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We consider the following inhomogeneous problems

{
ε2div(a(x)∇u(x)) + f(x, u) = 0 in Ω,
∂u
∂ν

= 0 on ∂Ω,

where Ω is a smooth and bounded domain in general dimensional space R
N , ε > 0 is

a small parameter and function a is positive. We respectively obtain the locations of
interior transition layers of the solutions of the above transition problems that are
L1-local minimizer and global minimizer of the associated energy functional.
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1. Introduction

We study the following inhomogeneous transition problems

{
ε2div(a(x)∇u(x)) + f(x, u) = 0 in Ω,
∂u
∂ν = 0 on ∂Ω,

(1.1)

where Ω is a smooth and bounded domain in R
N , ν is the outer unit normal to ∂Ω,

ε > 0 is a small parameter and function a ∈ C1(Ω̄) is positive. The nonlinear term
f satisfies

(f1) f(x, ·) has two zeros b1(x), b2(x) such that b1, b2 ∈ C1(Ω) and b1(x) < b2(x)
for all x ∈ Ω̄;

(f2) ∂2f(x, b1(x)) < 0 and ∂2f(x, b2(x)) < 0 for all x ∈ Ω̄;
(f3) For any given x ∈ Ω̄, F (x, ·) � 0. The function

√
a(·)F (·, ·) is Lipschitz

continuous. Here F (x, u) := − ∫ u

b1(x)
f(x, τ)dτ .
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Locations of interior transition layers to inhomogeneous transition problems 765

A typical example of a function f satisfying (f1)–(f3) is

f(x, τ) = V (x)f̃(τ), (1.2)

where V is a strictly positive function and f̃ has precisely three zeros b̃1 < 0 < b̃2,
and

∫ b̃2
b̃1
f̃(τ)dτ = 0, moreover, f̃(τ)/τ > f̃ ′(τ)(τ �= 0).

Another typical example of a function f satisfying (f1)–(f3) is

f(x, τ) = −(τ − b1(x))(τ − b(x))(τ − b2(x)), (1.3)

where b1(x) < b(x) < b2(x) for all x ∈ Ω.
The above two examples are related to inhomogeneous Allen–Cahn problem,

which has its origin in the theory of phase transitions, see [5].
The corresponding energy functional of (1.1) is

J̄ε(u) =
∫

Ω

ε

2
a(x)|�u|2 +

1
ε
F (x, u)dx.

For a smooth (N − 1)-dimensional closed hypersurface Σ contained in Ω, we denote
the domain enclosed by Σ as ΩΣ. We denote by χ(A) the characteristic function
related to set A.

Definition 1.1. A family uε of solutions to (1.1) is said to develop an inte-
rior transition layer, as ε→ 0, with interface at some (N − 1)-dimensional closed
hypersurface Σ0 ⊂ Ω if

uε → u0 := b1χ(Ω̄Σ0) + b2χ(Ω̄\Ω̄Σ0) in L1(Ω) as ε→ 0. (1.4)

We introduce the set

Ω− :=

{
x ∈ Ω :

∫ b2(x)

b1(x)

f(x, τ)dτ = 0

}
.

We call that f satisfies the equal-area condition at the points in Ω−. Note that
Ω− = {x ∈ Ω : F (x, b2(x)) = 0} . It is well known that if Σ0 is the interface of a
family of solutions to (1.1) developing interior transition layer, then Σ0 ⊂ Ω− (see
[12]). Plainly, if f is given by (1.2) then Ω− = Ω. If f is given by (1.3), we have
F (x, τ) = 1

4 [(b1(x) − b(x))2 − (τ − b(x))2]2 for those x satisfying 2b(x) = b1(x) +
b2(x), and so Ω− = {x ∈ Ω : b(x) = 1

2 (b1(x) + b2(x))}. We denote Ω+ := Ω\Ω̄−.
The following quantity plays an important role in determining location of interior

layer

Λ(x) :=
∫ b2(x)

b1(x)

√
a(x)F (x, τ)dτ. (1.5)

We first recall some known results of transition layers of (1.1). For the case that
a(x) ≡ 1 and f is given by (1.2), in one-dimensional case, [25] shows that for an
arbitrary subset of the local minimum points of Λ(x), (1.1) admits a solution which
has one layer near each point in the subset. Du and Gui [13] generalized the results
of [25] to a two-dimensional case. Precisely, for a closed, non-degenerate geodesic
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Σ0 relative to the integral
∫
Σ

Λ, (1.1) admits a solution whose layer locates near
Σ0. The corresponding results in general dimensional cases are established in [15,
16, 21, 32, 33]. For the corresponding fractional Laplacian, layer solutions are
constructed in [14]. For a(x) ≡ 1 and f given by (1.3), there are many known
existence results of transition layer solutions, see [2–4, 6–12, 17, 18, 22, 31].

To construct layer solutions of a differential equation, the information of the
location of the interface of a family of solutions is obviously very important and, in
general, is not an easy task to find it.

In the homogeneous case, namely a(x) ≡ 1 and f(x, u) ≡ f(u), classical theory of
Γ-convergence developed in the 1970s and 1980s, showed a deep connection between
this problem and the theory of minimal surfaces. By Γ-convergence theory, Mod-
ica [23] (see also [20, 24]) proved that a family {uε} of local minimizers of the
energy functional with uniformly bounded energy must converge as ε→ 0, up to
subsequences, in L1-sense to a function of the form χE − χEc , where χE denotes
characteristic function of a set E, and also that ∂E has minimal perimeter.

For the inhomogeneous case, such as a(x) ≡ 1 and f is given by (1.2), in one-
dimensional case, transition layers of solutions to (1.1) can appear only near
extremum points of Λ(x) [26], and, in higher-dimensional cases, the authors in
[21] establish a necessary condition for a closed hypersurface in Ω to support
layers. For a(x) ≡ 1, Ω− = Ω and general f satisfying assumptions (f1)–(f3), in
one-dimensional case, among other things, the authors in [27] proved the existence
of solutions to (1.1) with interior transition layer and that the layer occurs only
near some extremum point of Λ(x).

Recently, in one-dimensional domain case (Ω = (0, 1)), for general a(x) and f
satisfying conditions (f1)–(f3), [28] obtains the following results.

Proposition 1.2. Suppose that a family uε of solutions to (1.1) develop an interior
transition layer at x̄ ∈ Q, where Q ⊂ Ω− is the connected component of Ω− that x̄
belongs to. Then

(i) if uε is a family of L1-local minimizer of Ĵε, x̄ is a local minimum point of
Λ(x) in Q, where

Ĵε(u) :=

{
J̄ε(u), u ∈ H1(0, 1),
∞, u ∈ L1(0, 1)\H1(0, 1).

(ii) if uε is a family of global minimizer of J̄ε, Λ(x̄) = min{Λ(x) : x ∈ Q}.

What is the location of interior transition layer of minimizer (L1-local or global)
of the associated functional in general dimensional space? We will give a definite
answer in this paper.

For small positive constant δ0, we define

S := {x ∈ Ω : dist(x,Σ0) < 2δ0}, Υ := [−2δ0, 2δ0].

We parameterize elements x ∈ S using their closest point z in Σ0 and their dis-
tance t (with sign, negative in the dilation of ΩΣ0). Precisely, we choose a system
of coordinates z on Σ0, and denote by n(z) the unique unit normal vector to Σ0

https://doi.org/10.1017/prm.2022.12 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.12


Locations of interior transition layers to inhomogeneous transition problems 767

(at the point with coordinates z) pointing towards Ω\ΩΣ0 . Define the diffeomor-
phism Γ : Σ0 × Υ → S by

Γ(z, t) = z + tn(z).

We let the upper-case indices I, J, . . . run from 1 to N , and the lower-case indices
i, j, . . . run from 1 to N − 1. Using some local coordinates (zi)i=1,...,N−1 on Σ0,
and letting ϕ be the corresponding immersion into R

N , we have

⎧⎪⎪⎨
⎪⎪⎩
∂Γ
∂zi

(z, t) =
∂ϕ

∂zi
(z) + tκj

i (z)
∂ϕ

∂zj
(z) for i = 1, . . . , N − 1,

∂Γ
∂t

(z, t) = n(z),

where (κj
i ) are the coefficients of the mean-curvature operator on Σ0. Let also (ḡij)ij

be the coefficients of the metric on Σ0 in the above coordinates z. Then, letting g
denote the metric on Ω induced by R

N , we have

gIJ =
( {gij} 0

0 1

)
,

where

gij =
(
∂ϕ

∂zi
(z) + tκm

i (z)
∂ϕ

∂zm
(z),

∂ϕ

∂zj
(z) + tκn

j (z)
∂ϕ

∂zn
(z)
)

= ḡij + t(κm
i ḡmj + κn

j ḡin) + t2κm
i κ

n
j ḡmn.

We have, formally

det g = det ḡ[1 + tTr(ḡ−1α)] + o(t),

where

αij = κm
i ḡmj + κn

j ḡin.

There holds

(ḡ−1α)il = ḡljαij = ḡlj(κm
i ḡmj + κn

j ḡin),

and hence

Tr(ḡ−1α) = ḡij(κm
i ḡmj + κn

j ḡin) = 2ḡijκm
i ḡmj = 2κi

i.

We recall that the quantity κi
i represents the mean curvature of Σ0, we abbreviate

κi
i as κ, and in particular it is independent of the choice of coordinates.
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We have

dVg =
√

det gdzdt = (1 + tκ+ o(t))
√

det ḡdzdt = (1 + tκ+ o(t))dVḡdt.

For h satisfying ‖h‖L∞(Σ0) � 2δ0, we define the perturbed closed (N − 1)-
dimensional hypersurface of Σ0 as

Σh := {Γ(z, h(z)) : z ∈ Σ0}.

We also introduce

Jε(u) =

{
J̄ε(u), u ∈ H1(Ω),
∞, u ∈ L1(Ω)\H1(Ω).

We call that uε is a L1-local minimizer of Jε if there exists μ > 0 such that Jε(uε) �
Jε(u) for any u satisfying ‖uε − u‖L1(Ω) � μ. Each L1-local minimizer of Jε is a H1-
local minimizer of J̄ε as well, that is to say, it is a weak solution of (1.1). By the
theory of regularity, it is a classical solution of (1.1).

Our main results are the followings.

Theorem 1.3. Suppose that a family uε of solutions to (1.1) develop an interior
transition layer at Σ0 ⊂ Q, where Q ⊆ Ω− is the connected component of Ω− that
Σ0 belongs to. If uε is a family of L1-local minimizer of Jε, then Σ0 is a ‘local
minimum’ surface of

∫
Σh

Λ(x) in Q in the sense that there exists a 0 < σ(� 2δ0)
such that∫

Σ0

Λ = min
{∫

Σh

Λ : ‖h‖L∞(Σ0) � σ and ‖∇ḡh‖L∞(Σ0) = o(ε1/4)
}
.

Theorem 1.4. Besides the conditions of theorem 1.3, furthermore if uε is a family
of global minimizer of J̄ε, then∫

Σ0

Λ = min
{∫

Σ

Λ : for any closed smooth (N − 1)-dimensional

nontrivial surface Σ ⊂ Q with Ω+\ΩΣ = Ω+\ΩΣ0} .

Remark 1.5. If Q is a simply connected domain, then, for any closed (N − 1)-
dimensional surface Σ ⊂ Q, both Ω+\ΩΣ and Ω+\ΩΣ0 are equal to Ω+, so the
result of theorem 1.4 becomes∫

Σ0

Λ = min
{∫

Σ

Λ : for any closed smooth nontrivial surface Σ ⊂ Q
}
.

2. Preliminaries

We first recall definition of functions with bounded variation and a property to be
used. The interested reader is referred to [19].
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Definition 2.1. A function φ ∈ L1(Ω) is said to have bounded variation in Ω if

∫
Ω

|Dφ| := sup
{∫

Ω

φdiv vdx : v = (v1, . . . , vN ) ∈ C1
0 (Ω,RN ),

|v(x)| � 1 for x ∈ Ω} <∞.

We define BV (Ω) as the space of all functions in L1(Ω) with bounded variation.
If φ ∈ BV (Ω), then for any positive continuous function v, we have

∫
Ω

v(x)|Dφ| = sup
{∫

Ω

φdivwdx : w = (w1, . . . , wN ) ∈ C1
0 (Ω,RN ),

|w(x)| � v(x) for x ∈ Ω} . (2.1)

Consider the following initial value problem

⎧⎪⎨
⎪⎩
∂τW (x, τ) =

√
2F (x,W (x, τ))

a(x)
,

W (x, 0) = W0(x),

(2.2)

where W0 ∈ C1(Q) satisfies b1(x) � W0(x) � b2(x) for x ∈ Q. This problem admits
a unique solution W (x, τ) in Q× R and

b1(x) � W (x, τ) � b2(x), ∀(x, τ) ∈ Q× R.

Moreover, |∇xW (x, τ)| ∈ L∞(Q× R) and limτ→−∞W (x, τ) = b1(x), limτ→+∞
W (x, τ) = b2(x). More precisely, there exists positive constants q, α depending on
F such that

(W1) for τ large enough, |W (x, τ) − b2(x)| � qe−ατ ;
(W2) for −τ large enough, |W (x, τ) − b1(x)| � qeατ .
The above properties of W can be seen in [29] (see also [1, 30]).

3. Local minimum

We first establish a lower bound for Jε(uε).

Lemma 3.1. Suppose that a family uε of solutions to (1.1) develop an interior tran-
sition layer at Σ0 ⊂ Q, where Q ⊆ Ω− is the connected component of Ω−. If uε is
a family of L1-local minimizer of Jε, then

Jε(uε) �
√

2
∫

Σ0

ΛdVḡ +
∫

Ω+\ΩΣ0

1
ε
F (x, b2(x))dx+ o(1), (3.1)

where o(1) means a quantity with limit 0 as ε→ 0.
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Proof. First we assume that Q is simply connected. We have

Jε(uε) = Jε(uε,Ω+) + Jε(uε,Ω−) � Jε(uε,Ω+) + Jε(uε,Q) (3.2)

�
∫

Ω+

1
ε
F (x, b2(x))dx+ Jε(uε,Q).

Set

U := {v ∈ C1
0 (Q,RN ) : |v(x)| � 1},

then we have

Jε(uε,Q) =
∫
Q

ε

2
a(x)|�uε|2 +

1
ε
F (x, uε)dx

�
√

2
∫
Q
|∇uε|

√
a(x)F (x, uε)

= sup
v∈U

{√
2
∫
Q
∇uε · v

√
a(x)F (x, uε)

}
.

If we denote

ψε(x) :=
∫ uε(x)

b1(x)

√
a(x)F (x, τ)dτ,

then

Jε(uε,Q)

� sup
v∈U

{√
2
∫
Q

[
∇ψε · v −

∫ uε(x)

b1(x)

∇
(√

a(x)F (x, τ)
)
· vdτ

]
dx

}

= sup
v∈U

{
−
√

2
∫
Q

∫ uε(x)

b1(x)

[√
a(x)F (x, τ) div v

+∇
(√

a(x)F (x, τ)
)
· v
]
dτdx

}
.

Combining the limit uε → u0 in L1(Ω) and the L∞ boundedness of the several
quantities

√
a(x)F (x, τ), ∇(

√
a(x)F (x, τ)), v, div v, we have

lim
ε→0

Jε(uε,Q)

� sup
v∈U

{
−
√

2
∫
Q

∫ u0(x)

b1(x)

[
√
a(x)F (x, τ) div v

+∇
(√

a(x)F (x, τ)
)
· v]dτdx

}

= sup
v∈U

{
−
√

2
∫
Q
χ(u0(x) = b2(x))

×
∫ b2(x)

b1(x)

[√
a(x)F (x, τ) div v + ∇

(√
a(x)F (x, τ)

)
· v
]
dτdx

}
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= sup
v∈U

{
−
√

2
∫
Q
χ(u0(x) = b2(x))

×div

[∫ b2(x)

b1(x)

√
a(x)F (x, τ)vdτ

]
dx

}

=
√

2
∫
Q

∫ b2(x)

b1(x)

|∇χ(u0(x) = b2(x))|
√
a(x)F (x, τ)dτdx

=
√

2
∫

Σ0

∫ b2(x)

b1(x)

√
a(x)F (x, τ)dτdVḡ

=
√

2
∫

Σ0

Λ(x)dVḡ. (3.3)

Note that Ω+\ΩΣ0 = Ω+, since Q is a simply connected domain. From this and
(3.2), (3.3), we obtain (3.1).

For the case that Q is multiply connected, (3.2) becomes

Jε(uε) �
∫

Ω+\ΩΣ0

1
ε
F (x, b2(x))dx+ Jε(uε,Q),

and the same argument as that of the simply connected domain case gives the
desired inequality (3.1). �

We further establish an upper bound for Jε(uε).

Lemma 3.2. Under the conditions of lemma 3.1, then for any h satisfying
‖h‖L∞(Σ0) � σ for some σ � 2δ0 and ‖∇ḡh‖L∞(Σ0) = o(ε1/4), we have

Jε(uε) �
√

2
∫

Σh

ΛdVḡ +
∫

Ω+\ΩΣ0

1
ε
F (x, b2(x))dx+ o(1). (3.4)

Proof. First we also assume that Q is simply connected. We borrow the idea of [30]
(see also [28]) to define a sequence of functions bε(z, t; τ) : Σ0 × Υ × Υ → R

bε(z, t; τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2(z, t), 2
√
ε � τ < 2δ0,

[b2(z, t) −W (z, t; 1/
√
ε)]
τ − 2

√
ε√

ε
+ b2(z, t),

√
ε < τ < 2

√
ε,

W (z, t; τ/ε), |τ | � √
ε,

[W (z, t;−1/
√
ε) − b1(z, t)]

τ + 2
√
ε√

ε
+ b1(z, t), −2

√
ε < τ < −√

ε,

b1(z, t), −2δ0 < τ � −2
√
ε,

where W is the solution of (2.2). Given h satisfying ‖h‖L∞(Σ0) � σ and
‖∇ḡh‖L∞(Σ0) = o(ε1/4), we define ρε : Ω → R by

ρε(x) =

⎧⎪⎨
⎪⎩
b2(x), x ∈ Ω\ΩΣδ0

,

bε(z, t; t− h(z)), x = ϕ(z) + tn(z) ∈ ΩΣδ0
\ΩΣ−δ0

,

b1(x), x ∈ ΩΣ−δ0
.
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Claim: For any given μ > 0, there exist ε0(μ) > 0 and σ(μ) > 0, such that for all
ε < ε0 we have ‖uε − ρε‖L1(Ω) � μ.

Indeed, if we introduce

ρ0 := b1χ(Ω̄Σh
) + b2χ(Ω̄\Ω̄Σh

),

then we know that there exists σ(μ) less than 2δ0 such that for ‖h‖L∞(Σ0) � σ(μ),
the following inequality holds ‖u0 − ρ0‖L1(Ω) <

μ
2 . Hence, to prove the claim it is

only need to show that ρε → ρ0 in L1(Ω) as ε→ 0.
By the definitions of ρε and ρ0, we have that∫

Ω

|ρε(x) − ρ0(x)|dx =
∫

ΩΣh+2
√

ε
\ΩΣh−2

√
ε

|ρε(x) − ρ0(x)|dx

=
∫

ΩΣh+2
√

ε
\ΩΣh+

√
ε

|ρε(x) − ρ0(x)| +
∫

ΩΣh−√
ε
\ΩΣh−2

√
ε

|ρε(x) − ρ0(x)|

+
∫

ΩΣh+
√

ε
\ΩΣh−√

ε

|ρε(x) − ρ0(x)|dx.

For the first integral of the right hand side we have∫
ΩΣh+2

√
ε
\ΩΣh+

√
ε

|ρε(x) − ρ0(x)|dx

=
1√
ε

∫ 2
√

ε

√
ε

∫
Σ0

[b2(z, h(z) + μ) −W (z, h(z) + μ; 1/
√
ε)]

× |μ− 2
√
ε|[1 + (h(z) + μ)κ+ o(h(z) + μ)]dVḡdμ

� C√
ε

∫ 2
√

ε

√
ε

(2
√
ε− μ)dμ

= O(
√
ε).

Analogously, ∫
ΩΣh−√

ε
\ΩΣh−2

√
ε

|ρε(x) − ρ0(x)|dx = O(
√
ε).

We have∫
ΩΣh+

√
ε
\ΩΣh−√

ε

|ρε(x) − ρ0(x)|dx

=
∫

ΩΣh+
√

ε
\ΩΣh

|ρε(x) − ρ0(x)|dx+
∫

ΩΣh
\ΩΣh−√

ε

|ρε(x) − ρ0(x)|dx

=
∫ √

ε

0

∫
Σh+μ

|b2(z, h(z) + μ) −W (z, h(z) + μ;μ/ε)|dVḡdμ
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+
∫ 0

−√
ε

∫
Σh+μ

|b1(z, h(z) + μ) −W (z, h(z) + μ;μ/ε)|dVḡdμ

= O(
√
ε).

All in all we obtain that ρε → ρ0 in L1(Ω) as ε→ 0.
We decompose

Jε(ρε) = Jε(ρε,Ω\ΩΣh+2
√

ε
) + Jε(ρε,ΩΣh+2

√
ε
\ΩΣh+

√
ε
)

+ Jε(ρε,ΩΣh+
√

ε
\ΩΣh−√

ε
) + Jε(ρε,ΩΣh−√

ε
\ΩΣh−2

√
ε
)

+ Jε(ρε,ΩΣh−2
√

ε
).

From the definition of ρε, we have

Jε(ρε,Ω\ΩΣh+2
√

ε
) =

∫
Ω\ΩΣh+2

√
ε

ε

2
a(x)|∇b2|2 +

1
ε
F (x, b2(x))dx

=
1
ε

∫
Ω\ΩΣh+2

√
ε

F (x, b2(x))dx+ O(ε)

=
1
ε

∫
Ω+

F (x, b2(x))dx+ O(ε), (3.5)

where in the last equality we used the facts that F (x, b2(x)) = 0 in Ω−, and
Ω+\ΩΣh+2

√
ε

= Ω+ in virtue of the simply connectedness of Q.
Similarly, we have

Jε(ρε,ΩΣh−2
√

ε
) = O(ε). (3.6)

We have

Jε(ρε,ΩΣh+2
√

ε
\ΩΣh+

√
ε
) =

1
ε

∫
ΩΣh+2

√
ε
\ΩΣh+

√
ε

F (x, ρε(x))dx+ o(ε).

Recalling that F (x, b2(x)) = 0 = Fu(x, b2(x)) and Fuu(x, b2(x)) > 0, we have

1
ε

∫
ΩΣh+2

√
ε
\ΩΣh+

√
ε

F (x, ρε(x))dx

=
1
ε

∫ 2
√

ε

√
ε

∫
Σh+μ

F

(
z, h(z) + μ,

[
b2(z, h+ μ) −W

(
z, h+ μ;

1√
ε

)]

×μ− 2
√
ε√

ε
+ b2(z, h+ μ)

)
dVḡdμ

� 1
ε

∫ 2
√

ε

√
ε

∫
Σh+μ

F
(
z, h+ μ, qe−α/

√
ε + b2(z, h+ μ)

)
dVḡdμ

=
1
ε

∫ 2
√

ε

√
ε

∫
Σh+μ

[
F
(
z, h+ μ, qe−α/

√
ε + b2(z, h+ μ)

)
−F (z, h+ μ, b2(z, h+ μ))] dVḡdμ
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� 1
ε

∫ 2
√

ε

√
ε

e−α/
√

εγεdμ

=
√
ε

ε
e−α/

√
εγε,

where

γε := q1 sup
{∫

Σt

Fu(z, t, τ)dVḡ :

h(z) +
√
ε < t < h(z) + 2

√
ε, b2(z, t) < τ < b2(z, t) + qe−α/

√
ε
}
.

Note that γε is uniformly bounded in ε. Therefore we have

Jε(ρε,ΩΣh+2
√

ε
\ΩΣh+

√
ε
) = o(ε). (3.7)

Similarly we have

Jε(ρε,ΩΣh−√
ε
\ΩΣh−2

√
ε
) = o(ε). (3.8)

Finally, we consider the integral Jε(ρε, ΩΣh+
√

ε
\ΩΣh−√

ε
). We have

Jε(ρε,ΩΣh+
√

ε
\ΩΣh−√

ε
)

=
∫

ΩΣh+
√

ε
\ΩΣh−√

ε

ε

2
a

∣∣∣∣∇gW

(
z, t,

t− h(z)
ε

)∣∣∣∣
2

+
1
ε
F

(
z, t,W

(
z, t,

t− h(z)
ε

))
dVḡdt

=
∫

ΩΣh+
√

ε
\ΩΣh−√

ε

ε

2
a

{∣∣∣∣∇ḡW

(
z, t,

t− h(z)
ε

)∣∣∣∣
2

(1 + O(t))

+
[
∂2W +

1
ε
∂3W

]2
}

+
1
ε
F

(
z, t,W

(
z, t,

t− h(z)
ε

))
dVḡdt,

where we used the formula |∇gv(z, t)|2 = |∇ḡv(z, t)|2(1 + O(t)) + (∂tv(z, t))2.
Then

Jε(ρε,ΩΣh+
√

ε
\ΩΣh−√

ε
)

=
∫

ΩΣh+
√

ε
\ΩΣh−√

ε

ε

2
a(z, t)

{∣∣∣∣∇ḡW

(
z, t,

t− h(z)
ε

)∣∣∣∣
2

(1 + O(t))

+

⎡
⎢⎣∂2W +

1
ε

√√√√2F
(
z, t,W (z, t, t−h(z)

ε )
)

a(z, t)

⎤
⎥⎦

2⎫⎪⎪⎬
⎪⎪⎭
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+
1
ε
F

(
z, t,W

(
z, t,

t− h(z)
ε

))
dVḡdt

=
∫

ΩΣh+
√

ε
\ΩΣh−√

ε

1
2
εa

[∣∣∣∣∇ḡW

(
z, t,

t− h(z)
ε

)∣∣∣∣
2

(1 + O(t)) + (∂2W )2
]

+ ∂2W

√
2aF

(
z, t,W (z, t,

t− h(z)
ε

)
)

+
2
ε
F

(
z, t,W

(
z, t,

t− h(z)
ε

))
dVḡdt.

Note that

∫
ΩΣh+

√
ε
\ΩΣh−√

ε

1
2
εa

[∣∣∣∣∇ḡW

(
z, t,

t− h(z)
ε

)∣∣∣∣
2

(1 + O(t)) + (∂2W )2
]

= o(1),

in virtue of the properties of the solution W of (2.2) and the fact that
‖∇ḡh‖L∞(Σ0) = o(ε1/4). The term ∂2W

√
2aF is bounded in ΩΣh+

√
ε
\ΩΣh−√

ε
. Now,

letting μ = (t− h(z))/ε and so t = t(z, μ) = h(z) + εμ, we have

Jε(ρε,ΩΣh+
√

ε
\ΩΣh−√

ε
)

=
∫

ΩΣh+
√

ε
\ΩΣh−√

ε

2
ε
F

(
z, t,W

(
z, t,

t− h(z)
ε

))
dVḡdt+ o(1)

=
∫ 1/

√
ε

−1/
√

ε

∫
Σ0

2F (z, h(z) + εμ,W (z, h(z) + εμ, μ))

× (1 + (h(z) + εμ)κ+ o(h(z) + εμ))dVḡdμ+ o(1). (3.9)

One has

d
dμ

∫
Σ0

∫ W (z,h+εμ;μ)

b1(z,h+εμ)

√
1
2
a(z, h+ εμ)F (z, h(z) + εμ, τ)

× (1 + (h(z) + εμ)κ+ o(h(z) + εμ))dτdVḡ

=
∫

Σ0

∫ W (z,h+εμ;μ)

b1(z,h+εμ)

d
dμ

[√
1
2
a(z, h+ εμ)F (z, h(z) + εμ, τ)

×(1 + (h(z) + εμ)κ+ o(h(z) + εμ))] dτdVḡ

+
∫

Σ0

√
1
2
a(z, h+ εμ)F (z, h(z) + εμ,W (z, h+ εμ;μ))

× (ε∂2W + ∂3W )(1 + (h(z) + εμ)κ+ o(h(z) + εμ))dVḡ (3.10)
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Note that√
1
2
a(z, h+ εμ)F (z, h(z) + εμ,W (z, h+ εμ;μ))∂3W (z, h+ εμ;μ)

= F (z, h(z) + εμ,W (z, h+ εμ;μ)) . (3.11)

By (3.10) and (3.11) we have
∫ 1/

√
ε

−1/
√

ε

∫
Σ0

2F (z, h(z) + εμ,W (z, h(z) + εμ, μ))

× (1 + (h(z) + εμ)κ+ o(h(z) + εμ))dVḡdμ

=
∫

Σ0

∫ W (z,h+
√

ε;1/
√

ε)

b1(z,h+
√

ε)

√
2a(z, h+

√
ε)F

(
z, h(z) +

√
ε, τ

)
× (1 + (h(z) +

√
ε)κ+ o(h(z) +

√
ε))dτdVḡ

−
∫

Σ0

∫ W (z,h−√
ε;−1/

√
ε)

b1(z,h−√
ε)

√
2a(z, h−√

ε)F
(
z, h(z) −√

ε, τ
)

× (1 + (h(z) −√
ε)κ+ o(h(z) −√

ε))dτdVḡ

− 2
∫ 1/

√
ε

−1/
√

ε

I1,εdμ− 2
∫ 1/

√
ε

−1/
√

ε

I2,εdμ, (3.12)

where

I1,ε =
∫

Σ0

∫ W (z,h+εμ;μ)

b1(z,h+εμ)

d
dμ

[√
1
2
a(z, h+ εμ)F (z, h(z) + εμ, τ)

×(1 + (h(z) + εμ)κ+ o(h(z) + εμ))] dτdVḡ,

I2,ε = ε

∫
Σ0

√
1
2
a(z, h+ εμ)F (z, h(z) + εμ,W (z, h+ εμ;μ))∂2W

× (1 + (h(z) + εμ)κ+ o(h(z) + εμ))dVḡ.

Plainly ∫ 1/
√

ε

−1/
√

ε

I2,εdμ = O(
√
ε). (3.13)

Recalling t = t(z, μ) = h(z) + εμ, we have

d
dμ

[√
1
2
a(z, h+ εμ)F (z, h(z) + εμ, τ)

×(1 + (h(z) + εμ)κ+ o(h(z) + εμ))]

= ε
d
dt

[√
1
2
a(z, t)F (z, t, τ)(1 + tκ+ o(t))

]
.
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Hence ∫ 1/
√

ε

−1/
√

ε

I1,εdμ = O(
√
ε). (3.14)

From (3.9), (3.12), (3.13) and (3.14) we obtain

lim
ε→0

Jε(ρε,ΩΣh+
√

ε
\ΩΣh−√

ε
)

=
∫

Σ0

∫ b2(z,h(z))

b1(z,h(z))

√
2a(z, h)F (z, h(z), τ)(1 + h(z)κ+ o(h(z)))dτdVḡ

=
√

2
∫

Σ0

Λ(z, h(z))(1 + h(z)κ+ o(h(z)))dVḡ

=
√

2
∫

Σh

ΛdVḡ. (3.15)

Combining the above claim and the assumption that uε is a family of L1-local
minimizer of Jε, we obtain

Jε(uε) � Jε(ρε). (3.16)

The upper bound estimate (3.4) follows from (3.16), (3.5), (3.6), (3.7), (3.8) and
(3.15), where the relation Ω+\ΩΣ0 = Ω+ is used again, since Q is simply connected.

For the case that Q is multiply connected, (3.5) becomes

Jε(ρε,Ω\ΩΣh+2
√

ε
) =

1
ε

∫
Ω+\ΩΣ0

F (x, b2(x))dx+ O(ε),

and the same argument as that of the simply connected domain case gives the upper
bound estimate (3.4). �

Proof of theorem 1.3. Lemmas 3.1 and 3.2 give the desired results of theorem 1.3
after a simple proof by contradiction. �

4. Global minimum

Given another smooth closed hypersurface Σ̃ ⊂ Q, similarly as the geometric ground
in § 1, for some δ̃ > 0, we define

S̃ = {x ∈ Ω : dist(x, Σ̃) < 2δ̃}, Υ̃ = [−2δ̃, 2δ̃].

We parameterize elements x ∈ S̃ using their closest point z in Σ̃ and their distance
t. Define the diffeomorphism Γ̃ : Σ̃ × Υ̃ → S̃ by

Γ̃(z, t) = z + tñ(z).

Letting ϕ̃ be the corresponding immersion into R
N , we have⎧⎪⎪⎨

⎪⎪⎩
∂Γ̃
∂zi

(z, t) =
∂ϕ̃

∂zi
(z) + tκ̃j

i (z)
∂ϕ̃

∂zj
(z) for i = 1, . . . , N − 1,

∂Γ̃
∂t

(z, t) = ñ(z).
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Let also (¯̃gij)ij be the coefficients of the metric on Σ̃ in the above coordinates z.
Then, letting g̃ denote the metric on Ω induced by R

N , we have

g̃IJ =
( {g̃ij} 0

0 1

)
,

where

g̃ij = ¯̃gij + t(κ̃m
i

¯̃gmj + κ̃n
j
¯̃gin) + t2κ̃m

i κ̃
n
j
¯̃gmn.

We have also

det g̃ = det ¯̃g[1 + 2tκ̃i
i] + o(t) =: det ¯̃g[1 + 2tκ̃] + o(t),

and

dVg̃ =
√

det g̃dzdt = (1 + tκ̃+ o(t))
√

det ¯̃gdzdt = (1 + tκ̃+ o(t))dV¯̃gdt.

For h satisfying ‖h‖L∞(Σ̃) � 2δ̃, we define the perturbed closed hypersurface

Σ̃h := {Γ̃(z, h(z)) : z ∈ Σ̃}.

Lemma 4.1. Assume that uε is a family of global minimizer of J̄ε, we have

J̄ε(uε) �
√

2
∫

Σ̃

ΛdV¯̃g +
∫

Ω+\ΩΣ̃

1
ε
F (x, b2(x))dx+ o(1). (4.1)

Proof. First, we also assume that Q is simply connected. Similar to that of § 3 we
define ρ̃ε : Ω → R by

ρ̃ε(x) =

⎧⎪⎪⎨
⎪⎪⎩
b2(x), x ∈ Ω\ΩΣ̃δ̃

,

bε(z, t; t), x = ϕ̃(z) + tñ(z) ∈ ΩΣ̃δ̃
\ΩΣ̃−δ̃

,

b1(x), x ∈ ΩΣ̃−δ̃
.

Decompose

J̄ε(ρ̃ε) = J̄ε(ρ̃ε,Ω\ΩΣ̃2
√

ε
) + J̄ε(ρ̃ε,ΩΣ̃2

√
ε
\ΩΣ̃√

ε
)

+ J̄ε(ρ̃ε,ΩΣ̃√
ε
\ΩΣ̃−√

ε
) + J̄ε(ρ̃ε,ΩΣ̃−√

ε
\ΩΣ̃−2

√
ε
)

+ J̄ε(ρ̃ε,ΩΣ̃−2
√

ε
).

Similar to that of (3.5), we have

J̄ε(ρ̃ε,Ω\ΩΣ̃2
√

ε
) =

1
ε

∫
Ω+

F (x, b2(x))dx+ O(ε), (4.2)

and

J̄ε(ρ̃ε,ΩΣ̃−2
√

ε
) = O(ε). (4.3)
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We have

J̄ε(ρ̃ε,ΩΣ̃2
√

ε
\ΩΣ̃√

ε
) =

1
ε

∫
ΩΣ̃2

√
ε
\ΩΣ̃√

ε

F (x, ρ̃ε(x))dx+ o(ε).

Using that F (x, b2(x)) = 0 = Fu(x, b2(x)) and Fuu(x, b2(x)) > 0 again, we have

1
ε

∫
ΩΣ̃2

√
ε
\ΩΣ̃√

ε

F (x, ρ̃ε(x))dx

=
1
ε

∫ 2
√

ε

√
ε

∫
Σ̃t

F

(
z, t,

[
b2(z, t) −W

(
z, t;

1√
ε

)]
t− 2

√
ε√

ε

+b2(z, t)) dV¯̃gdt

� 1
ε

∫ 2
√

ε

√
ε

∫
Σ̃t

F
(
z, t, q1e−α/

√
ε + b2(z, t)

)
dV¯̃gdt

� 1
ε

∫ 2
√

ε

√
ε

q1e−α/
√

εγ̃εdt

= o(ε),

where

γ̃ε := sup

{∫
Σ̃μ

Fu(z, μ, τ)dV¯̃g :
√
ε < μ < 2

√
ε,

b2(z, μ) < τ < b2(z, μ) + q1e−α/
√

ε
}
.

Therefore, we have

J̄ε(ρ̃ε,ΩΣ̃2
√

ε
\ΩΣ̃√

ε
) = o(ε). (4.4)

Similarly we have

J̄ε(ρ̃ε,ΩΣ̃−√
ε
\ΩΣ̃−2

√
ε
) = o(ε). (4.5)

For the integral J̄ε(ρ̃ε, ΩΣ̃√
ε
\ΩΣ̃−√

ε
), we have

J̄ε(ρ̃ε,ΩΣ̃√
ε
\ΩΣ̃−√

ε
)

=
∫

ΩΣ̃√
ε
\ΩΣ̃−√

ε

ε

2
a

∣∣∣∣∇g̃W

(
z, t,

t

ε

)∣∣∣∣
2

+
1
ε
F

(
z, t,W

(
z, t,

t

ε

))

=
∫

ΩΣ̃√
ε
\ΩΣ̃−√

ε

ε

2
a

{∣∣∣∣∇¯̃gW

(
z, t,

t

ε

)∣∣∣∣
2

(1 + O(t))

+
[
∂2W +

1
ε
∂3W

]2
}

+
1
ε
F

(
z, t,W

(
z, t,

t

ε

))
dV¯̃gdt

https://doi.org/10.1017/prm.2022.12 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.12


780 Zhuoran Du

=
∫

ΩΣ̃√
ε
\ΩΣ̃−√

ε

ε

2
a

{∣∣∣∣∇¯̃gW

(
z, t,

t

ε

)∣∣∣∣
2

(1 + O(t))

+

[
∂2W +

1
ε

√
2F
a

]2
⎫⎬
⎭+

1
ε
F

(
z, t,W

(
z, t,

t

ε

))

=
∫

ΩΣ̃√
ε
\ΩΣ̃−√

ε

1
2

{
εa

[∣∣∣∣∇¯̃gW

(
z, t,

t

ε

)∣∣∣∣
2

(1 + O(t)) + (∂2W )2
]

Note that

εa

[∣∣∣∣∇¯̃gW

(
z̃, t̃,

t̃

ε

)∣∣∣∣
2

(1 + O(t)) + (∂2W )2
]

is bounded in ΩΣh+
√

ε
\ΩΣh−√

ε
in virtue of the properties of the solution W of (2.2).

Hence, letting μ = t
ε and so t = t(μ) = εμ, we have

J̄ε(ρ̃ε,ΩΣ̃√
ε
\ΩΣ̃−√

ε
)

=
∫ 1/

√
ε

−1/
√

ε

∫
Σ̃

2F (z, εμ,W (z, εμ, μ)) (1 + εμκ̃+ o(εμ))dV¯̃gdμ+ O(
√
ε). (4.6)

One has

d
dμ

∫
Σ̃

∫ W (z,εμ;μ)

b1(z,εμ)

√
1
2
a(z, εμ)F (z, εμ, τ)(1 + εμκ̃+ o(εμ))dτdV¯̃g

=
∫

Σ̃

∫ W (z,εμ;μ)

b1(z,εμ)

d
dμ

[√
1
2
a(z, εμ)F (z, εμ, τ)(1 + εμκ̃+ o(εμ))

]
dτdV¯̃g

+
∫

Σ̃

√
1
2
a(z, εμ)F (z, εμ,W (z, εμ;μ)))

× (ε∂2W + ∂3W )(1 + εμκ̃+ o(εμ))dV¯̃g (4.7)

Note that √
1
2
a(z, εμ)F (z, εμ,W (z, εμ;μ))∂3W (z, h+ εμ;μ)

= F (z, εμ,W (z, εμ;μ)) . (4.8)

By (4.7) and (4.8) we have∫ 1/
√

ε

−1/
√

ε

∫
Σ̃

2F (z, εμ,W (z, εμ, μ)) (1 + εμκ̃+ o(εμ))dV¯̃gdμ

=
∫

Σ̃

∫ W (z,
√

ε;1/
√

ε)

b1(z,
√

ε)

√
2a(z,

√
ε)F

(
z,
√
ε, τ

)
(1 +

√
εκ̃+ o(

√
ε))dτdV¯̃g
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−
∫

Σ̃

∫ W (z,−√
ε;−1/

√
ε)

b1(z,−√
ε)

√
2a(z,−√

ε)F
(
z,−√

ε, τ
)
(1 −√

εκ̃+ o(
√
ε))dτdV¯̃g

− 2
∫ 1/

√
ε

−1/
√

ε

Ĩ1,εdμ− 2
∫ 1/

√
ε

−1/
√

ε

Ĩ2,εdμ, (4.9)

where

Ĩ1,ε =
∫

Σ̃

∫ W (z,εμ;μ)

b1(z,εμ)

d
dμ

[√
1
2
a(z, εμ)F (z, εμ, τ)(1 + εμκ̃+ o(εμ))

]
dτdV¯̃g,

Ĩ2,ε = ε

∫
Σ̃

√
1
2
a(z, εμ)F (z, εμ,W (z, εμ;μ)))∂2W (1 + εμκ̃+ o(εμ))dV¯̃g.

Plainly ∫ 1/
√

ε

−1/
√

ε

Ĩ2,εdμ = O(
√
ε). (4.10)

Recalling t = t(μ) = εμ, we have

d
dμ

[√
1
2
a(z, εμ)F (z, εμ, τ))(1 + εμκ̃+ o(εμ))

]

= ε
d
dt

[√
1
2
a(z̃, t̃)F (z, t, τ))(1 + tκ̃+ o(t))

]
,

which yields ∫ 1/
√

ε

−1/
√

ε

Ĩ1,εdμ = O(
√
ε). (4.11)

From (4.6), (4.9), (4.10) and (4.11) we obtain

lim
ε→0

J̄ε(ρ̃ε,ΩΣ̃√
ε
\ΩΣ̃−√

ε
)

=
∫

Σ̃

∫ b2(z,0)

b1(z,0)

√
2a(z, 0)F (z, 0, τ))dτdV¯̃g

=
√

2
∫

Σ̃

Λ(z, 0)dV¯̃g. (4.12)

The upper bound estimate (4.1) follows from (4.2), (4.3), (4.4), (4.5), (4.12) and
the assumption that J̄ε(uε) � J̄ε(ρ̃ε), where the relation Ω+\ΩΣ̃ = Ω+ is used, since
Q is simply connected.

For the case that Q is multiply connected, (4.2) becomes

J̄ε(ρ̃ε,Ω\ΩΣ̃2
√

ε
) =

1
ε

∫
Ω+\ΩΣ̃

F (x, b2(x))dx+ O(ε),

and the same argument as that of the simply connected domain case gives the
desired result. �
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On the other hand, from lemma (3.1) we have

J̄ε(uε) �
√

2
∫

Σ0

ΛdVḡ +
∫

Ω+\ΩΣ0

1
ε
F (x, b2(x))dx+ o(1). (4.13)

Proof of theorem 1.4. Recall the assumption that Ω+\ΩΣ = Ω+\ΩΣ0 for any closed
smooth (N − 1)-dimensional nontrivial surface Σ ⊂ Q. Combining this, lemma 4.1
and (4.13) we obtain the desired results of theorem 1.4. �

To find the locations of the interfaces of interior layers to L1-local and global
maximizers of the associated energy functional, or even to general layer solutions,
seems to be an interesting question. What about H1-local and global minimizers
or maximizers is also deserved to be studied.
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