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1. Introduction

The present paper is concerned with the Sturm–Liouville eigenvalue problem
subject to Dirichlet boundary condition:

− y′′ + qy = λy, y = y(x), x ∈ [0, 1], y(0) = 0 = y(1), (1.1)

where the potential q ∈ L1([0, 1], R) and L1([0, 1], R) is the space of Lebesgue
integrable real-valued functions on [0, 1]. From the spectral theory of differential
equations, it is known that (1.1) has a countable number of eigenvalues, which
are algebraically simple, bounded below, and tend to ∞. Let λn(q) be the n-th
eigenvalue of (1.1). Then

−∞ < λ1(q) < λ2(q) < · · · < λn(q) → ∞, n→ ∞.

For example, if q ≡ 0, then λn(0) = n2π2, n ∈ N. The set of all the eigenvalues of
(1.1) is the spectral set, denoted by σ(q).

The main objective in spectral theory of differential equations is relations between
geometric data: coefficients of the equation, shape of the boundary, etc. and spectral
data: eigenvalues and eigenfunctions of the differential equation. The direct problem
is to determine spectral data from geometric data. The spectral theory for the direct
problem is well developed for regular as well as singular problems, and the reader
can refer to the books [2, 23, 24]. The inverse problem is to recover the geometric
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data (or part of it) from some spectral dada. Compared with the direct problem,
the inverse problem is hard to solve and the corresponding spectral theory needs
to be developed further. One of the reason is that the spectral set is determined
uniquely by q ∈ L1[0, 1], but the converse is not true. It was proved in [13] that for
a given spectral set σ(q0) with q0 ∈ L2[0, 1], the isospectral set M(q0):

M(q0) =
{
q ∈ L2[0, 1] : σ(q) = σ(q0)

}
(1.2)

is an infinite dimensional real analytic submanifold of L2[0, 1] [13, p. 68], and
only the even potentials in an isospectral set can be determined uniquely with
the smallest L2-norm, see [13, Corollary 1, p. 77]. In fact, earlier in 1946, Borg
[1] gave the fundamental theorem that two sets of eigenvalues uniquely determine
the potential. Since then, many scholars have carried out in-depth research and
generalization of Borg’s results, see [10, 11]. Hochstadt and Lieberman [7] showed
that the potential which is known on half of the interval can be recovered from a set
of eigenvalues and it is also the start of recovering potentials from partial spectral
data [3, 4, 21, 22].

In this paper, we attempt to study the optimal inverse problem of the potentials
with fixed finite eigenvalues λj ∈ R, j = 1, . . . ,m and λ1 < · · · < λm, m ∈ N. That
is, we will estimate the infimum of the norm ‖q‖1 of q in Ω(λ1, . . . , λm) ⊂ L1[0, 1],
where

Ω(λ1, . . . , λm) =
{
q : q ∈ L1([0, 1], R), λj ∈ σ(q), j = 1, . . . ,m

}
.

Since Ω(λ) is an infinite-dimensional submanifold in L2[0, 1] with codimension one
and

Ω(λ1, λ2, . . . , λm) = ∩m
k=1Ω(λk),

the set Ω(λ1, λ2, . . . , λm) must be an infinite set in L2[0, 1], and hence in L1[0, 1] due
to L2[0, 1] ⊂ L1[0, 1]. So that, the uniqueness of potential for the recovery problem
does not hold. Thus, we recover the optimal potential under the condition that
the L1-norm of the potential is the infimum in Ω(λ1, λ2, . . . , λm). For the optimal
recovery problem, we also study the existence—whether the infimum is attained
in Ω(λ1, λ2, . . . , λm). Furthermore, we will present the quantitative representation
of the optimal potential. The optimal recovery problem, or the optimal inverse
problem, is very related to the extremal problem of eigenvalues, particularly, the
two problems are equivalent to each other provided that m = 1 [14].

For the case m = 1, the optimal inverse problem has been solved in [14] by using
the generalized Lyapunov-type inequality together with Rayleigh–Ritz principle,
and this method has been used successfully to solve the norm estimating of the
optimal potentials for Sturm–Liouville problem with general separated boundary
conditions (see [5]) and with Dirac distribution weights (see [6]). However, the above
technique is hardly applicable to solve the problem directly for the casesm � 2 since
the (generalized) Lyapunov-type inequality involves only one eigenvalue.

Another efficient method to solve the optimal inverse problem is the critical
equations in Lp[0, 1] for p > 1, which were early used by the authors in [20, 25]
for Sturm–Liouville operators in studying the extremal problems of eigenvalues, in
which the similar results for the optimal potentials with Dirichlet and Neumann
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boundary conditions have been obtained based on the critical equations. Recently,
the critical equations are also constructed in [18] for elliptic operators with the case
m = 1, then the authors in [8, 19] extended the case to any finite m. Such method
is also used in [16] to obtain the optimal weight of vibrating string equations for
the case m = 1.

For m � 2, the optimal inverse problem can be turned into finding the solution
of a boundary value problem for a system of nonlinear differential equations. For
example, the authors in [19] used this method to find the optimal potential q ∈ L2

which is the nearest to given q0 with prescribed partial trace. And the authors in [8]
extended to estimate the infimum of the norm ‖q − q0‖2 for fixed finite eigenvalues
of q. In both of the above papers, the existence of the optimal potentials is proved
and the expressions of such potentials are given by the solutions of boundary value
problems of nonlinear differential equations.

In the present paper, the similar problem for m = 2 is considered in the space
L1[0, 1] with q0 = 0. Since the norm in L1[0, 1] is not differentiate, the critical
equation method could not be applied directly. Besides, when m � 2, it is difficult
to obtain the explicit form of the optimal potential by the critical equation method
due to the nonlinearity of the corresponding problems.

Similar to the present problem, the inverse optimal problem of weights for the
problem

−y′′ = λwy, y(0) = 0 = y(1)

has been investigated in [15] when the first two eigenvalues are known. To date,
few results of estimating the extremal norm of potentials for the cases m � 2 are
available.

In this paper, we will study the case for m = 2. For fixed λ1, λ2 ∈ R and λ1 < λ2,
the paper considers the infimum:

E(λ1, λ2) = inf {‖q‖1 : q ∈ Ω(λ1, λ2)} (1.3)

of the L1-norm of q in the set:

Ω(λ1, λ2) =
{
q : q ∈ L1[0, 1], λ1(q) = λ1, λ2(q) = λ2

}
. (1.4)

For the purpose of the clear statement of the methods, we consider only the special
case, where ⎧⎨⎩λ1 ∈ (−∞, π2), λ2 ∈ (λ1, 4π2), ρj =

√
λj , j = 1, 2,

ρ1

(
cot

ρ1

4
− tan

ρ1

4

)
� 2ρ2 cot

ρ2

4
.

(1.5)

Note that the functions
√
λ cot(

√
λ/4) and

√
λ tan

(√
λ/4

)
are analytic in the half-

plane Reλ < 4π2 except for the only removable singularity λ = 0, and hence for√
λ cot(

√
λ/4), we use

√
λ cot(

√
λ/4)|λ=0 = 4 and for λ < 0:

√
λ cot

√
λ =

√
|λ| coth

√
|λ|,

√
λ tan

√
λ = −

√
|λ| tanh

√
|λ|.

The admissible set of the above restrictions on λ1 and λ2 in (1.5) is not empty,
see remark 2 in §3. The reason why we consider condition (1.5) is that for general
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situations, it follows from the existing results, see [14, p. 11], the optimal potential is
either the Dirac-delta function or the bathtub function. We will prove that condition
(1.5) guarantees that the optimal potential is a Dirac-delta function.

Since the Dirac-delta function is not Lebesgue integral, then we introduce the
measure space M0 [12, 26] with the norm ‖μ‖V for μ ∈ M0, see the defini-
tions in §2. Then, we consider the eigenvalue problem of the second-order measure
differential equations with the given measure μ ∈ M0:{−dẏ(x) + y(x) dμ(x) = λy dx, x ∈ [0, 1],

y(0) = 0 = y(1),
(1.6)

where ẏ expresses the generalized derivative of the solution y(x) and (1.6) has a
countable number of eigenvalues, which are algebraically simple, bounded below,
and tend to ∞ [12].

Therefore, we can introduce the similar optimal recovery problem as (1.3) and
(1.4) in M0. Let λ1(μ), λ2(μ) be the first and second eigenvalues of (1.6) and
define:

E0(λ1, λ2) = inf {‖μ‖V : μ ∈ Ω0(λ1, λ2)} , (1.7)

Ω0(λ1, λ2) = {μ : μ ∈ M0, λ1(μ) = λ1, λ2(μ) = λ2} . (1.8)

Applying the spectral shifting lemma, see lemma 2.4, we prove in §2 that

Theorem 1.1. E0(λ1, λ2) is accessible and E(λ1, λ2) = E0(λ1, λ2).

Theorem 1.1 indicates that the above optimal recovery problems are well posed
and they are equivalent to each other. This enables us to look for the optimal solu-
tion μ0 ∈ Ω0(λ1, λ2) such that ‖μ0‖V = E0(λ1, λ2) in M0. The following theorem
is the main result of this paper.

Theorem 1.2. Consider the eigenvalue problem (1.1) with symmetric potential q.
Let E(λ1, λ2) and Ω(λ1, λ2) be defined in (1.3) and (1.4), respectively. If λ1 and λ2

satisfy (1.5), then

E(λ1, λ2) = 2r, r = ρ1 [cot(ρ1a) − tan ρ1(1/2 − a)] > 0,

where a ∈ [1/4, 1/2) is the unique root of the equation:

ρ1 [cot(ρ1a) − tan ρ1(1/2 − a)] = ρ2 [cot(ρ2a) + cot ρ2(1/2 − a)] .

Furthermore, E(λ1, λ2) is attained in M0 by μ(x) = −r(Ha(x) +H1−a(x)) in (1.6),
where Ha(x) is Heaviside function, see definition (2.2) in §2.

The arrangement of this paper is as follows. Section 2.1 provides some prelim-
inary knowledge about the real measure space on [0, 1]. In §2.2, we introduce the
inverse spectral theory in L2[0, 1], and then provide the proof of theorem 1.1. We
will introduce the min-max principle of quadratic form in §2.3 and provide the
generalized Lyapunov inequality with modification in §2.4. The proof of theorem
1.2 is given in §3. In the Appendix, we will supplement some concepts of quadratic
form and add the proof of the correspondence between the quadratic form and the
problem proposed in §2.3 and 2.4.
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2. Preliminaries

2.1. The measure space

This subsection introduces some basic knowledge of measure space, see [12, 26]
for more details.

For a real function μ : [0, 1] → R, the total variation of μ on [0, 1] is defined as:

‖μ‖V = sup

{
n−1∑
i=0

|μ(xi+1) − μ(xi)| : 0 = x0 < · · · < xn = 1, n ∈ N

}
.

The space of measures on [0, 1] is defined as:

M0 = {μ : [0, 1] → R : μ(0+) = 0, μ(x+) = μ(x), ∀x ∈ (0, 1), ‖μ‖V <∞} ,

where μ(x+) := lims↓x μ(s), x ∈ [0, 1) is the right-limit. dμ can be represented as
ρ = dμ and call ρ as ‘density function’. For example, f ∈ L1[0, 1] is the density
function of the absolutely continuous measure:

μf (x) :=
∫

[0,x]

f(s) ds, x ∈ [0, 1]. (2.1)

And the Dirac-delta function δ(x− a) at point a ∈ (0, 1) is the density function of
the Heaviside function Ha(x), where

Ha(x) =

{
0, x ∈ [0, a),

1, x ∈ [a, 1].
(2.2)

In the measures space M0, besides the usual topology induced by the norm ‖ · ‖V ,
there also is the following weak∗ topology, denoted by w∗.

Definition 2.1. Let μn, μ0 ∈ M0, n ∈ N. μn is said to converge weakly∗ to μ0,
denoted as μn

w∗
−→ μ0 in (M0, w

∗), if

lim
n→∞

∫
[0,1]

u(t) dμn(t) =
∫

[0,1]

u(t) dμ0(t), ∀u ∈ C[0, 1].

Remark 2.2. From the properties of bounded variation functions and the density
of the space of absolutely continuous functions in (L1[0, 1], ‖ · ‖1), it follows that
L1[0, 1] is dense in (M0, w

∗), that is for ∀μ ∈ M0, there exists fn ∈ L1[0, 1] such

that fn
w∗
−→ dμ.

Theorem 1.1 of [12] shows the continuity of the solutions of the initial value
problem with respect to μ ∈ (M0, w

∗). Applying Montel theorem and the similar
method, we can prove the more general uniformly convergent properties of the
solutions.
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Lemma 2.3. Let μn, μ0 ∈ M0, and yn(λ), y0(λ), zn(λ), z0(λ) be functions of
λ on a bounded domain D ⊂ C. Let y(x, μn, λ) and y(x, μ0, λ) respectively be the
solutions of the problem:{−dẏ(x) + y(x) dμn(x) = λy dx, x ∈ [0, 1],

y(0) = yn(λ), ẏ(0) = zn(λ) (2.3)

and {−dẏ(x) + y(x) dμ0(x) = λy dx, x ∈ [0, 1],

y(0) = y0(λ), ẏ(0) = z0(λ).
(2.4)

If μn
w∗
−→ μ0 and yn → y0, zn → z0, n→ ∞ uniformly in D, then y(x, μn, λ) →

y(x, μ0, λ), n→ ∞ uniformly for (x, λ) ∈ [0, 1] ×D.

2.2. The optimal recovery problem in measure space

In this subsection, we will use the inverse spectral theory in L2[0, 1] [13] to prove
theorem 1.1. And hence, we need some knowledge of the spectrum for q ∈ L2[0, 1].

The spectrum of (1.1) with q ∈ L2[0, 1] belongs to the space S of all real, strictly
increasing sequence σ = (σ1, σ2, . . .) of the form:

σn = n2π2 + s+ σ̃, n � 1,

where s =
∫ 1

0
q dx ∈ R and σ̃ = (σ̃1, σ̃2, . . .) ∈ l2, i.e.

∑∞
i=1 σ̃i

2 <∞ [13, Theorem
2.4]. Let T be the spectral mapping such that

T : q ∈ L2[0, 1] → σ(q) ∈ S.

Let E be the subspace of even functions in L2[0, 1]. It was proved in [13, Theorem
6.2] that T maps E onto S. The main tool in the proof of this subsection is the
spectral ‘shifting’ theorem, see [13, Theorem 6.1]. In order to make the statement
clearly, we need some more notations in the following.

For p ∈ E, let λk(p) (1 � k ∈ N) be the k-th eigenvalue of

− y′′ + py = λy, y = y(x), x ∈ [0, 1] (2.5)

associated with the Dirichlet condition y(0) = 0 = y(1). Let ϕ(x, λ, p), φ(x, λ, p)
respectively be the solutions of equation (2.5) with initial condition:

ϕ(0) = 1, ϕ′(0) = 0; φ(0) = 0, φ′(0) = 1.

Define ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z(x, p) = φ(x, λk(p), p), C(λ, p) =

ϕ(1, λk(p), p) − ϕ(1, λ, p)
φ(1, λ, p)

;

W (x, λ, p) = ϕ(x, λ, p) + C(λ, p)φ(x, λ, p);

w(x, λ, p) = W (x, λ, p)Z ′(x, p) −W ′(x, λ, p)Z(x, p).

(2.6)

Clearly, as a function of λ, C(λ, p) is analytic for λ ∈ (λk−1(p), λk+1(p)) with the
removable singularity at λ = λk(p).
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Lemma 2.4. (cf. [ 13, Theorem 6.1]) If p ∈ E and λk−1(p) < λk(p) + t < λk+1(p),
then the potential

q = p− 2
d2

dx2
logw(x, λk(p) + t, p)

satisfies that q ∈ E and

λj(q) = λj(p), j �= k, 1 � j ∈ N; λk(q) = λk(p) + t, j = k.

The above result indicates that one can shift one eigenvalue λk(p) of p to the
desired position λk(q) as long as λk−1(p) < λk(q) < λk+1(p) and the other eigen-
values without moving. So that, we call lemma 2.4 ‘the shifting lemma of spectral
set’, or simply ‘the spectral shifting lemma’.

The proof of theorem 1.1. The accessibility of E0(λ1, λ2) is clearly from the weakly∗

closeness of the set Ω0(λ1, λ2). So, we need only to prove E0(λ1, λ2) = E(λ1, λ2).
Let q ∈ Ω(λ1, λ2). It follows from (2.1) that there exist μq ∈ Ω0(λ1, λ2) and
‖q‖1 = ‖μq‖V . Then, E0(λ1, λ2) � E(λ1, λ2). It remains to prove that E0(λ1, λ2) �
E(λ1, λ2).

Firstly, we show that for every measure μ ∈ Ω0(λ1, λ2) and the even potential
q0 = dμ, there exists even qn satisfies:

qn ∈ Ω(λ1, λ2), qn
w∗
−→ q0. (2.7)

According to remark 2.2 and the symmetry of q0, there exists pn ∈ E such that
pn

w∗
−→ q0, for example, one can choose:

pn = Hn(x− 1/2) ∗ q0(x),

where Hn is the standard Sobolev kernel function:

Hn(x) = cn

⎧⎪⎨⎪⎩
exp

(
x2

x2 − 1/(2n)2

)
, |x| < 1

2n
,

0, |x| � 1
2n
,

and c is a constant such that
∫

R
Hn(x) dx = 1. Write

σ(pn) = (λ1(pn), λ2(pn), λ3(pn), . . .) ∈ S,

σn = (λ1, λ2, λ3(pn), . . .).

We first shift σ(pn) to σ(p̂n) = (λ1, λ2(n), . . . , λj(n), . . .) with p̂n = pn + λ1 −
λ1(pn), where λj(n) = λj(p̂n) for j � 2. Clearly, p̂n ∈ E. Since the eigenvalues of
(1.6) are continuous in measure μ ∈ (M0, w

∗), see [12, Theorem 1.3], it follows

https://doi.org/10.1017/prm.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.28


8 M. Zhao and J. Qi

that:

λj(pn) → λj , n→ ∞, j = 1, 2.

Therefore, p̂n
w∗
−→ q0 and

λj(n) = λj(p̂n) = λj(pn) + λ1 − λ1(pn) → λj(q0), j � 2

as n→ ∞. Replacing p̂n by pn, we may assume that λ1(pn) = λ1 and pn can be
selected to satisfy λ1(pn) < λ2 < λ3(pn), ∀1 � n ∈ N.

Now, we can use the spectral shifting lemma, lemma 2.4 to find a potential qn ∈ E
such that σ(qn) = σn. In fact, if we take t := tn = λ2 − λ2(pn) in lemma 2.4, then

qn = pn − 2
d2

dx2
logw(x, λ2(pn) + tn, pn) = pn − 2

(
w′(x, λ2(pn) + tn, pn)
w(x, λ2(pn) + tn, pn)

)′

(2.8)

satisfies σ(qn) = σn. Then, we need to prove qn
w∗
−→ q0 as n→ ∞. To this end, recall

the definitions of w,W and Z in (2.6), one sees that w(0) = 1 and

Z(x, pn) = φ(x, λ2(pn), pn), (2.9)

W (x, λ2, pn) = ϕ(x, λ2, pn) + Cn(λ2)φ(x, λ2, pn), (2.10)

respectively satisfy the equation:

−Z ′′ + pnZ = λ2(pn)Z, (2.11)

−W ′′ + pnW = λ2W, (2.12)

where

Cn(λ) = C(λ, pn) =
ϕ(1, λ2(pn), pn) − ϕ(1, λ, pn)

φ(1, λ, pn)
.

And hence

w′(x, λ2, pn) = WZ ′′ −W ′′Z = tnW (x, λ2, pn)Z(x, pn). (2.13)

Therefore,

pn − qn = 2tn

{
W ′Z +WZ ′

w
− tn

(WZ)2

w2

}
. (2.14)

It follows from lemma 2.3 that, as n→ ∞:

φ(·, λ2(pn), pn)
‖·‖∞−→ φ(·, λ2, q0), ϕ(·, λ2, pn)

‖·‖∞−→ ϕ(·, λ2, q0),

φ(·, λ2, pn)
‖·‖∞−→ φ(·, λ2, q0), ϕ(1, λ2(pn), pn) → ϕ(1, λ2, q0),

ϕ(1, λ, pn) → ϕ(1, λ, q0), φ(1, λ, pn) → φ(1, λ, q0).

Hence, by definition (2.9), Z(x, pn) is uniformly bounded. Moreover, it holds that

Cn(λ) → ϕ(1, λ2, q0) − ϕ(1, λ, q0)
φ(1, λ, q0)

, n→ ∞ (2.15)
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uniformly on any compact subinterval of (λ1(q0), λ3(q0)). Then

lim
n→∞Cn(λ2) = lim

λ→λ2
lim

n→∞Cn(λ) = − (∂ϕ/∂λ)(1, λ2, q0)
(∂φ/∂λ)(1, λ2, q0)

. (2.16)

Hence, according to (2.10), W (x, λ2, pn) is also uniformly bounded. It follows from
(2.13) that

w(x, λ2, pn) = w(0, λ2, pn) +
∫ x

0

w′(s, λ2, pn) ds

= 1 + tn

∫ x

0

W (s, λ2, pn)Z(s, pn) ds.

This together with tn → 0, n→ ∞ implies that w has a positive lower bound for
sufficient large n. From (2.11) and (2.12), it follows that⎧⎪⎨⎪⎩

Z ′(x, pn) = 1 +
∫ x

0

(pn − λ2(pn))Z(s, pn) ds,

W ′(x, λ2, pn) = Cn(λ2) +
∫ x

0

(pn − λ2)W (s, λ2, pn) ds,

and according to pn
w∗
−→ q0, λ2(pn) → λ2, n→ ∞, the uniform boundedness of

Z(x, pn) and W (x, λ2, pn) and (2.16), Z ′ and W ′ are uniformly bounded. Hence
(2.14) implies that there exists M > 0 such that

‖pn − qn‖∞ � M |tn| → 0, n→ ∞.

Therefore, ∀f ∈ C[0, 1]:∣∣∣∣∫ 1

0

(qn − q0)f dt
∣∣∣∣ �

∣∣∣∣∫ 1

0

(qn − pn)f dt
∣∣∣∣ +

∣∣∣∣∫ 1

0

(pn − q0)f dt
∣∣∣∣

� ‖f‖∞‖pn − qn‖∞ +
∣∣∣∣∫ 1

0

(pn − q0)f dt
∣∣∣∣ → 0,

i.e. qn
w∗
−→ q0 as n→ ∞. This proves (2.7).

Now, applying (2.7), we have

‖μ‖V =
∫ 1

0

|q0| = lim
n→∞

∫ 1

0

|qn| � E(λ1, λ2).

Clearly, E0(λ1, λ2) � E(λ1, λ2) by the arbitrary of μ. This proves theorem 1.1. �

2.3. Quadratic form

Since we will use the min-max principle theory of quadratic form in the proof
of the main result, in this section, we introduce some knowledge of the theory of
quadratic form, see [9, 17].

Let D be a subspace of a Hilbert space H. A mapping t[u, v] : D ×D → R is
called a sesquilinear form on H if it is linear in u ∈ D and semilinear in v ∈ D. D
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will be called the domain of t and is denoted by D(t). t[u] = t[u, u] will be called
the quadratic form or simply form associated with t[u, v]. For the problems:{−y′′ + qy = λy, y = y(x), x ∈ [0, 1/2],

y(0) = 0 = y′(1/2),
(2.17)

and {−y′′ = λy, y = y(x), x �= a ∈ (0, 1/2),

y(0) = 0 = y′(1/2), y′(a− 0) − y′(a+ 0) = ry(a),
(2.18)

where q ∈ L1[0, 1/2] and a, r are defined in theorem 1.1, the associated forms are
respectively as follows:

s1[u, v] =
∫ 1/2

0

(u′v′ + quv) dx, (2.19)

t1[u, v] =
∫ 1/2

0

u′v′ dx− ru(a)v(a), (2.20)

where u, v ∈ D(s1) = D(t1) and

D(t1) :=
{
u ∈ L2[0, 1/2] : u ∈ AC[0, 1/2], u′ ∈ L2[0, 1/2], u(0) = 0

}
.

The proof is given in the Appendix. Similarly, for the problems:{−y′′ + qy = λy, y = y(x), x ∈ [0, 1/2],

y(0) = 0 = y(1/2),
(2.21)

and {−y′′ = λy, y = y(x), x �= a ∈ (0, 1/2),

y(0) = 0 = y(1/2), y′(a− 0) − y′(a+ 0) = ry(a),
(2.22)

where q ∈ L1[0, 1/2] and a, r are defined in theorem 1.1, the associated forms are
respectively given by

s2[u, v] =
∫ 1/2

0

(u′v′ + quv) dx, (2.23)

t2[u, v] =
∫ 1/2

0

u′v′ dx− ru(a)v(a), (2.24)

where u, v ∈ D(s2) = D(t2) and

D(t2) :=
{
u ∈ L2[0, 1/2] : u ∈ AC[0, 1/2], u′ ∈ L2[0, 1/2], u(0) = 0 = u(1/2)

}
.

According to the min-max principle of form [17, Theorem XIII.2], which yields the
specific expression of eigenvalue by the associated form, the following result holds.
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Lemma 2.5. (cf. [ 17, Theorem XIII.2]) Let λk be the k-th eigenvalue of the
eigenvalue problem (2.17) and s1[u] the associated form given by (2.19). Then

λk = sup
Ek−1

inf
φ∈E⊥

k−1

{s1[φ] : φ ∈ D(s1), ‖φ‖2 = 1} ,

where 1 � k ∈ N, Ek−1 is any k − 1 dimensional subspace of L2[0, 1/2], and E⊥
k−1

expresses the orthogonal complement space of Ek−1 in L2[0, 1/2]. Particularly, for
k = 1 we have

λ1 = inf {s1[φ] : φ ∈ D(s1), ‖φ‖2 = 1} . (2.25)

The similar conclusions hold for problems (2.18), (2.21), and (2.22).

2.4. The generalized Lyapunov inequality

Consider the boundary problem of the Sturm–Liouville equation

− y′′ + qy = λwy, y = y(x), x ∈ [c, d] (2.26)

subjected to the general separated boundary condition:

c1y(c) − c2y
′(c) = 0 = d1y(d) − d2y

′(d), (2.27)

where q, w ∈ L1([c, d], R), c, d, c1, c2, d1, d2 ∈ R, c21 + c22 �= 0, d2
1 + d2

2 �= 0. Note
that the coefficients cj , dj , j = 1, 2 are allowed to be infinity. For example, if
c1 = ∞, then the condition c1y(c) − c2y

′(c) = 0 is understood in the form y(c) = 0.
Let u(x) and v(x) satisfy:

{−u′′ + qu = 0, c1u(c) − c2u
′(c) = 0,

−v′′ + qv = 0, d1v(d) − d2v
′(d) = 0.

If zero is not an eigenvalue of problems (2.26) and (2.27), then

G(x, t) = − 1
W (u, v)

{
u(x)v(t), c � x < t,

u(t)v(x), t < x � d

is the Green function associated with (2.26) and (2.27) at λ = 0, where W (u, v) =
uv′ − vu′ is the Wronskian of u and v.

The following lemma is the generalized Lyapunov inequality for Sturm–Liouville
problems, which yields the infimum of the L1-norm of the weights by eigenvalues.

Lemma 2.6 (cf. [5]). Consider the eigenvalue problems (2.26) and (2.27) with w � 0
a.e. on [c, d]. Suppose that zero is not an eigenvalue and G(x, t) is the associated
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Green function at λ = 0, then∫ d

c

G(x, x)w(x) dx =
∞∑

n=1

1
λn
,

where λn is the n-th eigenvalue of the problem. Furthermore,∫ d

c

w(x) dx � 1
G

∣∣∣∣∣
∞∑

n=1

1
λn

∣∣∣∣∣ , G = max{|G(x, x)| : x ∈ [c, d]}.

Particularly, if 0 < λ1 � 1, then ∫ d

c

w(x) dx >
1
G
, (2.28)

and 1
G is the best constant.

Notice that the generalized Lyapunov inequality (2.28) requires the positivity of
both the first eigenvalue and the weight w(x), it cannot be applied directly to the
present situation of this paper. Recall that the positivity of w is not required in the
classical Lyapunov inequality. In fact, one can prove that the positivity of w is not
necessary while applying lemma 2.6.

Lemma 2.7. Consider the eigenvalue problems (2.26) and (2.27). If (2.26) and
(2.27) has a nontrivial solution for λ = 1 and all the eigenvalues of (2.26) and
(2.27) with w(x) ≡ 1 are positive, then∫ d

c

|w(x)|dx > 1
G
, G = max{|G(x, x)| : x ∈ [c, d]} (2.29)

and the constant 1
G is best, where G(x, t) is the Green function of (2.26) and (2.27)

at λ = 0.

Proof. Since the quadratic form associated with (2.26) and (2.27) with w � 0 and∫ d

c
w dx > 0 is

t[u] =
∫ d

c

[|u′|2 + q|u|2] dx− β|u(d)|2 + α|u(c)|2, α = c1/c2, β = d1/d2 (2.30)

with

D(t) :=
{
u ∈ L2[c, d] : u ∈ AC[c, d], u′ ∈ L2[c, d]

}
.

The proof is given in the Appendix. Then, according to lemma 2.5, all the
eigenvalues of (2.26) and (2.27) with w(x) ≡ 1 are positive means that

t[u] > 0, ∀u ∈ D(t).

From this fact, we must have w+(x) �≡ 0. For otherwise, there would have w(x) � 0
on [c, d] and

∫ d

c
|w|dx > 0, which implies that −1 is the first eigenvalue of

− y′′ + qy = λw−y, x ∈ [c, d], By = 0 (2.31)
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with an eigenfunction φ ∈ D(t), and hence t[φ] = − ∫ 1

0
w−|φ|2dx � 0, a contradic-

tion. As a result, 1 is an eigenvalue of the eigenvalue problem:

−y′′ + (q + w−)y = μw+y, By = 0,

and hence the first eigenvalue μ(w+) of the eigenvalue problem

−y′′ + qy = μw+y, By = 0

satisfies that 0 < μ1(w+) � 1 by the monotonicity of eigenvalues on potentials. Now,
applying lemma 2.6 we have∫ d

c

|w(x)|dx �
∫ d

c

w+(x) dx >
1
G
. �

3. The proof of theorem 1.2

This section presents the proof of theorem 1.2. In order to make the proof clearly,
we provide the outline of the proof in this section.

We first find a μ0 ∈ Ω0(λ1, λ2) such that ‖μ0‖V = 2r in lemma 3.2, hence 2r �
E0(λ1, λ2). Since E(λ1, λ2) = E0(λ1, λ2) by theorem 1.1, it is sufficient to prove
E(λ1, λ2) � 2r to have E(λ1, λ2) = 2r. This is

∫ 1/2

0
|q(x)| dx � r, ∀q ∈ Ω(λ1, λ2)

by the symmetry of the potentials. To this end, we will use lemmas 2.7 and 2.5.
The accessibility in theorem 1.2 can be obtained by theorem 1.1 and lemma 3.2.

Firstly, the following lemma guarantees the existence and uniqueness of the point
a defined in theorem 1.2.

Lemma 3.1. The point a which is defined in theorem 1.2 exists uniquely.

Proof. Set H(x) = h1(x) − h2(x) for x ∈ [0, 1/2], where

h1(x) =

{
ρ1 [cot(ρ1x) − tan ρ1(1/2 − x)] , 0 � λ1 < π2, ρ1 =

√
λ1,

τ1 [coth(τ1x) + tanh τ1(1/2 − x)] , λ1 < 0, τ1 =
√−λ1.

(3.1)

h2(x) =

{
ρ2 [cot(ρ2x) + cot ρ2(1/2 − x)] , 0 � λ2 < 4π2, ρ2 =

√
λ2,

τ2 [coth(τ2x) + coth τ2(1/2 − x)] , λ2 < 0, τ2 =
√−λ2.

(3.2)

Particularly, if λ1 = 0, (3.1) is reduced to h1(x) = 1/x and if λ2 = 0, (3.2) is reduced
to h2(x) = 1/x+ 1/(1/2 − x).

One can verify that h1(x) is decreasing on (0, 1/2] for λ1 ∈ (−∞, π2) and

h1(0 + 0) = +∞, h1(1/2) =

{
ρ1 cot(ρ1/2), 0 � λ1 < π2,

τ1 coth(τ1/2), λ1 < 0,

h1(1/4) =

{
ρ1 [cot(ρ1/4) − tan(ρ1/4)] , 0 � λ1 < π2,

τ1 [coth(τ1/4) + tanh(τ1/4)] , λ1 < 0.

https://doi.org/10.1017/prm.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.28


14 M. Zhao and J. Qi

Similarly, h2(x) is decreasing and increasing on (0, 1/4] and [1/4, 1/2), respectively
for λ2 ∈ (λ1, 4π2), and

h2(0 + 0) = h2(1/2 − 0) = +∞, h2(1/4) =

{
2ρ2 cot(ρ2/4), 0 � λ2 < 4π2,

2τ2 coth(τ2/4), λ2 < 0.

As a result, condition (1.5) yields that H(1/4) � 0. This together with

H(1/2 − 0) = h1(1/2) − h2(1/2 − 0) = −∞
implies that there exists a ∈ [1/4, 1/2) such that H(a) = 0. The uniqueness comes
from the monotonicity of h1 and h2 on [1/4, 1/2). �

Since the potential q is symmetric on [0, 1], the original problem is equivalent to
that both of the following two problems

− y′′ − λ1y = μwy, y(0) = 0 = y′(1/2), (P1)

− y′′ − λ2y = γwy, y(0) = 0 = y(1/2) (P2)

possess the first eigenvalue μ1(w) = γ1(w) = 1, where w = −q. With these nota-
tions, one can prove the following lemma.

Lemma 3.2. Suppose that λ1 and λ2 satisfy (1.5). Let a and r be defined in theorem
1.2 and w := w0 = rδ(x− a). Then, both of the problems (P1) and (P2) possess
the first eigenvalue μ1(w0) = γ1(w0) = 1.

Proof. Using the definitions of r and a, that is h1(a) = h2(a) and

r = h1(a) =

{
ρ1 [cot(ρ1a) − tan ρ1(1/2 − a)] , 0 � λ1 < π2,

τ1 [coth(τ1a) + tanh τ1(1/2 − a)] , λ1 < 0,
(3.3)

it is easy to verify that

ψ1(x) =

{
sin(ρ1x), x ∈ [0, a],

α cos ρ1(1/2 − x), x ∈ [a, 1/2]
(3.4)

is the first eigenfunction of (P1) with μ1(w0) = 1, where

α = sin(ρ1a)/ cos ρ1 (1/2 − a) . (3.5)

Similarly, one can verify that

ψ2(x) =

{
sin(ρ2x), x ∈ [0, a],

β sin ρ2(1/2 − x), x ∈ [a, 1/2]
(3.6)

is the first eigenfunction of (P2) with γ1(w0) = 1, where

β = sin(ρ2a)/ sin ρ2(1/2 − a). (3.7)

�
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The proof of theorem 1.2. By the explanation at the beginning of this section, we
only need to prove:∫ 1/2

0

|q(x)| dx � r or
∫ 1

0

|q(x)|dx � 2r, ∀q ∈ Ω(λ1, λ2).

Set −w = q ∈ Ω(λ1, λ2). Let φ1 and φ2 be the first positive eigenfunctions of (P1)
and (P2), respectively in the meaning that both of φ1 and φ2 are positive in (0, 1/2).
Let bj be the biggest one of the maximum points of φj(x) on [0, 1/2] for j = 1, 2.
Note that although the first positive eigenfunction is not unique, the points b1 and
b2 do not change, and hence the uniqueness of bj is well-defined. Let a be defined as
in theorem 1.2. The proof will be divided into three cases according to the relations
between a and bj . �

Case 1. b1 � a. Consider the following two problems:

− y′′ − λ1y = μwy, y(0) = 0 = y′(b1), (P11)

− y′′ − λ1y = μwy, y′(b1) = 0 = y′(1/2). (P12)

Clearly, φ1 is a non-trivial solution of the above problems with μ = 1.
If λ1 < 0, then all the first eigenvalue of (P11) and (P12) with w replaced by 1

are positive, and hence, lemma 2.7 can be applied to problems (P11) and (P12)
such that the following inequalities∫ b1

0

|w(x)|dx > 1
G11

,

∫ 1/2

b1

|w(x)|dx > 1
G12

(3.8)

hold, where G11 and G12 are the maximums of |G11(x, x)| and |G12(x, x)|, respec-
tively, and G11(x, t), G12(x, t) are the Green functions associated with (P11),
(P12) at μ = 0, respectively. Since the equation −y′′ − λ1y = 0 can be solved,
one can verify that⎧⎪⎪⎨⎪⎪⎩
G11(x, x) =

1
τ1 cosh τ1b1

sinh(τ1x) cosh τ1(b1 − x), x ∈ [0, b1],

G12(x, x) =
1

τ1 sinh τ1(1/2 − b1)
cosh τ1(x− b1) cosh τ1(1/2 − x), x ∈ [b1, 1/2].

(3.9)
Furthermore, a calculation yields that⎧⎪⎪⎨⎪⎪⎩

G11 = |G11(b1, b1)| =
1
τ1

tanh(τ1b1),

G12 = |G12(b1, b1)| =
1
τ1

coth τ1(1/2 − b1).
(3.10)

Then, using the definition of h1 in (3.1), the inequalities in (3.8) yield that∫ 1/2

0

|w(x)| dx =
∫ b1

0

|w(x)| dx+
∫ 1/2

b1

|w(x)| dx > 1
G11

+
1
G12

= h1(b1). (3.11)
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If 0 � λ1 < π2, then the first eigenvalue of (P11) with w replaced by 1 is still
positive. Then, applying lemma 2.7 again we arrive at∫ b1

0

|w(x)|dx > 1
G11

= ρ1 cot(ρ1b1),

where G11 = |G11(b1, b1)| = tan(ρ1b1)/ρ1 and G11(x, t) is the Green function
associated with (P11) at μ = 0. For this case, G11(x, x) is given by

G11(x, x) =
1

ρ1 cos ρ1b1
sin(ρ1x) cos ρ1(b1 − x), x ∈ [0, b1].

This together with tan ρ1(1/2 − b1) � 0 and the definition of h1 in (3.1) yields that∫ 1/2

0

|w(x)| dx �
∫ b1

0

|w(x)|dx > ρ1 cot(ρ1b1) � h1(b1). (3.12)

From now on, we arrive at that for all cases of λ1, it holds that:∫ 1/2

0

|w(x)| dx > h1(b1).

Since 0 < b1 � a < 1/2 and h1(x) is decreasing on (0, 1/2] by lemma 3.1, one sees
that h1(b1) � h1(a) = r, and hence∫ 1

0

|q(x)|dx =
∫ 1

0

|w(x)|dx = 2
∫ 1/2

0

|w(x)|dx > 2r.

Case 2. b2 � a. Consider the following two problems:

− y′′ − λ2y = μwy, y(0) = 0 = y′(b2), (P21)

− y′′ − λ2y = μwy, y′(b2) = 0 = y(1/2). (P22)

Clearly, φ2 is a non-trivial solution of the above problems with μ = 1. Let G21(x, t)
and G22(x, t) be the Green functions associated with (P21) and (P22) at μ = 0,
respectively since zero is not an eigenvalue.

Since 4π2 � (π/2b2)2, one can verify that for x ∈ [0, b2]:

G21(x, x) =

⎧⎪⎪⎨⎪⎪⎩
1

ρ2 cos ρ2b2
sin(ρ2x) cos ρ2(b2 − x), 0 � λ2 < (π/2b2)2,

1
τ2 cosh τ2b2

sinh(τ2x) cosh τ2(b2 − x), λ2 < 0.

A calculation yields that

G21 =

⎧⎪⎪⎨⎪⎪⎩
|G21(b2, b2)| =

1
ρ2

tan(ρ2b2), 0 � λ2 < (π/2b2)2,

|G21(b2, b2)| =
1
τ2

tanh(τ2b2), λ2 < 0,

where G21 is the maximum of |G21(x, x)|.
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Similarly, by (π/(2(1/2 − b2)))2 � 4π2, one sees that for x ∈ [b2, 1/2]:

G22(x, x) =

⎧⎪⎪⎨⎪⎪⎩
1

ρ2 cos ρ2(1/2 − b2)
cos ρ2(x− b2) sin ρ2(1/2 − x), 0 � λ2 < 4π2,

1
τ2 cosh τ2(1/2 − b2)

cosh τ2(x− b2) sinh τ2(1/2 − x), λ2 < 0,

G22 =

⎧⎪⎪⎨⎪⎪⎩
|G22(b2, b2)| =

1
ρ2

tan ρ2(1/2 − b2), 0 � λ2 < 4π2,

|G22(b2, b2)| =
1
τ2

tanh τ2(1/2 − b2), λ2 < 0,

where G22 is the maximum of |G22(x, x)|.
As a result, if 4π2 � (π/2b2)2 > λ2, the similar argument as in case 1 yields that

∫ 1/2

0

|w(x)| dx =
∫ b2

0

|w(x)|dx+
∫ 1/2

b2

|w(x)| dx > 1
G21

+
1
G22

= h2(b2),

where h2(x) is defined in (3.2).
If (π/2b2)2 � λ2 < 4π2, then one can verify that the first eigenvalue of (P22)

with w replaced by 1 is still positive by the fact that b2 � a ∈ [1/4, 1/2). It follows
from lemma 2.7, the definition of h2 and cos(ρ2b2) � 0 that

∫ 1/2

0

|w(x)| dx �
∫ 1/2

b2

|w(x)| dx > 1
G22

� h2(b2).

Then, for all cases of λ2, it holds that

∫ 1/2

0

|w(x)| dx > h2(b2).

Since 1/2 > b2 � a � 1/4 and h2(x) is increasing on [1/4, 1/2) by lemma 3.1, one
sees that h2(b2) � h2(a) = r, and hence

∫ 1

0
|q(x)|dx > 2r.

Case 3. a ∈ (b2, b1). Since φ1 and φ2 are the first eigenfunctions of (P1) and (P2),
respectively, they satisfy φ1 ∈ D(s1), φ2 ∈ D(s2) and

λ1

∫ 1/2

0

|φ1|2 dx =
∫ 1/2

0

(|φ′1|2 + q|φ1|2
)
dx = s1[φ1], (3.13)

λ2

∫ 1/2

0

|φ2|2 dx =
∫ 1/2

0

(|φ′2|2 + q|φ2|2
)
dx = s2[φ2], (3.14)

where s1, s2 are defined in (2.19) and (2.23), respectively.
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From lemma 3.2, λ1 is the first eigenfunctions of the problem:{ −y′′ − rδ(x− a)y = λy, y = y(x), x ∈ [0, 1/2],
y(0) = 0 = y′(1/2),

i.e. problem (2.18). And the min-max principle in lemma 2.5 yields that

λ1 = inf {t1[u] : u ∈ D(t1), ‖u‖2 = 1} � t1[φ1]
‖φ1‖2

2

,

where t1 is defined in (2.20), and hence we have

s1[φ1] � t1[φ1],

that is ∫ 1/2

0

(|φ′1|2 + q|φ1|2
)
dx �

∫ 1/2

0

|φ′1|2 dx− r|φ1(a)|2.

Then (recall that w = −q) ∫ 1/2

0

w|φ1|2 dx � r|φ1(a)|2. (3.15)

Similarly, ∫ 1/2

0

w|φ2|2 dx � r|φ2(a)|2. (3.16)

Set

A(x, t) = φ2
1(x) + t2φ2

2(x), x ∈ [0, 1/2], t � 0.

Let M(t) be the biggest one of the maximum points of A(x, t) on [0, 1/2]. Clearly,
M(t) is continuous on t, M(0) = b1 and M(∞) = b2. Then, there exists t0 ∈ (0,∞)
such that M(t0) = a. From (3.15) and (3.16), there has

r
(
|φ1(a)|2 + t20 |φ2(a)|2

)
�

∫ 1/2

0

w
(
|φ1|2 + t20 |φ2|2

)
dx

�
∫ 1/2

0

|w|
(
|φ1|2 + t20 |φ2|2

)
dx.

Since M(t0) = a, the above inequality yields that

rA(a, t0) � A(a, t0)
∫ 1/2

0

|w|dx,

which yields that
∫ 1/2

0
|w|dx � r, or

∫ 1

0
|q|dx � 2r. This completes the proof of

theorem 1.2.

Remark 3.3. The set of λ1 and λ2 that meets the restrictions in (1.5) is not empty.
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Proof. Set

R1(z) = z [cot(z/4) − tan(z/4)] = 2z cot(z/2), z ∈ [0, π],

and

R2(z) = 2z cot(z/4), z ∈ [0, 2π].

Define

R1(0) = lim
z→0

R1(z) = 4, R2(0) = lim
z→0

R2(z) = 8.

Clearly, R1(z) is decreasing on [0, π] and R1(π) = 0. R2(z) is decreasing on [0, 2π]
and R2(2π) = 0.

It follows that if 0 � λ1 < π2 is fixed, then R1(ρ1) > 0 for ρ1 =
√
λ1, and hence,

there exists δ(ρ1) > 0 such that for
√
λ2 = ρ2 ∈ (2π − δ(ρ1), 2π), the inequality

ρ1

(
cot

ρ1

4
− tan

ρ1

4

)
� 2ρ2 cot

ρ2

4

holds. This means that the admissible set of the restrictions on λ1 and λ2 in (1.5)
is not empty.

If λ2 is fixed. Set τ1 =
√−λ1 for λ1 < 0 and let z = iτ with τ > 0, then it follows

from

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2

that

R1(z) = R1(iτ) = 2τ coth(τ/2), τ > 0.

R1(iτ) is clearly increasing on τ > 0, and

R1(0) = lim
τ→0

R1(iτ) = 4, R1(iτ) → ∞, τ → ∞.

Therefore, for fixed λ2 ∈ R, there exists M(λ2) > 0 such that for τ1 > M(λ2), the
inequality

2τ1 coth(τ1/2) � 2τ2 coth(τ2/4)

holds for λ2 < 0, τ2 =
√−λ2 or

τ1

(
coth

τ1
4

+ tanh
τ1
4

)
� 2ρ2 cot

ρ2

4

for λ2 � 0, which means condition (1.5) holds. �

Remark 3.4. In this remark, we compare our results with the results of the case
m = 1.
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For m = 1, the infimum of the L1-norm of q is given by

En(λ) = inf {‖q‖1 : q ∈ Ωn(λ)} ,

where

Ωn(λ) =
{
q : q ∈ L1[0, 1], λn(q) = λ}, n � 1.

Recall that in the present paper:

Ω(λ1, λ2) =
{
q : q ∈ L1[0, 1], λ1(q) = λ1, λ2(q) = λ2

}
,

E(λ1, λ2) = inf {‖q‖1 : q ∈ Ω(λ1, λ2)} .
It follows that

Ω(λ1, λ2) = Ω1(λ1) ∩ Ω2(λ2),

and hence, it must hold:

E(λ1, λ2) � min {E1(λ1), E2(λ2)} . (3.17)

Specific numerical explanation is given below. In fact E(λ1, λ2) = 2r, where

r = ρ1 [cot(ρ1a) − tan ρ1(1/2 − a)] = h1(a)

= ρ2 [cot(ρ2a) + cot ρ2(1/2 − a)] = h2(a).

From the result of [14] (see theorem 1.1):

En(λ) = 2n
√
λ cot

√
λ

2n
, λ � n2π2, n � 1,

it follows that

E1(λ1) = 2ρ1 cot(ρ1/2) = 2h1(1/2), E2(λ2) = 4ρ2 cot(ρ2/4) = 2h2(1/4).

Note that h1(x) is strictly decreasing, and h2(x) is strictly increasing for x ∈
[1/4, 1/2]. Since 1/2 > a � 1/4, then

E(λ1, λ2) = 2r = 2h1(a) > 2h1(1/2) = E1(λ1),

E(λ1, λ2) = 2r = 2h2(a) � 2h2(1/4) = E2(λ2).

This means inequality (3.17).
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Appendix A.

The appendix explains the supplementary statement of §2.3. Some basic facts for
the form t are briefly reviewed, see [9]. t is densely defined if D(t) is dense in Hilbert
space H. t is said to be symmetric if

t[u, v] = t[v, u], u, v ∈ D(t).

A symmetric form t is said to be bounded from below if

t[u] � γ‖u‖2, u ∈ D(t),

where γ ∈ R is a constant.
A form t is closed if un ∈ D(t), un → u in H and t[un − um] → 0, n,m→ ∞,

then there has u ∈ D(t) and t[un − u] → 0, n→ ∞.
For the problem{

τ1y := −y′′ + qy = λy, y = y(x), x ∈ [0, 1/2],

y(0) = 0 = y′(1/2),
(A.1)

and {
τ2y := −y′′ = λy, y = y(x), a �= x ∈ [0, 1/2],

y(0) = 0 = y′(1/2), y′(a− 0) − y′(a+ 0) = ry(a),
(A.2)

where q ∈ L1[0, 1/2] and a, r are defined in theorem 1.1, let S1 and T1 be the
corresponding operators to (A.1) and (A.2), respectively, i.e. S1y = f, y ∈ D(S1) if
τ1y = f for some f ∈ L2[0, 1/2] and

D(S1) :=
{
y ∈ L2[0, 1/2] : y, y′ ∈ AC[0, 1/2], y(0) = 0 = y′(1/2)

}
.

Similarly, T1y = f, y ∈ D(T1) if τ2y = f, x �= a for some f ∈ L2[0, 1/2] and

D(T1) :=
{
y ∈ L2[0, 1/2] : y ∈ AC[0, 1/2], y′ ∈ AC[0, a) ∪ (a, 1/2],

y(0) = 0 = y′(1/2), y′(a− 0) − y′(a+ 0) = ry(a)

}
.

Consider the form:

s1[u, v] =
∫ 1/2

0

(u′v′ + quv) dx, (A.3)

t1[u, v] =
∫ 1/2

0

u′v′ dx− ru(a)v(a), (A.4)

where

u, v ∈ D(s1) = D(t1) :=
{
u ∈ L2[0, 1/2] : u ∈ AC[0, 1/2], u′ ∈ L2[0, 1/2], u(0) = 0

}
.

Lemma A.1. S1, T1 is respectively the self-adjoint operator associated with the
quadratic form s1, t1.
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Proof. From [9, IV-(1.19)], for ∀ε > 0, there exists Γ(ε) > 0 such that

‖y‖2
∞ � ε‖y′‖2

2 + Γ(ε)‖y‖2
2, y ∈ {

y ∈ AC[0, 1/2], y′ ∈ L2[0, 1/2]
}
.

Then

s1[u] =
∫ 1/2

0

(|u′|2 + q|u|2) dx �
∫ 1/2

0

|u′|2 dx− ε‖q‖1‖u′‖2
2 − Γ(ε)‖q‖1‖u‖2

2.

(A.5)
We first show that s1 is closed. Let un ∈ D(s1), un → u in L2[0, 1/2], s1[un −

um] → 0, n,m→ ∞, and ε‖q‖1 < 1/2. From (A.5), we have:

s1[un − um] � 1
2

∫ 1/2

0

|u′n − u′m|2 dx− Γ(ε)‖q‖1‖un − um‖2
2.

Since s1[un − um] → 0, ‖un − um‖2
2 → 0, n,m→ ∞, then ‖u′n − u′m‖2

2 → 0, n,m→
∞, which means {u′n} is a Cauchy sequence in L2[0, 1/2]. Then, there exists
û ∈ L2[0, 1/2] such that u′n → û, n→ ∞ in L2[0, 1/2] and hence

un(x) = un(0) +
∫ x

0

u′n dt =
∫ x

0

u′n dt→
∫ x

0

û dt, n→ ∞.

Since un → u in L2[0, 1/2], then u(x) =
∫ x

0
û dt, x ∈ [0, 1/2]. Hence u′ = û ∈

L2[0, 1/2], u(0) = 0, i.e. u ∈ D(s1). From s1[un − u] → 0, n→ ∞, it follows that s1
is closed.

Since q is real-valued, s1 is symmetric. It follows from (A.5) that s1 is bounded
from below. And s1 is also densely defined. Then, according to Theorem 2.1 of
chapter VI in [9], there is exactly one self-adjoint operator associated with s1. We
show that is S1.

Since D(S1) ⊂ D(s1) and s1[u, v] = 〈S1u, v〉, u ∈ D(S1), v ∈ D(s1), then it only
needs to prove that for ∀u ∈ D(s1), if there exists h ∈ L2[0, 1/2] such that

s1[u, v] = 〈h, v〉, v ∈ D(s1), (A.6)

then u ∈ D(S1) and S1u = h. From (A.6), there has∫ 1/2

0

(u′v′ + quv) dx =
∫ 1/2

0

hv dx. (A.7)

Let z be an indefinite integral of h− qu, then z′ = h− qu. (A.7) together with
v ∈ D(s1) yields that ∫ 1/2

0

(u′ + z) v′ dx− z(1/2)v(1/2) = 0. (A.8)

LetG = span{1} ⊂ L2[0, 1/2], then for ∀g0 ∈ G⊥, there has g(x) =
∫ x

0
g0ds ∈ D(s1)

and g(1/2) = 0. Substituting g(x) into (A.8):∫ 1/2

0

(u′ + z) g0 dx = 0. (A.9)
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From g0 ∈ G⊥, it follows that u′ + z ∈ G, then u′(x) + z(x) = c, where c is a
constant. Substituting this into (A.8), we arrive at

(c− z(1/2)) v(1/2) = 0. (A.10)

Since v(1/2) varies over all complex numbers when v varies over D(s1), then
c = z(1/2) = u′(1/2) + z(1/2), so u′(1/2) = 0. From u′(x) + z(x) = c, it follows
that u′ ∈ AC[0, 1/2] and u′′ = −z′ = qu− h or −u′′ + qu = h. From the definition
of the operator S1, it follows that u ∈ D(S1) and S1u = h.

Similar to above, the form t1 is also symmetric, densely defined, closed and
bounded from below. And it also only needs to prove for ∀u ∈ D(t1), if there exists
h ∈ L2[0, 1/2] such that

t1[u, v] = 〈h, v〉, v ∈ D(t1), (A.11)

then u ∈ D(T1) and T1u = h. From (A.11):∫ 1/2

0

u′v′ dx− ru(a)v(a) =
∫ 1/2

0

hv dx. (A.12)

Let

w(x) =
{ −ru(a), x ∈ [0, a],

0, x ∈ (a, 1/2], (A.13)

and z′ = h, then (A.12) turns to∫ 1/2

0

(u′ + w)v′ dx =
∫ 1/2

0

hv dx. (A.14)

The following proof is similar to above. �

In §2.4, the associated quadratic form of problems (2.26) and (2.27) with w � 0
and

∫ d

c
w dx > 0 can be similarly given in (2.30).
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