of the 
agreement.

	(c)	 Repeat the exercise in (b)  using instead the expression for the radius of the 

free electron sphere rs given in Eq. (1.10) and the substitution r rs
i

i
2 20 0= ∑ ,  

assuming a valence of 1 for Cu. Suggest a reason for the difference in the quality 
of the agreement between the newly calculated and experimental values.
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