
1 
Overview and overture 

Einstein's theory of the classical relativistic dynamics of gravity is remark­
able, both in its simple elegance and in its profound statement about the 
nature of spacetime. Before we rush into the diverse matters which concern 
and motivate the search which leads to string theory and beyond, such 
as the nature of the quantum theory, the unification with other forces, 
etc., let us remind ourselves of some of the salient features of the classical 
theory. This will usefully foreshadow many of the concepts which we will 
encounter later. 

1.1 The classical dynamics of geometry 

Spacetime is of course a landscape of 'events', the points which make 
it up, and as such it is a classical (but of course relativistic) concept. 
Intuition from quantum mechanics points to a modification of this picture, 
and there are many concrete mechanisms in string theory which support 
this expectation and show that spacetime is at best a derived object or 
effective description. We shall see some of these mechanisms in the sequel. 
However, since string theory (as currently understood), seems to be devoid 
of a complete definition that does not require us to refer to spacetime, 
the language and concepts we will employ will have much in common 
with those used by professional practitioners of General Relativity, and 
of classical and quantum Field Theory. In fact, it will become clear to the 
newcomer that success in the physics of string theory is greatly aided by 
having technical facility in both of those fields. It is instructive to tour 
a little of the foundations of our modern approach to classical gravity 
and observe how the Relativist's and the Field Theorist's perspective are 
muddled together. String theory makes good and productive use of this 
sort of conflation. 
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2 1 Overview and overture 

It is useful to equip a description of spacetime with a set of coordinates 
x iL , f-L = 0,1, ... , D - 1, where xO == t (the time) and we shall remain 
open-minded and work in D dimensions for much of the discussion. The 
metric, with components giLV(x), is a function of the coordinates which 
allows for a local measure of the distance between points separated by an 
interval dxiL: 

ds2 = giLv(x)dxiLdxv. 

The metric is a tensor field since under an arbitrary change of variables 
xiL ----+ x'iL (x) it transforms as 

(1.1 ) 

Of course, 'distance' here means the more generalised Special Relativistic 
interval characterising how two events are separated, and it is negative, 
zero or positive, giving us timelike, null or spacelike separations, according 
to whether if it possible to connect the events by causal subluminal motion 
(appropriate to a massive particle), or by moving at the speed of light 
(massless particles), or not. This of course defines the signature of our 
metric as being 'mostly plus': {- + + + ... } henceforth. 

As a particle moves it sweeps out a path or 'world-line' xiL( T) in space­
time (see figure 1.1), which is parametrised by T. The wonderful thing is 
that what we would have said in pre-Einstein times was 'a particle moving 
under the influence of the gravitational force' is simply replaced by the 
statement 'a particle following a geodesic', a path which is determined by 
the metric in terms of the second order geodesic equation: 

d2 x A dxiL dxv 
dT2 = -r~v(g) dT dT ' (1.2) 

Fig. 1.1. A particle's world-line. The function xiL(T) embeds the world­
line, parametrised by T, into spacetime, coordinatised by xiL. 
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1.1 The classical dynamics of geometry 3 

where the affine connection r(g) is made out of first derivatives of the 
metric: 

r~V(g) = ~g.\K (8{lgKV + 8VgK{l - 8Kg{lv). 

Here and everywhere else, when working with curved spacetime we lower 
and raise indices with the metric and its inverse, (which has components 
g{ll/ such that g{l.\gWlC = of). Also note that 8{l == 8/ 8x{l. 

Switching language again we see that since the term on the left hand 
side of the equation (1.2) is what we think of as the 'acceleration', our 
Newtonian intuition determines the right hand side to be the 'applied 
force', attributed to gravity. In such language, g{ll/(x) is interpreted as a 
potential for the gravitational field. 

In the purely geometrical language, there are no forces. There is only 
geometry, and the particle simply moves along geodesics. The above state­
ment in equation (1.2) about how a particle moves in response to the 
metric is derivable from a simple action principle, which says that the 
motion minimises (more properly, ext remises) the total path length that 
its motion sweeps out: 

where a dot denotes a derivative with respect to T. (The reader might 
consider checking this by application of the Euler-Lagrange equations or 
by direct variation.) 

The only question (which is of course one of the biggest) remaining 
is the nature of what determines the metric itself. This turns out to be 
governed by the distribution of stress-energy-momentum, and we must 
write field equations which determine how the one sources the other, 
just as we would in any field theory like Maxwell's electromagnetism (see 
insert 1.1). 

The stress-energy-momentum contained in the matter is captured in 
the elegant package that is the tensor T{ll/(x) , a second rank, symmetric, 
divergence-free tensor which for an observer with four-velocity u, encodes 
the energy density as T{ll/u{lul/, the momentum density as - T{ll/u{lxl/, and 
shear pressures (stresses) as T{ll/x{lyl/, where the unit vectors x and yare 
orthogonal to u. 

Einstein's field equations are: 

1 
R{ll/ - 2g{lI/R = 8'TrGNT{l1/ , (1.6) 

where GN is Newton's constant. As one would expect, the quantity on the 
left hand side is made up of the metric and its first and second derivatives, 
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4 1 Overview and overture 

Insert 1.1. A reminder of Maxwell's field equations 

'Maxwell's equations' are second order partial differential equations 

for the electromagnetic potentials A (x, t), ¢(x, t) from which the 

magnetic (B(x,t)) and electric (i!;(x,t)) fields can be derived: 

~ ~ ~ ~ aj1(x, t) 
E(x,t) = - V¢(x . t) - a 
B(x,t) = v x A(X,t). 

In terms of the fields, Maxwell's equations are: 

V· E = 47TP 

V· B = 0 

t 
(1.4) 

(1.5) 

Here, the functions 7(x, t) and p(x, t), the current density and the 
charge density are the 'sources' in the field equations. 

We have written the equations with the sources on the right hand 
side and the expression for the derivatives of the resulting fields 
(to which the sources give rise) on the left hand side. We will write 
these much more covariantly in insert 1.3. 

where the Ricci scalar and tensor, 

R == g{WRjw , R - K,p RA 
JLV = 9 gAP jLK,V' 

are the only two contentful contractions of the Riemann tensor: 

R~K,v == ajLr~v - aVr~jL + r~jLr~V - r~vr~JL" 

(1.7) 

(1.8) 

Except for the metric itself, the quantity on the left hand side of equa­
tion (1.6) is the unique rank two, divergenceless and symmetric tensor 
made from the metric (and its first and second derivatives), and hence 
can be allowed to be equated to the stress tensor. 

When the stress tensor is zero, i.e. when there is no matter to act as a 
source, the vanishing of the left hand side is equivalent to the vanishing 
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1.1 The classical dynamics of geometry 5 

Rjw = 0, and solutions of this equation are said to be 'Ricci-flat'. This 
includes highly non-trivial spacetimes such as Schwarzschild black holes, 
which follows from the non-linearity of the left hand side, representing 
the fact that the stress-energy in the gravitational field itself can act as 
its own source ('gravity gravitates'). 

The physical foundation behind the geometric approach is of course 
the Principle of Equivalence, which begins by observing that gravity is 
indistinguishable from acceleration, and tells one how to find a locally 
inertial frame: one must simply 'fall' under the influence of gravity (i.e. 
just follow a geodesic) and one does not feel one's own weight, and so 
one is in an inertial frame where the Laws of Special Relativity hold. See 
insert 1.2 for a reminder of this in equations. The sourceless field equations 
then follow from the recasting of the relative motion observed between 
frames on neighbouring geodesics in terms of an apparent 'tidal' force. 

The full statement of the field equations to include sources is also guided 
by covariance, which means that it is a physical equation between ten­
sors of the same type, and with the same divergenceless property (which 
is a physical statement of continuity). The equations are therefore true 
in all coordinate systems obtained by an arbitrary change of variables 
x{l ----+ x/{l(x), since they transform as tensors in a way generalising the 
transformation of the metric in equation (1.1). 

Note that the statement of divergencelessness is a covariant one too, 
i.e. \7 {IT{ll/ = 0 uses the covariant derivative*, which is designed to yield 
a tensor after acting on one, say V: 

\7 V{l'" = a V{l'" + r{l VA'" + ... - r A V{l'" - . . . (1.9) 
/';, 1/'" - /';, 1/'" A/';, 1/'" /';,1/ A", . 

Finally, note that the field equations themselves may be derived from 
an action principle, the ext remising of the Einstein-Hilbert action coupled 
to matter: 

8 = 8M + 8EH 

8EH Ie J dDXH R 
161T N 

2 8SIYI 

A8g{lI/' 

where g is the determinant of the metric. 

(1.10) 

* In fact, this (not entirely unambiguous) procedure ofreplacing the ordinary derivative 
by the covariant derivative, together with the replacement of the Minkowski metric 
TjI"V by the curved spacetime metric gl"v(x) is often called the principle of 'minimal 
coupling' as a procedure for how to generalise Special Relativistic quantities to curved 
spacetime. 
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Insert 1.2. Finding an inertial frame by freely falling 

In order to find an inertial frame, we must find coordinates so that 
at least locally, at a point x~, say, we can can do special relativity. 
This means that we perform a change of coordinates xfl ----+ x'fl(x) so 
that when the metric changes, according to (1.1), the result is 

where r]fll/ is the Minkowski metric, diag( -1, +1, ... ,). How accu­
rately can we achieve this? In our coordinate transformation, we have 
in the neighbourhood of x~: 

so we have, at first order, D2 coefficients to adjust. Since g~1/ has 
D(D + 1)/2 components, we are left with 

D2 _ D(D + 1) = _D--'---(D_--------'--l) 
2 2 

transformations at our disposal. Happily, this is precisely the dimen­
sion of the Lorentz group, SO(D-1, 1) of rotations and boosts avail­
able in our inertial frame. At second order, we have D2(D + 1)/2 
coefficients to adjust, which is precisely the same number of first 
derivatives ag~1/ / ax'K of the metric that we need to adjust to zero, 
cancelling all of the 'forces' in the geodesic equation (1.2). At third 
order, we have D2(D + l)(D + 2)/6 coefficients to adjust, while there 
are D2(D + 1)2/4 second derivatives of the metric, a2g~l//ax'Kax').. , 
to adjust, which is rather more. In fact, this failure to adjust 

D2(D + l)(D + 2) 
6 

second derivatives is of course a statement of physics. This is pre­
cisely the number of independent components of the Riemann tensor 
R~fll/' which appears in the field equations determining the metric. 
So everything fits together rather nicely. 
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1.2 Gravitons and photons 7 

A favourite example of a stress tensor for a matter system is the Maxwell 
system of electromagnetism. Combining the electric potential rp and vector 

potential A into a four-vector A(x) = (rp,A), with components AIL' the 

magnetic induction iJ and electric field E are captured in the rank two 
antisymmetric tensor field strength: 

and an observer with four-velocity u reads the fields as: 

(1.11) 

where EILVK )., is the totally antisymmetric tensor in four dimensions, with 
E0123 = -1. (See insert 1.3 for more on this covariant presentation of 
electromagnetism.) The action is: 

S - J d D f' - 1 j.( )1/2F FILvdD M - XJ.., - --- -g ILV X, 
167T 

(1.12) 

and so it is easily verified that the Euler-Lagrange equations 

give the field equations 
\7 vFILV = 0, 

where we have used a very useful identity which is easily derived: 

(1.13) 

On the other hand, since 

(1.14) 

the stress tensor is 

(1.15) 

1.2 Gravitons and photons 

The quantum Field Theorist's most sacred tool is the idea of associating 
a particle to every sort of field, whether it be matter or force. So a force is 
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8 1 Overview and overture 

Insert 1.3. Maxwell written covariantly 

Probably most familiar is the fiat space writing: 

(1.16) 

for the Maxwell tensor. In addition to the four-vector A(x) = (¢, A), 
one in general will have a four-current for the source, which com-

bines the current and electric charge density: J(x) = (p, J). With 
these definitions, Maxwell's equations take on a particularly simple 
covariant form: 

(1.17) 

for the equations with sources, and the source-free equations (Bianchi 
identity). The energy-momentum tensor for electromagnetism is 
given in terms of F in equation (1.15), and is subject to the con­
servation equation (when the sources J/L = 0): \7 /LT/LV = O. This 
contains familiar physics. Specialising to fiat space: 

1 --+2 --+2 
Too = 87r ((E) + (B) ), 

which is the familiar expression for the energy density and the mo­
mentum density (Poynting vector) of the electromagnetic field 

mediated by a particle which propagates along in spacetime between ob­
jects carrying the charges of that interaction. There is great temptation to 
do this for gravity (by allowing all sources of stress-energy-momentum to 
emit and absorb appropriate quanta), but we immediately run into a con­
ceptuallog jam. On the one hand, we have just reminded ourselves of the 
beautiful picture that gravity is associated to the dynamics of spacetime 
itself, while on the other hand we would like to think of the gravitational 
force as mediated by gravitons which propagate on a spacetime back­
ground. A technical way of separating out this problem into manageable 
pieces (up to a point) is to study the linearised theory. 

The idea is to treat the metric as split between the background which is 
say, fiat spacetime given by the Minkowski metric TJ/LV, diag( -1, + 1, ... ,), 
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1.2 Gravitons and photons 9 

and some position dependent fluctuation h/Lv (x) which is to be small 
h/Lv (x) « 1. Then the equations determining h/Lv (x) are derived from 
Einstein's equations (1.6) by substituting this ansatz: 

and keeping only terms linear in h/Lv. 
Let us carry this out. We will raise and lower indices with rl/Lv, and 

note that g/LV will continue to be the inverse metric, which is distinct 
from ry/Lartf3gaf3. Note also that g/LV = rtV - hpv, to the accuracy to which 
we are working. The affine connection becomes: 

and to this order, the Ricci tensor and scalar are: 

R/LV = [pa(vh/L)a - ~aaaah/Lv - ~a/Lavh + O(h2), 

R = aaaf3 haf3 - aaaah + O(h2), 

where h = h~. Thus we learn that 

R/Lv - ~ry/LvR = aaa(vh/L)a - ~aaaah/Lv - ~a/Lavh 

-~ry/LV (aaaf3haf3 - aaaah) + O(h2). 

Defining 1/Lv = h/Lv - ~ry/Lvh, we find our linearised field equations: 

(1.18) 

(1.19) 

(1.20) 

There is an explicit gauge degree of freedom (recognisable from equa­
tion (1.1) as an infinitesimal coordinate transformation) 

(1.21) 

for arbitrary an arbitrary vector ~/L" Using this freedom, we choose the 
gauge aVh/Lv = 0 (using a gauge transformation satisfying avaV~/L + 
aVh/Lv = 0), which implies 

(1.22) 

This is highly suggestive. Consider the system of electromagnetism, with 
equations of motion (1.17). The equations are invariant under the gauge 
transformation 
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10 1 Overview and overture 

where A is an arbitrary scalar. We can use this freedom to choose a gauge 
o{lA{l = 0, (with a parameter satisfying o{lo{l A + OU Au = 0), which gives 
the simple equation 

O{lO{l Au = -47TJu. 

This is of a very similar form to what we achieved in equation (1.22) 
for the system of linearised gravity. The analogy is clear. The Maxwell 
system has yielded a field equation for a vector (spin one) particle (the 
photon A{l (x)) sourced by a vector current (J{l (x)), while the gravitational 
system yields the precisely analogous equation for a spin two particle (the 
graviton h{lu (x)) sourced by the stress tensor T{lu (x). 

This is the starting point for treating gravity on the same footing as 
field theory, and in many places later we will have cause to use the word or 
idea 'graviton', and it is in this sense (a spin two particle propagating on 
a reference background) that we will mean it. We have seen how to make 
the delicate journey from the Relativist's geometrical understanding of 
gravity to a perturbative Field Theorist's. To make the return journey, 
reconstructing a picture of, say the non-trivial spacetime metric due to 
a star by starting from the graviton picture is a bit harder, but roughly 
it is conceptually similar to the same problem in electromagnetism. How 
does one go from the picture of the photon moving along in spacetime 
to building up a picture of the strong magnetic fields around a pair of 
Helmholtz coils? Words and phrases which are offered include 'coherent 
state of photons', or 'condensation of photons', and these should invoke 
the idea that the coils' field cannot be constructed using only the per­
turbative photon picture. One can instead use the photon description to 
describe processes in the background of the Helmholtz field, and we can 
similarly do the same thing for gravity, describing the propagation of 
gravitons in the background fields produced by a star. In this way, we see 
that there is a possibility that there are situations where the conceptual 
separation between particle quanta and background in principle needs be 
no more dangerous in gravitation than it is in electromagnetism. 

Eventually, however, we would like to compute beyond tree level, and 
the celebrated problems of the theory of gravity treated as a quantum 
theory will be encountered. Then, the linearised Einstein-Hilbert action 

(1.23) 

will eventually reveal itself to be non-renormalisable once we add interac­
tions coming from the next order above linear. In particular, the process 
of recursively adding counterterms to the bare action in order to define 
physically measurable quantities does not terminate. As Field Theorists 
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1.3 Beyond classical gravity: perturbative strings 11 

(and perhaps as Relativists) we would have cause to be discouraged, and 
it is a much celebrated statement that as String Theorists, we won't be. 

1.3 Beyond classical gravity: perturbative strings 

A reason for dwelling on some of the previous points is that it is custom­
ary to do a lot of moving back and forth between the picture of quanta 
moving on a fiat background and other pictures, for example ones in­
volving considerably curved background fields. This is not because string 
theorists have a clever collection of new technological tools for seeing how 
to move from one to the other (although as we shall see with the aid of su­
persymmetry, in some cases we can often keep track of many properties of 
objects in moving between pictures) but because as was said before, string 
theory is a developing subject which has borrowed and hybridised intu­
ition from the Relativist's and the (perturbative and non-perturbative) 
quantum Field Theorist's worlds. 

This borrowing is not to be taken as a sign of intellectual bankruptcy, 
but quite the opposite. The adoption of terminology and concepts from a 
wide range of other fields is as a result of the richness of genuinely novel 
physical phenomena, with (as a whole) no precise precedent or analogue, 
which the theory appears to be revealing. This is very similar to what 
happened almost precisely a century ago. The treatment of quanta in a 
context dependent manner either as a wave or as a particle, an under­
standing still called 'Wave-Particle Duality' by many, grew out of the 
attempt to grasp a new physical phenomenon - Quantum Mechanics - by 
reference to established physical concepts from the century before. 

In the next chapter we will review how one proceeds to describe the 
relativistic string propagating in a fiat background. There are two very 
broad categories, open strings which have end-points, and closed strings 
which do not. The basic input parameter is the mass per unit length of 
the string, its tension: 

1 1 
T=-=-

27TO:' - 27TR2' s 

As is well known, the characteristic length scale of the string, Rs , is tradi­
tionally very small compared to scales on which we do current-day physics. 
This means that string excitations will have a good description as point­
particle-like states on scales much longer than Rs. After quantisation, it 
rapidly becomes clear that the spectrum of string theory is rather rich 
and demands application. Since finite masses in the spectrum are set by 
the inverse of Rs , the infinite tower of massive excitations of the string 
(see figure 1.2) will be very inaccessible at low energy (long distance, or 
infra-red (IR)). The tower is of course crucial to the properties of the 
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12 1 Overview and overture 

4 
(i' 

o 

Fig. 1.2. The string spectrum has a massless sector separated by a gap 
(set by the tension) after which there is an infinite tower of massive states. 

high energy (short distance, or ultra-violet (UV)) physics of the string. It 
is the massless part of the spectrum which is accessible at low energy and 
hence relevant to phenomenology. 

For example, closed string theories describe a massless spin two particle 
which is identified with the graviton. The questions of non-renormalisa­
bility which arose in quantum field theory turn out to be circumvented 
by the remarkable ultra-violet properties of string theory, which give rise 
to an extremely well-behaved perturbative description of multi-loop pro­
cesses involving gravitonst. The simple fact is that string theory is very 
unlike field theory at short distances, since it assembles together an in­
finity of increasingly massive excitations (in a particular way) which all 
playa role in the UV. The theory's supplying a satisfactory perturba­
tive quantum theory of gravity is just the beginning of the many phe­
nomena which arise from its properties as an extended object, as we 
shall see. 

Other massless fields which arise in string spectra are Abelian and non­
Abelian gauge fields, and various fermions and scalars, some of which one 
might expect give rise to the observed gauge interactions and matter fields. 
There is also a family of higher rank antisymmetric tensor fields general­
ising the photon on which we will focus in some detail. Remarkably, the 
value of one scalar excitation of interest, the dilaton <1>, determines the 
strength of the string self-interaction, g8 = e ij), and hence (since closed 
strings excitations can be gravitons) the value of GN. It is a striking fact 
that string theory dynamically determines its own coupling strength. (See 
figure 1.3.) 

t Sadly, lack of space will prevent us from describing this here, and we refer the reader 
to a textbook on thisl, 5. 
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1.3 Beyond classical gravity 13 

Fig. 1.3. The basic three-string interaction for closed strings, and its ana­
logue for open strings. Its strength, g8, along with the string tension, 
determines Newton's gravitational constant GN. 

Just as with the particle, it is straightforward to generalise the treat­
ment of the string to motion in a curved background with metric gILV(X) , 
and one can derive the analogue of classical geodesic equations of motion 
(if desired) for the string. 

The string sweeps out a 'world-sheet' with coordinates ((}1, (}2) == (T, ()). 
The string's path in spacetime is described by XIL(T,(}), giving the shape 
of the string's world-sheet in target spacetime (see figure 1.4). There is 
an 'induced metric' on the world-sheet given by (oa == 0/ O(}a): 

(1.24) 

with which we can perform meaningful measurements on the world-sheet 
as an object embedded in spacetime. Using this, we can define an action 
analogous to the one we thought of first for the particle, by asking that 

-----I>-

a o 

Fig. 1.4. A string's world-sheet. The function XIL( T, (}) embeds the world­
sheet, parametrised by (T, ()), into spacetime, coordinatised by XIL. 
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14 1 Overview and overture 

we extremise the area of the world-sheet: 

S = -T / dA = -T / dTder (-dethab )1/2 == / dTder £(X, Xl; er, T). 

(1.25) 
Expanded, this is 

(1.26) 

where Xl means ax/aero 
This is very analogous to the case of the particle, and we will analyse 

it further in the next chapter. However, there is much more to the story 
than this. The thorny question arises concerning what dynamics govern 
the allowed metrics, and it is a riddle of considerable depth: the string 
has revealed itself as generating the basic quantum of gravity as one of its 
modes of oscillation. Our experience from before allows us to trust that 
there ought to be a manner in which one can treat the graviton (and hence 
the string that carries it) as a small disturbance on a fixed background, 
but there is an additional problem which we did not have last time. Since 
the string is also the source of gravity, and if it dynamically generates 
the strength of the coupling, it ought to also determine gravitational dy­
namics. How does it go about determining the gravitational background 
in which it is supposed to propagate? In the terms we used previously, 
where do the field equations governing the background come from? 

The surprise turns out to be that internal quantum mechanical consis­
tency of the string theory does make certain demands on the properties of 
spacetime, in ways that no previous theory has managed before. First of 
all, it requires that it only propagates in spacetimes of certain dimension­
ality (for example, 26 for bosonic strings, 10 for superstrings). Secondly, 
it demands that at low energy the background metric satisfies Einstein's 
equations (sourced by the stress tensor due to the other massless fields)! 
This should be contrasted with the case of a particle where the issue of 
how it propagates in a metric is completely divorced from whether the 
metric satisfies Einstein's equations. 

Somehow, the simple generalisation of a particle to a string has captured 
something very new. Is there an analogue of the Equivalence Principle at 
work which gives Einstein's equations at low energy and then new physics+ 

t It is hoped that this new physics will cure a number of problems in strongly coupled 
gravity, like the loss of predictability of relativistic physics at spacetime singularities 
such as in black holes or at the Big Bang. 
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1.4 Beyond perturbative strings: branes 15 

at high energy? Even though this remarkable fact is relatively old by now, 
there is no simple thought experiment which explains why a generalisation 
from a particle to a string quantum-mechanically demands the solution 
of field equations for which the underlying principle is covariance and 
equivalence. 

1.4 Beyond perturbative strings: branes 

The reader may have noticed that the word 'perturbative' was used a 
lot in the last section, even when describing the remarkable successes of 
string theory in the arena of quantum gravity. The Second Superstring 
Revolution gets its name from the remarkable change of perspective which 
occurred with breakthroughs in understanding of this very issue, and the 
resulting flow of ideas and results. A great deal of quite surprising insight 
was gained about the supersymmetric string theories (whose existence and 
consistency followed from discoveries in the First Superstring Revolution) 
in the limit of very strong coupling, much of which we will cover later. 

The big question which arose time and again in string theory over the 
years before the revolution was the issue of its description beyond pertur­
bation theory. Actually, there were possibly two problems and not just 
one, however they usually are discussed together, although they may be 
logically distinct. Motivated by analogy with field theory, string theorists 
sought for something like a field theory of strings, which would allow for 
the non-perturbative exploration of the landscape in which vacua lie, in 
a way which is familiar in field theory, allowing the study of important 
phenomena like tunnelling, instantons, solitons, etc. The idea was that 
there would be a 'string field' ~ whose role was to create and destroy 
a string in a particular configuration. This begins by being conceptually 
on a par with the successful ordinary field theory concept about the role 
of a field in creating and destroying particle quanta, but this view soon 
changes when one remembers that the string is like an infinite number of 
particles from the point of view of field theory. The ideally next simplest 
step would be to find a simple way of writing a kinetic energy and po­
tential V(~), which would allow a study of dynamics and hence 'second 
quantised' strings (to use another old misnomer). See figure 1.5. In prin­
ciple, some type of field theory is not an altogether crazy thing to want 
to find. Given the success of the field theory framework, it would be an 
understatement to say that it would have been neglectful if the possibil­
ity had not been explored. There is another problem, however, into which 
experience with field theory seems to offer little insight. This is 'back­
ground independence'. In ordinary quantum field theory, a Lagrangian 
for the theory is defined with reference to a spacetime background. This 
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16 1 Overview and overture 

(1 ) (2) ~ (3) 

Fig. 1.5. A fanciful view of a slice through the infinite dimensional land­
scape of non-perturbatively accessible string vacua. 2; represents the en­
tire field content of a string theory, and V(2;) is a potential. Locations 
(1) and (3) represent perturbatively stable vacua, while (2) is unstable. 
Important physics may be found in the non-perturbative effects relating 
these vacua. 

is of course fine, since the fields are supposed to propagate on this back­
ground. However, it is not clear that this luxury should be available to 
us in the string theory, since it is supposed to determine the background 
upon which it is propagating, given that it generates gravity and the value 
of GN. 

The search for string field theories were not entirely unsuccessful, but 
since they are very difficult to work with, at the time of writing, it is not 
clear what they have taught us. It is a remarkable achievement in itself 
that one could define a string field 2;, and find a sensible Lagrangian. 
Both the kinetic and potential are on the face of it, written in such a way 
that there is a chance of background independence since the 'derivative' 
and the means of multiplying together string fields do not seem to di­
rectly refer to spacetime. Sadly, the means of unpacking the Lagrangian 
to perform a computation require one to make reference to objects which 
originally were defined with perturbative intuition about backgrounds 
again, and so background independence is still not apparent. 

This is not really a failure, if one reduces ones expectations about what 
a string field theory is supposed to do for us. It is possible to imagine 
that such a theory can tell us interesting physics involving various types 
of string vacua, and how they are inter-related, without ever addressing 
the background independence issue. 

This possibility was regarded as unsatisfactory for a long time, since it 
made string theory seem logically incomplete, with no physical principle 
or mechanism to appeal to, given that it was supposed to be the theory 
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1.4 Beyond perturbative strings 17 

of everything. Happily, the Second Revolution happened, and now we 
have a new possibility. String theory is not a theory of strings after all. 
There are two clear signs of this (which we will discuss later in detail). 
One is that there are extended objects in the theory ('D-branes') which 
carry265 the basic charges of a special class of higher rank antisymmet­
ric fields which the string theory necessarily describes, but cannot it­
self source. Coupled with this fact is that at arbitrarily strong coupling, 
these objects can become arbitrarily light (see insert 1.4), indeed lighter 
that the string itself, and so their behaviour dominates the low energy 
physics, undermining the fundamental role of the strings. A second sign 
is that some string theories are directly related at strong coupling (some­
times by a condensation of a tower of increasingly light D-particles) to a 
field theory - at low energy - which includes gravity. The short-distance 
completion of this gravitational theory does not seem to involve the dy­
namics of strings, and the new degrees of freedom are unknown. This 
unknown theory, whose existence is strongly suggested by the intricate 
web of strong/weak coupling dualities between the superstrings in diverse 
situations151, 152, 153, is often called 'M-theory', and it seems that all of 
the superstring theories that we know of may be obtained as a limit of it. 
In this sense, we see that string theory is itself an effective theory, albeit 
a remarkably interesting one. All of the various string theories that we 
know are perturbative corners of a larger coupling space. See figure 1.6. 
From this new picture (in which in some cases the extended objects 
which become light at strong coupling are weakly coupled strings of an 

lId supergravity 
EsXEs heterotic 

Type IIA 
M-theory 

Type I 

Type lIB 

SO(32) heterotic 

Fig. 1.6. A schematic diagram of the statement that all superstring the­
ories, and eleven dimensional supergravity, are effective descriptions of 
certain dynamical corners of a larger theory, called 'M-theory'. 
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Insert 1.4. Soliton properties and the kink solution 

Everybody's favourite soliton example is the kink solution of q} the­
ory in 1 + 1 dimensions. The mass m and the coupling A combine into 
a dimensionless coupling 9 = A/m2 , and we write: 

The kink (or anti-kink) solution is 

-+. ( ) = ±_1 h (m(x - xo)) <p± X tan /()' 
J9 v 2 

and so it is clearly an interpolating solution between the two vacua 
(located at ±¢o = ±1/ J9) of the double well potential. 

The parameter Xo is a constant, corresponding to the ability to trans­
late the solution. The configuration's mass-energy is: 

E= - - +U(¢±) dx=--, ; '00 (1 (O¢±)2 ) 2V2m 
-00 2 ox 3 9 

which is inversely proportional to the dimensionless coupling. So at 
weak coupling, this is a very heavy localised lump of energy. If we 
could trust this formula at strong coupling (and for various types 
of soliton in e.g. supersymmetric theories, we can), it is clear that 
for large 9 this solution becomes a light, sharply localised particle. In 
fact, it has a conserved charge, due to the existence of the topological 
current j{l = (J9/2)E{lVOv¢, which is: 

Q = /00 jodx = J9 (¢(+oo) - ¢(-oo)) = ±l. -00 2 

All of these properties will appear for solitons of theories which we 
shall study. The validity of the mass formula at strong coupling will 
allow various 'dualities' of supersymmetric theories to be uncovered. 
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entirely different type from the starting theory, giving a 'string-string' 
strong/weak coupling duality), it is clear that the string field theory 
approach would have had to produce a completely unlooked-for phe­
nomenon, and convert the world-sheet expansion of one type of string 
(say a closed one) into the completely different type of world-sheet ex­
pansion of another type of string (sayan open one). It would also have 
to point to new directions in which there is a perturbation theory not 
involving strings at all. Lastly, it would also have to be background 
independent. 

Of course, this may yet happen (but we might not call it a field theory 
any more!), but another possibility is that string field theory (at least in 
the intuitive form in which it was conceived) will be useful as an effective 
theory (arising from M-theory) useful for the study of a restricted but 
important set of non-perturbative effects. 

1.5 The quantum dynamics of geometry 

The issue of background independence may be tied up with matters which 
the theory is only really still just touching on, and so it may have been 
premature to worry about it previously. This is the fact that there are 
dynamical signs that clearly show that string theory avoids a definite pic­
ture of some of the properties of spacetime which we would have thought 
were fixed, if we were field theorists. 

Scattering of strings seems to show that attempts to confine the string 
to a small domain of spacetime are defeated by the strings' tendency to 
increasingly extend itself and spread out. From T-duality14 (to be first 
encountered in chapter 4, but probably in every chapter beyond that), 
we learn that when a string theory is compactified on a circle, there is 
an ambiguity in the spectrum about whether the propagation is on a 
circle of radius R or radius f!U R. The standard 'momentum' states with 
energy in multiples of 1/ R are joined by 'winding' states whose energy is 
in multiples of R/ f!;, coming from winding around the circle. The 'duality' 
exchanges these two types of mode. This is remarkable, especially if one 
considers the limit that R ---+ 0, since it says that an arbitrarily small circle 
compactification (reducing an effective spacetime dimension) is physically 
equivalent to having an arbitrarily large dimension (restoring an effective 
dimension). The outcome of this reasoning is that there appears to be 
an effective minimum distance arising in the dynamics of (perturbative) 
strings, of order the string scale f!s. This is qualitatively just the sort of 
granularity of spacetime which one might have anticipated (and indeed it 
was) in thinking about expectations for a quantum theory of gravity. We 
can go even further, however. 
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As already mentioned, at strong coupling some string theories turn into 
something which at low energy is a field theory in one dimension higher 
than the target spacetime of the weakly coupled string. Since the string 
coupling is dynamically generated by the string itself, we arrive at the 
result that the dimension of spacetime itself is dynamical. 

Also, the coordinates describing various objects like D-branes located 
in string theory's target space arise as not just numbers, but matrices26 . 

For example, in superstring theory for N pointlike D-branes (known as 
DO-branes or D-particles), there are nine N x N matrices, Xi(T), de­
scribing their world-lines parametrised by T. When the D-branes are 
widely separated from each other, it is dynamically favourable for these 
matrices to be diagonal, and we have N copies of the usual coordi­
nates x/1 describing the positions of N pointlike objects in nine spatial 
directions: 

o 0 
x~( T) 0 

o x~ (T) (1.27) 

When the branes are close together, there are dynamically favourable re­
gimes when these matrices are non-commuting, and correspondingly, the 
spacetime coordinate interpretation is now in terms of a non-commutative 
picture. There is more here, actually. Since DO-branes turn out to be mo­
mentum modes, in a compact direction, of an eleven dimensional graviton, 
this picture turns out to be a sort of light cone formulation of the eleven 
dimensional theory. This is the beginning of the Matrix Theory157 formu­
lation of M-theory. 

Spacetime is clearly a far more interesting place when the dynamics of 
string/M-theory are explored, and so it may be a while before we know 
even if we are asking the right sorts of questions about its nature. This 
includes the issue of background independence, and it may be that we 
have to wait for a complete formulation of M-theory (which may well 
have nothing to do with spacetime at all) before we get an answer. 

1.6 Things to do in the meantime 

While we wait for a complete formulation of M-theory to show up, there is 
a lot to do in the meantime. String theory's second revolution has provided 
us with a large number of tools to explore many regimes of fundamental 
physics, both old and new. 
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Gauge theories arise in string theories in many different (and often in­
terrelated) ways, for example by dimensional reduction and the Kaluza­
Klein mechanism (described in section 4.1.1), or as the collective dynamics 
on the world-volume of branes (described in section 4.10), or from gauge 
fields intrinsic to the structure of a closed string theory (described in sec­
tion 7.2). So string theory is an arena for studying gauge theories. The 
very geometrical way in which string theories treat gauge fields allows 
for many gauge theory phenomena to be usefully recast in geometrical 
terms. This also means that known gauge theory phenomena, correctly 
interpreted in this context, can also teach us new things about the ge­
ometry of string theories. Many of the applications of D-branes which we 
will discuss later in this book are concerned with this powerful dialogue. 

In this way, useful tools can be extracted for application to very concrete 
and pragmatic questions in the dynamics of strongly coupled gauge theory, 
of great concern to us of course in the physics being explored or shortly 
to be explored in experiments. 

Since string theory is also a theory of gravity, it is exciting to learn 
that there are regimes where much progress may be made in the study 
of situations where hard questions about quantum gravity arise. The 
most celebrated example of this is the precise statistical interpretation 
of Bekenstein's thermodynamical black hole entropy262, for a large class 
of black holes. This thermodynamical quantity can arise as the inevitable 
conclusion of semi-classical treatments of quantum gravity, where quan­
tum fields are studied in a classical black hole background (a useful con­
ceptual and technical compromise alluded to earlier). Such a treatment 
led Hawking261 to realise that there is thermal radiation (at a specific 
temperature) from a black hole, after other suggestive properties289, 292 

led Bekenstein to the realisation that there is an entropy associated to 
the area of the horizon. The universal Bekenstein-Hawking entropy for a 
black hole is: 

A 
S = 4GN ' (1.28) 

and is at the heart of the laws of black hole thermodynamics. This was 
a bit awkward, since there was no underling theory of quantum gravity 
to supply the 'statistical mechanics' which account for the precise rela­
tion between the entropy and the properties of the black hole. As we will 
describe in detail, for a large class of black holes, string theory provides 
the precise answer, in terms of D-brane constituents, and the gauge the­
ories which describe them. In fact, (for a smaller class of black holes) the 
spacetime dynamics of individual D-branes conspires to provide a micro­
scopic mechanism for the operation of the second law of thermodynamics 
as well7 . 
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One of the most profound insights of the revolution which might have 
the furthest-reaching consequences, is the identification of tractable 
regimes where a duality between gravitation and gauge theory can be 
found. This grew out of the above results concerning black holes, and 
even the ideas concerning the translation of gauge theory phenomena 
into geometry, but it is in some sense logically distinct from those. There 
is a very striking and intricate dynamical duality between the two, which 
again crosses dimensionality and is indicative of a very rich underlying pic­
ture. The 'AdS/CFT correspondence,270, 271, 272, the title under which the 
simplest examples are known, is also the sharpest known example of what 
is known as the 'Holographic Principle,286, 287, which states (roughly) that 
there should be a lower dimensional non-gravitational representation of 
the degrees of freedom of any quantum theory of gravity. Matrix theory 
is another example158 . 

The idea of the principle arises from the realisation that any high energy 
density scattering used to probe the short distance degrees of freedom in 
a theory including gravity will ultimately create black holes. Black holes 
seem to exhibit all of their degrees of freedom on their horizon, an object 
which is of one dimension fewer than the parent theory. This suggests (but 
of course does not supply a definite constructive tip for how to find it) that 
there is a more economical description of theories of D-dimensional gravity 
in terms of a theory in D - 1 dimensions. The AdS/CFT correspondence 
manages this by relating a theory of gravity in an anti-de Sitter back­
ground (a highly symmetric spacetime with negative cosmological con­
stant, reviewed in section 10.1.7) to a strongly coupled SU(N) gauge 
theory (of large N) in one dimension fewer. This is remarkable, since the­
ories of gravity and gauge theory are so very different in crucial dynamical 
respects, and we explore this in detail in chapter 18, showing how it arises 
from our study of D-branes, and exploring some of the consequences for 
new descriptions of strongly coupled gauge theory phenomena. 

Exploring the correspondence in more complicated cases is of great 
interest, as it might give us insights and new tools which we can apply 
to more phenomenologically relevant gauge theories, and we spend some 
time discussing some examples of this. 

1. 7 On with the show 

It is apparently an Irish saying that one will never plough a field by turning 
it over in one's mind, and so we should now begin the task of exploring 
things more carefully. In setting the scene, we have begun to unpack some 
of the more difficult concepts and some of the language which we will 
encounter many times as we go along. We will proceed by developing the 
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basic language of string theory, uncovering many remarkable phenomena 
and vacua, using perturbation theory only. Certain perturbative hints of 
non-perturbative physics will appear from time to time, and with the help 
of D-branes and supersymmetry, we later uncover such physics using many 
'duality' relations. Much later, we combine these techniques and ideas to 
probe and map out aspects of M-theory, and also to study certain aspects 
of duality in field theory. It will be an exciting journey. 
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