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Abstract

We consider an insurance portfolio situation in which there is possible dependence
between the waiting time for a claim and its actual size. By employing the underlying
random walk structure we obtain explicit exponential estimates for infinite- and finite-
time ruin probabilities in the case of light-tailed claim sizes. The results are illustrated in
several examples, worked out for specific dependence structures.
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1. Introduction

The classical risk theory describing characteristics of the surplus process of a portfolio of
insurance policies usually relies on the assumption of independence of claim sizes and claim
interoccurrence times. However, in many applications this assumption is too restrictive and
generalizations to dependent scenarios are called for. In recent years, a number of results on
ruin probabilities have been obtained for models that allow for specific types of dependence
(see [2] for a survey on the subject).

One traditional technique of deriving results in risk theory is to describe the surplus process
as a random walk with independent increments between two claim instances. It is well known
that if the Laplace transform of the distribution of the increments exists in a left neighborhood
of the origin, then the asymptotic behavior of ruin probabilities in infinite and finite time are
determined by properties of the Laplace transform in that region.

In this paper we take up this random walk approach. However, we allow the interclaim
time and its subsequent claim size to be dependent according to an arbitrary copula structure,
thus separating the dependence behavior from the properties of the marginal distributions. The
introduction of dependence modifies the shape of the Laplace transform, but the random walk
structure is preserved and we can derive asymptotic results for the ruin function by studying
properties of this Laplace transform. This approach seems to be new; the present paper is not
meant to be an exhaustive treatment of the subject – it should rather be seen as a starting point.

In Section 2 we present some preliminaries on random walk techniques and their connection
with ruin theory. In Section 3 the Laplace transform of the increment distribution of the random
walk is introduced and some of its properties are discussed. In Section 4 we rederive the
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Cramér–Lundberg approximation for the infinite-time ruin probability in terms of random walk
quantities, and discuss the behavior of the adjustment coefficient in the presence of dependence.
Explicit exponential estimates of finite-time ruin probabilities for these dependent scenarios
are given in Sections 5 and 6, and discussed in some detail for several specific dependence
structures. We conclude in Section 7.

2. Preliminaries

We start by introducing the main quantities from both ruin and random walk theory.

2.1. Portfolio quantities

Let claim sizes arrive according to a renewal process with interclaim times {Ti, i = 1, 2, . . .}
and T0 = 0. The generic interclaim time T has distribution FT . Let the claim sizes {Ui, i =
1, 2, . . .} form another renewal process, generated by the random variable U with distribution
FU . We assume that there is constant payment of premiums at a rate c. We will normally assume
that the bivariate process {(Ui, Ti), i = 1, 2, . . .} is a bivariate renewal process generated by the
pair (U, T ). In this case the quantities {Xi := Ui − cTi, i ≥ 1} are independent and identically
distributed, which is necessary in the random walk approach that we are following. The random
variable X = U − cT will be called the generic variable. As a special case we mention the
famous Sparre Andersen model, in which the two processes are independent.

Denote by Rn the risk reserve immediately after payment of the nth claim. Then R0 = u is
obviously the initial reserve, while, for n ≥ 0, Rn+1 = Rn + cTn+1 − Un+1.

2.2. Random walks

To introduce a random walk, for all n ≥ 1 define Xn = Un − cTn, which can be interpreted
as the loss between the (n−1)th and the nth claims. Then, with S0 = 0 and Sn+1 = Sn+Xn+1,

n ≥ 0, we can express Rn = u− Sn in terms of the random walk {Sn}. Let

K(x) = P{X ≤ x} = P{U − cT ≤ x}
be the distribution of the generic variable X. Without further ado we assume that

E{X} = E{U} − c E{T } < 0

as, otherwise, the insurance company will be ruined with probability 1.
We use the terminology and notation from general random walk theory (see, e.g. [11]). At

every instant, the random walk {Sn, n ≥ 0} itself is determined by the n-fold convolution

K∗n(x) = P{Sn ≤ x},
where K∗0(x) is the unit-step distribution at the origin. The characteristic function of X will
be denoted by

κ(ζ ) := E{exp(iζX)}, ζ ∈ R.

The following quantities are among the prime objects of study in random walk theory. The
first upgoing ladder index is defined by N := inf{n > 0 : Sn > 0} and the corresponding first
upgoing ladder height is then SN . A famous result by Baxter (see [11, p. 204]) gives the hybrid
transform of the pair (N, SN). For |s| < 1 and θ ≥ 0,

E{sNe−θSN } = 1 − exp

(
−

∞∑
n=1

sn

n

∫ ∞

0+
e−θx dK∗n(x)

)
. (2.1)
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In the notation of Feller [5, p. 540], the above hybrid transform appears as the right Wiener–Hopf
factor of the characteristic function κ(·). By this we mean that

1 − sκ(ζ ) = (1 − χ(s, ζ ))(1 − χ̃(s, ζ )), (2.2)

where χ(s, ζ ) := E{sNeiζSN } and χ̃(·, ·) refers to the analogous quantity for the (weak)
downgoing ladder index and ladder height.

The maxima of the random walk are defined by M0 = 0 and, for n ≥ 1,

Mn = max(0, S1, . . . , Sn).

We denote the distribution of Mn by Gn(x) := P{Mn ≤ x}. The supremum of the random
walk is defined by M∞ = sup(0, S1, S2, . . .), and, furthermore, G(x) := P{M∞ ≤ x}. A
classification quantity that often appears is given by

B(s) :=
∞∑
n=1

sn

n
P{Sn > 0}.

Now, B := B(1) < ∞ if and only if M∞ < ∞ almost surely; moreover, then lim sup Sn =
−∞. In particular, since E{X} < 0, it automatically follows that B < ∞.

For further reference, it is necessary to include information on the distributions {Gn(·)}. We
introduce the generating function for this sequence. Let |s| < 1 and define

G(s, x) :=
∞∑
n=0

Gn(x)s
n.

It follows from the Spitzer–Baxter identity [5, p. 569], [11, p. 220] that∫ ∞

0
eiζxG(s, dx) = e−B(s)

(1 − s)(1 − χ(s, ζ ))
. (2.3)

Part of the Wiener–Hopf factor in (2.2) appears in the expression for the Laplace transform
of the supremum. Indeed, it follows from (2.3) that, at least for θ ≥ 0,∫ ∞

0
e−θx dG(x) = exp

(
−

∞∑
n=1

1

n

∫ ∞

0
(1 − e−θx) dK∗n(x)

)
= e−B

1 − E{e−θSN } . (2.4)

2.3. Connections

The links between the random walk concepts and the risk quantities are straightforward. Let
us define the time of ruin with initial reserve u as

τ(u) := inf{n : u < Sn}.
Then ruin will occur at the nth claim if the total loss, expressed in terms of the random walk
Sn, has annihilated the initial surplus. In terms of the maximum, we obtain the fundamental
relation

{τ(u) > n} = {Mn ≤ u}.
This equation immediately implies that ruin will occur in finite time, but after the nth claim if
and only if Mn does not overshoot u but M∞ will. Hence,

P{n < τ(u) < ∞} = P{Mn ≤ u < M∞} = Gn(u)−G(u).
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3. The generic variable

While it is not fully necessary to do so, we will assume from now on that the joint distribution
function FU,T (u, t) = P{U ≤ u, T ≤ t} has a bivariate density, fU,T .We are interested in the
distribution,K , of the generic variableX = U − cT . Recall that E{X} = E{U} − c E{T } < 0.
Obviously, the density of X exists and is given by

k(z) = 1

c

∫ ∞

0
fU,T

(
u,
u− z

c

)
du.

The characteristic function, κ(ζ ), of K can be obtained from the joint characteristic function

E{eiζ1U+iζ2T } =
∫ ∞

0
du

∫ ∞

0
dteiζ1u+iζ2t fU,T (u, t)

by choosing ζ1 = ζ and ζ2 = −cζ . In general, we cannot be sure that κ(ζ ) exists for any
nonreal value of ζ.

3.1. The double Laplace transform

As shown by Widder [16, p. 39], the distributionK will have an exponentially bounded right
tail if and only if the double Laplace transform K̂(θ) := κ(iθ) converges in a left neighborhood
of the origin. We will therefore replace ζ by iθ , to obtain the (two-sided) Laplace transform of
X rather than the characteristic function. Alternatively, the left abscissa of convergence, −σK ,
of K̂(θ) should be strictly negative (in which case K is said to be super-exponential). We will
generally write −σY ≡ −σH for the left abscissa of convergence of the Laplace transform of a
random variable Y with distribution H .

The main object of study is thus

K̂(θ) =
∫ ∞

u=0

∫ ∞

t=0
e−θ(u−ct)fU,T (u, t) du dt, (3.1)

and we will restrict our analysis in this paper to cases in which σX > 0. Notice that the
balance condition tells us that K̂ ′(0) = − E{X} > 0. Also note that, since T ≥ 0, we have
X ≤ U. Hence, we always have σX ≥ σU ≥ 0, meaning that exponentially bounded claim
sizes automatically lead to an exponentially bounded generic variable.

It is well known that every joint distribution function can be expressed as a copula function of
its marginal distributions (this copula representation being unique for continuous multivariate
distribution functions); thus, FU,T (u, t) = C(FU(u), FT (t)) for some copulaC. This approach
allows us to completely separate the dependence structure from the properties of the univariate
marginals (for a survey on copulas we refer the reader to Joe [8] or Nelsen [10]). In what
follows we try to formulate our results in terms of copulas. Using the identity

1 − FU,T (x,∞)− FU,T (∞, y)+ FU,T (x, y) =
∫ ∞

x

du
∫ ∞

y

dt fU,T (u, t),

for every θ > −σX we obtain

K̂(θ)− F̂U (θ)− F̂T (−cθ)+ 1

= −cθ2
∫ 1

0
e−θF−1

U (a)

∫ 1

0
ecθF

−1
T (b)(1 − a − b + C(a, b)) dF−1

T (b) dF−1
U (a) (3.2)
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or, equivalently,

K̂(θ) = F̂U (θ)F̂T (−cθ)

− cθ2
∫ 1

0
e−θF−1

U (a)

∫ 1

0
ecθF

−1
T (b)(C(a, b)− ab) dF−1

T (b) dF−1
U (a). (3.3)

The above formula explicitly shows how K̂(θ) depends on the copula and the marginals. If the
copula function is absolutely continuous, we can also write (3.1) as

K̂(θ) =
∫ ∞

u=0

∫ ∞

t=0
e−θ(u−ct)fU (u)fT (t)c(FU(u), FT (t)) dt du,

where c(a, b) = ∂2C(a, b)/∂a∂b.
We will now briefly discuss three simple copulas that can be viewed as extremal cases of

dependence.

Example 3.1. (The independence copula.) The independence copula is given by CI(a, b) :=
ab, and we will denote the corresponding distribution by KI. If U and T are independent
then K̂I(θ) = F̂U (θ)F̂T (−cθ). Clearly K̂I(θ) then exists for all θ ∈ (−σU , (1/c)σT ). Hence,
σKI = σU .

Note that, for an arbitrary copula, we have K̂ ′(0) = − E{U − cT } = K̂ ′
I(0), since this is

a property of the marginal distributions U and T only. However, the difference of the second
derivatives K̂ ′′(0) and K̂ ′′

I (0) already reflects the dependence structure through the covariance
of U and T (K̂ ′′(0) < K̂ ′′

I (0) for cov(U, T ) > 0, and conversely).

Example 3.2. (The comonotone copula.) The strongest possible positive dependence between
U and T is attained for the comonotone copula, CM(a, b) := min(a, b), corresponding to the
distribution KM. This copula is singular and its Laplace transform is given by

K̂M(θ) =
∫ ∞

0
exp(−θ(u− cF−1

T (FU(u))))fU (u) du.

In the special case in which U and T are exponential marginal distributions (with parameters
λ1 and λ2, respectively), we obtain

K̂M(θ) = λ1

λ1 + θ(1 − cλ1/λ2)
.

For the comonotone (and some related) copulas, we can construct examples of heavy-tailed
distributions FU that still lead to σK > 0.

Example 3.3. (The countermonotone copula.) The strongest possible negative dependence
between U and T is attained for the (singular) countermonotone copula,

CW(a, b) = max(a + b − 1, 0),

corresponding to the distribution KW. The associated Laplace transform can be derived to be

K̂W(θ) =
∫ ∞

0
exp(−θ(u− cF−1

T (1 − FU(u))))fU (u) du

=
∫ 1

0
exp(−θ(F−1

U (v)− cF−1
T (1 − v))) dv.
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Trivially, F−1
U (v)− cF−1

T (1 − v) ≤ F−1
U (v); thus, for θ ≤ 0,

K̂W(θ) ≤
∫ 1

0
e−θF−1

U (v) dv = F̂U (θ),

implying that σKW ≥ σU .

In the special case in which U and T are exponential marginal distributions (again with
respective parameters λ1 and λ2), we obtain

K̂W(θ) = B

(
1 + θ

λ1
, 1 − cθ

λ2

)
, −λ1 < θ < cλ2,

in terms of a beta function.

Note that the above comonotone and countermonotone copulas are those degenerate cases
of bivariate dependence in which one random variable is a deterministic monotone function of
the other.

Remark 3.1. Since any copula C(a, b) is itself a joint distribution function with uniform
marginals, we have CW(a, b) ≤ C(a, b) ≤ CM(a, b) for all a and b, 0 ≤ a, b ≤ 1. (These
inequalities are often referred to as the Fréchet–Hoeffding bounds.) By virtue of (3.2), we thus
find that, for fixed marginals, the Laplace transform K̂(θ) is bounded by K̂M(θ) ≤ K̂(θ) ≤
K̂W(θ) for those values of θ at which the quantities are defined.

4. Infinite-time ruin

Owing to the connection between ruin and the random walk, P{τ(u) < ∞} = 1 − G(u),

where G(u) = P{M∞ ≤ u} is given by (2.3). From the Wiener–Hopf factorization (2.2) at
s = 1, we know that 1 − K̂(θ) = (1 − E{e−θSN })(1 − χ̃(1, iθ)). However, then the abscissa
of convergence of K̂(θ) is the same as that of E{e−θSN } and, therefore, also that of G. Hence,
σK = σG.

Now assume that there exists an adjustment coefficient,R > 0, for which E{eRSN } = 1. The
Wiener–Hopf factorization above then implies that K̂(−R) = 1. With β := θ +R in (2.4), we
obtain ∫ ∞

0
e−βx d

(∫ x

0
eRy dG(y)

)
= e−B

1 − E{e−βS̃N } ,
where

P{S̃N ≤ x} :=
∫ x

0
eRy dP{SN ≤ y}. (4.1)

It is clear that the functionH1(x) := ∫ x
0 eRy dG(y) is then a renewal function. By Blackwell’s

renewal theorem (see [4]) we have

H1(x + y)−H1(x)
d−→ e−B

E{S̃N }y =: c1y, x → ∞,

where ‘
d−→’ denotes convergence in distribution. However, since dG(x) = e−Rx dH1(x), we

have

eRu(1 −G(u)) = eRu
∫ ∞

u

e−Rx dH1(x) =
∫ ∞

0
e−RwH1(u+ dw)

→ c1

∫ ∞

0
e−Rw dw = c1

R
.
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If we return to the original quantities, we find that, as u → ∞,

P{τ(u) < ∞} ∼ e−B

R E{SNeRSN }e−Ru, (4.2)

which completes a particularly transparent proof, in the spirit of Feller [5], of the well-known
Cramér–Lundberg approximation for the infinite-time ruin probability. It has been derived in
various other ways in the literature (see, e.g. [12]). In the above version, the constant in the
approximation is expressed as a function of quantities related to the underlying random walk.

Remark 4.1. Note that the classical form of the Cramér–Lundberg approximation for the
compound Poisson model, where U and T

d= Exp(1/λ) are independent, can be obtained
from (4.2) by using the corresponding Wiener–Hopf factorization,

1 − λ/c

λ/c − iζ
E{eiζU } =

(
1 − λ/c

λ/c − iζ

)(
1 − λ

c

1 − E{eiζU }
iζ

)
,

from which it follows that

E{e−θSN } = 1 + λ

cθ
(1 − E{e−θU })

and, thus,

E{SNeRSN } = λE{UeRU } − c

cR
.

This together with e−B = P{N = ∞} = 1 − λE{U}/c leads to the well-known expression

P{τ(u) < ∞} ∼ c − λE{U}
λE{UeRU } − c

e−Ru, u → ∞.

In the general case, it follows from (4.2) that the asymptotic behavior of the ruin probability is
determined by the value of the adjustment coefficient, R, defined by K̂(−R) = 1. Let us fix
the marginal distributions of U and T and define RI to be the adjustment coefficient in the case
in which U and T are independent, i.e. F̂U (−RI)F̂T (cRI) = 1. If U and T are also positively
quadrant dependent (that is, P{U > u, T > t} ≥ P{U > u} P{T > t} for all u and t with
0 ≤ u, t < ∞), then we have C(a, b) ≥ ab, for all a and b, 0 ≤ a, b ≤ 1, for its copula. It
thus follows from (3.3) that

K̂(θ) ≤ K̂I(θ) for all θ ∈ (−σK, 0), (4.3)

whence R > RI. Conversely, for negatively quadrant-dependent variables U and T we find
that

K̂(θ) ≥ K̂I(θ) for all θ ∈ (−σK, 0), (4.4)

implying that R < RI. In order to quantify the difference between R and RI we can use the
Lagrange expansion, by which the value of R can be expressed in terms of properties of the
Laplace transform at the value of the adjustment coefficient of the independence case. In this
way we obtain

−R = −RI +
∞∑
n=1

dn−1

dwn−1

(
w + RI

K̂(w)− K̂(−RI)

)n∣∣∣∣
w=−RI

(1 − K̂(−RI))
n

n!

= −RI + 1 − K̂(−RI)

K̂ ′(−RI)
− 1

2

K̂ ′′(−RI)

K̂ ′(−RI)3
(1 − K̂(−RI))

2 + · · · ,
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the series being convergent as long as both the inverse of K̂(θ) is analytic in the domain
under consideration and K̂ ′(−RI) 
= 0. This formula is particularly useful for investigating the
sensitivity of the adjustment coefficient to the presence of dependency betweenU and T . Some
specific examples in which R can even be expressed explicitly as a function of a dependence
measure will be given in the next section.

Remark 4.2. Although quadrant dependence is one of the weakest dependence concepts, owing
to (3.3) it turns out to be sufficient for deriving inequalities for the adjustment coefficient.
Other dependence concepts, such as association, tail monotonicity, stochastic monotonicity,
and likelihood ratio dependence, imply quadrant dependence, and (4.3) and (4.4) thus follow
accordingly for these concepts.

In general, whenever there is a concordance ordering, C1 � C2, between copulas C1 and
C2 (i.e. C1(a, b) ≥ C2(a, b) for all a and b, 0 ≤ a, b ≤ 1), by (3.3) we have R1 ≥ R2. (For a
survey of dependence concepts and orderings we refer the reader to Joe [8] or Nelsen [10].)

5. Finite-time ruin

We now adapt a result from the literature on random walk theory [13], [14]. The exponential
speed of convergence of a random walk towards its upper limit immediately translates into the
following finite-time ruin estimate for our risk process.

Theorem 5.1. Assume that

(i) −∞ ≤ E{X} < 0;

(ii) K̂(θ) converges for −σK < θ ≤ 0, where σK > 0;

(iii) for some ω ∈ (0, σK), K̂(θ) attains a minimum, K̂(−ω) =: γ < 1 (see Figure 1).

Then, for all finite u ≥ 0, as n → ∞,

P{n < τ(u) < ∞} ∼ cH(u)γ nn−3/2, (5.1)

where c is a known constant and H a function depending solely on u.

The quantity c = γ c1/(1 − γ ), with c2
1 = γ /(2πω2K̂ ′′(−ω)), is given explicitly. The

functionH(u) can only be given in (complicated) implicit form, involving the quantities γ and
ω. Hence, it is also affected by the interdependence between the claim sizes and the interarrival
times. In Section 6 an explicit expression for H(u), u → ∞, is derived, giving an intuition
for this effect.

Let us have a closer look at the conditions of the theorem. Condition (i) is of course the
balance condition, necessary for the eventual survival of the portfolio. The second condition
has already been discussed in Section 3. Clearly, the existence of an adjustment coefficient R
is sufficient for both (ii) and (iii) to hold.

Example 5.1. (Example 3.1 continued: the independent case.) Assume that σKI = σU > 0.
Then −ω is the solution to ψU(θ) = cψT (−cθ), where ψU(θ) := −F̂ ′

U(θ)/F̂U (θ) denotes
the logarithmic derivative of F̂U (θ) (and ψT (θ) is defined analogously). Since U and T
are nonnegative random variables, ψU(θ) is monotonically decreasing in θ ∈ (−σU ,∞) and
ψT (−cθ) is monotonically increasing in θ ∈ (−∞, 0]. Since, at the origin,ψU(0) = E{U} < c

and cψT (0) = E{T }, the existence and uniqueness of −ω are guaranteed.
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1

γ

K(θ)ˆ

R−Kσ− ω− θ

Figure 1: The Laplace transform K̂(θ).

Let us now fix the marginalsU and T again and consider the behavior of the crucial quantities
γ and ω in the presence of dependence. From (3.3) it follows that γ < γI and γ > γI for
positively and, respectively, negatively quadrant-dependent U and T , where γI corresponds
to the case of independence (and Remark 4.2 on other dependence concepts applies here
accordingly). More generally, if C1 � C2 (in terms of a concordance ordering), then γ1 ≤ γ2.
However, similar inequalities cannot be established for ω and ωI (see, e.g. Example 5.7, below,
where ω is insensitive to the degree of dependence). Since K̂ ′(θ) is analytic at −ωI, if
K̂ ′′(−ωI) 
= 0 we thus obtain

−ω = −ωI +
∞∑
n=1

dn−1

dwn−1

(
w + ωI

K̂ ′(w)− K̂ ′(−ωI)

)n∣∣∣∣
w=−ωI

(−K̂ ′(−ωI))
n

n!

= −ωI − K̂ ′(−ωI)

K̂ ′′(−ωI)
+ 1

2

K̂ ′′′(−ωI)K̂
′(−ωI)

2

K̂ ′′(−ωI)3
+ · · · ,

by Lagrange expansion. This series converges if ω − ωI is sufficiently small. By means of
Bürmann’s theorem (see [15, p. 128]), we can obtain information on the value of γ directly in
terms of properties of K̂ at −ωI. In fact,

γ = K̂(−ωI)+
m−1∑
n=1

dn−1

dwn−1

(
K̂ ′(w) w + ωI

K̂ ′(w)− K̂ ′(−ωI)

)n∣∣∣∣
w=−ωI

(−K̂ ′(−ωI))
n

n! +Rm, (5.2)

where the remainder term is given by

Rm = 1

2π i

∫ −ω

−ωI

∫
D

(
K̂ ′(−ω)− K̂ ′(−ωI)

K̂ ′(t)− K̂ ′(−ωI)

)m−1
K̂ ′(t)K̂ ′′(−ω) dt dω

K̂ ′(t)− K̂ ′(−ω)
and D is a contour in the t-plane, enclosing the points −ωI and −ω, such that the equation
K̂ ′(t) = K̂ ′(ζ ) has no roots inside or onD except at t = ζ , where ζ is any point insideD. The
first few terms of (5.2) are thus given by

γ = K̂(−ωI)− 1

2

K̂ ′(−ωI)
2

K̂ ′′(−ωI)
− K̂ ′(−ωI)

3K̂ ′′′(−ωI)

2K̂ ′′(−ωI)3
+ · · · .
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The above expansions provide an approach to obtaining sensitivity results on the degree of
dependence of the quantities determining the asymptotic behavior of the risk process, if the
Laplace transform K̂(θ) is given for the dependent case. In some cases it might be possible
to obtain an empirical Laplace transform from data sets of U and T . In what follows we will
illustrate the above result in several examples.

5.1. Some general cases

In quite a number of cases, a copula can be decomposed into a convex combination of two
more fundamental copulas. Suppose that, for some quantity α ∈ (0, 1), the distribution K has
copula, C, given by

C(a, b) = αC1(a, b)+ (1 − α)C2(a, b),

where, for i = 1, 2, Ci is a copula linked to the distributionKi through (3.2). If σi refers to the
abscissa for Ki, i = 1, 2, then the corresponding abscissa for K is given by σ = min(σ1, σ2).

Moreover, on the interval (−σ, 0] all three functions, K̂(θ), K̂1(θ), and K̂2(θ), are positive and
convex. In particular, if, for i = 1, 2, K̂i(θ) has a minimum, γi , at −ωi , then the minimum,
γ , of K̂(θ) is attained at a value, −ω, satisfying min(ω1, ω2) ≤ ω ≤ max(ω1, ω2). Moreover,
γ ≥ αγ1 + (1 − α)γ2.

Example 5.2. (The positive linear Spearman copula.) The positive linear Spearman copula
has a particularly simple structure given by

CρS(a, b) =
{
(a + ρS(1 − a))b, b ≤ a,

(b + ρS(1 − b))a, b > a,

where we assume that ρS ≥ 0 (see, e.g. [7]). The name stems from the fact that the dependence
parameter, ρS, coincides with Spearman’s rank correlation coefficient, which is a measure of
concordance. Note that there is also a simple relation to Kendall’s τ , namely

τ = 1
3ρS(2 + sgn(ρS)ρS).

The positive linear Spearman copula is a convex combination of the independence copula and
the comonotone copula:

CρS(a, b) = (1 − ρS)CI(a, b)+ ρSCM(a, b).

This copula has upper tail dependence with corresponding tail dependence coefficient

λ := lim
α→1−

1

1 − α
(1 − 2α + CρS(α, α)) = ρS

(see, e.g. [8, p. 33]).
If the dependence structure of U and T is governed by this copula, we obtain

K̂(θ) = (1 − ρS)K̂I(θ)+ ρSK̂M(θ). (5.3)

From (5.3) it can immediately be seen that, for ρS < 1, the marginal distribution U has to be
super-exponential in order to satisfy condition (ii) of Theorem 5.1. Moreover, σK = σU and ω
is the solution to

K̂ ′
M(−ω)
K̂ ′

I(−ω)
= −1 − ρS

ρS
< 0.
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From this it follows that
ωρS > ωI and γρS < γI.

If, in addition, we assume there to be exponential marginal distributions FU(u) = 1 − e−λ1u

and FT (t) = 1 − e−λ2t , then, in order to satisfy condition (i) of Theorem 5.1 we must have
cλ1 > λ2. From (5.3), we obtain

K̂(θ) = (1 − ρS)
λ1

λ1 + θ

λ2

λ2 − cθ
+ λ1ρS

θ(1 − cλ1/λ2)+ λ1
.

Example 5.3. (The negative linear Spearman copula.) We now assume that ρS ≤ 0. The
copula is defined by

CρS(a, b) =
{
(1 + ρS)ab, a + b ≤ 1,

ab + ρS(1 − a)(1 − b), a + b > 1.

The simple relation to Kendall’s τ again holds, and the negative linear Spearman copula is again
a convex combination, this time of CI(a, b) and CW(a, b):

CρS(a, b) = (1 + ρS)CI(a, b)− ρSCW(a, b).

Accordingly, we have
K̂(θ) = (1 + ρS)K̂I(θ)− ρSK̂W(θ).

Thus, for −1 < ρS < 0, the marginal distribution U has to be super-exponential in order to
satisfy condition (ii) of Theorem 5.1. Moreover, σK ≤ σU and ω is the solution to

K̂ ′
W(−ω)
K̂ ′

I(−ω)
= 1 + ρS

ρS
< 0,

whence
ωρS < ωI and γρS > γI.

For exponential marginals, we obtain

K̂(θ) = (1 − ρS)
λ1

λ1 + θ

λ2

λ2 − cθ
− ρSB

(
1 + θ

λ1
, 1 − cθ

λ2

)
,

in terms of a beta function.

Example 5.4. (The Farlie–Gumbel–Morgenstern copula.) This is an analytically simple and
at the same time absolutely continuous copula given by

C(a, b) = ab(1 + 3ρS(1 − a)(1 − b)),

where ρS, − 1
3 ≤ ρS ≤ 1

3 , is again Spearman’s rank correlation coefficient (for Kendall’s τ
we have τ = 2ρS/3). Thus, this copula allows for weak dependence only. For exponential
marginals with parameters as above we obtain

K̂(θ) = λ1λ2((θ + 2λ1)(2λ2 − cθ)− 3cρSθ
2)

(θ + λ1)(θ + 2λ1)(λ2 − cθ)(2λ2 − cθ)
,

and the determination of R and ω leads to polynomial equations of orders four and five,
respectively.
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Example 5.5. (Archimedean copulas.) Bivariate Archimedean copulas are an important sub-
class of copulas defined by

C(a, b) = φ[−1](φ(a)+ φ(b)), 0 ≤ a, b ≤ 1,

where the generator φ(t) is a continuous, convex, strictly decreasing function from [0, 1] to
[0,∞] such that φ(1) = 0, and φ[−1] denotes the pseudo-inverse of φ, defined by

φ[−1](t) =
{
φ−1(t), 0 ≤ t ≤ φ(0),

0, φ(0) ≤ t ≤ ∞.

The concordance measure τ can easily be determined from the generator through

τ = 1 − 4
∫ ∞

0
s

(
d

ds
φ[−1](s)

)2

ds.

Techniques for fitting these types of copula to given bivariate data sets can be found in
[6]. Here we will just state a general monotonicity result. Let us again assume that the
marginal distributions of U and T are fixed. Since an Archimedean copula, C1, dominates
another Archimedean copula, C2, in concordance order if and only if the function φ2 ◦ φ[−1]

1
is subadditive (see [10, p. 109]), representation (3.2) implies that R1 > R2 and γ1 < γ2
whenever the above subadditivity holds. Sufficient conditions for the latter are for instance the
concavity of φ2 ◦ φ[−1]

1 or the nondecrease on (0, 1) either of φ1/φ2 or (given that φ1 and φ2 are
continuously differentiable on (0, 1)) of φ′

1/φ
′
2. In particular, the above monotonicity results

apply to ordered families of copulas (see [10, Section 4.4]).

5.2. Specific cases

We now deal with a few parametric bivariate distributions for whichω and γ can be evaluated
explicitly as functions of the dependence parameter.

Example 5.6. (Moran and Downton’s bivariate exponential.) The joint density function is
given by

fU,T (u, t) = λ1λ2

1 − ρ
I0

(
2
√
ρλ1λ2ut

1 − ρ

)
exp

(
−λ1u+ λ2t

1 − ρ

)
,

where I0(z) = ∑∞
j=0(1/j !2)(z/2)2j is the modified Bessel function of the first kind and order

zero; ρ, 0 ≤ ρ ≤ 1, is Pearson’s correlation coefficient; and λ1, λ2, u, t > 0 (see [9]). Here
the marginal distributionsU and T are exponential with respective parameters λ1 and λ2. From
the particularly simple structure of the joint moment generating function we obtain

K̂(θ) = λ1λ2

cθ2(ρ − 1)+ θ(λ2 − cλ1)+ λ1λ2
, (5.4)

and thus have

σK = λ2 − cλ1 − √
(cλ1 − λ2)2 + 4cλ1λ2(1 − ρ)

2c(1 − ρ)
.

The adjustment coefficient is now given by

R = cλ1 − λ2

c(1 − ρ)
,
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which is positive if cλ1 > λ2. However, the latter is just the net balance condition (i) for the
marginal distributions. From (5.4) it follows that

ω = λ2 − cλ1

2c(ρ − 1)
= R

2
.

Furthermore, we have

γ = K̂(−ω) = λ1λ2

λ1λ2 + (cλ1 − λ2)2/4c(1 − ρ)
.

Example 5.7. (Kibble and Moran’s bivariate gamma.) This symmetric bivariate distribution
with standard gamma marginals (shape parameter α > 0) is defined through its joint moment
generating function,

E{et1U+t2T } =
(

1 − β + 1

β
t1 − β + 1

β
t2 + β + 1

β
t1t2

)−α
.

Here β > 0 is the dependence parameter, and Pearson’s correlation coefficient is given by
1/(1 + β). We thus have

K̂(θ) =
(

1 − β + 1

β
((c − 1)θ + cθ2)

)−α

and

σK = (1 − c)(1 + β)− √
(1 − c)2(1 + β)2 + 4cβ(1 + β)

2c(1 + β)
.

It follows easily that R = (c − 1)/c and

ω = c − 1

2c
= R

2
,

which is positive, since condition (i) amounts to c > 1 in this case. Note that R and ω are
independent of the dependence parameter β. The crucial quantity γ depends on β and is given
by

γ =
(

4cβ

1 + 2c(β − 1)+ β + c2(1 + β)

)α
.

Example 5.8. (Marshall and Olkin’s bivariate exponential.) The distribution is defined by

P{U > u, T > t} = exp(−λ1u− λ2t − λ3 max(u, t)), u, t > 0.

In this example, the exponential marginal distributions, with parameters λ1+λ3 and λ2+λ3, are
functions of the degree of dependence. Pearson’s correlation coefficient is λ3/(λ1 + λ2 + λ3)

(see [9]). We find that

K̂(θ) = (λ1 + λ2 + λ3 + θ(c − 1))(λ1 + λ3)(λ2 + λ3)− cλ3θ
2

(λ1 + λ3 + θ)(λ2 + λ3 − cθ)(λ1 + λ2 + λ3 + θ(1 − c))
.

In this case both R and ω are solutions to polynomial equations of third order.
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Other bivariate distributions that lead to polynomial equations of low order for ω include
Freund’s bivariate exponential distribution (order three) and the bivariate gamma of Cheriyan
and Ramabhadran (order two) (see [9] for their definitions).

Example 5.9. (The bivariate normal distribution.) Although the Gaussian case with underlying
Gaussian copula and joint density

fU,T (u, t) = 1

2πσ1σ2
√

1 − ρ2

× exp

(
−

{(
u− µ1

σ1

)2

− 2ρ
u− µ1

σ1

t − µ2

σ2
+

(
t − µ2

σ2

)2} 1

2(1 − ρ2)

)

(where ρ ∈ [−1, 1] denotes the correlation coefficient) may not be a suitable model, since the
claim sizes and interarrival times can become negative, we include it here because it is often
used as an approximation for a bivariate distribution with light tails. It is straightforward to see
that, in this case,

K̂(θ) = exp

(
−θ E{X} + θ2

2
var(X)

)
,

where E{X} = µ1 − cµ2 and var(X) = σ 2
1 − 2ρσ1σ2c + σ 2

2 c
2. Hence, we obtain the explicit

expressions

R = 2 E{X}
var(X)

, ω = R

2
, and γ = e− E2{X}/ var(X).

5.3. Conditioning on the event of ruin

If we condition on the occurrence of ruin then, if the adjustment coefficient R exists, it is
well known that the asymptotic behavior of the random walk Sn can be studied in terms of its
associated random walk S̃n, defined by (4.1). For large u, we have

P{X1 ≤ x1, . . . , Xn ≤ xn | τ(u) < ∞} ∼ P{X̃1 ≤ x1, . . . , X̃n ≤ xn}
(see Asmussen [1]), meaning that the properties of the surplus process conditioned on ruin
are determined by the Laplace transform K̂(θ) shifted by −R to the right. For instance,
E{X̃i} = −K̂ ′(−R) > 0. Thus, conditioned on the occurrence of ruin in finite time, the
random walk has a positive drift. By adapting Theorem B of [14] to our situation, for large u
we thus obtain

P{τ(u) > n | τ(u) < ∞} ∼ H2(u)γ
nn−3/2 as n → ∞.

Here H2(u) is a function, depending only on u, that can be expressed in terms of quantities
related to the random walk (see [14]). Hence, by studying the behavior of γ for dependent
marginals U and T , as in the previous sections, we can also derive rather sharp asymptotic
results on the finite-time ruin probability conditioned on the event of ruin.

6. The function H

This section is devoted to a closer look at the functionH , whose existence we used in (5.1),
but whose properties have not been revealed. First, it follows from [13] thatH(0) = e−B(1/γ ).
Foru > 0, the functionH was given in a rather complicated form in [13]. However, if we use the
Markovian structure of the random walk, then we are able to give a much neater interpretation
of H in terms of its Laplace transform.
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Let us find the first time at which the random walk hits its positive maximum. Introduce the
auxiliary quantities

un(x) := P{S1 > 0, S2 > 0, . . . , Sn−1 > 0, 0 < Sn ≤ x}
and u(x) := ∑∞

n=1 un(x). If we define

L0 = 0, Ln = min
{
r ≥ 0 : Sr = max

0≤k≤n Sk
}
,

then it is clear that
un(x) := P{Ln = n, Sn ≤ x}.

If we link these portfolio variables with the random walk, then the Markovian character of
the latter allows us to write

P{n < τ(u) < ∞} =
n∑
k=0

P{n− k < τ(0) < ∞} P{Lk = k, Sk ≤ u}

(see, e.g. [5, p. 573]). Therefore,

P{n < τ(u) < ∞}
P{n < τ(0) < ∞} =

n∑
k=0

P{n− k < τ(0) < ∞}
P{n < τ(0) < ∞} uk(u).

However, from (5.1), for u = 0 we immediately see that

lim
n↑∞

P{n− k < τ(0) < ∞}
P{(n < τ(0) < ∞} = γ−k

for each fixed k, and it then follows that

H(u)

H(0)
= lim
n↑∞

P{n < τ(u) < ∞}
P{n < τ(0) < ∞} =

∞∑
k=0

γ−kuk(u).

A fundamental relation is the following Spitzer–Baxter identity, which gives the hybrid
transform of the sequence {un(x)}. Let

U(s, x) :=
∞∑
n=0

un(x)s
n.

Then, for |s| < 1 and ζ ∈ R,

ũ(s, ζ ) :=
∫ ∞

0
eiζxU(s, dx) = exp

( ∞∑
n=1

sn

n

∫ ∞

0+
eiζx dK∗n(x)

)
.

In view of (2.1) we thus have the following remarkable formula for the Laplace transform of
H , which resembles (2.4) closely:

Ĥ (θ) = e−B(1/γ )

1 − E{γ−Ne−θSN } . (6.1)
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To get a better look at the behavior of the functionH we introduce associated random walks.
For any δ ∈ (−σK, 0], define the distribution

Kδ(x) = 1

K̂(δ)

∫ x

−∞
e−δu dK(u).

Its bilateral Laplace transform is given by

K̂δ(θ) = K̂(θ + δ)

K̂(δ)
.

Recall the Laplace transform analogue of expression (2.2) for the random walk generated by
Kδ:

1 − sK̂δ(θ) = (1 − χδ(s, iθ))(1 − χ̃δ(s, iθ)).

However, K̂(θ) also has its own decomposition. Hence,

1 − s

K̂(δ)
K̂(θ + δ) =

(
1 − χ

(
s

K̂(δ)
, i(θ + δ)

))(
1 − χ̃

(
s

K̂(δ)
, i(θ + δ)

))
.

By the uniqueness of the Wiener–Hopf decomposition, it follows that

χδ(s, iθ) = χ

(
s

K̂(δ)
, i(θ + δ)

)

or, in terms of ladder quantities,

E{sNδe−θSNδ } = E

{(
s

K̂(δ)

)N
e−(θ+δ)SN

}
,

where Nδ is the first upgoing ladder index for the associated random walk generated by the
distribution Kδ , and SNδ is the corresponding ladder height.

If we now compare this formula with (6.1), the substitution θ = δ + β leads to the equality

∫ ∞

0
e−βx d

(∫ x

0
e−δu dH(u)

)
= e−B(1/γ )

1 − E{(K̂(δ)/γ )Nδe−βSNδ } ,

which is valid for −σK − δ < β < −δ. In view of (2.4) it then looks natural to choose δ in
such a way that K̂(δ) = γ , or δ = −ω, since then

∫ ∞

0
e−βx d

(∫ x

0
eωu dH(u)

)
= e−B(1/γ )

1 − E{e−βSNω } ,

which is valid for −σK + ω < β < ω.

However, we can now repeat the procedure from Section 4. Using a similar application of
the renewal theorem leads to the following asymptotic expression:

1 −H(u) ∼ e−B(1/γ )

ω E{SNω }
e−ωu as u → ∞.
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7. Conclusion

The random walk approach presented in this paper has allowed us to extend several rather
explicit asymptotic results for the independent risk process to a dependent framework. More-
over, the introduction of copula functions has enabled us to study the dependence structures
separately from the marginal behavior of the distributions involved. However, the present paper
is just an attempt to obtain a clearer picture of the impact of dependence in risk theory, and
many questions remain open to further study. For instance, one might attempt a similar study
for heavy-tailed claims, possibly based on results of Baltrūnas [3].

Acknowledgements

We are grateful for the comments of the referees that helped to improve the presentation
of the paper. This research was carried out while the first author was visiting the University
Center for Statistics of the Katholieke Universiteit Leuven through Fellowship F/03/035. He
would like to thank the center for its hospitality.

References

[1] Asmussen, S. (1982). Conditioned limit theorems relating a random walk to its associate, with applications to
risk reserve processes and the GI/G/1 queue. Adv. Appl. Prob. 14, 143–170.

[2] Asmussen, S. (2000). Ruin Probabilities. World Scientific, Singapore.
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