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Abstract

A weak canonical form is derived for vector spaces of m X n matrices all of rank at most r. This
shows that the structure of such spaces is controlled by the structure of an associated ‘primitive’
space. In the case of primitive spaces it is shown that m and n are bounded by functions of r and
that these bounds are tight.

1980 Mathematics subject classification (Amer. Math. Soc.): 15 A 30, 15 A 03.

The study of vector spaces X whose vectors are m X n matrices of rank
bounded by some number r was begun by Flanders (1962). He showed that such
spaces necessarily have dimension at most max(mr, nr) and he classified the
spaces of this maximal dimension. His work was extended by Atkinson and
Lloyd (1980) to dim X > max(mr, nr) — r + 1 while Atkinson and Stephens
(1977) treated the case dim X = 2. In this article we shall derive a weaker
classification theorem which however is valid for X of arbitrary dimension. This
theorem shows that the structure of X depends essentially on an associated
‘primitive’ space with similar properties to X but for which extra information is
available. As an application of this result we shall deduce a resuit which
resembles the main theorem of Atkinson and Lloyd (1980) (although it neither
implies nor is implied by this theorem). Most of our methods are valid (as in the
above works) only when the underlying field has at least » + 1 elements and this
condition will be a tacit assumption in all our results.

For any space % of m X n matrices we let p(°X) be the maximum rank of the
various matrices in X.. If P and Q are non-singular m X m and n X n matrices
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then the set
PXQ = {PXQ: X € X}

is also a space and obviously p(PX.Q) = p(%X). Clearly PX.Q is obtained from
X by performing a fixed sequence of row and column operations on each matrix
of . In our study of the effect of p(°X) upon X we shall freely replace X by
such equivalent spaces. If we were to regard %X as a space of linear mappings
between vector spaces V,, and V, (or as a space of bilinear forms on V,, X V,)
such replacements would of course just correspond to changing the bases of V,,
and V,.

There are three ways in which X may reduce to a ‘smaller’ space. It may be
equivalent to a space of matrices all of which have a fixed row or column equal
to zero, or to a space of matrices of the form (#Y) where u is a column vector
and rank (Y) € p(X) — 1, or to a space of matrices of the form (%) where v is a
row vector and again rank (Y) < p(%X) — 1. If any of these occur we shall say
that X is imprimitive. In the first case we clearly lose nothing by deleting the
zero row or column, while in the second and third cases much of the complica-
tion within % will be inherited by the space % formed by the matrices Y; thus
an understanding of the structure of X may be gained by studying ¥ which has
the property p(%U) < p(°X). If X cannot be reduced in any of these ways it will
be said to be primitive.

It is convenient in considering m X n matrices to allow one or both of m and
n to be zero (corresponding to mappings between vector spaces one or both of
which is the zero space). If we do this then the zero space consisting of a single
zero by zero matrix is a primitive space; not surprisingly we call this the trivial
space.

More interesting examples of primitive spaces arise out of the following
construction. Let ¥ be an (r + 1)-dimensional vector space and let /\?V denote
its exterior square of dimension %r(r + 1). Each vector v € V induces a linear
mapping x - x A v from V into /\*V which, since v A v = 0, has rank at most
r (in fact, if v # 0, it has rank exactly r). These mappings give an (r + 1)-
dimensional space U of (r + 1) X %r(r + 1) matrices with p(W,) = r.

LEMMA 1. If r > 2 then U, is primitive.

PrOOF. If the matrices of U, are equivalent to matrices (1Y) with rank
(Y) < r — 1 then A’V has a 1-dimensional subspace W such that for allv € V
the composite mapping

X xANvPExA\Nv+ W
from ¥V into A?V/W has rank at most r — 1. The kernel of such a mapping
must have dimension at least 2 and so, for all v, there exists v independent of v
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with © A v € W. It now follows that dim ¥ < 2 (and so r < 1); for otherwise
we could take any v; # 0 and any v, independent of {v,, ©,} and there would be
no vector v, independent of v, with v, A\ v, € {v; A v,). This disposes of one
of the ways in which U, could be imprimitive; the others are easier to deal with
and we leave the routine checks to the reader.

"Ylf,‘and, more generally, any space X with p(°X) = 1 is imprimitive; this is a
consequence of the following observation due to Westwick (1972), Theorem 4.2,
and which can be deduced also from Lemmas 4 and 5 below.

LeEMMA 2. A space of matrices X with p(°X) = 1 is equivalent either to a space
of matrices with non-zero entries in the first row only, or to a space of matrices with
entries in the first column only.

More examples of primitive spaces can be derived from the higher exterior
powers of an n-dimensional vector space V. For each non-zero v € V the
mapping x — x A v from AV into A**'V has rank (";'). A similar proof to
that of Lemma 1 shows that the corresponding n-dimensional space of (}) X
(" 1) matrices is primitive if 1 < k < n — 2. Another source of primitive spaces
is provided by the next lemma whose proof follows directly from the definitions.

LEMMA 3. If X, and X, are primitive spaces then the space X, ® X, of all
matrices

X, O
! with X, € ¥, and X, € X,
0o X,

is also primitive.
Our main result is

THEOREM 1. If X is a space of m X n matrices then there exists a primitive
space Y and integers p,q > 0 with p(X)=p + q + p(%Y) such that X is
equivalent to a space of matrices of the form

pXq
Y 0
0 o0
where the submatrices Y constitute the primitive space % .
Moreover for a primitive space X (p =0, g =0, X = U) with r = p(°X) one
of the following occurs:
@m=r+1L,n<3r(r+1),
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(ym<3r(r+ D,n=r+1,
(1) for some integers c,d > 2 with c+d=r, m<c+1+ %d(d+ 1),
n<d+1+jc(c+1),

The bounds in (1), (i) and (iii) are all optimal. This is demonstrated in case (i)
by U, while its transpose U, deals with case (ii); for case (iii) we rely on
Lemma 3 which shows that U, @ AU is primitive.

The primitive space ¥ in the theorem is, in general, not uniquely determined
by X. To see an example of this observe that the 4 X 6 matrices of U, are
equivalent to matrices

B
A

000

where the space of all the 3 X 3 matrices B is ?Uf,. Then the space X of all
6 X 6 matrices

B
A
000
000
C
000

where-C ranges over all 2 X 3 matrices has p(°() = 5 and satisfies the theorem -
withp = 0,9 = 3, ¥ = 9,. On the other hand simple row operations show that
it also satisfies the theorem withp = 2,4 = 0, ¥ = ;.

We note that the theorem applies in the special case, considered by Westwick
(1972), of a space all of whose non-zero matrices have the same rank; in this
case the space Y will also inherit this extra property.

Among the technical lemmas required to prove the theorem are two previ-
ously published results which for ease of reference we restate here.

LemMa 4 (Flanders (1962)). If X is a space of matrices with p(°X) = r then
there is a space equivalent to X. whose matrices have the form (3, {') where T is an
r X r matrix.

LeEMMA 5 (The proof of Lemma 4, Atkinson and Lloyd (1980)). Let X be a
space of matrices all partitioned in some fixed way as (% §) and let U, V be the
spaces formed by the submatrices U, V respectively. Then p(U) + p(V) < p(%X).

DEFINITION. A space X of matrices is said to have the row condition if,

whenever X is equivalent to a space of matrices all partitioned in some fixed
way as (& &), all the submatrices B have rank less than the number of rows of B.
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Similarly %X is said to have the column condition if, whenever % is equivalent to
a space of matrices partitioned in this way, all the submatrices C have rank less
than the number of columns of C.

LEMMA 6. If a space X with p(°X) = r has the row condition then there is a
space equivalent to °X. whose matrices have non-zero entries only in their first
%r(r + 1) columns. Moreover, either

(i) these matrices have non-zero entries in their first 1 + %r(r — 1) columns
only, or
(i) these matrices have non-zero entries in their first r + 1 rows only.

PrROOF. If p(°X) = 0 the lemma is obviously correct and if p(°X) = 1 it follows
from Lemma 2. These cases provide the first steps of an induction. We shall
assume now that r = p(°X) > 2 and, as an inductive hypothesis, that the lemma
is true for spaces of matrices of rank smaller than r. By using Lemma 4 we may
replace X by a space whose matrices all have the form (% ) for some r X r
matrices W. Let Y be the space formed by the submatrices Y and £ the space
formed by the submatrices Z. Then Y also satisfies the row condition. For if
there were row and column operations which reduced % to a form which
contravened the definition of the row condition then these operations performed
on X would show that % did not satisfy the row condition.

In particular, since each Y € ¥ has r rows, p(%) < r — 1. Hence, by the
inductive hypothesis, % must be equivalent to a space whose matrices have
non-zero entries in their first %r(r — 1) columns only, and so %X is equivalent to
a space whose matrices have non-zero entries in their first r + %r(r - 1=
%r(r + 1) columns only. This establishes the first part of the lemma.

If, in fact, p(Y) <r — 1 then, by the same reasoning, we would obtain
conclusion (i) of the second part since r + 3(r — D(r — 2) = 1 + 3r(r — 1).
Consequently we may as well assume that p(%) = r — 1 and hence, by Lemma
5, p(Z) < 1 and we can apply Lemma 2 to €. If € is equivalent to a space of
matrices with zeros everywhere except in their first row we obtain conclusion (ii)
of the lemma and so we may assume that £ can, and has been, replaced by
matrices with non-zero entries in their first column only. Thus % consists of

matrices
( ) )
H O

where each U has r rows. As above the space 9 of all submatrices U satisfies
the row condition and has p(U) < r — 1. A final application of the inductive
hypothesis (to Q) shows that X is equivalent to a space of matrices with
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non-zero entries in their first 1 + %r(r — 1) columns only, that is conclusion (i)
holds.

Of course, the same result holds with the words ‘row’ and ‘column’ inter-
changed.

ProoF ofF THEOREM 1. The first part of the theorem obviously holds when
m = n =0 (X is then the trivial space) and this provides the base of an easy
induction on m + n. In carrying out the inductive step we may take °X to be
imprimitive since in the primitive case we cansetp = ¢g=0and Y = X.If X
1s equivalent to a space of matrices (uU) for column vectors ¥ and m X (n — 1)
matrices U of rank at most p(°X) — 1 we apply the inductive hypothesis to the
space 9 formed by the matrices U. Then 9 is equivalent to a space of matrices
of the form

P Xq
Y 0
0 0
with %Y primitive and p + ¢ + p(%Y) = p(X) — 1. Thus X is equivalent to a
space of matrices of the form

px(q+1)]

' Y 0
0 O
which have the form claimed in the first part of the theorem. Similar arguments

deal with the remaining two ways in which % can be imprimitive.
For the second part (with % primitive) we begin by replacing X by a space of

matrices of the form
(a Xb| U )
Vv 0

for some fixed @, b with @ < r, b <r. By Lemma 4 such equivalent spaces
definitely exist, and we shall choose one with ¢ + b as small as possible. Let
A, V be the spaces formed by the submatrices U, V respectively. Then QU
satisfies the row condition. For, if on the contrary, for some k& > 0 the matrices
of QU are equivalent to matrices

U,

where each U, has k rows and some U, has rank & then the matrices of X are
equivalent to matrices
Wil 0
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where, by Lemma 5, the space U of submatrices W satisfies p(W) < r — k. But
then, repartitioning these matrices equivalent to X as (%) we have, for all Y,
rank(Y) <r — k + k — 1 = r — 1 contradicting the primitivity of X. For pre-
cisely similar reasons V satisfies the column condition. Moreover, if x = p(U)
and y = p(‘V) then x + y < r and certainly, since X is primitive, x < r and
y<r.

If m = r + 1 then we can obtain possibility (i) since n < b + %x(x + 1)<
r+ 3r(r — 1) =3r(r + 1). So in the remainder of the proof we may take m >
r + 1 and likewise n > r + 1 and work towards obtaining possibility (iii).

Now we apply Lemma 6 to QL. If conclusion (i) of this lemma holds then

(1) n<b+ix(x—1)+1
while if conclusion (ii) holds then
(1) n<b+3x(x+1) and a=x+1

(the last equation following from the minimality of a + b). Similarly, arguing
with <V, we have either

) m<a+zy(y —1)+1,
or
2) m<a+3y(y+1) and b=y + 1

If (1) and (2) hold we may satisfy the theorem by choosing any ¢, d with
x <c¢,y <dandc + d = r. For then

m<r+iy(y—-D+1<c+d+3dd—1)+1=c+1+3dd+1)
and similarly n < d + 1 + Jc(c + 1).

If (1) and ) hold we putd=y+land c=r—-d2>x+y—y—-1=
x — 1. Then

m<r+iy(y+1)=c+d+3dd-1)
<c+1+3d(d+1)
and
n<y+1+3x(x—1)+1
<d+1+43c(c+1).

If (1’) and (2) hold a similar argument can be used while if (1") and (2") hold
we obtain the conclusion by again choosing any ¢, d with x < ¢, y < d and
c+d=r.

Finally we observe that the values c, d obtained are necessarily each greater
than 1 since we have assumed m, n > r + 1.
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In Atkinson and Lloyd (1980) a space X of matrices with p(%X) = r was
defined to be r-decomposable if it was equivalent to a space of matrices all of

for some fixed p, ¢ with p + ¢ = r. In the terminology of Theorem 1, r-de-
composable spaces are those which satisfy the theorem with %Y equal to the
trivial space. For all m, n and r > 2 the space of all matrices

zZ

Yy O
0 0

(Z an arbitrary (r — 2) X n matrix and Y € °,) is an example of a space X
with p(®X) = r of ‘large’ dimension n(r — 2) + 3 which is not r-decomposable.
To complement this example we have

THEOREM 2. If X is a space of m X n matrices with m < n, p(X) = r,
n>1r’(r + 1)/(r — 2) and dim %X > n(r — 2) + 3 then X is r-decomposable.

ProoF. We use the notation of Theorem 1 and take %X in the canonical form
given in that theorem. Then

n(r—2)+3<dim% <mq+ np — pg+dim %Y
<n(p+q)+dim%
and putting s = p(¥) = r — p — q we obtain
3) n(s —2) + 3 < dim %Y.
By Theorem 1 the maximum number of rows or columns the matrices of % can
have is %s(s + 1) and so from Theorem 1 of Flanders (1962) n(s — 2) + 3
<31s*s + 1). Butif s > 2 we would have
rr+ 1)/ (r=2)<3s*(s+ 1)/ (s = 2)

which, since s < r, is impossible; hence s = 0, 1 or 2. By Lemma 2, s # 1 and
we just have to exclude the case s = 2. In this case (3) shows that dim % > 3
which contradicts

LeMMA 7. Every primitive space X with p(X) = 2 is a 3-dimensional space of
3 X 3 matrices.

Proor. If X consists of m X n matrices then m, n > 3 from the definition of
primitivity. On the other hand Theorem 1 shows that m, n < 3. If X contains
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no matrix of rank 1 then Theorem 5.2 of Westwick (1972) proves that %X is
3-dimensional. To complete the proof therefore it is sufficient to show that a
space X of 3 X 3 matrices with p(°X) = 2 and containing a rank 1 matrix M is
2-decomposable (and thus imprimitive).

By passing to an equivalent space we may take

1 0 0
M=i{0 0 0
0 0 0

in which case, by Lemma 2 of Atkinson and Lloyd (1980), the matrices of °X
have the form

where rank Y < 1. Using Lemma 2 on the space formed by the submatrices Y
and replacing X by an equivalent space the matrices may be assumed to all
have the form

*  * %
*+ * 0
*x *x 0

or to all have the form

* * *
* * * |,

= 0 0

To within transposes these cases are the same and so we lose no generality in
assuming the former. Then, by Lemma 5, the third column of each matrix is zero
(so that %X is 2-decomposable) or the matrices have the form

* * *

0
z 0

withrank Z < 1.
In this last case Lemma 2 may be applied to the space formed by the
submatrices Z. It shows that %X is equivalent to a space of matrices of the form

* *
* 0
0

*

O O

https://doi.org/10.1017/5144678870001795X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001795X

482 M. D. Atkinson and S. Lloyd {10]

or to a space of matrices of the form

* * *

* x x|,
0 0 O
both of which are 2-decomposable, completing the proof.

By a rather longer calculation Lemma 7 can be extended to show that U, is
the only primitive space with p(X) = 2. Much more extensive computations
have been performed by one of us (Lloyd) resulting in the classification of
primitive spaces with p(%X) = 3.
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