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THEORIES WITH DISTAL SHELAH EXPANSIONS

GARETH BOXALL AND CHARLOTTE KESTNER

Abstract. We show that a complete first-order theory T is distal provided it has a model M such that
the theory of the Shelah expansion of M is distal.

§1. Introduction. Since its introduction [7] distality has played an important role
in the study of NIP. The notion identifies those NIP theories which are, in some
sense, completely non-stable. Thus RCF is distal while ACVF, which has o-minimal
value group and stable residue field, is not. Indeed, Simon has decomposition results
[9] according to which types in NIP theories are understood in terms of a stable part
and a distal part. The theory of an infinite set is not distal and so distality has the
quirky property, among tameness conditions, of not always passing to reducts.

Of course, some reducts of structures with distal theories will have distal theories
and so will some expansions. In the NIP context, it is natural to consider the Shelah
expansion: one adds to the language a predicate for every externally definable set of
the structure. Shelah proved [6] that NIP is preserved when moving to this expansion
and trivially NIP passes to reducts. In early 2017, Artem Chernikov pointed out to
us that, while it is easy to see that the Shelah expansion of a model of a distal theory
will have a distal theory, it is not so clear that the intermediate expansions will have
distal theories. We prove that they will.

Theorem 1.1. Let T be a complete first-order theory. LetM |= T and letMSh be
the Shelah expansion of M. If Th(MSh) is distal then T is distal.

Corollary 1.2. If M̂ is an expansion of M such thatMSh is an expansion of M̂ ,
then distality of Th(MSh) implies distality of Th(M̂ ).

In the next section we say exactly what we mean by “expansion” and show how
the corollary is obtained from the theorem. Our proof of Theorem 1.1 relies on
a lemma in the NIP setting which we hope will have other applications. Before
stating it, we mention some notational conventions. We identify a non-constant
indiscernible sequence (ai)i∈I with the ordered set {ai : i ∈ I }, the order given by
saying ai < aj if and only if i < j. If M is a structure and A a set then A ⊆M
means A is a subset of a finite Cartesian power of sorts of M. If we want to be
specific about which Cartesian power then we write A ⊆Mx̄ , where x̄ is a tuple of
variables of the appropriate sorts. We follow a similar convention with the notation
a ∈M and a ∈Mx̄ . If A and B are both just sets thenA ⊆ B has its usual meaning.
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1324 GARETH BOXALL AND CHARLOTTE KESTNER

By “sufficiently saturated” we mean κ-saturated and strongly κ-homogeneous for
some sufficiently large cardinal κ.

We make much use of pairs of structures (N,M ) whereM ≺ N . In the one-sorted
setting, the language of such a structure is LP = L ∪ {P}, where L is the language
of M and P is a new unary predicate interpreted such that P(N ) =M. In the
many-sorted setting, one would need to replace P with a family (Ps)s∈S of unary
predicates, one for each sort, and the interpretation would be Ps(Ns) =Ms for
each s ∈ S. Given that this is understood, we shall for simplicity use the one-sorted
notation even in the many sorted setting.

Lemma 1.3. Let L be a language and T a complete first-order L-theory. Assume T
has NIP. LetM |= T and letM ≺ N and (N,M ) ≺ (N ′,M ′) be sufficiently saturated
elementary extensions, where (N,M ) and (N ′,M ′) are L ∪ {P}-structures and P is
a unary predicate, not in L, such that P(N ) =M and P(N ′) =M ′. Let A ⊆M ′ be
a small non-constant L-indiscernible sequence. Then there is a small L-indiscernible
sequenceA′ ⊆M ′ which extends A and has the following property. For every complete
L-type q(x̄) over A′ with x̄ = (x1, ... , xn), if q(x̄) is finitely realised in A′ then q(x̄) ∪
{P(x1), ... , P(xn)} implies a complete L-type over N.

This lemma is one of two ingredients in the proof of Theorem 1.1. The other is the
argument used in [3] to show that distality is equivalent to the existence of strong
honest definitions (Theorem 21 in [3]).

In Section 2 we give some background definitions and information. In Section 3 we
prove Lemma 1.3. In Section 4 we prove Theorem 1.1. In Section 5, for completeness,
we prove the converse of Theorem 1.1 which was already known to experts.

After talks given by the second author on this work, Ehud Hrushovski and Anand
Pillay both directed us to an alternative approach to Theorem 1.1 via generically
stable measures, using Simon’s characterisation of distal theories as those NIP
theories for which every generically stable measure over a model is smooth. Both
were kind enough to supply us with further details and to grant permission for the
inclusion of the argument here. We sketch it in Section 6. We felt it appropriate to
retain our original proof, which avoids use of measures and Simon’s result, partly as
an advertisement for Lemma 1.3.

§2. Preliminaries. Let L be a language and T a complete first-order L-theory. Let
M |= T and let M ≺M ′ be sufficiently saturated. We assume throughout that T
has NIP. By an expansion of M we mean a structure N with the same underlying set
(the same sorts, in the many sorted-setting) such that every ∅-definable set of M is
∅-definable in N. An externally definable set of M is a set of the formX ∩Mx̄ where
X ⊆M ′x̄ is definable (with parameters) in M ′. It is easy to check that this does
not depend on the choice ofM ′. The Shelah expansionMSh of M is the structure
whose language L(MSh) has one predicate for each externally definable set of M
and in which these predicates are interpreted in the obvious way. We shall rely on
the following fact proved by Shelah in [6].

Fact 2.1. Th(MSh) has quantifier elimination and NIP.

Let M̂ be an expansion of M such thatMSh is an expansion of M̂ . Corollary 1.2
follows from Theorem 1.1 in combination with the fact that MSh is an expansion
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THEORIES WITH DISTAL SHELAH EXPANSIONS 1325

of M̂Sh , it being obvious that M̂Sh is an expansion of MSh . The fact that MSh

expands M̂Sh follows from the fact thatMSh expands (MSh)Sh . This must be well
known but, unaware of a suitable reference, we provide a short proof (the main
points of which were suggested to us by the referee).

Lemma 2.2. MSh is an expansion of (MSh)Sh .

Proof. Let MSh ≺ N̄ and (N̄ ,MSh) ≺ (N̄ ′, M̄ ′) be sufficiently saturated ele-
mentary extensions in the languages L(MSh) and L(MSh) ∪ {P}, respectively.
Let N,M ′, and N ′ be the reducts of N̄ , M̄ ′, and N̄ ′ to L. Let X ⊆Mx̄
be ∅-definable in (MSh)Sh . Then there exists Y ⊆M ′x̄ definable in M̄ ′ such
that X = Y ∩Mx̄ . We then have some Z ⊆M ′x̄ȳ and b̄ ∈M ′ȳ such that Z is
∅-definable in M̄ ′ and Y = {ā ∈M ′x̄ : (ā, b̄) ∈ Z}. By Fact 2.1, Z is defined by
an L(MSh)-formula which defines an externally definable set of M. It follows that
there exists W ⊆ N ′x̄ȳ definable in N ′ such that Z =W ∩M ′x̄ȳ . We then have
X = {ā ∈Mx̄ : (ā, b̄) ∈W } and so X is ∅-definable inMSh . �

We shall make much use of cuts in the following sense.

Definition 2.3. Let (A,<) be a totally ordered set. A cut in A is a complete
quantifier-free one-type over A, considered as a structure in the language {<}. An
unrealised cut in A is one which has no realisation in A.

The following concept will be useful in the proof of Lemma 1.3.

Definition 2.4. LetC = {c1, ... , ck}be a set of unrealised cuts in an indiscernible
sequence A ⊆M ′. Let b̄ = (b1, ... , bn) and b̄′ = (b′1, ... , b

′
n) be tuples of elements of

A. We say that b̄ and b̄′ have the same order type over C if they have the same
quantifier-free type over ∅ in the structure (A,<) and, for each i ≤ n and m ≤ k,
bi < cm if and only if b′i < cm. In this case we write otp(b̄/C ) = otp(b̄′/C ).

The following is an immediate consequence of Fact 1 in [3] (see also [1, 5]).

Fact 2.5. LetA ⊆M ′ be a small indiscernible sequence. Let �(x̄) be a formula with
parameters inM ′. Then there is a finite setC = {c1, ... , ck} of unrealised cuts in A such
that, for any tuples b̄, b̄′ from A, if otp(b̄/C ) = otp(b̄′/C ) thenM ′ |= �(b̄) ↔ �(b̄′).

We note that there is a minimum such C.

Lemma 2.6. Let A ⊆M ′ be a small indiscernible sequence. Let �(x̄) be a formula
with parameters in M ′. Let C be the collection of all C as in Fact 2.5. Then C has a
minimum element with respect to set inclusion.

Proof. By Fact 2.5, C is not empty. Let C = {c1, ... , ck} ∈ C such that k is
minimal. Let C ′ ∈ C. Suppose C � C ′. Let c ∈ C \ C ′ and C1 = C \ {c}. Since
k is minimal, there are tuples b̄, b̄′ from A such that otp(b̄/C1) = otp(b̄′/C1) and
M ′ |= �(b̄) ∧ ¬�(b̄′). One can deform b̄ into b̄′ without changing the truth value of
�(b̄) (by ensuring that at each stage one preserves the order type over C or the order
type over C ′). This is a contradiction. �

Note that none of the cuts in the minimum C will be at ∞ or – ∞. If A and B are
disjoint ordered sets then A+ B denotes A ∪ B equipped with the ordering which
places everything in A below everything in B and agrees with the existing orderings
of A and B. The following, which we take as our definition of distality, is provided
by a combination of Definition 2.1 and Lemma 2.7 in [7].
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1326 GARETH BOXALL AND CHARLOTTE KESTNER

Definition 2.7. T is distal if, for any small indiscernible sequence of the form
I + {b} + J in M ′, where {b} is a singleton and I and J are infinite without
endpoints, and any smallD ⊆M ′, if I + J is indiscernible over D then I + {b} + J
is indiscernible over D.

Trivially, if distality fails then this is witnessed by some D, b, I , and J such that
I and J are both indexed by Z. Note that M ′ could be many-sorted. Even if it is
one-sorted, the elements of I + {b} + J could be tuples. When distality fails we
shall want the following convenient consequence which must be well known. (For a
slightly stronger version, see Corollary 1.11 in [2].)

Lemma 2.8. If T is not distal then there exist a small indiscernible sequence
I + {b} + J with I and J infinite, a formula φ(x, y) and some a ∈M ′ such that
I + J is indiscernible over a andM ′ |= φ(a, c) for all c ∈ I + J butM ′ |= ¬φ(a, b).

Proof. Suppose T is not distal. Then we have a small indiscernible I + {b} + J in
M ′, with I and J indexed by Z, and a smallD ⊆M ′ such that I + J is indiscernible
over D but I + {b} + J is not. It follows that there exist a formula φ(x, ȳ) and
some a ∈M ′, with ȳ an n-tuple of variables in the sort of I + {b} + J , such that
M ′ |= φ(a, c̄) for any strictly increasing n-tuple c̄ from I + J and M ′ |= ¬φ(a, b̄)
for some strictly increasing n-tuple b̄ from I + {b} + J .

Let I ′ be the set of all elements in I below b̄ and let J ′ be the set of all elements in J
above b̄. Then I ′ and J ′ are both infinite and each is indexed by N, with the standard
or reverse order, or by Z. By grouping elements together we may treat I ′ and J ′ as
sequences of n-tuples. Then I ′ + {b̄} + J ′ is indiscernible and I ′ + J ′ is indiscernible
over a. We haveM ′ |= φ(a, c̄), for all c̄ ∈ I ′ + J ′, whileM ′ |= ¬φ(a, b̄). �

§3. Lemma. In this section we prove Lemma 1.3. For convenience we recall the
statement.

Lemma 3.1. Let L be a language and T a complete first-order L-theory. Assume T
has NIP. LetM |= T and letM ≺ N and (N,M ) ≺ (N ′,M ′) be sufficiently saturated
elementary extensions, where (N,M ) and (N ′,M ′) are L ∪ {P}-structures and P is
a unary predicate, not in L, such that P(N ) =M and P(N ′) =M ′. Let A ⊆M ′ be
a small non-constant L-indiscernible sequence. Then there is a small L-indiscernible
sequenceA′ ⊆M ′ which extends A and has the following property. For every complete
L-type q(x̄) over A′ with x̄ = (x1, ... , xn), if q(x̄) is finitely realised in A′ then q(x̄) ∪
{P(x1), ... , P(xn)} implies a complete L-type over N.

Proof. When a language other than L is intended, we shall make that clear. Let
�(x̄) be a formula with parameters in N. By Fact 2.5 there is a setC�A = {c1, ... , ck}of
unrealised cuts of A such that, for any two tuples b̄ and b̄′ from A, if otp(b̄/C �A) =
otp(b̄′/C �A) then N ′ |= �(b̄) ↔ �(b̄′). By Lemma 2.6, we may assume C�A is the
minimum among all possible choices (ordered by set inclusion).

For any small indiscernible sequence B ⊆M ′ extending A and any cut c ∈ C�A ,
there must be some c′ ∈ C�B such that c′ refines c (by which we mean that every
realisation of c′ is also a realisation of c). OtherwiseC�B would give rise to a finite set
C ′ of unrealised cuts in A such that C�A � C ′ and, for any tuples b̄ and b̄′ from A,
otp(b̄/C ′) = otp(b̄′/C ′) =⇒ N ′ |= �(b̄) ↔ �(b̄′). This would be a contradiction.

https://doi.org/10.1017/jsl.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.11


THEORIES WITH DISTAL SHELAH EXPANSIONS 1327

As each C�B is finite, it follows that we cannot have an infinite sequence of
small indiscernible extensions A ⊆ B1 ⊆ B2 ⊆ ··· ⊆M ′ such that |C�A| < |C�B1

| <
|C�B2

| < ... (since otherwise the union
⋃

n∈N

Bn would be a small indiscernible sequence

for which the conclusion of Fact 2.5 is false). So then, for each �, we can find a small
extension B of A such that, for any small extension B ′ of B, |C�B | = |C�

B′ | and in
fact there is a bijection from C�B to C�

B′ which sends each cut c ∈ C�B to the unique
c′ ∈ C�

B′ which refines it.
The process of extending A to such a B could be called “maximising for �”.

Enumerate all formulas with parameters in N, add one to the enumerating indices
so that only successor ordinals are used and then maximise for each formula in turn,
taking unions at limit ordinals. We thereby obtain a small indiscernible sequence
A∗ ⊆M ′ extending A such that, for any formula � with parameters in N and
any small indiscernible B ⊆M ′ extending A∗, there is a bijection from C�A∗ to
C�B which sends each c ∈ C�A∗ to the unique c′ ∈ C�B which refines it. Note that
“formula �” really means “formula �(x̄) where x̄ is a tuple of variables in the
sort of A”.

We would like to consider
⋃

�

C �A∗ and, for any small extension B of A∗, the

bijection taking each c ∈
⋃

�

C �A∗ to the unique c′ ∈
⋃

�

C �B which refines it. However,

we cannot be sure at this stage that such a bijection exists. The problem is that, for
some �1, �2, we might have |C�1A∗ ∩ C�2A∗ | > |C�1B ∩ C�2B |. In other words, some cuts
might coincide in A∗ but not in B. For any small B ′ extending a small B extending
A∗, we must have |C�1A∗ ∩ C�2A∗ | ≥ |C�1B ∩ C�2B | ≥ |C�1

B′ ∩ C
�2
B′ |. (To see this note, in the

notation of the first inequality, that every cut in C�1B ∩ C�2B refines one in C�1A∗ ∩ C�2A∗
and that it would contradict the existence of our bijections if two cuts in C�1B ∩ C�2B
were to refine the same cut in C�1A∗ ∩ C�2A∗ .) An ordinal (in this case a finite one)
cannot be decreased infinitely many times. So, for each pair �1, �2, we can extend
so that |C�1B ∩ C�2B | is minimised. We can enumerate all such pairs of formulas and
extend appropriately for each one in turn, taking unions at limit ordinals. This
results in a small extension A∗∗ ⊆M ′ of A∗ with the following property. For any
small indiscernible B ⊆M ′ extending A∗∗ and any formula � with parameters in
N, let f�B : C�A∗∗ → C�B be the bijection which maps each c ∈ C�A∗∗ to the unique
c′ ∈ C�B which refines it and define CB =

⋃

�

C �B . Then, for each such B, the union,

over all such �, of the graphs of the functionsf�B is the graph of an order-preserving
bijection fB : CA∗∗ → CB .

To simplify notation, let C = CA∗∗ . Enumerate the elements of C as (cα)α<κ. For
each small indiscernible B ⊆M ′ extending A∗∗ and each � < κ, let c�B = fB(c�).
We build a chain (Bα)α<κ of small indiscernible sequences inM ′ extending A∗∗ in
the following way. Let � < κ and suppose we have formed Bα for all α < � . Let
B ′
� = A∗∗ ∪

⋃

α<�

Bα . Consider the cut c�
B′
�
. There are four cases.

(1) Suppose {a ∈ B ′
� : a < c�

B′
�
} has a maximum and {a ∈ B ′

� : a > c�
B′
�
} has a

minimum. Then let B� = B ′
� .
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1328 GARETH BOXALL AND CHARLOTTE KESTNER

(2) Suppose {a ∈ B ′
� : a < c�

B′
�
} has a maximum and {a ∈ B ′

� : a > c�
B′
�
} does

not have a minimum. By compactness, there exist a small indiscernible
sequence B extending B ′

� and some v� ∈ B such that v� > c
�
B and v� realises

c�
B′
�
. (One uses the limit type of the indiscernible sequence B ′

� over NB ′
� as

c�
B′
�

is approached from the right.) Then let B� = B ′
� ∪ {v�}.

(3) Suppose {a ∈ B ′
� : a > c�

B′
�
} has a minimum and {a ∈ B ′

� : a < c�
B′
�
} does not

have a maximum. By compactness, there exist a small indiscernible sequence
B extending B ′

� and some u� ∈ B such that u� < c
�
B and u� realises c�

B′
�
. Then

let B� = B ′
� ∪ {u�}.

(4) Suppose {a ∈ B ′
� : a < c�

B′
�
} does not have a maximum and {a ∈ B ′

� : a >

c�
B′
�
} does not have a minimum. By compactness, there exist a small

indiscernible sequence B extendingB ′
� and someu� , v� ∈ B such thatu� < c

�
B ,

v� > c
�
B and both u� and v� realise c�

B′
�
. Then let B� = B ′

� ∪ {u� , v�}.

•

����
��
��
��
��

�� �� �� c�
B′
�

������ •

���
��

��
��

��
�

• •u��� �� �� �� �� �� c�B�
������ •v� ������ •

Let A′ =
⋃

α<κ
Bα . In the remainder of this proof, if we write an indiscernible

sequence as (B,<) we are thinking of it as a structure and the language we are using
is {<}. The sequence A′ has been constructed so that, for each � < κ, the cut c�

A′
is definable in (A′, <). Therefore, whenever we have small indiscernible sequences
B and B ′ in M ′, with A′ ⊆ B and A′ ⊆ B ′, and ā = (a1, ... , an) ∈ Bn and ā′ =
(a′1, ... , a

′
n) ∈ B ′n, if (A′, <) ≺ (B,<) and (A′, <) ≺ (B ′, <) and qftp{<}(ā/A′) =

qftp{<}(ā′/A′) then, for each � < κ and i ∈ {1, ... , n}, ai < c
�
B if and only if

a′i < c
�
B′ .

We show that A′ has the desired property. Let q(x̄) be a complete L-type over A′

which is finitely realised in A′. Let ā = (a1, ... , an) and ā′ = (a′1, ... , a
′
n) both realise

q(x̄) in M ′. Let (N ′′,M ′′, A′′) be a sufficiently saturated elementary extension of
(N ′,M ′, A′), in the language L ∪ {P,Q,<}, where P is a unary predicate forM ′, Q
is a unary predicate for A′, and < is a binary predicate for the order relation on A′.
Then q(x̄) is realised in A′′, say by ā′′. By the downward Löwenheim–Skolem
theorem, there is a small (N ′′′,M ′′′, A′′′) ≺ (N ′′,M ′′, A′′) such that A′ ∪ {ā′′} ⊆
A′′′ and (A′, <) ≺ (A′′′, <). ThenA′′′ is indiscernible in the sense of L. We then have
automorphisms � and �′ of theL ∪ {P}-structure (N ′′,M ′′) which fixA′ pointwise
and are such that �(ā′′) = ā and �′(ā′′) = ā′. Let B = �(A′′′) and B ′ = �′(A′′′).
Then B and B ′ are indiscernible (in the sense of L), (A′, <) ≺ (B,<) and (A′, <) ≺
(B ′, <), where the orderings of B andB ′ are determined by � and �′. We may assume
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B,B ′ ⊆M ′. Since qftp{<}(ā/A′) = qftp{<}(ā′/A′) we have ai < c
�
B if and only if

a′i < c
�
B′ , for each � < κ and i ∈ {1, ... , n}. It follows that tp(ā/N ) = tp(ā′/N ). �

Remark 3.2. One then gets for free that q(x̄) ∪ {P(x1), ... , P(xn)} implies a
complete L-type over NA′. One way to obtain N and (N ′,M ′) would be to take
sufficiently saturated elementary extensions MSh ≺ N̄ and (N̄ ,MSh) ≺ (N̄ ′, M̄ ′),
in the languages L(MSh) and L(MSh) ∪ {P}, respectively, and then define N,
M ′ and N ′ to be the L-reducts of N̄ , M̄ ′, and N̄ ′. In this case, given that
q(x̄) ∪ {P(x1), ... , P(xn)} implies a complete L-type over NA′, q(x̄) implies
membership of a maximal consistent collection of sets defined by predicates in
L(MSh) using parameters in A′. Since Th(MSh) has QE (Fact 2.1), q(x̄) implies a
complete L(MSh)-type over A′.

§4. Theorem. In this section we prove Theorem 1.1, after restating it for
convenience. Our proof borrows a great deal from the proof in [3] that distality
is equivalent to having so-called strong honest definitions (see Proposition 19 and
Theorem 21 of [3]). It is essentially just a stretching of that argument to a setting
provided by Lemma 1.3.

Theorem 4.1. Let L be a language and T a complete first-order L-theory. Let
M |= T and letMSh be the Shelah expansion of M. Suppose Th(MSh) is distal. Then
T is distal.

Proof. As in the proof of Lemma 1.3, the default language is L. Suppose, for
contradiction, that T is not distal. By Lemma 2.8 there exist a model K |= T , an
indiscernible sequence I + {b} + J in K, with I and J infinite and {b} a singleton,
some a ∈ K and a formula φ(x, y) such that I + J is indiscernible over a, K |=
φ(a, d ) for all d ∈ I + J and K |= ¬φ(a, b).

Let MSh ≺ N̄ and (N̄ ,MSh) ≺ (N̄ ′, M̄ ′) be sufficiently saturated elementary
extensions in the languages L(MSh) and L(MSh) ∪ {P}, respectively. Let N,M ′,
and N ′ be the reducts of N̄ , M̄ ′, and N̄ ′ to L. We may assume K ≺M ′.

By Lemma 1.3 and Remark 3.2, I + J extends to a small indiscernible sequence
A′ inM ′ with the property that every complete type overA′ which is finitely realised
in A′ implies a complete L(MSh)-type over A′. We may assume a and b are such
that A′ ∪ {b} is indiscernible, with b positioned just above I, and A′ is indiscernible
over a. (To see this, let r(x, y) be the partial type over A′ expressing the desired
properties of the pair (a, b). Any finite r′(x, y) ⊆ r(x, y) involves only a finite tuple
cd from A′, where c is bounded above by an element of I and d lies entirely above I.
By indiscernibility, an automorphism ofM ′ takes c to a tuple in I and d to a tuple
in J, establishing that r′(x, y) can be realised. One then uses saturation.)

Now consider the structure (N̄ ′, M̄ ′, A′) in the language L(MSh) ∪ {P,Q}. Take
sufficiently saturated elementary extensions

(N̄ ′, M̄ ′, A′) ≺ (N̄ ′′, M̄ ′′, A′′) ≺ (N̄ ′′′, M̄ ′′′, A′′′) ≺ (N̄ ′′′′, M̄ ′′′′, A′′′′).

In all cases, let the removal of the bar correspond to taking the L-reduct. Let
p(x) = tp(a/A′′). Let q(y) be a complete type over A′′, where y is a single variable
in the sort of A′, such that q is finitely realised in A′. We show that p(x) ∪ q(y)
implies a complete type in xy over ∅.
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Let q′(y) be some extension of q(y) to a complete type overN ′′′′ which is finitely
realised in A′. Let (di)i∈Z be a Morley sequence for q′ over N ′ in A′′. (Of course, a
Morley sequence is usually indexed by N but, having obtained such a sequence, one
can choose another one indexed by Z with the same EM-types.) Let d∗ realise q in
M ′′′. Let (d ′i )i∈Z be a Morley sequence in q′ overN ′′′ in A′′′′. We find the following
picture helpful.

M M ′ M ′′ M ′′′ M ′′′′

N N ′ N ′′ N ′′′ N ′′′′

I + J ... d–1, d0, d1 ...

•d∗

... d ′–1, d
′
0, d

′
1 ...

A′ A′′ A′′′
A′′′′

The sequence (di)i∈Z + d∗ + (d ′i )i∈Z is L(MSh)-indiscernible. This is because
every finite subsequence has a type over A′ which is finitely realised in A′ and
therefore implies a complete L(MSh)-type over A′. Also (di)i∈Z + (d ′i )i∈Z is
L-indiscernible over Na and so L(MSh)-indiscernible over a. By the distality
of Th(MSh), (di)i∈Z + d∗ + (d ′i )i∈Z is L(MSh)-indiscernible over a and thus
L-indiscernible over a. Since d∗ was an arbitrary realisation of q inM ′′′ it follows
that p(x) ∪ q(y) implies a complete type in xy over ∅.

Since the set of all d ∈M ′′′ such that tp(d/A′′) is finitely realised in A′ is type-
definable over A′′ in the structure M ′′′, a compactness argument gives us some
c̄ ∈ A′′k and an L-formula �(x, z̄), with z̄ a k-tuple of variables in the sort of y,
such that M ′′ |= �(a, c̄) and �(x, c̄) implies the φ-type of a over A′. (To see this,
suppose not. Then, for any choice of �(x, c̄) ∈ tp(a/A′′), there exist b′ ∈ A′ ⊆ {d ∈
M ′′′ : tp(d/A′′) is finitely realised in A′} and a′ ∈M ′′ such thatM ′′ |= �(a′, c̄) and
M ′′ |= φ(a, b′) ↔ ¬φ(a′, b′). Then, by compactness, there exist a′, b′ ∈M ′′′ such
that a′ |= p(x), tp(b′/A′′) is finitely realised in A′ and tp(ab′) �= tp(a′b′) which is
a contradiction.) So for any finite A ⊆ A′ there is a c̄ ∈ A′k such thatM ′ |= �(a, c̄)
and �(x, c̄) implies the φ-type of a over A.

Recall that A′ ∪ {b} is indiscernible, with b positioned just above I, and A′ is
indiscernible over a. SoM ′ |= φ(a, d ) for all d ∈ A′ andM ′ |= ¬φ(a, b). LetA ⊆ A′

have cardinality k + 1. Let c̄ ∈ A′k be such that M ′ |= �(a, c̄) and �(x, c̄) implies
the φ-type of a over A. Let d be an element of A which does not belong to the tuple
c̄ = (c1, ... , ck). Let f be a partial automorphism of (A′ ∪ {b}, <), with domain
A ∪ {c1, ... , ck}, such that f(d ) = b. Let f(c̄) denote the tuple (f(c1), ... , f(ck)).
ThenM ′ |= �(a,f(c̄)). It follows thatM ′ |= φ(a, b), since otherwise there would be
some a′ ∈M ′ such thatM ′ |= �(a′, c̄) ∧ ¬φ(a′, d ) which would be a contradiction.
ButM ′ |= ¬φ(a, b) and so we have a contradiction and the proof is finished. �
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§5. Converse. For completeness we give a proof of the converse of Theorem 1.1,
though it was already known to experts in the area.

Theorem 5.1. Let T be a complete first-order L-theory and letM |= T . Suppose
T is distal. Then Th(MSh) is distal.

Proof. Let MSh ≺ N̄ and (N̄ ,MSh) ≺ (N̄ ′, M̄ ′) be sufficiently saturated ele-
mentary extensions, the first in the languageL(MSh) and the second in the language
L(MSh) ∪ {P}, where P is a new unary predicate. LetN,M ′, andN ′ be the L-reducts
of N̄ , M̄ ′, and N̄ ′, respectively. Let I + {b} + J be a small L(MSh)-indiscernible
sequence in M̄ ′, such that I and J are both infinite without endpoints. Let A ⊆ M̄ ′

be small and suppose I + J is L(MSh)-indiscernible over A. It follows that I + J is
L-indiscernible overNA and that I + {b} + J is L-indiscernible over N. By distality
of T, I + {b} + J is L-indiscernible over NA. Therefore I + {b} + J is L(MSh)-
indiscernible over A. �

§6. Alternative approach using measures. In this section we mention an alternative
proof of Theorem 1.1 for which we thank Ehud Hrushovski and Anand Pillay. We
shall be brief with the details as we have already given a thorough proof and experts
will be able to fill in the gaps quite easily. Throughout, T is a complete first-order
NIP theory.

We recall the definitions we shall need and direct the reader to Chapter 7 of [8]
for further details. A measure � over a structure M assigns to each definable (with
parameters) subset of some fixed sort of M a number in the interval [0, 1]. It is finitely
additive and achieves a maximum value of 1. It is smooth if, for each elementary
extensionM ≺ N , there is only one measure over N extending �. Suppose we have
M |= T , a sufficiently saturated elementary extension M ≺ N and a measure �
over N. We say � is definable over M if, for each L-formula ϕ(x, y) and closed
B ⊆ [0, 1], the set of all b ∈ N such that ϕ(x, b) defines a set with �-measure in B
is type-definable over M. We say � is finitely satisfiable in M if every definable set
with positive �-measure has non-empty intersection with the relevant sort of M. In
the case where � is both definable over M and finitely satisfiable in M, we say � is
generically stable over M.

The following fact is from [7] (Corollary 2.22 and Proposition 2.27). The
“moreover” statement follows from Proposition 2.21 in [7].

Fact 6.1. Let T be a complete first-order L-theory. Suppose T has NIP. Then T
is distal if and only if, for every K |= T , sufficiently saturated K ≺ N and measure �
over N, if � is generically stable over K then its restriction to K is smooth. Moreover, if
T is not distal then it has a model K such that, for every elementary extensionK ≺ K̂ ,
there exist a sufficiently saturated K̂ ≺ N̂ and a measure � over N̂ which is generically
stable over K̂ but whose restriction to K̂ is not smooth.

Theorem 6.2. Let M |= T . Let MSh ≺ K̄ . Then let K̄ ≺ N̄ and (N̄ , K̄) ≺
(N̄ ′, K̄ ′) be sufficiently saturated elementary extensions and define N,K,N ′, and
K ′ to be the L-reducts of N̄ , K̄ , N̄ ′, and K̄ ′. Let � be a measure over N ′ which is
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generically stable over K. Then the restriction of � to K extends to a measure �∗ over
K̄ with the following properties:

(1) �∗ extends to a measure over K̄ ′ which is generically stable over K̄ .
(2) If the restriction of � to K is not smooth then �∗ is not smooth.

Furthermore, the measure �∗ is the unique extension to K̄ of the restriction of
� to K.

Proof. Let X be a definable set of K̄ ′. Then X is a fibre of a ∅-definable set, sayX1.
By Fact 2.1, X1 is defined by a quantifier-free formula R(x, z) ∈ L(MSh), without
parameters. Consider the set, sayX2, defined byR(x, z) in K̄ . By compactness, as is
well known, X2 will itself be externally definable with respect to the structure K and
so there will exist an L-formulaϕ(x, y, z) and parameter b from N such thatX2 is the
set of all (a, c) ∈ K for whichN |= ϕ(a, b, c). Using compactness one can choose b
so that, for every L-formula �(w, y), the set {d ∈ K : N |= �(d, b)} is ∅-definable in
the structure K̄ . We assume b has been chosen with this property. ThenX1 will be the
set externally defined by ϕ(x, b, z) inK ′. So, finally, we have an L-formula ϕ(x, y, z)
and parameters b from N and c fromK ′ such that X = {a ∈ K ′ : N ′ |= ϕ(x, b, c)}.
Define �′ over K̄ ′ such that �′(X ) is the value assigned by � to the set defined by
ϕ(x, b, c) in N ′.

One checks that �′ is a measure over K̄ ′. Note that it is well-defined because
ϕ(x, b, c) is always unique up to a �-measure zero symmetric difference, using the
fact that � is finitely realisable in K. Furthermore, �′ is definable over K̄ and finitely
satisfiable in K̄ . For definability, we use definability of � for the formula ϕ(x, y, z)
and then restrict the type-definable set to y = b and project to the z-coordinate.
From the way b was chosen it is clear that the resulting type-definable set is defined
by a partial type using only formulas in the language of K̄ ′, with parameters in K̄ .
Finite realisability of �′ in K̄ is immediate from the finite realisability of � in K.
So then the measure �′ over K̄ ′ is generically stable over K̄ . We define �∗ to be its
restriction to K̄ .

For uniqueness of �∗ (the “furthermore” statement) one uses the fact that every
measure over K̄ comes from a measure over N ′ which agrees with it on K and is
finitely realisable in K. Since� is generically stable over K, it is known (by Proposition
3.3 in [4]) that its restriction to K has only one finitely realisable (in K) extension to
N ′. Therefore �∗ is unique.

Now suppose the restriction of � to K is not smooth. Since K ≺ N is sufficiently
saturated, this is witnessed over N and so there are two distinct extensions �1 and
�2 to N. These extend, respectively, to measures �∗1 and �∗2 over N̄ . Trivially, �∗1 and
�∗2 are distinct. They both restrict to measures on K̄ which extend the restriction of
� to K. By uniqueness of �∗, they both extend �∗. So �∗ is not smooth. �

One quickly deduces Theorem 1.1 from this as follows. Suppose T is not distal
and letM |= T . LetLM be L together with a new constant symbol for every element
of M. Let TM be the LM -theory of M. By Corollary 2.9 in [7], TM is not distal.
Then, by Fact 6.1, there exist a model K̂ |= TM , a sufficiently saturated elementary
extension K̂ ≺ N̂ ′ and a measure �̂ over N̂ ′ which is generically stable over K̂ and
whose restriction to K̂ is not smooth. Let N ′ and K be the L-reducts of N̂ ′ and K̂
and let � be the restriction of �̂ to N ′. Then � is generically stable over K and its
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restriction to K is not smooth. By the “moreover” part of Fact 6.1, we may assume
N ′, K, and � are as in Theorem 6.2 and so there exist K̄ , K̄ ′, and N̄ ′ as in the
statement of that result. It follows that there is a non-smooth measure �∗ over K̄
which extends to a measure over K̄ ′ which is generically stable over K̄ . By Fact 6.1,
Th(MSh) is not distal.
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