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Abstract. Multivariate hypergeometric functions associated with toric varieties were introduced
by Gel'fand, Kapranov and Zelevinsky. Singularities of such functions are discriminants, that is,
divisors projectively dual to torus orbit closures. We show that most of these potential denomin-
ators never appear in rational hypergeometric functions. We conjecture that the denominator
of any rational hypergeometric function is a product of resultants, that is, a product of special
discriminants arising from Cayley configurations. This conjecture is proved for toric
hypersurfaces and for toric varieties of dimension at most three. Toric residues are applied to
show that every toric resultant appears in the denominator of some rational hypergeometric
function.
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1. Introduction

Which rational functions in n variables are hypergeometric functions? Which
denominators appear in such rational hypergeometric functions? Our aim is to
answer these questions for the multivariate hypergeometric functions introduced
by Gel’fand, Kapranov and Zelevinsky [9,10,18]. These functions are defined by
a system of linear partial differential equations, associated to any integer
d x s-matrix A = (a;;) and any complex vector f§ € C:

DEFINITION 1.1. The A-hypergeometric system of degree f5 € C4 is the left ideal
H4(p) in the Weyl algebra C(xy, ..., x;, 91, ..., d5;) generated by the toric operators

-9 foru,veN' withd-u=4-v, (1.1)

and the Euler operators
Zaijxjaj—ﬂi, fori=1,...,d. (1.2)
J=1

A function f(xi,...,Xxs), holomorphic on an open set U C C’, is said to be
A-hypergeometric of degree f if it is annihilated by the left ideal H4(f).
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Throughout this paper we use the multi-exponent notation 3" = ]_[jle 8;”. We shall
assume that the rank of the matrix 4 equals d, the column vectors a; of 4 are distinct,
and the vector (1,1, ..., 1) lies in the row span of A.

These hypotheses greatly simplify our exposition, but our main results remain

valid without them. The last hypothesis means that the toric ideal
Iy = (&"=¢&  Au=4-v) CCEy, ..., ¢

is homogeneous with respect to total degree and defines a projective toric variety
X4 c P!, and the columns of 4 represent a configuration {ay, ..., a;} of s distinct
points in affine (d — 1)-space. This condition ensures that the system H 4(f) has only
regular singularities [9], [18, Theorem 2.4.11]. A detailed analysis of the non-regular
case was carried out by Adolphson [1].

The system H 4(f) is always holonomic. Its holonomic rank r,4(f5) coincides with
the dimension of the space of local holomorphic solutions in C*\Sing(H 4(B)). If
I, is Cohen-Macaulay or f is generic in C“, then

r4(f) = degree(X4) = vol(conv(A)), (1.3)

the normalized volume of the lattice polytope conv(4) = conv{ay, ..., a}. The
inequality r4(f) = vol(conv(A4)) holds without any assumptions on 4 and f. See
[1, 9, 18] for proofs and details. If d = 2, i.e. when X is a curve, then (1.3) holds
for all ff € C? if and only if 74 is Cohen—Macaulay [4].

The irreducible components of Sing(H 4(f)) are the hypersurfaces defined by the
A’-discriminants D4, where A’ runs over facial subsets of A, or, equivalently,
X 4 runs over closures of torus orbits on X 4. The A-discriminant D 4 is the irreducible
polynomial defining the dual variety of the toric variety X4, with the convention
D, =1 if that dual variety is not a hypersurface; see [1, 9, 11]. Note that for a
singleton 4’ = {a;} we have D, = x;.

Consider any rational A-hypergeometric function of degree f3,

P(xy, ..., xy)
e Xg) = ———— 1.4
SCo e xg) G x) (1.4)
where P and Q are relatively prime polynomials. The denominator equals
Q(x1, ..., x) =[[Dalxr, ..., x)", (1.5)
%

where A’ runs over facial subsets of 4 and the iy are non-negative integers.

Our long-term goal is to classify all rational A-hypergeometric functions. For toric
curves this was done in [4]: if d = 2, every rational A-hypergeometric function is a
Laurent polynomial. Here we generalize this result to higher-dimensional toric
varieties, by studying rational A-hypergeometric functions which are not Laurent
polynomials. We note that, by [18, Lemma 3.4.10], 4-hypergeometric polynomials
exist for all toric varieties X .
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We call the matrix 4 gkz-rational if the A-discriminant D 4 is not a monomial and
appears in the denominator (1.5) of some rational A-hypergeometric function (1.4).
The smallest example of a gkz-rational configuration is

1 01 0
A:AIXAlz 01 0 1 s (16)
0 1 10

since 1/(x1x2 — x3x4) is A-hypergeometric of degree f = (—1, —1, —1)". Note that
(1.6) encodes the Gauss hypergeometric function ,Fy [18, § 1.3].

More generally, the product of simplices 4 = A, x A, is gkz-rational if and only if
p=g¢q. The Segre variety X, = P? x P? is projectively dual to the (¢+1)x
(¢+1)-determinant, and the reciprocal of this determinant is a rational
A-hypergeometric function. Consider by contrast the configuration 4 =2-A,.
The toric variety X4 is the quadratic Veronese embedding of P?, whose projectively
dual hypersurface is the discriminant of a quadratic form,

2X00  Xo1 X2 -+ Xog
Xo1  2X11 X2 o Xig

Dy=det| Y2 X2 2xm - Xy | (1.7)
Xog  Xig  Xog o 2Xyg

Theorem 1.2 below implies that the classical (‘dense’) discriminants such as (1.7) do
not appear in the denominators of rational hypergeometric functions. In other
words, multiples of simplices, 4 =r - A,, are never gkz-rational.

In Section 2 we resolve the case of circuits, that is, matrices 4 whose kernel is
spanned by a single vector b = b, — b_ € 7Z°. We call 4 balanced if the positive part
b, is a coordinate permutation of the negative part b_, and we show that A is
balanced if and only if 4 is gkz-rational. In Section 3 we study arbitrary con-
figurations 4, and we prove the following theorem:

THEOREM 1.2. If the configuration A contains an unbalanced circuit which does not
lie in any proper facial subset of A, then A is not gkz-rational.

This implies that gkz-rational configurations are rare; for instance, they have no
interior points. Hence, reflexive polytopes [2] are not gkz-rational, and sufficiently
ample embeddings of any toric variety are not gkz-rational.

In order to formulate a conjectural characterization of gkz-rational con-
figurations, we recall the following construction from [11]. Let Ay, 4, ..., 4, be
vector configurations in Z'. Their Cayley configuration is defined as

A={e)x Ay U {e;}x A1 U --- U {e}x4, ¢ 2 x 7/, (1.8)

where ¢y, ..., e, is the standard basis of 7+
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We call 4 essential if the Minkowski sum ) ,_, 4; has affine dimension at least |/]
for every proper subset I of {0,...,r}. Cayley configurations are very special.
For instance, a configuration 4 in the plane (d = 3) is a Cayley configuration if
and only if A4 lies on two parallel lines; such an A is essential if and only if each
line contains at least two points.

CONJECTURE 1.3. An arbitrary configuration A is gkz-rational if and only if A is
affinely isomorphic to an essential Cayley configuration (1.8).

This conjecture can be reformulated as follows. The discriminant of an essential
Cayley configuration coincides with the sparse resultant Ry, 4,...4,; see [11, § 8.1.1].
That resultant characterizes the solvability of a sparse polynomial system
fo=/f1 = =f =0 with support (4o, A1, ..., A4,),

St )= xa i=0.1,..r

acA;

By Corollary 5.2, Conjecture 1.3 is equivalent to the following:

CONJECTURE 1.4. 4 discriminant D4 appears in the denominator of a rational
A-hypergeometric function if and only if D4 is a resultant Ry, 4. 4,-

Being a resultant among discriminants is being a needle in a haystack. None of the
univariate or classical discriminants such as (1.7) are resultants. On the other hand,
consider two triples of equidistant points on parallel lines,

111000
A={e)xAp U {erlxd, =10 0 0 1 1 1]. (1.9)
012012

This is the Cayley configuration of 49 = 4; = {0, 1, 2}. The variety X is a rational
normal scroll in P°. Its discriminant D, is the Sylvester resultant

2.2 2 2 2.2
RAO,A1 = X|Xg — X1X2XcX5 — 2X1X3X4X6 + X1X3X5 + X5X4X6 — X2X3X4X5 + X3X4

of the quadrics Fy = xju} + xoujur + x3u5 and Fy = xau + xsujup + xeu3. The
following theorem is the second main result in this paper.

THEOREM 1.5. The if directions of Conjectures 1.3 and 1.4 hold. The only-if direct-
ions hold for d < 4, that is, for toric varieties X4 of dimension < 3.

The proof of the only-if direction is given in Section 4. It consists of a detailed
combinatorial case analysis based on Theorem 1.2. The proof of the if direction,
given in Section 5, is based on the notion of toric residues introduced by Cox [§],
and on our earlier results in [6] about their denominators.

https://doi.org/10.1023/A:1017541231618 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017541231618

RATIONAL HYPERGEOMETRIC FUNCTIONS 221

An example of a toric residue is the rational A-hypergeometric function

1 / uy uy X1X6 — X3X4
duy Adup =——. 1.10
Qriy Jr Folur, u2) - Fi(un,up) ? R o4, (110

Here A is the configuration (1.9) and I' is a suitable 2-cycle in C2. Such integrals can
be evaluated by a single Grobner basis computation; see [5].

2. Circuits

We fix a configuration 4 which is a circuit, that is, 4 is a d x (d + 1)-matrix whose
integer kernel is spanned by a vector b = (b, by, ..., by) all of whose coordinates
b; are non-zero. After relabeling, we may assume

bj>0forj=0,....m—1 and b;<Oforj=m,...,d, 2.1

so that by = (bo,...,bu-1,0,...,0) and b_ =(0,...,0, b, ..., —by). The toric
variety X, is a hypersurface in P?, defined by the principal ideal

L= (& =) = (& G = & 8,

In this section we shall prove our main conjecture for the case of circuits.
THEOREM 2.1. Conjectures 1.3 and 1.4 are true for toric hypersurfaces.

A function f(xo, x1, ..., X4) is A-hypergeometric if it is A-homogeneous (satisfies
(1.2) for some ) and annihilated by the homogenecous toric operator

g+ — gb- — 81070 cogbmet gL 8;’)’1. (2.2)

m—1 m

The order p of this operator equals the holonomic rank of H4(f):
p==by+---+by_=—-by—---— by =vol(conv(A)) = r,(p).

This holds for all e C since the principal ideal 14 = (& — -y is Cohen-
Macaulay. The toric hypersurface X4 is projectively self-dual. Indeed, by [11, Prop-
osition 9.1.8], the A-discriminant of the circuit 4 equals

b_

Dy =x" —Jix",  where A= (—1)’b" /b’ (2.3)

Recall that the circuit 4 is balanced if d = 2m — 1 and, after reordering if necessary,
bi = —byifori=0,...,m— 1. Otherwise, we call A unbalanced. Note that the con-
figuration (1.6) is a balanced circuit with b= (1,1, —1, —1).

LEMMA 2.2. Let A be a balanced circuit. Then the rational function 1/D 4 is
A-hypergeometric.
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Proof. Balanced implies b~ = bi* and 1 = (—1)”. Consider the expansion

| 1 o -
— R _1 pn)Jer (n+1)b7.
/Y g § ;( )

For this series to be annihilated by (2.2) it is necessary and sufficient that

m—1 b; s —b;
[T11wbi+5) =[] Jo(=b)+j) foralln=o0.
i=0 j=1 i=m j=1
This identity holds if and only if the circuit 4 is balanced. O

This lemma implies that balanced circuits are gkz-rational. The main result in this
section is the following converse to this statement. For an arbitrary configuration A4,
we say that 4 is weakly gkz-rational if there exists a rational 4-hypergeometric func-
tion which is not a Laurent polynomial.

THEOREM 2.3. Let A be a circuit in 7. Then the following are equivalent: (1) A is
balanced; (2) A is gkz-rational; (3) A is weakly gkz-rational.

Proof. The implication from (1) to (2) follows from the previous lemma. The
equivalence of (2) and (3) holds because every proper facial subset A’ of A4 is affinely
independent. Hence, the only non-constant A4’-discriminants arising from facial
subsets A" arise from vertices A" = {g;}, in which case Dy = x;.

It remains to prove the implication from (2) to (1). Suppose that 4 is gkz-rational.
Consider a non-Laurent rational A-hypergeometric function and expand it as a
Laurent series with respect to increasing powers of x”. It follows from the results
in [18, Section 3.4] that this series is the sum of a Laurent polynomial and a canonical
A-hypergeometric series of the following form:

00 I1:s,,(=¢; — nb; — 1)!
. j=zm 7 J
F(x)=x-) (=1 — x". (2.4)
; Hj<m(cf + nb])'
Here ¢ = (co, c1,...,cq) 1s a suitable integer vector. The series F(x) represents a

rational function. We may view the series on the right-hand side of (2.4) as defining
a rational function of the single variable t = x? = xb+/x-:

o0

) (—Cj — nbj — 1)'
— —1)P" n
0= D

j>m

(2.5)

The A-discriminant equals D4 = x"-(1 — A7) where 4 = (—1) b*- /b"*. This implies
that the rational function ¢(r) may be written as a quotient
P(1)
(1 _ ;Lt)k+l ’
where P(7) is a polynomial and k € IN. It follows from [19, Corollary 4.3.1] that the

() =
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coefficients of the series (2.5) must be of the form A" times a polynomial in #n. That is,
the following expression is a polynomial in n:

Hj?m(_cj —nb; —1)!
[Tj<m(cj +nb))!
The rational function u(z) := y(z 4+ 1)/7(z) satisfies the following general identity [16,

Lemma 2.1] for any fixed complex number z:

> ordy(w) =0. (2.6)

a€zo+7

y(n):= 17"

Our rational function p(z) has its poles among the points

(9 (942 (91 i ~
<b_/+b_i>’ (ijrb_/)’m’ (b_/+1>’ J=0om—1,

and its zeroes among

A G/l
bj’ (bj—i-bj),..., (bj—i- D ;o j=m, ... d.
We may assume by=max{b;;j=0,...,m—1} and —b, =max{-b;;j=

m, ...,d}. Suppose now that by > —b,,. Then, u(z) has a pole at a point p/by with
p and by coprime, but since none of the zeroes may be of this form, this contradicts
(2.6). A symmetric argument leads to a contradiction if we assume by < —b,,. This
implies that by = —b,, and therefore

(co + nby)!
(_cm - nbm - 1)'

() -

is also rational function of n. Consequently, we can iterate our argument to conclude
that, after reordering, b; = —b,,,; for all i=0,...,m— 1. O

Remark 2.4. The above results imply that a circuit A4 is gkz-rational if and only if
the specific rational function 1/D 4 is A-hypergeometric. The same statement is false
for non-circuits. For instance, for the gkz-rational configuration in (1.9), the func-
tion 1/D4 = 1/Ry4, 4, 18 not A-hypergeometric.

Let us now return to the result stated at the beginning of this section.

Proof of Theorem 2.1. Theorem 2.3 and the lemma below imply Conjecture 1.3.
The equivalence of Conjectures 1.3 and 1.4 will be shown in Section 5. O

LEMMA 2.5. A4 circuit A is balanced if and only if it is affinely isomorphic to an
essential Cayley configuration (1.8).

Proof. We first prove the if-direction. Let 4 be an essential Cayley configuration
which is a circuit. Each A4; must consist of a pair of vectors in Z', so that 4 becomes
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an (2r + 1) x (2r + 2)-matrix. The first » + 1 rows of 4 show that the kernel of 4 is
spanned by a vector b = (by, —bg, by, —by,...,b,,—b,). This means that A4 is
balanced. Conversely, if 4 is balanced then we can apply left multiplication by
an element of GL(d, Q) to get isomorphically

Ly, Iy
A= ~
0 4

where 4 is an (m — 1) x m integral matrix of rank m — 1. By permuting columns we
see that 4 is an essential Cayley configuration for m =r + 1. O

3. The General Case

In this section we prove Theorem 1.2. A configuration A4 is called non-degenerate if
the A-discriminant D, is neither equal to 1 nor a variable. Circuits are
non-degenerate by (2.3). Recall that D, is a variable if and only if 4 is a point.
A subconfiguration B C 4 is called spanning if B is not contained in any proper
facial subset of 4. If the dimension of B is equal to the dimension of A4 then B
is spanning, but the converse is not true. For instance, the vertex set of an octahedron
contains spanning circuits but no full-dimensional circuits.

The condition D4 = 1 means that the dual variety to the toric variety X, is not a
hypersurface. No combinatorial characterization of this condition is presently
known. A necessary condition is given in the following proposition. That condition
is not sufficient: the skew prisms in (4.6) contain no spanning circuit but
D, # 1. Note that D4 =1 for the regular prism 4 = A} x A;.

PROPOSITION 3.1. If A contains a subconfiguration B which is spanning and
non-degenerate then A is non-degenerate. In particular, A is non-degenerate if it con-
tains a spanning circuit.

Proof. Proceeding by induction, it suffices to consider the case when B is obtained
from A by removing a single point, say, B = A\{a,}. Since B is not contained in any
face of 4, and B is a facial subset of itself, the following lemma tells us that the
B-discriminant Dp divides D4, _¢. Since Dp is not a monomial, this implies that
D, is not a monomial. O

LEMMA 3.2. Let a; € A, x; the corresponding variable, and B a facial subset of
B = A\{a;} which does not lie in any proper facial subset of A. Then the
B'-discriminant Dy divides the specialized A-discriminant D 4|, _.

Proof. Let f = Zj-zl X;jt% be a generic polynomial with support 4. By [12,
Theorem 5.10], the principal A-determinant is the specialization

of f
Es=Ry|t1=—=—,....ta—,
=Rt
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where R4 denotes the A-resultant; see [11, § 8.1]. The irreducible factorization of the
principal A-determinant ranges over the facial subsets 4" of A4,

Eq=[]D}". (3.1)
A/

where m, are certain positive integers [11, Theorem 10.1.2].

Let w € Z° be the weight vector with wy, = —1 and w; = 0 forj # 5. The initial form
of the principal A-determinant with respect to w can be factored in two different
ways:

in(Eq) = [ [inDa)™ =[] (Eo)e.
A/

Cfacetof A,

Here A, is the coherent polyhedral subdivision of A defined by w and the n¢ are
certain positive integers. The first formula comes from (3.1) and the second formula
comes from [11, Theorem 10.1.12]. Since B’ is a facial subset of 4\{a,}, it is also
a cell of the subdivision A,, and hence Dpg divides E¢ for the facet C = A\{a,}
of A,,. We conclude that Dp divides in, (D, ) for some facial subset 4" of 4. If
Dp # 1, this implies that B' € A" because Dy involves all the variables associated
with points in B’. By our hypothesis, the only facial subset of 4 which contains
B’ is A itself. Therefore Dp divides in,(D4) = D4ly—o- O

We also need the following lemma from commutative algebra whose proof was
shown to us by Mircea Mustata:

LEMMA 3.3. Let R be a unique factorization domain with field of fractions K, and let
) =Y"pa;-t'andg(t) = diobi- ¢ be relatively prime elements in the polynomial
ring R[t]. Assume that by # 0 and consider the Taylor series expansion of the ratio

flg:

g 00
% = ;Q 4 in K][t]].
If all the Taylor coefficients c; lie in R, then by is a unit in R.

Proof. Let p be any prime element in R. We must show that p does not divide by.
Consider the localization R[], , of R[] at the prime ideal (p, 7). The power series
ring R[[7]] is the completion of the local ring R[7], , with respect to the (¢)-adic
topology. By assumption, the polynomial f lies in the principal ideal generated
by g in R[[#]]. The basic flatness property of completions, as stated in [14, § 8, p. 63],
implies that /" lies in the principal ideal generated by g in R[f], ,. Since / and g
are relatively prime in R[7], we conclude that g is a unit in R[f],, , and so by is
not divisible by p. O

We are now prepared to prove the first theorem stated in the introduction.
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Proofof Theorem 1.2. Suppose A = {ay, ..., as} is a gkz-rational configuration and
let f = P/Q be a rational A-hypergeometric function of degree f§ € 74, where
P,0 e C[xy,...,x,] are relatively prime, and the A-discriminant D, is not a
monomial and divides Q. We claim that any spanning circuit Z of A4 is balanced.
We shall prove this by induction on s. If s=d+ 1, then we are done by
Theorem 2.3. We may assume that A is not a circuit and therefore Z is a proper
subset of A. Suppose a;€ A\Z, and set = xj, A= {ar,...,a,_1}, X=

(x1,...,x5-1). We may expand the rational A4-hypergeometric function f(x)=
f(x; 1) as
fGEn= )" R(®-1", (3.2)
=14

where each Ry(X) is a rational Z-hypergeometric function of degree f — ¢ - a;.

Let A’ denote the unique smallest facial subset of A= A\{a,} which contains the
circuit Z. Then Z is a spanning circuit in 4A’. Proposition 3.1 implies that its dis-
criminant D4 is not a monomial. Lemma 3.2 implies that D, divides in,(Q), the
lowest coefficient of Q with respect to z.

We now apply Lemma 3.3 to the domain R = C[X, X~!] (0> the localization of the
Laurent polynomial ring at the principal prime ideal (D 4). Since in,(Q) is not a unit
in R, we conclude that some Taylor coefficient R,(X) lies in the field of fractions
of R but not in R itself. This means that D, divides the denominator of Ry(X).
We have found a rational A-hypergeometric function whose denominator contains
the non-trivial factor D . It follows by induction that the spanning circuit Z of
A’ is balanced. ]

Recall that a configuration 4 is called weakly gkz-rational if there exists a rational
A-hypergeometric function which is not a Laurent polynomial. It is called
gkz-rational if the A-discriminant D, is not a monomial and appears in the
denominator of a rational A-hypergeometric function.

PROPOSITION 3.4. 4 configuration A is weakly gkz-rational if and only if some
facial subset A" of A is gkz-rational.

Proof. If A’ is a facial subset of 4 then every A’-hypergeometric function f(x) is
also A-hypergeometric. Indeed, f(x) is obviously 4A-homogeneous, but it is also
annihilated by the toric operators 98" — 3" because the support of 9 lies in
{0; : a; € A’} if and only if the support of 3" lies in {d; : @; € A’}. This proves the
if-direction. For the only-if direction, suppose that A4 is weakly gkz-rational and
let f(x) = P(x)/Q(x) be a non-Laurent rational hypergeometric function. There
exists a facial subset A’ of A such that D, is not a monomial and divides Q(x).
Our goal is to show that A4’ is gkz-rational. We proceed by induction on the
cardinality of 4\A’. There is nothing to show if 4 = A’. Let a;, € A\A’ and form
the series expansion as in (3.2). By applying Lemma 3.3 as in the proof of Theorem
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1.2, we construct a rational (4\{a,})-hypergeometric function whose denominator is
a multiple of the A4’-discriminant D 4. This proves our claim, by induction. O

We close this section with two corollaries which demonstrate the scope of
Theorem 1.2. They show that gkz-rational configurations 4 are very special.

COROLLARY 3.5. 4 gkz-rational configuration A has no interior point.

Proof. Let a; be an interior point of 4, and let Z’ be a minimal size subset of 4\{a;}
which contains «; in its relative interior. Then Z = Z’' U {a} is a circuit of 4 which is
spanning and not balanced. O

Corollary 3.5 can be rephrased, using Khovanskii’s genus formula [13], into the
language of algebraic geometry as follows. If a projective toric variety X4 is
gkz-rational, then the generic hyperplane section of X4 has arithmetic genus O.
Clearly, this fails if X4 is embedded by a sufficiently ample line bundle, and also
in the case of special interest in mirror symmetry (see [2]).

COROLLARY 3.6. The configuration A is not gkz-rational if A is the set of lattice
points in a reflexive polytope, or A is the set of lattice points in a polytope of the
form s - P, where P is any lattice polytope and s > dim(P).

Proof. Reflexive polytopes possess exactly one interior point. If s is bigger than the
ambient dimension then s times any lattice polytope contains an interior point. []

4. Low Dimensions

In this section we present the complete classification of gkz-rational configurations
for d < 4. Note that the d =1 case is trivial since we disallow repeated points.
If we did allow them then 4 = (1 1 1 --- 1) would be gkz-rational for s > 2 because
the function 1/(x; 4+ x3 + - - - + x,) is A-hypergeometric.

Toric curves (d = 2) are never gkz-rational. This was shown in [4, Theorem 1.10].
We rederive this result as follows. Write the configuration as

1 1 - 1
A = <k1 kz ks), k1<k2<"'<k‘y.

Every circuit Z € A4 consists of three collinear points:

1 1 1
Z = <ka ks k(,,)’ ko <kp <ke.

Such a one-dimensional circuit is never balanced. Theorem 1.2 implies that A4 is not
gkz-rational. In what follows we prove the only-if part of Theorem 1.5.

THEOREM 4.1. Let A be an integer matrix withd < 4rows. If A is gkz-rational then
A is affinely isomorphic to an essential Cayley configuration.
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Proof. It suffices to prove the following two assertions:

e If A is a configuration on the line (d = 2) or in 3-space (d = 4) then A4 is not
gkz-rational.

e If A is a configuration in the plane (d = 3) then A4 is gkz-rational if and only if
the points of A lie on two parallel lines with each line containing at least
two points from 4.

The case d = 2 was proved above. We first assume d = 3. If the points of 4 lie on
two parallel lines then we can write their coordinates as follows:

A=[0 0 --- 0 1 1 - 1 (4.1)
0 ki - ky 0 & --- &,

Thus 4 is the Cayley configuration of two one-dimensional configurations. The con-
struction in the next section shows that A4 is gkz-rational for m,n > 1.

Conversely, suppose that 4 does not lie on two parallel lines. We may further
assume that A4 contains no unbalanced spanning circuit by Theorem 1.2. One
example of a configuration satisfying these requirements is

210100
A=(012010]. (4.2)
0001 12

The toric variety X4 is the Veronese surface in P°. Its dual variety is the hypersurface
defined by the discriminant of a ternary quadratic form

2X1 X2 X4
Dy=det| x» 2x3 x5 |. 4.3)
X4 X5 2x6

Suppose there exists a rational 4-hypergeometric function f(x) = P(x)/Q(x) with Q
amultiple of D 4. Let A’ be the configuration obtained from 4 by removing the fourth
and fifth columns. Setting x4 = x5 = 0in D 4 yields (4x;x3 — x%) - X¢. We can argue as
in the proof of Theorem 1.2 and construct a rational 4’-hypergeometric function
whose denominator contains the binomial factor. Proposition 3.4 would imply that
the configuration consisting of the first three columns of A4 is gkz-rational, and this
is a contradiction to Theorem 2.3. Hence the configuration 4 in (4.2) is not
gkz-rational.
Another configuration to be considered is

1 1111
A=10p q 0 0], 4.4)
00 0 p ¢

where 1 < p < ¢ are relatively prime integers. The only spanning circuit of A4 is the
balanced circuit {a,, a3, a4, as}. Consider the subset A’ = {ay, a>, a3} which is an
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unbalanced circuit on the boundary of 4. The A-discriminant is an irreducible homo-
geneous polynomial of degree ¢*> — p*> which looks like

Dy = x’s’(q_”) - D y(x1, X3, x3)777 + terms containing xy.

Applying the expansion technique with respect to x4, we get a rational
A’-hypergeometric function whose denominator contains D,. This contradicts
Theorem 2.3. Hence the configuration 4 in (4.4) is not gkz-rational.

Our assertion for d = 3 now follows from the subsequent lemma of combinatorial
geometry. Note that four points in the plane, with no three collinear, lie on two
parallel lines if and only if they form a balanced circuit. O

LEMMA 4.2. Let B be a planar configuration without interior points such that every
four-element subset of B lies on two parallel lines. Then either B lies on two parallel
lines, or Bis affinely equivalent to (4.2) or (4.4) or to the vertices of a regular pentagon,
in which case B has irrational coordinates.

Proof. We may assume without loss of generality that the origin O lies in Band is a
vertex of the convex hull conv(B). Let a and b be the points of B closest to O along the
edges of conv(B) adjacent to O. Let ¢ = a + b. Any other point x € B must be of the
form ry -a, or rp-b, or a+r3-b, or b+ ry4-a, where ry, ry, r3, rq are positive real
numbers and ry, 7, > 1.

If ce B, then only the first two cases may occur. Indeed, suppose
X =a+r3-b e B, then either all the points lie on two parallel lines or there exists
apointy=ry-aory=>b+rs-ain B. It is easy to check that in all of these cases,
B has an interior point. Suppose then that x; =r;-a€ Band x, =r,-b € B. We
have r; = r, since the subset {a, b, x|, x»} lies on two parallel lines. If r; # 2 then
the subset {O, ¢, x1, x»} contradicts the assumption. Hence, if ¢ € B, either all the
points lie on two parallel lines, or r; = r, = 2 which means that B is affinely equiv-
alent to (4.2).

On the other hand, if ¢ ¢ B and there exists a point x; = a + r3b € B, then either all
the points lie on two parallel lines or B contains a point of the form x; = rja or
Xy = b+ rqa. Since r3 # 1, in all of these cases B contains an unbalanced circuit,
or B={a, O, b, x|, x»} is affinely equivalent to the vertex set of a regular pentagon.
The only remaining possibility is that all points of B be multiples of either a or
b. But if x; = ria and x, = ryb are in B then {a, b, x1, x»} is unbalanced unless
r1 = rp. Hence the only possible configuration not containing the point c is affinely
equivalent to (4.4) O

We note that the argument in the paragraph following (4.3) works also for the
discriminant (1.7) of any quadratic form. Hence 4’ =2-A, is not gkz-rational
for any ¢. Since A’ is a spanning subconfiguration of 4 =r-A, for all r > 2, we
conclude the following result which was stated in the introduction.
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PROPOSTION 4.3. Multiples of simplices, A =r-A,, are never gkz-rational.

We now proceed to discuss configurations in affine 3-space (d = 4). Let us begin by
stating the relevant fact of combinatorial geometry in this case.

LEMMA 4.4. Let B be a three-dimensional point configuration which is not a pyramid
and such that every two-dimensional circuit is balanced and no three-dimensional
circuit exists. Then either B lies on three parallel lines, or B is affinely equivalent
to a subconfiguration of {0, P, Q, R, cP, cQ, cR} for some points P, Q, R and some
ceR.

Proof. Choose five points from our configuration which are not in a plane. They
have the form {4, 4>, B, B>, C} where the lines 4,4, and BB, are parallel and
C lies outside the plane Il = 4,4,B1B,. Suppose that our configuration is not
on three parallel lines. There exists a point D¢ IT such that the line CD is not parallel
to the lines 4; 4> and By B,. If, under this hypothesis, the line CD is still parallel to the
plane IT, then we have created a three-dimensional circuit, a contradiction. Therefore
the line CD meets the plane I1in a point which we call the origin O. The origin O must
be equal to either 41 By N A, B, or A1 B, N A, By; otherwise we would have created a
three-dimensional circuit. From this requirement we conclude that the configuration
{0, Ay, B, C, Ay, B>, D} is affinely equivalent to {O, P, Q, R, cP, cQ, cR}.

It remains to be seen that O is the only point that may be added to the configur-
ation {P, Q, R, ¢P, ¢Q, cR} without creating either a three-dimensional circuit or
an unbalanced two-dimensional circuit. A point not a multiple of P, Q or R obvi-
ously creates a three-dimensional circuit. A multiple of P, Q or R creates an
unbalanced two-dimensional circuit, unless it is the origin. O

Proof of Theorem 4.1 (continued). Let A be a configuration in affine 3-space. We
shall prove that A4 is not gkz-rational. In view of Theorem 1.2, we may assume that
A contains no unbalanced spanning circuit. This implies that 4 contains no
three-dimensional circuit, because such a circuit involves five points and, five being
an odd number, that circuit would be unbalanced.

Suppose that 4 contains an unbalanced two-dimensional circuit Z. Then Z liesin a
facet of 4. There must be at least two distinct points P and Q of 4 which do not lie in
that facet. Otherwise, 4 is a pyramid and the A-discriminant is 1. If the line PQ is
parallel to the plane spanned by Z then, since Z is unbalanced, some triangle in
Z has all of its three edges skew to PQ. This triangle together with P and Q forms
a three-dimensional circuit, a contradiction. Hence the line PQ intersects the plane
spanned by Z. Some triangle in Z has the property that none of the lines spanned
by its edges contains that intersection point. Again, this triangle together with P
and Q forms a three-dimensional circuit.

We conclude that A has no three-dimensional circuit and every two-dimensional
circuit of A is balanced. Lemma 4.4 tells us what the possibilities are. If 4 lies
on three parallel lines, then D4 = 1 and thus 4 is not gkz-rational. It remains to
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examine the special configurations {O, P,cP, Q,cQ, R,cR}. An affine trans-
formation moves the points P, Q and R onto the coordinate axes, so that our con-
figuration has the matrix form

o111 1
0 g —p 0 0 0 O
00 0 g —p 0 0 4.5)
00 0 0 0 ¢

—P

where p and ¢ are relatively prime integers, and ¢ > 0. The subconfiguration con-
sisting of the last six columns is spanning. We shall prove that it is non-degenerate
and not gkz-rational. Our usual deletion technique then implies that the bigger con-

figuration (4.5) is also not gkz-rational. It therefore suffices to consider the following
4 x 6-matrix

1 1 1 1 1 1
g —» 0 0 0 O
A=10 0 ¢ —p 0 0 (4.6)
0O 0 0 0 ¢q —p

We shall distinguish the two cases p > 0 and p < 0. If p > 0 then A represents an
octahedron, and if p < 0 then A4 represents a triangular prism.

We shall present a detailed proof for the octahedron case p > 0. The proof tech-
nique to be employed was shown to us by Laura Matusevich. We first note that
the A-discriminant D4 is a homogeneous irreducible polynomial of degree
(» + ¢9)>. The Newton polytope of D, is a simplex with vertices corresponding to
the monomials:

(YT, (XD gy

Suppose A4 is gkz-rational. There is a rational function f(x) = P(x)/Q(x), with P, Q
relatively prime polynomials, such that the A4-discriminant D, divides Q, and f
is A-hypergeometric of some degree f. For u e N the derivative 9f is A-
hypergeometric of degree f — 4 -u and has D4 in its denominator. Replacing f
by d“f for suitable u, we may assume that the A-degree of f is of the form
p=(K,0,0,0) for some negative integer K.

We expand f around the vertex (xX{x{y’*? of the Newton polytope of D,. This
results in a convergent Taylor series in the new variables

q q
X1 X5%5

= (=1t 2 =2
=g Ay

and v:i= (=1

That hypergeometric series equals, up to a constant,

s

1 3 (P +n+ k) = Dligom+n+k) - DI, ,
(xs)* (xe)™ .52 o (np)!(ng)\(mp)!(mq)!
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for an appropriate positive integer k. The coefficients of this series can be derived
directly from the toric operators (1.1) arising from A. It is one of the canonical series
described for general A4 in [18, § 3.4]. The series

e Gt R = Vg1
Hun= 2, ()1 10) mp)mg)! oy

(4.7)

would also define a rational function in two variables.

We denote by F(m,n) the coefficient of #”v" in the series (4.7). Note that
F(0,0) # 0. Since YV is rational, there exist positive integers N, M, and constants
cj € C, 0<i,j<N, such that ¢y # 0 and

N
Z ciF(m+i,n+j)=0 holds for all m,n> M.
ij=0

If we divide F(m + i,n+ j) by F(m, n) then we get a rational function in m and n.
Hence the following is an identity of rational functions in m and n:

N . .
Fm+i,n+j)
j TR 4.
,;)C’ Fonm 49

Let R(m, n) and S(m, n) denote the incremental quotients:

Fm+1,n) _F(m,n+1)

R(m, n) := Fonn) S(m, n) := Fam.n)

If a,b € N and we set u =m+n, c = a+ b, we have

PP+ e+ 0+ N TS (qu+ e+ k) +)

b) —
R(m+a,n+ b) 7 (p(m +a) + ) [TL, (q(m + a) + )

, (4.9)

12 P+ e+ 0+ N T (i + ¢ + k) +))
7 (p(n+b) + DT (q(n + b) +))

Given now 0 <i,j < N with i +j > 0 we have

Sm+a,n+b)= (4.10)

Fm+in+j) = =
—— 2= | |Rm+an+j)-||Sm n+b)
F(m, n) 01:([) }D)
Note that either R(m, n) or S(m, n) is a factor in the above product. Consider now the
point
-1
(mo,ng) = |————k—a,a],
P
where o is an irrational number. We have p(nmo + no + k) = —(p — 1) and therefore

both R(m, n) and S(m, n) vanish at (my, ny). On the other hand, since o is irrational,
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none of the denominators in (4.9) or (4.10) may vanish at (my, ny). Evaluating the
left-hand side of (4.8) at (my, ng) yields coo = 0 which is impossible. Hence, ¥
and a fortiori f, are not rational.

We have shown that the matrix 4 in (4.6) is not gkz-rational for p > 0. The proof
of non-rationality in the triangular prism case (p < 0), provided to us by Laura
Matusevich, is analogous and will be omitted here. In summary, we conclude that
every three-dimensional configuration is not gkz-rational. O

5. Toric Residues

In this section we present an explicit construction of non-Laurent rational
hypergeometric functions. This will prove the if-direction of Conjectures 1.3 and
1.4 as promised in Theorem 1.5. At the end of Section 5 we state further open prob-
lems concerning residues and rational hypergeometric functions. We begin with
the ‘Cayley trick’ for representing resultants as discriminants.

PROPOSITION 5.1. Let A be a Cayley configuration (8). If A is essential then the
resultant Ry, .. 4, is non-constant and equals the discriminant D 4.

Proof. The identity Ry, .. 4, = D4 was proved in [11, Proposition 9.1.7] under the
more restrictive hypothesis that the configurations Ay,..., A, are all full-
dimensional; see [11, Hypothesis (1) on page 252]. The argument given in that proof
shows that Ry, ...4, = D4. On the other hand, the con-
dition of A4 being essential appears in [15, equation (2.9)], and [15, Corollary 2.4]
shows that it is equivalent to Ry, 4 # 1. O

,,,,,

COROLLARY 5.2. Conjecture 1.3 and Conjecture 1.4 are equivalent.

Proof. We must show that a non-degenerate configuration B is affinely isomorphic
to an essential Cayley configuration if and only if its discriminant Dg equals the
mixed resultant Ry, . 4, of some tuple of configurations (Ao, ..., 4,). The only-if
direction is the content of Proposition 5.1. For the converse, suppose Dp =
Ry,...4 # 1. Let A be the Cayley configuration of Ay, ..., 4,. Then D, = Dp. In
other words, the toric varieties X4 and X3 in P*~! have the same dual variety,
namely, the hypersurface defined by D4 = Dg. The Biduality Theorem [11, Theorem
1.1.1] shows that X4 = X3, and this implies that 4 and B are affinely isomorphic. ]

We next review the construction of the toric residue associated with a toric variety
X,. This was introduced by Cox [8] and further developed in [3, 5, 6]. Here A is the set
of all lattice points in a full-dimensional convex polytope in R". We consider » + 1

Laurent polynomials fy, f1, ..., f supported in A with generic complex coefficients:
S =D xmt™, j=0,1,....r. (5.1)

meA
Given an interior lattice point ¢ € Int((r + 1) - A)and an index i € {0, ..., r}, consider
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the total sum of Grothendieck point residues:

i ta/fi dy dz,
Resp(1') := (=1)' ) Res: LAA _> ,
/ ; N ftfr- S 1o .

where V; = {te (C*Y : fo() = =fi.1(t) = fi1(t) = - - = f(t) = 0} . It is shown
in [3, Theorem 0.4] that the expression (5.2) is independent of i and agrees with
the residue defined by Cox in [8]. We refer to [8, §6] and [3, §5] for integral
representations such as (1.10) of the toric residue Resz(t“).

The toric residue Resﬁ(l") is a rational function in the coefficients x;,, of our system
(5.1). For degree reasons, this rational function is never a non-zero polynomial. It
was shown in [6, Theorem 1.4] that the product

(5.2)

Ra(fo. - .. /i) - Resp(t)

is a polynomial in the variables x;,, where Ra(fo, ..., f;) denotes the (unmixed)
sparse resultant associated with the polytope A; see [11, §8.2].

There is an easy algebraic method [5, Algorithm 2] for computing the rational
function Resjé(t”): translate fo,...,f,,t* into multihomogeneous polynomials
Fy, ..., F,,u® in the homogeneous coordinate ring of Xa, compute any Grobner basis
G for (Fy, ..., F,), and finally take the normal form modulo G of #* and divide it by
the normal form modulo G of the toric Jacobian [8] of Fy, ..., F,. This computation
yields Resz(t“) up to a constant.

EXAMPLE 5.3. We demonstrate the algorithm of [5] by showing how it computes
the rational function (1.10). Here r =1 and A is the segment [0, 2] on the line.
The system (5.1) consists of two quadratic polynomials fo(f) = x| 4 xof + x31
and fi(r) = x4 + xst + x¢12. The toric variety X, is the projective line P'. We rewrite
our input equations in homogeneous coordinates,

2 2
Fo(ur, uz) = xqjuy + xaujus + x3u;

and
_ 2 2
Fi(uy, up) = xquy + Xsujuy + Xets,

and we compute any Grobner basis G for the ideal (Fy, F}) in Kluj, up], where
K = Q(x1, x2, X3, X4, X5, X). Here the toric Jacobian equals

J( ) oFy oF,  0Fy doF)
u,w)————F——7
b 3141 8142 auz 3141

= 2(x1xX5 — X2X4) u% + 4 (x1x6 — X3x4) U1uy + 2 (X2X6 — X3X5) u%

The residue Resﬁ(lz), which appears in (1.10), is computed as 4 times the ratio of the
normal form of uju; over that of J(u;, up), both modulo G.
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To establish the connection to hypergeometric functions, we now consider the
Cayley configuration of A, A, ..., A, taken r+ 1 times:

A= ey x &) c 2 x 2" =27
i=0

The points in A are labeled by the variables x;,, for i =0,...,r and m € A.

LEMMA 5.4. The configuration A is gkz-rational.

Proof. Let a € Int((r+1)-A) and fy, ..., f, generic Laurent polynomials as in
(5.1). It follows from either the definition or [5, Algorithm 2lthat Resjé (%) is a homo-
geneous function with respect to the grading induced by A; that is, it satisfies the
equations defined by the operators (1.2) for a suitable parameter vector. It follows
from [5, Theorem 7] tl}?t Resj‘-(t“) is also annihilated by the operators (1.1). Hence
Resjé(t”) is a rational A-hypergeomeiric function.

The discriminant associated with A equals the resultant Ry = Raa....aA, by Prop-
osition 5.1. This resultant is not a monomial, for instance, by [11, Corollary 8.2.3].
We showed in [6, Theorem 1.4] that Ry - Resz(t") is a polynomial. It remains to
be seen that the toric residue Res?(t“) itself is non-zero for at least one lattice point
a € Int((r + 1) - A). Recall from [8, Theorem 5.1] and [6, Proposition 1.2] that the

polynomial
Jo fio
afo af of,
nhn— H— ... L —
ot ot oty
J(@) = det o .

o
"or, o, T o,

is supported in Int((r+1)-A) and Res_?(j(t)) =n!-vol(A). Here the operator
Resﬁ( -) is extended from monomials # to the polynomial j(¢) by linearity. At least
one of the residues Res_?(t”)/\as a runs over Int((r + 1) - A), does not vanish and hence
is a non-Laurent rational A-hypergeometric function. O

EXAMPLE 5.5. The reciprocal of the determinant is a hypergeometric function. To
see this, take A to be the unit simplex, so that, f; = x;0 + x;1¢1 + - - - + x;,¢, in affine
coordinates on X, = P". The scaled simplex (r + 1) - A has a unique interior lattice
point a, and Resj‘-(t") = 1/det(x;;). Here the Cayley configuration A is the product
of two r-simplices A x A. We conclude that 1/det(x;) is a rational A x A-
hypergeometric function.

We are now prepared to complete the proof of our main result.
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Proof of the if direction in Theorem 1.5. Let A be an essential Cayley configuration
with A4y, A, ..., A, as in (1.8). Let A be the set of all lattice points in a convex
polytope containing all the configurations A4; for i=0,1,...,r. Then, A is
full-dimensional and 4 C K

Consider configurations By, ..., B, in Z" such that 4; C B; CAfori=0,...,r.
The corresponding Cayley configuration B is still essential, since the Minkowski
sum ), ; B; has affine dimension at least |/|. This property holds for 4 and it does
for B. We conclude from Proposition 5.1 that the Cayley configuration B is
non-degenerate and Dp = Rp, 3.

We would like to show that, in fact, any such configuration B must be gkz-rational.
We proceed by induction on the cardinality of K\B. The base case is cardinality zero:
if B=A then B is gkz-rational by Lemma 5.4.

For the induction step we may suppose that B is obtained from B by removing a
point b from By\ A, and assume, inductively, that f is a rational B-hypergeometric
function which contains the discriminant Dy in its denominator. Let us denote
by ¢ the variable associated with b and by X the variables associated with B. Expand
as in (3.2):

fGan=)" R(®)-1, (5.3)

=4

where each R,(%) is a rational B-hypergeometric function. We may now argue as in
the proof of Theorem 1.2; since B and B have affine dimension 2r it follows from
Lemma 3.2 that the B discriminant Dj, divides the specialization Dg|,_,. Hence,
for some ¢, the rational function R,(Xx) will lie strictly in the field of fractions of
the domain CJ[X, X*I](Dw and, consequently, will be a rational B-hypergeometric
function which contains the discriminant Dj in its denominator. In summary,
the configuration B = B\{b} inherits the property of being gkz-rational from the
configuration B. By induction, we conclude that A is gkz-rational. O

The results in this paper raise many questions about rational hypergeometric
functions. The most obvious one is whether Conjectures 1.3 and 1.4 are true for
toric varieties other than hypersurfaces, curves, surfaces and threefolds. Another
question which concerns the number of rational solutions is the following: Is the
dimension of the vector space of rational function solutions to the hypergeometric
system H,(f) always bounded by the normalized volume of A4? This volume is
the degree of Xj; see (1.3).

It would be nice to extend the observation in Example 5.5 from determinants to
hyperdeterminants. Following [11, Chapter 14], the hyperdeterminant is the dis-
criminant (= dual hypersurface) associated with any Segre variety X4 = Pko
Pk x ... x P*. Suppose ko =k > --- > k,. The corresponding configuration is
a product of simplices 4 = Ay, x Ay, x --- x Ag,. It is known [11, Theorem 14.1.3]
that 4 is non-degenerate if and only if kg < k1 + k3 + - - - + k,. The case of equality
ko =k +ky+---+k, is of special interest; it defines the hyperdeterminants of
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boundary format. Since in this case A is an essential Cayley configuration, it follows
from Theorem 1.5 that A is gkz-rational. We conjecture the converse of this
statement:

CONIJECTURE 5.6. Let A be the product of simplices Ay, x Ay, x --- x Ay, where
ko= -+ = k.. Then A is gkz-rational if and only if ko = ki + --- + k.

Finally, we would like to undertand the relation between toric residues and
rational hypergeometric functions. Although this is not explicit in the proof of
Theorem 1.5, one can show that every essential Cayley configuration admits rational
hypergeometric functions which are toric residues and whose denominators are
multiples of the A4-discriminant. However, as the following example shows, it is
too much to expect a ‘Universality Theorem for Toric Residues’ asserting that
the space of rational hypergeometric functions is spanned by Laurent polynomials
and toric residues.

Let A be the Cayley configuration of the segments {0, 1} and {0, 2}. The following
rational function is A-hypergeometric:

 Xg (—x{x5 — 6x7X3X3X4 + 3x3x3)
f(x11x27x31 x4)_ 2 2 2 3 .
X5 (x5X3 + X7X4)

This is not a toric residue because the degree is zero in the variables {x3, x4}.
However, an appropriate derivative of f will be a toric residue. For example,

Y g (xfx3 — 6x7x3x3x4 + X3x3)
0X4 (x§x3 + X%X4)4

agrees, up to constant, with the toric residue in P! associated with the differential
form

4 dt
(1 +x20)t (3 + x4 1

This leads us to the following general conjeture:

CONJECTURE 5.7. Every rational A-hypergeometric function f has an iterated

derivative
8[1 +ee g
dxy - - Oxy

which is a toric residue defined by some facial subset of A.

This conjecture has been verified in [7] for Lawrence liftings (see [17, Chapter 7]), a
class of configurations which plays an important role in combinatorics.
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