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WHAT CAN WE LEARN FROM A SEMIPARAMETRIC FACTOR ANALYSIS OF ITEM
RESPONSES AND RESPONSE TIME? AN ILLUSTRATION WITH THE PISA 2015 DATA

Yang Liu and Weimeng Wang

UNIVERSITY OF MARYLAND

It is widely believed that a joint factor analysis of item responses and response time (RT) may yield
more precise ability scores that are conventionally predicted from responses only. For this purpose, a simple-
structure factor model is often preferred as it only requires specifying an additional measurement model
for item-level RT while leaving the original item response theory (IRT) model for responses intact. The
added speed factor indicated by item-level RT correlates with the ability factor in the IRT model, allowing
RT data to carry additional information about respondents’ ability. However, parametric simple-structure
factor models are often restrictive and fit poorly to empirical data, which prompts under-confidence in the
suitablity of a simple factor structure. In the present paper,we analyze the 2015Programme for International
Student Assessment mathematics data using a semiparametric simple-structure model. We conclude that a
simple factor structure attains a decent fit after further parametric assumptions in the measurement model
are sufficiently relaxed. Furthermore, our semiparametric model implies that the association between latent
ability and speed/slowness is strong in the population, but the form of association is nonlinear. It follows
that scoring based on the fitted model can substantially improve the precision of ability scores.

Key words: factor analysis, item response theory, response time, PISA, cubic splines, copula, penalized
maximum likelihood, cross-validation, model fit, local independence, bootstrap.

1. Introduction

Psychometric investigationon cognitive ability and speedhas a long and richhistory (e.g.,Car-
roll 1993; Gulliksen 1950; Luce 1986; Thorndike et al. 1926). In the 1926 monograph, Thorndike
et al. stated that “level”, “extent”, and “speed” are three distinct aspects in any measure of perfor-
mance: While both “level” and “extent” are manifested by correctness of answers and thus can
be collectively translated to ability in modern terminology, “the speed of producing any given
product is defined, of course, by the time required” (Thorndike et al. 1926, p. 26). The prevalence
of computerized test administration and data collection in recent years facilitates the acquisi-
tion of response-time (RT) data at the level of individual test items. In parallel, we witnessed
a mushrooming development of psychometric models for item responses and RT over the past
few decades (see De Boeck & Jeon, 2019; Goldhammer, 2015, for reviews), which in turn gave
rise to broader investigations on the relationship between response speed and accuracy in vari-
ous substantive domains (see Lee & Chen, 2011; Kyllonen & Zu, 2016; von Davier et al., 2019,
for reviews). Empirical findings suggested that response speed not only composes proficiency
or informs the construct to be measured but also bespeaks secondary test-taking behaviors such
as rapid guessing (Deribo et al., 2021; Wise, 2017) , using preknowledge (Qian et al., 2016;
Sinharay, 2020; Sinharay & Johnson, 2020) , lacking motivation (Finn, 2015; Thurstone, 1937;
Wise & Kong, 2005) , etc.
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Characterizing individual differences in ability and speed with item responses and RT data is
in essence a factor analysis problem (Molenaar et al., 2015a,b). The two-factor simple-structure
model proposed by van der Linden (2007) was arguably the most popular modeling option so
far: Item responses and log-transformed RT variables are treated as two independent clusters of
observed indicators for the ability and speed/slowness factors, respectively, and the two latent
factors jointly follow a bivariate normal distribution (see Fig. 2 of Molenaar et al., 2015a, for a
path-diagram representation). A notable merit of the simple-structure factor model is its plug-and-
play nature: Analysts can separately apply standard item response theory (IRT)models for discrete
responses (e.g., one-, two-, three-, or four- parameter logistic [1-4PL] model; Birnbaum, 1968;
Barton & Lord, 1981) and standard factor analysis models for the continuous log-RT variables
(e.g., linear-normal factormodel; Jöreskog, 1969), and then simply let the two latent factors covary.
Despite its succinctness and popularity, the simple-structure model may fit poorly to empirical
data.Ahighly endorsed interpretation for the lack of fit is that the two inter-dependent latent factors
cannot fully explain the dependencies among item-level responses and RT variables. Based on
this rationale, numerous diagnostics for residual dependencies and remedial modifications of the
simple-structure model have been proposed in the recent literature (e.g., Bolsinova et al., 2017;
Bolsinova & Maris, 2016; Bolsinova & Molenaar, 2018; Bolsinova et al., 2017; Bolsinova &
Tijmstra, 2016; Glas & van der Linden, 2010; Meng et al., 2015; Ranger & Ortner, 2012; van der
Linden & Glas, 2010).

Augmenting standard IRT models with a measurement component for item-level RT may
result in more precise ability scores, which is often highlighted as a practical benefit of RT
modeling in educational assessment (Bolsinova & Tijmstra, 2018; van der Linden et al., 2010) .
Under a simple-structure model with bivariate normal factors, the degree to which item-level RT
improves scoring precision is dictated by the strength of the inter-factor correlation (see Study 1 of
van der Linden et al., 2010). However, near-zero correlation estimates between ability and speed
were sometimes encountered in real-world applications (e.g., Bolsinova, De Boeck, & Tijmstra,
2017; Bolsinova, Tijmstra, & Molenaar, 2017; Lee & Jia, 2014; van der Linden, Scrams, &
Schnipke, 1999). Whenever it happens, analysts are inclined to conclude that item-level RT is
not useful for ability estimation at all, or that a less parsimonious factor structure is needed to
enhance the utility of RT for scoring purposes (e.g., allowing the log-RT variables to cross-load
on the ability factor; Bolsinova & Tijmstra, 2018).

Indeed, van derLinden’s (2007)model could be overly restrictive for analyzing item responses
andRT data.We, however, do not want to rush to the conclusion that it is the simple factor structure
that should be blamed and abandoned.Other parametric assumptions, such as link functions, linear
or curvilinear dependencies, and distributions of latent traits and error terms, are also part of the
model specification andmay contribute to the misfit as well. A fair evaluation on the tenability and
usefulness of a simple factor structure demands a version of the model with minimal parametric
assumptions other than the simple factor structure itself, which we refer to as a semiparametric
simple-structure model. Should the semiparametric model still struggle to fit the data adequately,
we no longer hesitate to give up on the simple factor structure.

Fortunately, the major components of a semiparametric simple-structure factor analysis have
been readily developed in the existing literature. They are

1. A semiparametric (unidimensional) IRT model for dichotomous and polytomous
responses (Abrahamowicz & Ramsay, 1992; Rossi et al., 2002) ;

2. A semiparametric (unidimensional) factor model for continuous log-RT variables (Liu
& Wang, 2022)

3. A nonparametric copula density estimator for ability and speed/slowness with fixed
marginals (Kauermann et al., 2013; Dou et al., 2021) .
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As a side remark, we are aware of alternative semiparametric approaches that can be used for
each of the above three components: for example, the monotonic polynomial logistic model for
item responses (Falk & Cai, 2016a,b), the proportional hazard model (Kang, 2017; Ranger
& Kuhn, 2012; Wang et al., 2013b) and the linear transformation model (Wang et al., 2013a)
for item-level RT, and the finite normal mixture model (Bauer, 2005; Pek et al., 2009) and the
Davidian curve model (Woods & Lin, 2009; Zhang & Davidian, 2001; Zhang et al., 2021) for
the joint distribution of latent traits. However, we focus on methods based on smoothing splines
in the current analysis. Besides, the simultaneous incorporation of flexible models for all the three
components of a simple structure model appears to be novel in the literature of RT modeling.
Compared to, e.g., Wang et al. (2013a) and Wang et al. (2013b), in which semiparametric models
were applied to only the RT data, our model fares more flexible and thus is more likely to reveal
sophisticated dependency patterns in a joint analysis of item responses and RT data.

By retrospectively analyzing a set of mathematics testing data from the 2015 Programme
for International Student Assessment (PISA; OECD, 2016), we revisit the following research
questions that have only been partially answered previously through parametric simple-structure
models:

(1) Is a simple factor structure sufficient for a joint analysis of item response and RT?
(2) How strong are math ability and general processing speed associated in the population

of respondents?
(3) To what extent can processing speed improve the precision in ability estimates under a

simple-structure model?

It is worth mentioning that the data set was previously analyzed by Zhan et al. (2018) using
a variant of van der Linden’s (2007) simple-structure model with testlet effects: A higher-order
cognitive diagnostics model with testlet effects was used for item responses, a linear-normal factor
model was used for log-transformed RT, and the (higher-order) ability and speed factors were
assumed to be bivariate normal. Zhan et al. (2018) reported an estimated inter-factor correlation
of −0.2 and hence concluded that the association between speed and ability is weak. We are
particularly interested in whether their conclusion stands after abandoning inessential parametric
assumptions other than the simple factor structure.

The rest of the paper is organized as follows. We first provide a technical introduction of
the proposed semiparametric procedure in Sect. 2: The three components of the semiparametric
simple-structuremodel are formulated in Sects. 2.1 and 2.2, penalizedmaximum likelihood (PML)
estimation and empirical selection of penalty weights are outlined in Sect. 2.3, and bootstrap-
based goodness-of-fit assessment and inferences are described in Sects. 2.4 and 2.5. Descriptive
statistics for the 2015 PISAmathematics data and a plan of our analysis are summarized in Sect. 3,
followed by a detailed report of results in Sect. 4. The paper concludes with a discussion of broader
implications of our findings and limitations of our method.

2. Methods

2.1. Unidimensional Semiparametric Factor Models

Let Yi j ∈ Y j ⊂ R be the j thmanifest variable (MV) observed for respondent i : Yi j represents
either a discrete response to a test item or a continuous item-level RT. In our semiparametric factor
model, the distribution of Yi j is characterized by the following logistic conditional density1 of
Yi j = y ∈ Y j given a unidimensional latent variable (LV; also known as latent factor, latent trait,

1With a slight abuse of terminology, both probability density functions for continuous randomvariables andprobability
mass functions for discrete random variables are referred to as densities.
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etc.) Xi = x ∈ X ⊂ R:

f j (y|x) = exp
(
g j (x, y)

)

∫
Y j

exp
(
g j (x, y′)

)
μ j (dy′)

, (1)

in which the normalizing integral with respect to the dominating measure μ j on Y j is assumed
to be finite. Equation1 defines a valid conditional density as it is non-negative and integrates to
unity with respect to y for a given x . However, the bivariate function g j : X × Y j → R is not
identifiable: It is not difficult to see that adding any univariate function of x to g j (x, y) does not
change the value of Eq. 1 (Gu, 1995, 2013). To impose necessary identification constraints, we
re-write g j by the functional analysis of variance (fANOVA) decomposition

g j (x, y) = gyj (y) + gxyj (x, y) (2)

and require that

gyj (y0) = 0, gxyj (x0, y) ≡ 0, and gxyj (x, y0) ≡ 0 (3)

for some reference levels x0 ∈ X and y0 ∈ Y j . Equation3 is referred to as side conditions;
x0 and y0 can be set arbitrarily within the respective domains (see Liu & Wang, 2022, for more
detailed comments). The univariate component gyj and the bivariate component gxyj are functional
parameters to be estimated from observed data.

Let ψ j : Y j → R
L j be a collection of L j basis functions defined on the support of Yi j , and

ϕ : X → R
K be a collection of K basis functions defined on the support of Xi . We proceed

to approximate the functional parameters by basis expansion. In particular, we set the univariate
component

gyj (y) = ψ j (y)
�α j , (4)

in which the coefficient vector α j ∈ R
L j satisfies

ψ j (y0)
�α j = 0. (5)

Similarly, the bivariate component is expressed as

gxyj (x, y) = ψ j (y)
�B jϕ(x), (6)

in which the coefficient matrix B j ∈ R
L j×K satisfies

B jϕ(x0) = 0 and B�
j ψ j (y0) = 0. (7)

The linear constraints imposed for the coefficients α j and B j (Eqs. 5 and 7) guarantee that the
side conditions (Eq. 3) are satisfied.

Continuous Data When both Xi ∈ X and Yi j ∈ Y j (equipped with the Lebesgue mea-
sure μ j ) are continuous random variables defined on closed intervals, Eq. 1 corresponds to the
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semiparametric factor model considered by Liu and Wang (2022). Without loss of generality, let
X = Y j = [0, 1]. In fact, any closed interval can be rescaled to the unit interval via a linear
transform: If z ∈ [a, b], a < b, then (z − a)/(b − a) ∈ [0, 1]. To approximate smooth functional
parameters supported on unit intervals or squares, we use the same cubic B-spline basis with
equally spaced knots (De Boor, 1978) for both ψ j and ϕ (and thus L j = K ). It is sometimes
desirable to force theMV to be stochastically increasing as the LV increases. Liu andWang (2022)
considered a simple approach to impose likelihood-ratio monotonicity, which boils down to the
following linear inequality constraints on the coefficient matrix B j :

(DK ⊗ DK ) vec(B j ) ≥ 0. (8)

In Eq.8, vec(·) denotes the vectorization operator, and

DK =
⎡

⎢
⎣

1 −1
. . .

. . .

1 −1

⎤

⎥
⎦

is a (K − 1) × K first-order difference matrix. We also set D1 = 1 by convention.
Discrete Data When Y j = {0, . . . ,C j − 1} and μ j is the associated counting measure, let

y0 = 0, L j = C j − 1, and ψ j (y) = (ψ j1(y), . . . , ψ j,C j−1(y))� such that ψ jk(y) = 1 if y = k
and 0 if y 
= k. Then our generic model (Eqs. 1 and 2) reduces to Abrahamowicz and Ramsay’s
(1992) multi-categorical semiparametric IRT model for unordered polytomous responses, which
is further equivalent to the semiparametric logistic IRT proposed by Ramsay andWinsberg (1991)
and Rossi et al. (2002) when C j = 2 (i.e., dichotomous data). It is because the basis expansions
(i.e., Eqs. 4 and 6) are simplified to gyj (y) = α j y and gxyj (x, y) = ϕ(x)�β j y , in which β�

j y

denotes the yth row of B j , if y = 1, . . . ,C j − 1; meanwhile, gyj (0) = 0 and gxyj (x, 0) ≡ 0 as
part of the side conditions. The conditional density (e.g., Eq. 1) then becomes the item response
function (IRF)

f j (y|x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

1 + ∑C j−1
c=1 exp

(
α jc + ϕ(x)�β jc

) , if y = 0,

exp
(
α j y + ϕ(x)�β j y

)

1 + ∑C j−1
c=1 exp

(
α jc + ϕ(x)�β jc

) , if y = 1, . . . ,C j − 1.

(9)

Like the continuous case, we only considerX = [0, 1] and ϕ being a cubic B-spline basis defined
by a sequence of equally spaced knots. Similar to Eq.8 in the continuous case, we may impose
likelihood-ratio monotonicity on the conditional density by

(DK ⊗ DC j−1) vec(B j ) ≥ 0, (10)

which reduces to Dkβ j1 ≥ 0 when C j = 2 (i.e., dichotomous items).
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2.2. Simple Factor Structure and Latent Variable Density

Consider a battery of m1 continuous MVs and m2 discrete MVs and write m = m1 + m2.
We typically have m1 = m2 = m/2 when the discrete responses and continuous RT variables
are observed for the same set of items. From now on, denote by Yi1, . . . , Yi,m1 the base-10 log-
transformed RT, each of which is rescaled to [0, 1], and by Yi,m1+1, . . . ,Yim the corresponding
responses. Let Xi1, Xi2 ∈ [0, 1] be the slowness2 and ability factors for respondent i , respectively.
A simple factor structure requires that the item responses Yi,m1+1, . . . ,Yim are conditionally inde-
pendent of the slowness factor Xi1 given the ability factor Xi2, and symmetrically that the log-RT
variables Yi1, . . . ,Yi,m1 are independent of Xi2 given Xi1. We also make the local independence
assumption that is standard in factor analysis (McDonald, 1982) : Yi1, . . . , Yim are mutually
independent conditional on Xi1 and Xi2. Further let Yi = (Yi1, . . . ,Yim)� collect all the MVs
produced by respondent i . The simple structure and local independence assumptions imply that

f (y|x1, x2) =
m1∏

j=1

f (y j |x1) ·
m∏

j=m1+1

f (y j |x2), (11)

in which y = (y1, . . . , ym)� ∈ [0, 1]m1 × Ym1+1 × · · · × Ym , and x1, x2 ∈ [0, 1].
For convenience in approximating functional parameters, both Xi1 and Xi2 are assumed to

follow a Uniform[0, 1] distribution marginally. However, we are aware that uniformly distributed
LVs are less attractive for substantive interpretation. Adopting the strategy of Liu and Wang
(2022), we define X∗

id = �−1(Xid), d = 1, 2, where �−1 is the standard normal quantile
function; the transformed LVs are marginally N (0, 1) variates, in agreement with the standard
formulation in parametric factor analysis. To capture the potentially complex association between
latent slowness and ability, we employ a nonparametric estimator for the copula density (Sklar,
1959; Nelsen, 2006) of (Xi1, Xi2)

�, denoted c(x1, x2). A copula density is non-negative and has
uniform marginals: That is,

c(x1, x2) ≥ 0 and
∫ 1

0
c(x1, x2)dx1 =

∫ 1

0
c(x1, x2)dx2 ≡ 1, ∀x1, x2 ∈ [0, 1]. (12)

c is in fact the joint density of (Xi1, Xi2)
� since both Xi1 and Xi2 are marginally uniform. In the

light of Sklar’s theorem, the joint density of the transformed (X∗
i1, X

∗
i2)

� can be calculated by

h(x∗
1 , x

∗
2 ) = c(�(x∗

1 ),�(x∗
2 ))φ(x∗

1 )φ(x∗
2 ), (13)

in which φ and � are the density and distribution functions of N (0, 1), respectively.
We approximate the bivariate copula density c by a tensor-product spline (Dou et al., 2021;

Kauermann et al., 2013) :

c(x1, x2) = ϕ(x2)
��ϕ(x1) (14)

in which ϕ : [0, 1] → R
K is a set of cubic B-spline basis functions defined with equally spaced

knots3, and� is an K ×K coefficient matrix. For Eq.14 to be a proper copula density, we impose
the following linear constraints on �:

ξkl ≥ 0, ∀k, l = 1, . . . , K , and �κ = ��κ = 1, (15)

2Slowness is the reversal of speed. We abide by the convention that the LV is positively associated with the MV.
3For simplicity, the same set of basis functions is used for the LVs in Eqs. 6, 9, and 14.
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in which ξkl is the (k, l)th element of �, and

κ =
∫ 1

0
ϕ(x)dx (16)

is a K × 1 vector of normalizing constants for basis functions. It can be verified by elementary
properties of B-splines and straightforward algebra that Eqs. 14 and 15 imply Eq.12.

2.3. Estimation

For each MV j = 1, . . . ,m, let θ j = (α�
j , vec(B j )

�)� collect all the coefficients in gyj
and gxyj . Also let θ = (θ�

j , . . . , θ�
m, vec(�)�)� denote all the coefficients in the simple-structure

factor model. We estimate θ by penalized maximum (marginal) likelihood (PML). The marginal
likelihood for the MV vector Yi = y amounts to the integration of Eq.11 over x1 and x2 under
the copula density c(x1, x2): That is,

f (y; θ) =
∫∫

[0,1]2
f (y|x1, x2)c(x1, x2)dx1dx2. (17)

Pooling across an independent and identically distributed (i.i.d.) sample of size n, we arrive at the
sample log-likelihood function

�(θ; y1:n) =
n∑

i=1

log f (yi ; θ), (18)

in which y1:n = (y1, . . . , yn)� denotes an n × m matrix of observed MV data.
To avoid overfitting, we regularize the roughness of estimated functional parameters by

quadratic-form penalties in spline coefficients. For a continuous MV j , the penalty term for θ j is
the sum of a univariate P-spline penalty for α j and a bivariate P-spline penalty for B j (Eilers &
Marx, 1996; Currie et al., 2006) :

q j (θ j ; λ j ) = λ j

2
α�
j E

�
KEKα j + λ j

2
vec(B j )

� (
IK ⊗ E�

KEK + E�
KEK ⊗ IK

)
vec(B j ), (19)

in which λ j > 0 is the penalty weight, IK denotes a K × K identity matrix, and

EK =
⎡

⎢
⎣

1 −2 1
. . .

. . .
. . .

1 −2 1

⎤

⎥
⎦

is a second-order difference matrix of dimension (K − 2) × K . If the MV is polytomous, no
penalty is needed for the intercepts α j and columns of B j . The resulting P-spline penalty term
then becomes

q j (θ j ; λ j ) = λ j

2
vec(B j )

� (
E�
KEK ⊗ IC j−1

)
vec(B j ). (20)
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A similar bivariate P-spline penalty is also introduced for the coefficient matrix �:

q(�; λm+1) = λm+1

2
vec(�)�

(
IK ⊗ E�

KEK + E�
KEK ⊗ IK

)
vec(�) (21)

with a positive penalty weight λm+1. Combining Eqs. 18–21, we express the penalized sample
log-likelihood function as

p(θ; y1:n,λ) = �(θ; y1:n) − n

⎡

⎣
m∑

j=1

q j (θ j , λ j ) + q(�; λm+1)

⎤

⎦ , (22)

in which λ = (λ1, . . . , λm, λm+1)
� ∈ (0,∞)m+1. PML estimation amounts to finding θ that

maximizes Eq.22 subject to a series of linear equality and inequality constraints (i.e., Eqs. 5, 7,
8, 10, and 15), which is accomplished by a modified expectation-maximization (EM; Bock &
Aitkin, 1981; Dempster et al., 1977) algorithm. A sequential quadratic programming algorithm
(Nocedal & Wright, 2006, Algorithm 18.3) is employed in the M-step to handle constrained
optimization. The algorithm is a simple extension to what was described in Sects. 4.1 and 4.2 of
Liu and Wang (2022); further details are therefore omitted for succinctness. Denote by θ̂(y1:n,λ)

the PML estimates of θ obtained from data y1:n and penalty weights λ.
Larger penaltyweights enforce less variable yetmore biased solutions and vice versa—awell-

known phenomenon referred to as the bias-variance trade-off. To strike a balance, we select the
optimal λ from a pre-specified grid by multi-fold cross-validation. Let 
1, . . . , 
S be a partition
of the sample:

⋃S
s=1 
s = {1, . . . , n} and 
s ∩ 
s′ = ∅ for all s 
= s′. For each s, let 
c

s be the
calibration set and 
s be the validation set, in which the superscript c denotes the complement
of a set. Predictive adequacy associated with a particular λ is gauged by the empirical risk

R(y1:n,λ) = − 1

S

S∑

s=1

1

|
s |�(θ̂(y
c
s
,λ); y
s ), (23)

inwhich |
s | denotes the size of
s , �(θ̂(y
c
s
,λ); y
s ) denotes the log-likelihood of the validation

sub-sample evaluated at the estimated coefficients from the calibration set. Instead of choosing
λ that minimizes Eq.23 (i.e., the best solution), we adopt the “one standard error (SE)” heuristic
(Chen & Yang, 2021; Hastie et al., 2009) to take into account sampling variability: We select the
smoothest solution within one SE from the λ that minimizes the empirical risk, where the SE at
a specific λ is estimated by

SE(y1:n,λ) =
√√
√√ 1

S − 1

S∑

s=1

[
− 1

|
s |�(θ̂(y
c
s
,λ); y
s ) − R(y1:n,λ)

]2
. (24)

The value λ contains m + 1 elements. To alleviate the computational burden for penalty
weights selection, we set λ1 = · · · = λm1 = λ(c) for continuous MVs, λm1+1 = · · · = λm = λ(d)

for discrete MVs, and λm+1 = λ(g) for the copula density of the two LVs. We also resort to a
multistage workaround to select the remaining three penalty weights: (1) A unidimensional model
is fitted to only the continuous MVs to find the optimal λ(c), (2) a unidimensional model is fitted
to only the discrete MVs to find the optimal λ(d), and (3) a two-dimensional simple-structure
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model is fitted to all the MVs to find the optimal λ(g) while fixing λ(c) and λ(d) at their optimal
values determined in earlier stages. The optimal weights thereby selected are denoted λ̂(y1:n). We
then refit the model using the optimal weight and the full set of data to obtain the final solution
of spline coefficients θ̂(y1:n, λ̂(y1:n)).

2.4. Model Fit Diagnostics and Inferences

Wequantify the sampling variability of sample statistics, including goodness of fit diagnostics
and approximations to functional parameters, by bootstrapping (Efron&Tibshirani, 1994; Hastie
et al., 2009) . Let Ȳi be a random sample from the collection of observedMV vectors {y1, . . . , yn}
such that each element is selected with probability 1/n. Sample with replacement n times and
denote the resulting bootstrap sample Ȳ1:n . We approximate the sampling distribution of any test
statistic T (Y1:n) by the bootstrap sampling distribution of T (Ȳ1:n) conditional on y1:n . Note that
most of the test statistics under investigation depend on the optimal penalty weights λ̂(y1:n), which
is a function of the observed data. Pilot runs suggest that the variability of the optimal weights is
small over bootstrap samples; we therefore treat λ = λ̂(y1:n) as fixed and do not repeat penalty
weight selection in the resampling process, which substantially reduces computational time.

Let Si j = ς j (Yi j ) be the MV score associated with the individual response entry Yi j . For
continuous log-RT variables and dichotomous items, we simply let ς j be the identity function and
thus Si j = Yi j ; for unordered polytomous items, however, a customized ς j function is needed for
recoding raw responses to a more meaningful scale (see Sect. 3.3 for an example). To assess the
lack-of-fit for the simple-structure semiparametric model—in particular the unaccounted depen-
dencies residing in observed MVs, we compute the residual correlation statistic

e j j ′(y1:n,λ) = r j j ′ − ρ j j ′(θ̂(y1:n,λ)). (25)

for j, j ′ = 1, . . . ,m, j < j ′. In Eq.25, r j j ′ and ρ j j ′ are the respective sample and model-implied
correlations between the j th and j ′th MV scores: The model-implied correlation can be further
expressed as

ρ j j ′ = μ j j ′ − μ jμ j ′√
(μ j j − μ2

j )(μ j ′ j ′ − μ2
j ′)

, (26)

in which we drop the dependency on θ for conciseness. In Eq.26, the first moment μ j can be
computed as

μ j =
∫

Y j

ς j (y)

[∫ 1

0
f j (y|x)dx

]
dy. (27)

There are three cases when computing the second moment μ j j ′ : (1) for a single MV, i.e., j = j ′,

μ j j =
∫

Y j

ς j (y)
2
[∫ 1

0
f j (y|x)dx

]
dy; (28)

(2) when j 
= j ′ but the two MVs load on the same LV,

μ j j ′ =
∫

Y j×Y j ′
ς j (y)ς j ′(z)

[∫ 1

0
f j (y|x) f j ′(z|x)dx

]
dydz; (29)
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and (3) when the j th and j ′th MVs load respectively on the first and second LVs,

μ j j ′ =
∫

Y j×Y j ′
ς j (y)ς j ′(z)

[∫

[0,1]2
f j (y|x1) f j ′(z|x2)c(x1, x2)dx1dx2

]
dydz. (30)

2.5. Latent Variable Density and Scores

As we have mentioned in Sect. 2.2, inferences for LVs are made based on the marginally
normal X∗

i1 and X∗
i2. In particular, we are interested in the strength of association between the

two LVs. To this end, we compute the coefficient of determination for predicting ability (X∗
i2) by

slowness (X∗
i1):

η2 =1 − E
[
Var(X∗

i2|X∗
i1)

]

Var(X∗
i2)

= Var
[
E(X∗

i2|X∗
i1)

]

Var(X∗
i2)

=
∫

R

[∫

R

x∗
2h(x∗

2 |x∗
1 )dx

∗
2

]2
h(x∗

1 )dx
∗
1 , (31)

in which h(x∗
d ) = ∫

R
h(x∗

1 , x
∗
2 )dx

∗
3−d , d = 1, 2, is the marginal density of X∗

id (assumed to be
standard normal), and h(x∗

2 |x∗
1 ) = h(x∗

1 , x
∗
2 )/h(x∗

1 ) is the conditional density of x∗
2 given x∗

1 .
Equation31 reduces to the usual coefficient of determination for linear models when (X∗

i1, X
∗
i2)

�
follows a bivariate normal distribution. When analyzing real data, we evaluate η2 using the esti-
mated LV density, denoted η̂2(y1:n,λ); the sampling variability of η̂2(y1:n,λ) is again character-
ized by bootstrapping (Sect. 2.4).

For each respondent i , LV scores can be predicted based on the posterior distribution of
(X∗

i1, X
∗
i2)

� given yi = y with density

f h(x∗
1 , x

∗
2 |y) = f (y|�(x∗

1 ),�(x∗
2 ))h(x∗

1 , x
∗
2 )∫∫

R2 f (y|�(x∗
1 ),�(x∗

2 ))h(x∗
1 , x

∗
2 )dx

∗
1dx

∗
2
. (32)

The means of the posterior distribution are often referred to as the expected a posteriori (EAP)
scores, and the corresponding standard deviations (SDs) gauge the precision of the EAP scores
(Thissen & Wainer, 2001) . In practice, density functions involved in Eq.32 must be estimated
from sample data, which introduces additional uncertainty to scores computed from the estimated
posterior. Better precision measures can be obtained from a predictive distribution of LV scores
(Liu & Yang, 2018a,b; Yang et al., 2012) . Let f̂ h(x∗

1 , x
∗
2 |y; y1:n,λ) be the estimated posterior

density. The bootstrap expectation E f̂ h(x∗
1 , x

∗
2 |y; Ȳ1:n,λ) with respect to the (random) bootstrap

sample Ȳ1:n defines a suitable predictive density; the inverse variance of the predictive distribution,
which is henceforth referred to as the predictive precision, can be conveniently estimated from a
collection of bootstrap samples. To set the baseline for assessing the gain in predictive precision,
we also consider the marginal posterior density of the ability factor X∗

i2:

f h(x∗
2 |ym1+1, . . . , ym) =

∏m
j=m1+1 f (y j |�(x∗

2 ))h(x∗
2 )∫

R

∏m
j=m1+1 f (y j |�(x∗

2 ))h(x∗
2 )dx

∗
2
. (33)

Estimatedmarginal EAP scores and the associated bootstrap predictive precisions can be obtained
in a fashion similar to the two-dimensional case.
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3. Data and Analysis Plan

3.1. PISA 2015 Mathematics Data

The data we analyze next came from the PISA 2015 computer-basedmathematics assessment
(OECD, 2016) . The test is composed of 17 dichotomously scored items from two mathematics
testing clusters (M1 and M2). Similar to the Zhan et al. (2018), we only retained cases with
complete response entries, leading to a total number of n = 8606 observations from 58 coun-
tries/economies.

Among the 17 items, there are four testlets (with item labels starting with CM155, CM411,
CM496, and CM564), each of which involves a pair of items. We collapsed the two items within
each testlet into a single four-category nominal item: The four categories 0, 1, 2, and 3 indicated
the original item response patterns (0, 0), (1, 0), (0, 1), and (1, 1), respectively. The corresponding
RT entries were also summed to a single testlet-level RT variable. Accordingly, the number of
items involved in the initial fitting is m1 = m2 = 13, and the number of MVs is m = 26. During
data preprocessing, we identified a number of extremely small and large RT entries, which are
potential outliers and may cause instability in model fitting. Therefore, we excluded for each MV
the top and bottom 1% RT and the associated item response data4. Then we took the base-10
logarithm of the RT variables and rescaled them to the unit interval. Selected descriptive statistics
of the final data can be found in Tables 1 and 2.

3.2. Analysis Plan

As we have mentioned in Sect. 1, the data set was analyzed in the previous work by Zhan
et al. (2018) using a parametric simple-structure model. Though we acknowledge the parsimony
and thus retain a simple factor structure, our analysis differs substantially from the previous work,
because we model MV-LV and LV-LV dependencies in a nonparametric fashion and are able to
provide an ultimate assessment for the validity of a simple factor structure in this data set. Once
we confirm that the dependencies in the MVs are sufficiently accounted for, we present graphics
and statistics based on the fitted model to demonstrate how the respective distributions of item
responses and RT are governed by the ability and slowness factors, as well as how ability and
slowness covary in the population of respondents.

Major steps of our analysis are outlined as follows.

step 1. Determine the optimal penalty weights λ̂(y1:n) by the three-stage procedure described
in Sect. 2.3.

step 2. Draw B = 100 bootstrap samples (i.e., resample with replacement) from the observed
data y1:n and repeat model fitting in each bootstrap sample with λ = λ̂(y1:n).

step 3. Examine the residual correlation statistics (Eq.25) for all pairs of MVs. Flag a pair if
the 90% two-sided bootstrap CI for the residual correlation fall entirely above 0.1 or
below −0.1.

step 4. Remove problematic items from the test and repeat steps 1–3 until no large residual
correlation remains.

step 5. Plot the conditional densities of the MVs given the marginally normal LVs (Eq. 1 with
x = �(x∗)) and the joint density of the two LVs (Eq.13). Compute estimated η2

statistics (Eq.31), EAP scores, and the associated predictive SDs for the scores.

Per the request from two referees, we also report in the supplementary document the empirical
risk statistics and density estimates for two parametric models. The first model is a standard

4Zhan et al. (2018) did not delete any extreme RT entries in their analysis. They performed Bayesian estimation with
a somewhat informative prior configuration, which is presumably more stable in the presence of outlying observations.
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Table 1.
Descriptive statistics for transformed response time (RT).

CM033Q01 CM474Q01 CM155 CM411 CM803Q01 CM442Q02

Mean 0.47 0.42 0.71 0.68 0.53 0.64
SD 0.20 0.19 0.12 0.16 0.18 0.16
Skew 0.14 0.54 −0.94 −1.09 −0.02 −0.69
Kurt 2.60 3.08 5.64 5.14 2.89 4.02
CorrTotal 0.41 0.42 0.50 0.50 0.52 0.58

CM034Q01 CM305Q01 CM496 CM423Q01 CM603Q01 CM571Q01 CM564

Mean 0.57 0.59 0.66 0.50 0.69 0.62 0.59
SD 0.18 0.16 0.17 0.17 0.18 0.20 0.16
Skew −0.28 −0.28 −0.98 0.11 −1.30 −0.92 −0.65
Kurt 3.04 3.46 4.53 3.00 4.84 3.49 4.07
CorrTotal 0.56 0.55 0.45 0.48 0.57 0.52 0.47

For CM155, CM411, CM496, and CM564, summary statistics are computed for the log-transformed RT of
the testlets. SD: Standard deviation. Skew: Skewness. Kurt: Kurtosis. CorrTotal: Correlation with the total
sum of log-RT.
We applied the based-10 logarithm to the raw RT data and then rescaled the log-transformed variables to
[0, 1].

Table 2.
Descriptive statistics for item responses.

CM033Q01 CM474Q01 CM155 CM411 CM803Q01 CM442Q02

P1 0.77 0.66 0.28 0.21 0.26 0.32
P2 – – 0.11 0.19 – –
P3 – – 0.43 0.29 – –
CorrTotal 0.44 0.48 0.49 0.55 0.56 0.58

CM034Q01 CM305Q01 CM496 CM423Q01 CM603Q01 CM571Q01 CM564

P1 0.38 0.43 0.07 0.79 0.37 0.41 0.22
P2 – – 0.24 – – – 0.19
P3 – – 0.43 – – – 0.27
CorrTotal 0.56 0.31 0.56 0.33 0.45 0.54 0.43

For testlets CM155, CM411, CM496, and CM564, the original item response patterns (0, 0), (1, 0), (0, 1),
and (1, 1) are recoded to 0, 1, 2, and 3, respectively. P1–3: Observed proportions of response categories 1–3.
CorrTotal: Correlation with total score; we apply the scoring function described in Sect. 3.3 to the testlet
MVs before computing the total score.

baseline model for the joint analysis of item response and RT data, which features linear-normal
factor models for log-RT variables, 2PL models for item responses, nominal response models
for testlets, and a bivariate normal LV density. Due to the strong parametric assumptions made
therein, we do not expect the baseline model to fit the data well. Inspired by the semiparametric
fitting, we also specified an updated parametric model with nonlinear factor models with quintic
mean functions for log-RT variables, 4PL models for item responses, nominal models for testlets,
and a two-component normal mixture density for the LVs. Even though the updated model has
yet to attain a fit comparable to the semiparametric model, it reproduces key functional patterns
in the semiparametric estimates of the bivariate LV density and the conditional densities for the
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MVs. Despite being tangential to the specific aims of the present work, these additional analyses
exemplify another standard usage of semiparametric/nonparametric models: to provide diagnostic
information about model-data fit and to guide model modification.

3.3. Detailed Configuration

For replicability, we provide all the tuning details involved in our analysis. PML estimation of
the semiparametric simple structuremodelwas implemented in theR packagespfa, which can be
downloaded at https://github.com/wwang1370/spfa and https://cran.r-project.org/web/packages/
spfa/index.html.

Estimation K = 13 B-splines basis functions were used for approximating smooth functions
defined on the unit interval. Each log-RT variable was linearly transformed to [0, 1] using the
sample minimum and maximum. The reference level for LVs and continuous MVs was set to
x0 = y0 = 0.5; for discrete MVs, the reference level was set to the first response category y0 = 0.
We impose likelihood-ratio monotonicity on item CM442Q02 since both its responses and RT
show the highest correlations with totals (see Tables 1 and 2). Intractable integrals appeared
in the conditional densities (Eq.1) were approximated by a 21-point Gauss-Legendre quadrature
rescaled to the unit interval. Themarginal likelihood function (Eq.17) involves a two-dimensional
integral over the unit square and was approximated by a tensor-product Gauss-Legendre quadra-
ture. In each fitting, we executed the EM algorithm until the change in the penalized log-likelihood
(i.e., Eq. 22) was less than 10−3 between consecutive iterations.

Penalty Weight Selection We selected the three penalty weights λ(c), λ(d), and λ(g) from the
following sequences of decreasing values:

λ(c) ∈ {10−1, 10−2, . . . , 10−6},
λ(d) ∈ {101, 10−1, . . . , 10−4},
λ(g) ∈ {10−2, 10−4, . . . , 10−8}.

The empirical riskwas computed by five-fold cross-validation (Eq.23with S = 5). The smoothest
solution within one SE (estimated by Eq.24) from the minimal-risk solution was deemed optimal.

Inference Conditional on the optimal penalty weights, we resampled B = 100 times with
replacement, refit the model in each bootstrap sample, and examine the bootstrap distributions of
fitted densities andmodel fit statistics.When computing fit diagnostics and summary statistics, we
approximated intractable integrals by the same quadrature systems that were used in parameter
estimation. The MV scoring function5 for testlet responses was defined by ς j (0) = 0, ς j (1) =
ς j (2) = 1, and ς j (3) = 2.

4. Results

4.1. Model Fit and Modification

In the initial fitting of the semiparametric simple-structure model (using all 26 MVs), our
cross-validation procedure selects 10−4, 10−1, and 10−4 as the respective optimal values for λ(c),
λ(d), and λ(g). A graphical display of the results can be found in the first row of Fig. 1.

Based on a full-data fitting with the optimal penalty weights, we summarize the residual
correlation statistics (Eq.25) for all pairs of MVs in a graphical table (Fig. 2). It is observed
that dependencies within RT variables are well explained by the slowness factor, and similarly

5Note that this scoring function was also applied before computing the item-total correlation statistics in Table 2.
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Figure 1.
Empirical risks (Eq.23) and standard errors (SE; Eq.24). The rows of the graphical table correspond to the initial fitting
(with all items) and the updated fitting (without the response time of CM034Q01 and CM571Q01). The columns represent
the three stages of penalty weight selection (see Sect. 2.3). Within each panel, empirical risk values are plotted as functions
of based-10 log-transformed penalty weights. Vertical bars indicate one SE above and below the empirical risk. The
minimized empirical risks are shown as circles, while the optimal solutions determined by the “one SE rule” were
highlighted as filled dots. The band formed by two horizontal dashed lines indicates the one-SE region associated with the
minimum empirical risk. Note that the two graphs in the second column are identical: This is because all item responses
are retained, and thus we do not need to re-select λ(d). LD: Local dependence. λ(c), λ(d), λ(g): Penalty weights for
continuous manifest variables (MVs), discrete MVs, and the latent density.

dependencies within item responses are well explained by the ability factor. The largest residual
correlation in the left panel of Fig. 2 is 0.1 (between the log-RT of CM571Q01 and CM603Q01)
with a 90% bootstrap CI [0.08, 0.12]. In contrast, we identify some non-ignorable residual depen-
dencies between the log-RT and response of the same item (i.e., diagonal entries in the right panel
of Fig. 2). The within-item residual correlations reach 0.14 (with a bootstrap CI [0.12, 0.15])
for both items CM034Q01 and CM571Q01. We also find a large negative residual correlation
for item CM423Q1: The point estimate is −0.12, but the associated bootstrap CI [−0.13,−0.1]
covers −0.1. Meanwhile, the RT-response dependencies are well explained between items: The
off-diagonal statistics in the right panel of Fig. 2 ranges between −0.07 and 0.08.

Given the above findings, we conclude that a simple factor structure largely suffices for
modeling the item responses and RT in the 2015 PISA mathematics data. For two out of 13 items
(CM034Q01 and CM571Q01), however, the associations between item-level response speed and
accuracy are not fully addressed by individual differences in general processing speed and ability.
To be clear of adverse impact caused by unaccounted residual dependencies, we dropped the log-
RT variables for items CM034Q1 and CM571Q01 while letting their responses stay, which results
in a modified simple-structure model with m1 = 11 continuous MVs and m2 = 13 discrete ones.
Steps 1–3 (see Sect. 3.2) were repeated. The optimal λ(c) remains to be 10−4, whereas the optimal
λ(g) increases to 10−3 (see the second row of Fig. 1); the optimal λ(d) = 10−1 is retained as no
change has been made to the item response variables. There is no more large residual this time.
The ranges of the residual correlations are [−0.04, 0.08] among log-RT variables, [−0.03, 0.02]
among response variables, and [−0.11, 0.08] across responses and log-RT. Similar to the initial
fitting, the only residual correlation beyond ±0.1 is observed between the response and log-RT of
item CM423Q1; however, the 90% bootstrap CI of the statistic is [−0.13,−0.09] which contains
−0.1. Therefore, we proceed to interpret the fitted densities based on the updated fitting.
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4.2. Conditional Densities of Manifest Variables

Estimated conditional densities and means of the log-RT variables given the slowness factor
are plotted in Fig. 3. Two major patterns are of interest here. First, although the high and low ends
of the LV scale roughly map onto the longest and shortest RT for a majority of items/testlets,
which justifies our decision to label the LV as “slowness”, the conditional mean function appears
to decrease at the high end for all items/testlets except for CM442Q02, on which we impose the
monotonicity constraints (Eq.8). However, we often cannot distinguish the observed downward
trend from a flat one due to large sampling variability, which is manifested by wider bootstrap
confidence bands in those areas. For itemCM603Q01 and testlet CM564, the downturn at the high
end cannot be explained away by sampling variability. It implies that, among slow responders for
the first nine items/testlets, the slower they respond to the first nine the faster they tend to response
to the last two. The second observation concerns the dips in conditional mean functions when
the latent slowness is between −1 and 0. Taking sampling variability into account, the dips are
not substantial for CM603Q01 and CM564; also recall that the conditional mean function was
forced to be non-decreasing for item CM442Q02. As such, the observed dips reflect a negative
association between the above triplet and the remaining items/testlets for the subset of respondents
whose latent slowness values fall slightly below average.

Per a referee’s request, we also examine the relationship between item-level RT and the ability
factor. In our simple structure model, the log-RT variables Yi j , j = 1, . . . ,m1, do not directly
load on the ability factor X∗

i2. Nevertheless, it remains possible to characterize the predictive
distribution Yi j |X∗

i2 by combining the conditional distribution of the slowness factor given the
ability factor, i.e., X∗

i1|X∗
i2, with the conditional distribution Yi j |X∗

i1 (shown in Fig. 3). Such RT-
ability associations turn out to be weak in the present data set; detailed results can be found in the
supplementary document.

Estimated item/testlet response functions are displayed in Fig. 4. Due to the large penalty
weight (i.e., 10−1), the fitted curves are smooth. For dichotomous items, the estimated curves for
category 1 (i.e., correct answer) are largely in S-shape and typically have a restricted range (narrow

Figure 3.
Estimated conditional densities and means for log-10 response time (RT) variables (rescaled to [0, 1]). Each panel cor-
responds to a single item/testlet. Conditional densities of manifest variables given the slowness factor are visualized as
contours in gray. Estimated conditional means are superimposed as solid curves in black. Dotted lines represent 90%
bootstrap confidence bands (CBs) for estimated conditional mean curves.
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Figure 4.
Estimated conditional densities for discrete response variables, also known as item response functions (IRFs). Each panel
corresponds to a single item/testlet. Curves for different categories are shown in different line types. Dotted lines represent
90% bootstrap confidence bands (CBs) for estimated IRFs.

Figure 5.
Left: Estimated joint density for the slowness and ability factors (contours in gray) and the conditionalmean of ability given
slowness (black solid curve). Dotted lines represent 90% bootstrap confidence bands (CBs) for the estimated conditional
mean curve. Right: Scatter plot for the expected a posteriori (EAP) scores of ability and slowness. A bivariate kernel
density estimate (gray solid contours) and a smoothing spline regression line (black solid curve) are superimposed.

than the entire interval [0, 1]). Similarly, estimated testlet response functions for the first and last
categories also appear to have (often different) upper asymptotes. Some items, e.g., CM305Q01
and CM423Q01, are poorly discriminating, manifested by relatively flat IRFs.

4.3. Latent Density and Scores

A contour plot for the estimated two-dimensional LV density, which is computed from the
estimated B-spline copula density with standard normal marginals (Eq.13), is provided in the left
panel of Fig. 5. It is observed that high ability respondents tend to response in a moderate speed,
whereas low ability respondents can respond either very rapidly or very slowly. The shape of the
density contours is nowhere near elliptical, which calls the standard practice of fitting a bivariate
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Figure 6.
Comparing expected a posteriori (EAP) scores for ability (left) and the associated predictive precisions (right) between
the one-dimensional (1D) response-only model and the two-dimensional (2D) simple-structural model. In both panels,
the dashed diagonal line in gray indicates equality.

normal LV density into question. A better parameterization of the latent density for this data would
be a mixture of two bivariate normals—one with a positive correlation for fast responders (i.e.,
slowness < 0) and the other with negative correlation for slow responders (i.e., slowness > 0). A
similar pattern is observed when we plot the ability EAP scores against the slowness EAP scores
(right panel of Fig. 5), with an exception that EAP scores tend to be less variable than the true LVs.

To better visualize the relationship between the two latent factors in the population, we also
plot the conditional mean of ability given slowness (i.e., the black solid curve in the left panel of
Fig. 5)—in other words, a nonlinear regression that predicts ability by slowness. The η2 statistic
(Eq.31) of the population nonlinear regression is 0.45 with a 90% bootstrap CI [0.44, 0.47],
indicating a strong association (Cohen, 1988, Chapter 9). Stated differently, knowing respondents’
processing speed on average reduces the uncertainty (measured by variance) in their mathematics
ability by 45%. Recall that Zhan et al. (2018) reported a correlation of −0.2 between the speed
(i.e., the reversal of slowness) and ability factors assuming bivariate normality, which implies
η2 = (−0.2)2 = 0.04. The divergent conclusion reached by Zhan et al. (2018) is likely attributed
to the restrictive parameterization of their measurement model: They forced the LV density to be
bivariate normal and thus failed to capture the nonlinear relationship. In addition, a smoothing
spline regression fitted to the EAP scores (i.e., the black sold curve in the right panel of Fig. 5)
suggests a similar predictive relationship: The observed multiple R2 statistic is 0.54, even higher
than the population η2.

As slowness/speed is a useful predictor of ability, it is anticipated that incorporating item-
level RT information may improve the precision of IRT scale scores. Inspired by Bolsinova and
Tijmstra (2018), we compare ability scores from the two-dimensional simple-structure model to
those from the unidimensional semiparametric IRT model fitted to only responses in terms of
their predictive precision (Sect. 2.5). It is first noted that the two sets of EAP scores are almost
perfectly correlated (sample Pearson’s correlation > 0.99; see the left panel of Fig. 6). We then
plot the predictive precisions associated with the two sets of EAP scores in the right panel of
Fig. 5. Because the test is short and some items (e.g., items CM305Q01 and CM423Q01) have
low discriminative power (manifested by flat item response functions), the predictive precisions
are not high in general. Pooling across the entire sample, the mean predictive precision based on
the unidimensional model is 4.68 with an interquartile range (IQR) [3.44, 5.71], and the median
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Table 3.
Predictive precisions of ability scores in quintile groups.

Quintile groups (slowness) Quintile groups (ability)
1 2 3 4 5 1 2 3 4 5

Avg prec (1D) 4.02 5.01 4.70 4.84 4.82 3.28 4.78 6.55 5.22 3.55
Avg prec (2D) 4.27 5.28 5.03 5.47 5.72 3.46 5.43 7.60 5.63 3.64
Improvement (in %) 5.99 5.31 7.18 12.98 18.64 5.48 13.47 15.89 7.96 2.52

Groups are determined by the slowness (left columns) and ability (right columns) scores computed from the
two-dimensional simple-structure model.
Avg Prec: Average predictive precision within each group. 1D: One-dimensional model. 2D: Two-
dimensional model.

predictive precision based on the two-dimensional simple-structure model is 5.15 with an IQR
[3.57, 6.45]. That is to say, using the two-dimensional model improves the predictive precision
for ability scores by 10.1% on average.

To assess scoring precision at different slowness and ability levels, we split the sample
into quintile groups by the slowness and ability EAP scores (from the two-dimensional model),
respectively. A group-by-group summary of scoring precisions is provided in Table 3. When
groups are formed by slowness scores, more increases in precision are typically observed in higher
quintile groups; the percentage of improvement can be as high as 18.64% in the fifth quintile group.
In contrast, the largest improvement is attained in themiddle quintile group (15.89%)when groups
are determined by ability scores; the one-dimensional ability scores in the fifth quintile group are
almost as precise as the two-dimensional scores.

5. Discussion

In the present paper, we perform a joint factor analysis for item response and RT data from
the 2015 PISA mathematics assessment. In line with many previous studies that handled this
type of data, our model features a simple factor structure with two LVs: The ability factor is
indicated solely by item responses, the slowness factor is indicated solely by log-transformed RT
variables, and the two LVs are permitted to covary in the population of respondents. The unique
contribution of our work lies in the use of a semiparametric measurement model: We do not
impose any restrictive functional forms of dependencies or distributional assumptions above and
beyond the simple factor structure. Our model therefore fits the best to the data insofar as a simple
factor structure is deemed proper.We approximate the functional parameters in the semiparametric
factor model by cubic splines and estimate the resulting coefficients by PML: The penalty weights
involved in the objective function are empirically selected via cross-validation. Inferences about
model fit statistics and estimated functional parameters are conducted based on (nonparametric)
bootstrap.

5.1. Implications

The semiparametric fitting reveals novel patterns that have yet been noticed in the existing
literature, which has profound implications on the use of RT information in large-scale educational
assessment.

First, a simple factor structure for ability and slowness fits reasonably well to the 2015
PISA mathematics data. Only two pairs of MVs exhibit excessive dependencies that are not well
explained by the simple-structure model: Both pairs comprise the response and RT of the same
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item. Furthermore, including or excluding the RT variables of the two flagged pairs is inconse-
quential for model-based inferences. Our finding verifies the prevalent psychometric theory that
between-person heterogeneity in item response behaviors are reflections of individual differences
in ability and general processing speed. However, the existence of within-item local dependence
between responses and RT, albeit not influential for the current analysis of the PISA data, should
be reassessed in other applications of simple-structure factor models.

Second, commonly used parametric factor models are too simple to fully capture the MV-LV
relations. Our semiparametric model implies that the conditional means of log-transformed RT
variables are generally increasing but nonlinear functions of the slowness factor; the conditional
variances appear to be non-constant for some items too. The most commonly used log-normal
RT model, however, implies a linear conditional mean and a constant conditional variance and
thus is evidently misspecified. As Liu and Wang (2022) also reported in that the log-normal RT
model fits substantially worse than the semiparametric model in a different empirical example,
cautions are advised in choose a suitable measurement model for item-level RT. Meanwhile, a
large penalty weight is selected for the semiparametric IRT model, and consequently the fitted
IRFs are smooth. While the shapes of the IRFs closely resemble logistic curves, the presence of
lower and upper asymptotes hints at a 4PL model (Barton & Lord, 1981) , rather than the more
popular 1PL and 2PL models in psychometric operations.

Third, the ability and slowness factors are strongly associated, which is probably the most
surprising observation since a weak correlation was reported in Zhan et al.’s (2018) analysis of
the same data. The disparate finding of ours is ascribed to the use of a nonparametric latent den-
sity estimator, whereas the LV density is by default assumed to be (multivariate) normal in the
vast majority of factor analysis applications. It then merely echoes a well-known fact that overly
restrictive assumptions may lead to poorly fitting models and subsequently biased inferences.
Diagnostics for non-normal LVs and measurement models equipped with non-parametric LV
densities should be added to the routine toolbox for psychometricians. Future research is encour-
aged to examine the extent to which nonlinear factor models with non-normal latent densities can
be beneficial in other assessment contexts.

Fourth, including item-level RT in the measurement model improves the precision of ability
scores, which is an expected consequence as the ability factor can be well predicted by the
slowness factor. While RT carries additional information about respondents’ ability, induced by
the association between ability andgeneral processing speed, it remains unclearwhetherRT should
be officially used for scoring purposes in high-stake educational assessment. On the one hand,
the joint factor model estimated in the present paper results in about 10% increase in predictive
precisions for ability scores on average. Adaptive tests based on such a joint factor model may
need fewer test items to reach the desired measurement precision, leading to more cost-effective
test administrations. On the other hand, the same measurement model may no longer hold once
the respondents are aware that response speed somehow affects their performance scores. In the
latter case, a re-calibration of the joint factor model and a re-evaluation on the usefulness of RT
information are necessary.

5.2. Limitations

There are also a number limitations to be addressed by future investigation.
First, the selection of penalty weights by multifold cross-validation is time consuming. A ref-

eree suggested that computing a one-sample estimate of cross-validation error (e.g., Akaike infor-
mation criterion; AIC) or a large-sample approximation to the Bayesian marginal log-likelihood
(e.g., Bayesian information criterion; BIC) is computationally advantageous. For nonparamet-
ric/semiparametric models using penalized smoothing splines, however, we must substitute a
properly defined “effective degrees of freedom (edf)” for the number of parameters in the usual
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formulas of those information criteria. The ad hoc definition of edf proposed by Liu et al. (2016)
for semiparametric IRT modeling can potentially be extended to the present context; however, the
performance of the resulting information criteria in penalty weight selection remains unclear and
should be investigated in future work.

Second, the sequential selection ofmultiple penaltyweights does not guarantee that a globally
optimal combination is found—it was only implemented as a workaround to alleviate the compu-
tational burden. Meanwhile, simultaneous selection on an outer-product grid (cf. Liu et al., 2016)
suffers from the “curse of dimensionality” and may be computationally inviable when the total
number of penalty weights to be selected is large. Future research is encouraged to apply and eval-
uate optimization-based penalty weight selection, such as the “performance-oriented iteration”
by Gu (1992), to semiparametric factor analysis. With the aid of optimization-based selection, it
is also possible to explore the feasibility of selecting different penalty weights for different MVs,
which further enhances the flexibility of the model.

Third, some of our decisions regarding locally dependent MVs can be refined. While coding
each testlet response pattern as a unique category does not lead to any information loss, treating
the summed RT within a testlet as a single MV does. In addition, we remove within-item local
dependencies between responses and RT by simply excluding the RT variables. Although our
treatments suffice for the purpose of the current analysis, it is natural to seek extensions of
the proposed model to handle local dependencies in a more elegant way. In our opinion, the
best strategy to approach a pair of locally dependent MVs is to directly model their bivariate
conditional distribution given the LVs. For example, we may express the joint density of two
log-RT variables, say Yi j = y and Yi j ′ = z, given the latent slowness variable Xi1 = x using a
logistic density transform with a three-way fANOVA decomposition (Gu, 1995, 2013) :

f (y, z|x) ∝ exp
(
gy(y) + gz(z) + gxy(x, y) + gxz(x, z) + gyz(y, z) + gxyz(x, y, z)

)
. (34)

Equation34 involves six functional components, each of which can be approximated via basis
expansion under suitable side conditions. Despite the straightforward formulation, simultaneous
estimation of a large number of functional parameters proves to be computationally challenging.

Fourth, a referee made an important point that the residual correlation statistic (Eq.25) only
captures linear dependencies, which does not rule out the existence of nonlinear residual depen-
dencies and is a major limitation of our diagnostic procedure. There exist various measures for
nonlinear associations: Recent example include the Hellinger correlation (Geenens & Lafaye
de Micheaux, 2022) and the Wasserstein dependence coefficient (Mordant & Segers, 2022; see
also Chatterjee, 2022, for a review). However, those measures are often less intuitive to interpret
as no common rules of thumb have been developed. As an alternative, one may fit an extended
semiparametric factor model with bivariate conditional densities (Eq.34) and identify nonlinear
dependencies from graphical displays of estimated conditional densities.

Fifth, the proposed semiparametric factor model can be generalized in a number of ways.
Sometimes,multiple latent constructs are simultaneouslymeasured by an instrument (e.g., person-
ality assessment); hence, a joint factor analysis of responses and RT for those measures involves
at least three LVs. Such extensions of the current semiparametric simple-structure model suffers
from a two-fold “curse of dimensionality”: The number of tensor-product basis functions grows
exponentially when the dimension of a functional parameter’s domain increases, and the number
of tensor-product quadrature points for likelihood approximation also increases exponentially
as the dimension of LVs increases. While the EM algorithm with numerical quadrature can be
replaced by stochastic approximation (Cai, 2010a,b; Gu & Kong, 1998) to handle models with
higher-dimensional LVs, reduced fANOVA parameterizations for conditional densities (Gu,
1995, 2013) and hierarchical formulations of B-spline copula (Kauermann et al., 2013) are
handy for constructing economical approximations of multivariate functional parameters.
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Sixth, resampling based procedures (e.g., bootstrap) are time consuming even if parallel pro-
cessing via OpenMP (Dagum&Menon, 1998) is enabled in the current implementation of PML
estimation. For parametric models, inferential procedures based on large-sample approximations
fares more computationally efficient. However, it is generally more difficult to prove large-sample
results for semiparametric/nonparametric models as the functional parameters are infinite dimen-
sional. Theoretical foundations on the asymptotic theory for semiparametric/nonparametric mea-
surement models have yet been established and are left for future research.

Last but not least, we emphasize that semiparametric approaches are better suited for analyses
that are exploratory and data-driven in nature. There are also scenarios in which confirmatory
and theory-driven model building is preferred: For instance, when the test is designed based on
cognitive theory and administered in a controlled laboratory setting (e.g., the well known “mental
rotation” example in theRT literature; Borst et al., 2011). One prominent example of theory-driven
psychometrics is the integration of diffusion decision models with factor analysis (e.g., Kang et
al., 2022, 2023a,b). Data-driven semiparametric models and theory-driven parametric models are
both important yet mutually distinct tools to advance psychometricians’ understanding in the role
of processing speed in test-taking behavior.
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