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Abstract. We exhibit, for arbitrary € > 0, subshifts admitting weakly mixing (probability)
measures with word complexity p satisfying lim sup p(g)/q < 1.5 4+ €. For arbitrary
f(g) — oo, said subshifts can be made to satisfy p(g) < g + f(g) infinitely often. We
establish that every subshift associated to a rank-one transformation (on a probability
space) which is not an odometer satisfies lim sup p(q) — 1.5¢ = oo and that this is optimal
for rank-ones.
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1. Introduction

Morse and Hedlund [MH38] initiated the study of word complexity of symbolic systems:
given an infinite word x € A%, on some finite set .A—the alphabet—the word complexity
p(q) is the number of distinct subwords of x of length g; more generally, for a closed,
shift-invariant X C A%, i.e. a subshift, the complexity p(q) is the number of distinct
subwords of length ¢ appearing in any of the x € X.

The same authors [MH40] established the first lower bound on the word complexity
in terms of the structure of the subshift: if x is aperiodic, then p(g) > g + 1 for all g. A
natural question, considering aperiodicity to be a weak form of mixing-like behavior, is
to what extent mixing-type properties impose lower bounds on complexity, especially in
light of recent results (e.g. [CFPZ19, CK19, CK20a, CK20b, DDMP16, DOP21, OP19,
PS22]) regarding subshifts with low word complexity being highly structured.

Morse and Hedlund [MH40] also exhibited words with p(q) = g + 1, called Sturmian
words, which can be encoded by irrational rotations [CH73]. As irrational rotations are
totally ergodic, the natural question is whether weak mixing imposes any sort of stronger
lower bound on word complexity. Topological mixing properties were considered by Gao
and Ziegler [GZ19] (see also Gao and Hill [GH16a, GH16b]); here we address the
measure-theoretic question.
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The lowest previously known complexity for a subshift admitting a weakly mixing
(probability) measure, due to Ferenczi [Fer95], is a subshift with complexity satisfying
lim sup p(q)/q = 5/3 and lim inf p(g)/q = 1.5. We exhibit subshifts, admitting weakly
mixing (probability) measures, with lower complexity.

THEOREM A. (Theorem 6.9) For every € > 0, there exists a weakly mixing rank-one
transformation (on a probability space) such that the associated subshift has complexity
limsup p(q)/qg < 1.5+ €.

THEOREM B. (Theorem 6.9) For any f(q) — oo, the subshifts can be made to satisfy
p(q) < q + f(q) infinitely often.

Naturally, one wonders whether these bounds are sharp. Cassaigne [Cas98] showed that
if p(g) = q + c for some constant c, then it is the image of a Sturmian word (so cannot
admit a weakly mixing measure); this implies p(g) < g + f(g) infinitely often is the best
possible (see Proposition 2.6 for specifics).

The analogous question for strong mixing was first explored by Ferenczi [Fer96] who
showed that the classical staircase transformation (proved mixing by Adams [Ada98]) has
quadratic complexity and conjectured that was the minimal possible. The author, Pavlov
and Rodock [CPR22] disproved this conjecture; recently, the author [Cre22] showed that
strong mixing manifests exactly at superlinear complexity: every strongly mixing subshift
satisfies lim p(q)/q = oo and for any f(q) — oo, there exist strongly mixing subshifts

with lim p(¢)/(qf(q)) = 0.
We establish that lim sup p(q)/g = 1.5 is optimal for rank-one transformations.

THEOREM C. (Theorem 4.3) Let T be a rank-one transformation (on a probability
space) which is not an odometer. Then the associated subshift has complexity satisfying
lim sup p(q) — 1.5g = oo (and lim inf p(q) — g = 00).

While Sturmian words are encoded by irrational rotations (which are totally ergodic and
rank-one), Rote [Rot94] showed that the general word encoded by an irrational rotation has
complexity p(q) = 2q, so if one treats an irrational rotation as a rank-one subshift, then
the complexity satisfies p(g) > 2gq.

There appears to be a complexity distinction between totally ergodic and weakly
mixing rank-one subshifts, namely that we can exhibit examples of totally ergodic
rank-one subshifts with strictly lower complexity than any of our weakly mixing examples.
Specifically, Theorem C is optimal.

THEOREM D. (Theorem 6.12) For every f(q) — 00, there exists a totally ergodic
rank-one transformation (on a probability space) such that the associated subshift satisfies

p(q) < 1.5q + f(q) for all sufficiently large q and p(q) < q + f(q) infinitely often.

It is worth remarking that lim sup p(g) — 1.5¢ = oo distinguishing behavior in sub-
shifts also appears in the work of Ormes and Pavlov [OP19] who showed that if
lim sup p(q) — 1.5g < oo, then the words in question are necessarily uniformly recurrent
or bidirectionally eventually periodic. For rank-one transformations, having bounded
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spacers implies uniform recurrence, so their result and ours do not meaningfully overlap.
However, it is interesting that lim sup p(q) — 1.5¢ < oo is exactly the bound that rules out
total ergodicity for rank-one subshifts as it is well known that the lack of total ergodicity
for rank-ones is equivalent to factoring onto a finite cyclic permutation, which is similar in
spirit to their conclusion.

In connection with other properties often discussed with rank-one transformations, if we
replace p(q) < g + f(q) infinitely often with a slightly weaker condition, then the work
of Ryzhikov [Ryz13] gives the following theorem.

THEOREM E. (Theorem 6.10) For every € > 0, there exists a subshift with complexity
satisfying lim sup p(q)/q < 1.5+ € and lim inf p(q)/q < 1 + € such that the associated
rank-one transformation is weakly mixing (on a probability space) and has minimal
self-joinings (hence also has trivial centralizer and is mildly mixing).

The proof of Theorem C is worth outlining briefly. First we establish that for a rank-one
subshift with lim sup p(q)/q < 2, there is a rank-one subshift which generates the same
language such that the spacer sequence eventually takes on at most two values. Not being
an odometer implies that both values must occur infinitely often and one can arrange for
both to occur at every level (this arranging can lead to the cut sequence growing very
rapidly).

The proof then proceeds by an analysis of all possible rank-one subshifts with exactly
two spacer values. We remark that finding our low complexity examples was a direct result
of this examination, which both indicated 1.5 ought to be the optimal bound and led to
which subshifts were the correct candidates.

There remain questions regarding the precise nature of the complexity of subshifts
admitting weakly mixing measures; we discuss these in §7. The main question left open
is whether there exists a subshift, necessarily not rank-one, admitting a weakly mixing
(probability) measure such that lim sup p(q)/q < 1.5. We tentatively conjecture that this
is not the case and a bit more: for every subshift admitting a weakly mixing (probability)
measure, we tentatively conjecture that lim sup p(q)/q > 1.5.

Section 5 where the examples are constructed (and §6 where weak mixing is proved)
may be read independently; the reader primarily interested in the examples may opt to skip
§§3 and 4 which are aimed at proving Theorem C.

2. Definitions and preliminaries
2.1. Symbolic dynamics

Definition 2.1. A subshift on the finite set A is any subset X C A% which is closed in
the product topology and shift-invariant: for x = (x,),ez € X and k € Z, the translate
(Xn4k)nez is also in X.

Definition 2.2. A word is any element of A® for some ¢, the length of w, written £en (w).

A word w is a subword of a word or biinfinite sequence x if there exists k so that w; = x;x
for 1 <i </{len(w). A word uis aprefixof wifu; = w; for 1 <i < fen(u) and a word v
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is a suffix of wif v; = Wit gen(w)—tenv) for 1 < i < Len(v). A subword (or prefix or suffix)
is proper when it is not the entire word.

For words v, w, we denote by vw their concatenation—the word obtained by following v
immediately by w. We also write such concatenations with product or exponential notation,
e.g. [[; wi or 0"

Definition 2.3. The language of a subshift X is £(X) = {w : w is a subword of some
x € X}.

Definition 2.4. The word complexity function of a subshift X over A is the function
px : N — N defined by px(q) = |L(X) N .A?|, the number of words of length ¢ in the
language of X.

When X is clear from context, we suppress the subscript and just write p(q).

2.1.1. Right-special words. All subshifts we consider are on the alphabet {0, 1} so it is
natural to consider the following definition.

Definition 2.5. The set of right-special words is LXS(X) = {w € X : w0, wl € L(X)).

Cassaigne [Cas97] showed the following well-known relationship: p(g) = p(m) +
971w e LRS : ten(w) = €}| form < q.

2.1.2. Quasi-Sturmian words. ~Aninfinite x € AN is Sturmian when p, (q) =q + ps(1).
Morse and Hedlund [MH40] exhibited examples of such words and showed that if
Px(q) < q or px(qg + 1) = py(q) for any g, then x is periodic.

Cassaigne [Cas98] termed infinite words x such that py(g) = g + ¢ for some constant
c and all sufficiently large g quasi-Sturmian, and showed such a word must be the image
of a Sturmian word under a morphism f : A* — A* which is non-periodic.

Indeed, his result quickly gives a bit more to obtain the following proposition.

PROPOSITION 2.6. Let X be an aperiodic subshift such that px(q) < q + d for some
constant d and infinitely many q. Then X is quasi-Sturmian (in the sense that all x € X
are quasi-Sturmian), and hence cannot admit a weakly mixing measure.

Proof. By the Hedlund—Morse theorem, we may assume p(£ + 1) — p(£) > 1 for all £
since otherwise, the subshift is periodic. For infinitely many g,

q—1
q+d=plg)=pl)+ )Y (pt+1)— p))
=1

>2pD)+g—1+[{{<q:pl+1)— p¥) =2}

so for infinitely many ¢, we have |{{ <q:p({+1)— p() > 2} <d, meaning
He:p+1) —p) =2} <d.
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Setc=p() -1+ Z?’;l(p(ﬁ + 1) — p(£) — 1), which must be finite as there are only
finitely many £ with p(£ + 1) — p(¢) > 1. Then for all ¢ > max{¢ : p(£+1) — p(£) > 2},

gq—1
P@=pM)+g—1+> (pl+1D)—pl)—1)=q+c.
=1
Since Sturmian words can be encoded by irrational rotations, Sturmian (and therefore
quasi-Sturmian) subshifts cannot admit weakly mixing measures. O

2.2. Ergodic theory

Definition 2.7. A transformation T is a measurable map on a standard Borel or Lebesgue
measure space (Y, B, ) that is measure-preserving: w(T~'B) = u(B) forall B € B.

Definition 2.8. Two transformations T on (Y,B,u) and T’ on (Y',B, /) are
measure-theoretically isomorphic if there exists a bijective map ¢ between full measure
subsets Yo C ¥ and Y C Y', where w(@~"A) = 1/ (A) for all measurable A C Y, and

(@oT)(y)=(T"o¢)(y)forall y € Y.

Definition 2.9. A transformation T is ergodic when A = T ' A implies that ;.(A) = 0 or
p(AS) = 0.

Definition 2.10. A transformation T is totally ergodic when T* is ergodic for all k € N.

Definition 2.11. A transformation 7 on a probability space is weakly mixing when any of
the following equivalent conditions hold:
e for all measurable sets A, B, there exists {t,} such that u (T A N B) — n(A)u(B);
e there exists a density one {t,} such that u(T" A N B) — w(A)u(B) for all measurable
sets A, B;
e T x T isergodic;
for all measurable A, B, there exists n such that u(7"A N A)u(T"AN B) > 0.

2.3. Rank-one transformations. A rank-one transformation is a transformation 7 con-
structed by ‘cutting and stacking’. Here, Y represents a (possibly infinite) interval, B is
the induced o -algebra from R and u is Lebesgue measure. We give a brief description,
referring the reader to [FGH+21] or [Sil08] for more details and to [Fer97] for equivalent
definitions.

The transformation is defined inductively on increasingly larger portions of the space
through Rohlin towers or columns, denoted Cj,. Each column C, consists of levels I, j,
where 0 < j < h,, is the height of the level within the column. All levels I, ; in C, are
intervals with the same length, w(/,), and the total number of levels in a column is the
height of the column, denoted by £,. The transformation T is defined on all levels I, ;
except the top one 1, 5, 1 by sending each I, ; to I, ;1 using the unique order-preserving
affine map.

Start with C; = [0, 1) with height &1 = 1. To obtain C,,4+; from C,, we require a cut
sequence, {ry}, such that r, > 1 for all n. Make r, vertical cuts of C, to create r, + 1
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subcolumns of equal width. Denote a sublevel of C, by Iﬂ, where 0 <a < h,, is the
height of the level within that column and i represents the position of the subcolumn, where
i = 0 represents the leftmost subcolumn and i = r,, is the rightmost subcolumn. After
cutting C, into subcolumns, add extra intervals called spacers on top of each subcolumn
to function as levels of the next column. The spacer sequence, {s,;}, such that0 <i <r,
and s,; > 0, specifies how many sublevels to add above each subcolumn. Spacers are the
same width as the sublevels, act as new levels in the column C,,4 and are taken to be the
leftmost intervals in [1, co) not in C,,. After the spacers are added, stack the subcolumns
with their spacers right on top of left, i.e. so that / :J Uis directly above / lﬂn_ 1 This gives
the next column, C,41.

Each column C,, defines T on Ul;”:f)z I, j and the partially defined map T on C, 11
agrees with that of C,, extending the definition of 7T to a portion of the top level of C,
where it was previously undefined. Continuing this process gives the sequence of columns
{C1,...,Cy, Cyt1, ...} and T is then the limit of the partially defined maps.

Though this construction could result in Y being an infinite interval with infinite
Lebesgue measure, Y has finite measure if and only if ) (1/r,hy) er”: 0 Sni < 00, see
[CS10]. All rank-one transformations we define satisfy this condition and for convenience,
we renormalize so that Y = [0, 1). Every rank-one transformation is ergodic and invertible.

The reader should be aware that we are making r,, cuts and obtaining r,, + 1 subcolumns
(following Ferenczi [Fer96]), while other papers (e.g. [Cre21]) use r,, as the number of
subcolumns.

2.4. Odometers

Definition 2.12. A rank-one transformation which can be constructed using a spacer
sequence such that there exists N so that s,; =0 for all n > N and 0 <i <r, is an
odometer.

Odometers have discrete spectrum and all their eigenvalues are rational in the sense that
they are of the form exp(2riq) for g € Q.

2.5. Symbolic models of rank-one transformations. For a rank-one transformation
defined as above, we define a subshift X(7) on the alphabet {0, 1} which is
measure-theoretically isomorphic to 7.

Definition 2.13. The symbolic model X (T) of, or subshift associated to, a rank-one
transformation 7 is given by the sequence of words: B; = 0 and

n
Bust = By10B, 11 .. By1%n =[] B,
i=0

and X (T) is the set of all biinfinite sequences such that every subword is a subword of
some B;,.

The words B,, are a symbolic coding of the column C,;: O represents C and 1 represents
the spacers, and &, = £en(B,). There is a natural measure associated to X (7).
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Definition 2.14. The empirical measure for a symbolic model X(7) of a rank-one
transformation 7 is the measure v defined by, for each word w,

{1 < j <{fen(B,) —Len(w) : Bylj; len(w)] = w}|

v(lw]) = lim Len(By) — Len(w)

where B,[j; £] denotes the subword of B,, starting at position j with length £.

Danilenko [Dan16] (combined with [dJ77]) proved that the symbolic model X (T)
of a rank-one subshift, equipped with its empirical measure, is measure-theoretically
isomorphic to the cut-and-stack construction (see [AFP17]; see [FGH+21] for the full
generality including odometers).

Due to this isomorphism, we move back and forth between rank-one and symbolic
model terminology as needed and write £(7') for the language of X (T), or simply L if
X (T) is clear from context, and make the following definition.

Definition 2.15. A rank-one subshift is the symbolic model of a rank-one transformation.

Likewise, when the measure is clear from text, such as the empirical measure for a
rank-one subshift, we make the following definition.

Definition 2.16. A (measure-theoretically) weakly mixing subshift is a subshift for which
the measure is weakly mixing.

3. Properties of rank-one subshifts
LEMMA 3.1. Forn < m, By, has B, as a prefix and B, 1 as a suffix.

Proof. This is immediate from the construction. O

LEMMA 3.2. B, has 0 as a prefix for all n.

Proof. By Lemma 3.1, B, has B; = 0 as a prefix. O

We next need a result of Danilenko.

PROPOSITION 3.3. [Danl9, Lemma 1.10] Every rank-one subshift is measure-theoretically
isomorphic to a rank-one subshift with s, ,, = 0 and the two subshifts generate the same
language.

PROPOSITION 3.4. For a rank-one subshift on a finite measure space, (1/h,) inf{s,; :
0<i<r,}—0.

Proof. Suppose inf{s,; : 0 <i < r,} > &h, infinitely often for some § > 0. Then for such
n, we have £(Cp41) > w(Cp) +inf{s,; : 0 <i < rp}u(ly) = (1 +8)u(Cy). So for any £,
if we choose N such that at least k values of n < N have inf{s,; : 0 <i < r,} > éh,, then
w(Cy) = (1 + 8)*u(Cp). Taking k — oo shows the measure would then be infinite. [
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3.1. Rank-one subshifts with at least three distinct spacer values

PROPOSITION 3.5. For a rank-one subshift on a finite measure space with s, ,, = 0 for
all sufficiently large n, if the set {s;,; : m > n,0 < i < ry} contains at least three distinct
values for infinitely many n, then lim sup p(q)/q > 2.

Proof. Choose n such that ¢, = inf{s,; : 0 <i < r,} has the property that ¢, = inf{s,,; :
m >n,0 <i < ry,} (such an n must exist since otherwise, there is a sequence {m,} along
which inf{s,,, ; : 0 < i < ry,} is strictly decreasing, which would contradict that s, ; > 0).

Let uy,, vy € {Smi :m >n,0 <i < rp} such that#, < u, < v,. Such must exist since
otherwise, |{sy; : m > n,0 <i < r,}| = 2, so the same holds for all n’ > n.

The word B, 1™ B,, is a subword of B,,1. As B, has 0 as a prefix, B,1"0 € L. As
up >t, and B,1"" is a subword of B, 1" which is a subword of B, this shows
B,1" € LR, Likewise, B, 1" € LRS.

Let N such that s, , = 0forn > N.Letc > 1 such that By has 01¢~! as a suffix (such
¢ < hy must exist as By has 0 as a prefix). Since s, ,, = 0 forn > N, the word B,,, for all
n > N, has By as a suffix and hence has 01¢~! as a suffix.

Therefore, B, 1 has 01¢~ 1+ as a suffix and B, 1%" has 01~ !*% as a suffix meaning
that for every t,, + ¢ < £ < h, + t,, the suffixes of B, 1 and B, 1%» of length £ are distinct
(asu, > t,).

Then p(L+ 1) — p) = [{w € LRS : ten(w) =€} =2 for t,+c <l <h,+ty,
meaning that p(h,) > 2(h, —t, —c) so, as Proposition 3.4 implies t,/h, — O,
p(h) = 21 = (g + )/ hy) = 2. 0

3.2. Rank-one subshifts with the same language

LEMMA 3.6. Let T be a rank-one subshift with cut sequence {r,} and spacer sequence
{sn.i}-

Let N e N. Forn < N, set7, =ry, and Spi = Sn.-

Set iy = (rn + 1)(rv41 + 1) — 1 and for 0 < a < ry41, Set SN a(ry+1)+b = SN,b fOr
0 <b <ryandsetSNaiy+1)+ry =SSNy + SN+1a-

Forn > N, sett, = ryq1 and Sp; = Sp+1,i-

Then the rank-one subshift T generates the same language as T.

Proof. Clearly, B, = B, forn < N. By design,

FN+1 N 5
o= ([ o)

a=0 b=0
IN+1 ry—1 IN+1
_ 1_[ (( 1_[ BN]SN,b)BleN,rN+SN+1,a> — 1_[ By 15V+1e = By o,
a=0 b=0 a=0
SO én = By foralln > N. O]

PROPOSITION 3.7. Let T be a rank-one transformation such that s, ,, = 0 and s,; = ¢,
for O <i < ry, for all sufficiently large n. If ¢, is not eventually constant, then there exists
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a rank-one subshift T which generates the same language as T, with the property that
Sn.i, = 0and 5, is not constant over 0 < i < r, for infinitely many n.

Proof. If ¢, is not eventually constant, then there exist infinitely many n < m such that
¢n # cm, so there exist infinitely many » such that ¢, # ¢, 1.

If we apply Lemma 3.6 at such an n, then s,; is not constant over 0 < i < 7, since
Sy = Snyy T 80410 =0+ o1 #F e =Spoand 8,7, = Snp, + Spt1r,,, = 0.

Let NV be a set of n such that ¢, # c,4+1 such that N does not contain any pairs of
consecutive integers. Applying Lemma 3.6 for each n € N gives the claim. O

In fact, one can do a similar modification across multiple stages simultaneously.

LEMMA 3.8. Let T be a rank-one subshift with cut sequence {r,} and spacer sequence
{sn,i}, and let {n;} be a strictly increasing sequence withn; = 1. For t > 1, set

npp1—1
f,=( I1 (rn+1>)—1

n=n;
andfor0 < j <n;1 —npand 0 <ij < ry,4j,

st,i0+i1 (rn,+1)+i2(rnr+l+1)(rn,+1)+”'+in[+l—n;—l (rn,+l—l +1)"'(rn/+1)

npyp1—ne—1

Sp,+ii; Ifig=r orall0 <k < j,
= Supig + Z n+j.i; if ik .n,+l<f = J
sy 0 otherwise.
Then T and T generate the same language: B; = By, forallt > 1.

Proof. We have 1§1 = 0= By = By, so we may assume éf = By, and then

7t
Bt = 1_[ B; 1%«
a=0

npqg—ne—=l

— 1_[ Bn[ 15,1[’1'0 12.f=| Sn;-%—_j,ij lik="nt+k for all k<j
iOsn-sinH,lfntfl
In Cnp—
— l_[ 1_[[ Bn, ls”f'io> 15m+1ig 12?;21 n S)l[+j,ij]lik:rn[+k for all k< j
ila---aint+l—n,—l ip=0
= l_[ B, 41 1%+t 12’;31 o S j Lig=ry g forall k<
i]a---ain,+|—n[—1
Tng+1 Cn—
— 1_[ lt_[ Bnt—‘,-l 1Snt+1,,'1 ) lsn,+2.i2 12?;21 et S”f+j’ij]lik:’n,+k for all k<
i2s---sin,+|—n[—1 i1=0
Tnypy—ni—1
= 1_[ Bn:+171lsnlJrlil'in“rl_nr_I = By, - O
inH_l—n,—]:O
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PROPOSITION 3.9. Let T be a rank-one subshift such that s, = 0 for all sufficiently
large n and that there exists 0 < i, i’ < r, such that s, ; # sy i for infinitely many n. Then
there exists a rank-one subshift T, which generates the same language, such that for all
sufficiently large n, 5, 7, = 0 and there exists 0 < i,i" < Fp With §,; # Sp.ir.

Proof. Letni = 1 and {n,};>> be the sequence of n for which s, ; # s, ;7. Lemma 3.8 then
gives the claim since s,, ; being non-constant over 0 < i < r,, implies §; , is non-constant
over 0 < a < r,, and hence over 0 < a < ;. Clearly, 5,7 = 0 for sufficiently large ¢ as
Sn,r, = 0 for all sufficiently large n. O

PROPOSITION 3.10. Let T be a rank-one subshift such that s, ,, = 0 for all sufficiently
large n and that for infinitely many n, s, 0 = Sn,,—1 = 0. Then there exists a rank-one
subshift, which generates the same language, such that S,,, =0 and $,0 = 5,7,-1 =
Sn17,1—1 = 0 for all sufficiently large n.

Proof. Let ny =1 and {n;};>> be the sequence of n for which s,9 =s,,,-1=0.
Lemma 3.8 then gives the subshift since §;9 = s,,,0 =0 and §; 7, _; has ip =r,, — 1 so
St7—1 = Sn,r,,—1 = 0 and, likewise, §;417,,,-1 = Snysiirngyy —1 = 0. O

PROPOSITION 3.11. If a rank-one subshift has the property that s, ,, =0 for all suffi-
ciently large n and there exist constant non-negative integers ¢ < d such that s,; € {c, d}
forall0 <i < r, (with both occurring) for sufficiently large n, then there exists a rank-one
subshift which generates the same language such that s, ,, = 0 and s, ; € {0, d — c} for all
0 <i < ry (with both occurring) for all sufficiently large n.

Proof. For all n, set r, = r,. Let N such that for all » > N, we have s,; € {c, d} for all
0<i<rpands,,, =0.Forn < N,sets,; = s,;.

Set sy; =sn,; for 0<i <ry and Sy,y =c. For n > N, set §,; = s,; —c for
0<i<rpands,,, =0.

Clearly, B, = B, forn < N. Observe that

rN—l
Byyi = ( l_[ BleN"')BNlc = Byy11°.
i=0

If B, = B, 1, then

rp—1 rp—1
By = ( I1 Bnlfﬂ*')én = ( I1 Bnl“lS"“')Bnl“ = Byl
i=0 i=0

so B, = By1¢foralln > N, meaning they generate the same language. [

3.3. Totally ergodic rank-one subshifts

PROPOSITION 3.12. Let T be a rank-one transformation such that there exists c so that for
all sufficiently large n, it holds that s,; = c forall 0 <i < r, and s,,, = 0. Then T is an
odometer.
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Proof. Let N > 1 such that for all n > N, s,; =c for all 0 <i <r, and s,,, =0.

Let S[ for 1 < j < c be the spacer levels added above C[ for 0 <i <r, (we do

not add spacers above Ci™ as s, r, = 0). Since T(S,[{]c) = I[l+l] for 0 <i < ry, and

since 1,0 € IN]O, we have that T(S[l]) C II[\,O’]0 for all n > N and all 0 <i < r,. Since
=l
11[\;,71]1\/—1 = on LIS nh _,. this means T"VF¢(Iy o) = Iy .
Define Inny = ],>n U0§i<r Snl Then, T(INhN 1D =Inpy and T(Unpy) =
Iy . Define the column C}, = UhN ! In,ju U T '(In ny) and the columns Chin

via cutting and stacking starting from C)y using cut sequence Iy, 4n = I'N+n and spacer
sequence s, ; = 0. The resulting odometer is the same map as X, so X is an odometer. [

PROPOSITION 3.13. Let T be a rank-one transformation on a finite measure space which
is not an odometer. If lim sup p(q)/q < 2, then there exists a rank-one subshift, which
generates the same language as T, such that there exists a constant positive integer d so
that for all sufficiently large n, it holds that s, ,, = 0 and s,; € {0,d} forall 0 <i <r,
and there exists 0 < i,i’ < ry, so thats,; = 0 and s, ; = d.

Proof. By Proposition 3.3, T’ is measure-theoretically isomorphic to a transformation T
which generates the same 1anguage and has s, 7, = 0 for all n. By Proposition 3.12, T has
the property that for every nand 0 < i < ry, there exists m > n and 0 < i’ < ry, such that
Smyi 7 Sn.i-

By Proposition 3.5, if lim supy |{sx; : n>N,0<i <r,}| >3, then lim sup p(g)/q >2.
So there exists N such that |{s,; :m > N,0 <i < r,}| <2. Therefore, |{sy,;:m >
n,0 <i < ry}| =2 for all sufficiently large n.

Proposition 3.7 gives a rank-one subshift generating the same language such that
Sn,r, = 0 for all sufficiently large n and s,; # s, for infinitely many »n. Proposition 3.9
then gives a rank-one subshift generating the same language with that property for all
sufficiently large n. Finally, Proposition 3.11 gives a rank-one subshift, still generating the
same language, such that s,; € {0,d} and 0 <i < r,, and s,,, = 0 for all sufficiently
large n. O

4. Subshifts with exactly one non-zero spacer value

THEOREM 4.1. Let p be the complexity function for a rank-one subshift such that for
all sufficiently large n, the spacer sequence satisfies s,; € {0, d} for some constant
positive integer d and s,,, =0, and that s,; is not constant over 0 <i < r,. Then,

lim sup p(g) — 1.5¢ = oo
This is a quick consequence of the following theorem.

THEOREM 4.2. Let p be the complexity function for a rank-one subshift such that for all
sufficiently large n, the spacer sequence satisfies s,; € {0, d} for some constant positive
integer d and sy, = 0, and that s, ; is not constant over 0 < i < ry,.

Then there exists a constant C such that for all sufficiently large n, there exists q, > hy,
such that p(Qn) > ]~5%1 + (p(hn) - hn) -C
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Proof of Theorem 4.1 from Theorem 4.2. Let N such that for all n > N, there exists
gn > hy, such that p(g,) > 1.5, + (p(h,) — h,) — C. Let m > n such that h,, > g,,. As
spi > 0fori < r, implies aperiodicity, p(£ + 1) — p(¢) > 1 for all £ so p(h,) > h, and
p(hm) — p(gn) = hm — gn- Then,

P(hm) — hy = (p(hm) — p(qn)) + P(gn) — hm
> (hm —qn) +1.5¢, —C — hy, =0.5¢, — C — 0

and therefore p(g,,,) — 1.5gm > p(hm) — hyy — C — o0. O]

Before proving Theorem 4.2, we show how Theorem 4.1 implies the following theorem.

THEOREM 4.3. Let T be a rank-one transformation (on a probability space) which is
not an odometer. Then the associated subshift has complexity satisfying lim sup p(q) —
1.5¢ = oo (and lim inf p(q) — g = 00).

Proof. By Proposition 3.13, either lim sup p(g)/q > 2 or there exists a rank-one subshift
which generates the same language with the property that there exists a constant
non-negative integer d such that for all sufficiently large n, s, ; € {0, d} forall 0 <i <r, and
Sn.r, = 0, and such that there exists 0 < i, i’ < r, withs,; = O and s, ;7 = d. Theorem 4.1
applied to that subshift then gives that lim sup p(q) — 1.5¢ = oo. Proposition 2.6 ensures
lim inf p(q) — g = oo as otherwise, p(q) = g + ¢ for a constant ¢ for all sufficiently
large g. O

The remainder of this section is the proof of Theorem 4.2.

4.1. Some notation and basic facts. Write 1 to represent 1.

We use repeatedly the facts that O is a prefix of every B, (Lemma 3.2) and that B, is a
suffix of B, for m > n for sufficiently large n (due to s, ,, = 0).

We also use repeatedly the fact that B, B,, and Bn’l\B,, are subwords of B, due to s, ;
not being constant over 0 < i < ry,.

LEMMA 4.4. There exists a constant ¢ > 1 such that for all n > N, the words B% and
B, 1B, differ on suffixes of length at least h,, + c.

Proof. Choose ¢ such that By has 01! as a suffix (possible as By has 0 as a prefix).
Since B, By, has By By, as a suffix, B, B, has 01°~! B,, as a suffix. As B, 1B, has 1°"119B,
as a suffix, this shows the words differ on the suffixes 01"! B, and 1°B,,. ]
4.2. Counting via right-special words

LEMMA 4.5. B, € LRS for all n.

Proof. B, contains B, B, and BnT as subwords. B, has 0 as a prefix, so B, € LRSS O
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LEMMA 4.6. Write f, = p(h,) — h,
If there are t,, distinct right-special words, all of length at least h,, and less than q,,
which are not suffixes of Byym for any m > 1, then

P(qn) = qn + fu + ta.

Proof. Since  p(q) — p(hy) = {w € LRS : h, < ten(w) < g,}| and since, by
Lemma 4.5, we have at least g, — h, suffixes of some B,i, of length at least
h, and less than g, which are right-special and distinct from the 7, hypothesized,

p(qn) = p(hy) +qn — hy + 1. O

The proof of Theorem 4.2 will proceed by establishing the existence of right-special
words which are not suffixes of any Bj,,,. To this end, rewrite the defining words as

zn—1
n+1 < 1_[ Banll)

where a, ; > 1 and z, > 2, and a,,,; > 2 for at least one j as 0 and d both occur in {s,; :
0<i<rl}.

4.3. The (straightforwardly) 5/3 cases. Throughout this section, let N such that
spi €1{0,d} and s, ,, = 0, and s,,; is not constant over 0 <i < r, foralln > N.

PROPOSITION 4.7. If, for n > N, one of the following holds:

e a,; >2anday) =1,1ie. BT B,%;

o a,., =landa,) >2,ie. 32 TB,,,

° a., _landa,,1—1anda,,j>3f0rs0mej,zeBl B3 1B,,
then there exists g, > h, such that p(q,) > (5/3)gn + fun — .

LEMMA 4.8. Words of the form BnTBnT
Forn> N, ifa,1 = app =1, then B,1B,1B, € LRS,

Proof. Let j minimal such that a, ; > 2.

If j > 3, then B, has the subword Bg"’j%/l\BZ"‘j*z/l\BS"’j*ITB,(:"J = B, 1B, 1B, 1B,
which has B, TB TB TBZ asa preﬁx

If j =3, then the word Bn+1an+1 has the subword B 1Be' 1B *TB™ as a
subword, which has B, 1B 1B 1B2 as a subword.

Then, B,1B,1B, € LRS as B,1B,1B,1 and B,1B,1B,B, are both subwords of
B, 1B,1B,1B2. O

LEMMA 4.9. Words of the form B,,TB,% B2
Forn > N, ifay,,, > 2anda,) =1anda, > 2, then B,%IB,Z e LRS,

Proof. Bn+1TBn+1 € L implies BZ"‘Z”TB,‘;"’I’I\BZ”’Z e L, so B{l\BnT e Lasa,z, > 2and
anpy = 1.

B,,HB,,H € L implies By" "Ba"llBa”2 € L. Since a,, > 2, this gives BZIB2
BZ1B,0 € L. E]
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LEMMA 4.10. Words of the form B,%T
Forn > N, ifa,1 = 2, then BnlB,% e LRS,

Proof. BZ"’Z”’ITB,(,J"’Z” By™' € L as it is a subword of Byt1By41 s0, as apz,—1 > 1 and

nz, +an1 >3, also B,1B) € L. B, 1B,"'1 is a subword of B,i11B,41 50, as

anz, > 1, also B,,TB}%TG L. o
LEMMA 4.11. Words of the form Bs or B;‘{

Forn > N, ifa, > 2 or ay,j > 3 for some j, then Bg e LRS,

Proof. If an.j > 4, since BZ”’jT is a subword of By 41, so is B;ﬁ\. Ian,,,] > 3, then since
By By™'1 is a subword of But1Byy1 and ay z, + a,,1 = 4, also B,fl e L. O

LEMMA 4.12. Words of the form B,;f TB,?T TB,,
Forn > N, ifay) = apz, = 1 and ayj = 3 for some j > 1, then BnlB,% e LRS,

Proof. The word By 1B,41 € L so By 1B " By"'T e L so B,1BX1 € L. As
B, ""1B," € L, also B,1B} € L. O

Proof of Proposition 4.7. First consider when a, ;, > 2 and a,1 = 1. If a,» = 1, then
Lemma 4.8 gives D,, = BnTBnTBn € LRS Since By 41 has an as a suffix, every suffix of
D,, of length at least i, + ¢ is not a suffix of B,y; (Lemma 4.4) and is right-special. If
an2 > 2, then Lemma 4.9 gives D, = B,fTBn € LRS which likewise has the property that
every suffix of D, of length at least 4,, + c is right-special and not a suffix of B, 4.

Now consider when a,;, =1 and a,; > 2. If a,; =2, then Lemma 4.10 gives
D, = B,1B2 € LRS. As 1B, is a suffix of B, in this case, again every suffix of D,
of length at least &, + ¢ is not a suffix of B,y and is right-special. If a, 1 > 2, then
Lemma 4.11 gives D, = BS which has the same property.

Last consider the case whena, ;, = 1 anda,,; = 1,and a, ; > 3 for some . If a,,; = 3,
then Lemma 4.12 gives D, = BnTB,% e LRS and as TB,, is a suffix of B, in this case,
Dy, has the same property as above. If a, ; > 3, then Lemma 4.11 gives D,, = Bn3 with the
same property.

In all cases, we have a word D, of length at least 3k, with every suffix of length
at least /i, + ¢ being right-special and not a suffix of By, so 2k, — ¢ right-special
words which are not suffixes of B, all of length less than 3/,. By Lemma 4.6, then
p(Bhy) = 3hy + fu +2h, —c = (5/3)(3hy) + fu —c. O

B2

n

4.4. Words of the form B,%

PROPOSITION 4.13. Ifa,1 > 2and ap;, > 2and apt1,,,, > 2, then there exists gn > hy
such that p(q,) > 1.5g, + f, — 3c.

These subshifts include the examples studied in [Fer95] defined by B,,1 = B} 1B, for
p,q > 1.
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The proof of Proposition 4.13 is a series of lemmas. Write
Bu.1 = B“1uB’
for some word u which is either empty or ends in 1. Then, o, B > 2.
LEMMA 4.14. If o # B, then there exists q, > h,, such that p(q,) > 1.5g, + f, — c.

Proof. The word By, +1Bj+1 hasll\Bfﬁﬁ/l\ as a subword, so Bfﬁ’g*] € LRS The word By+1
has TB,’? as a suffix, so our word differs from B, on suffixes of length at least 84, + ¢
(Lemma 4.4, which we henceforth use implicitly) and so gives at least (@ — 1)h, — ¢
right-special words which are not suffixes of B,4; with length less than (o + 8 — 1)h,.
Then by Lemma 4.6,

p@+ B — Dhy) = (@+ B — Dhy + fo+ (@ — Dhy — ¢
=3@+B—Dhy+ 30— 1=B)hy + fr —c.

Ifo > B+ L then 3(a + B — Dhy + 3@ — L+ Bhy + fr —c = 3(@+ B — Dhy +
Ja—c. SR _

Now consider when o < 8. Let o’ minimal such that 1B 1 is a subword of 1B,1.
Then, o’ <« < B.If &’ < a, then B TB% T is a subword of B, as &' is minimal so BY
must precede /I\B,‘f/’l\ in By41. If o/ = «, then as ¢ < B, the word B,‘f/’l\Bfl‘Vl\is a subword
of B+ ITBn+ 1 (with the first 1 in our word being the middle T in B, ffB,,+ 1). Since o’
is minimal, B4 has B,‘;‘/TB,’? as a suffix and, as a’ < B, that word has B,?/TB,‘;‘/Bn as a
subword. Then, B,‘f/TBg/ e RS,

Since B, has Bfl‘url as a suffix, our word gives at least a’h, + d — ¢ right-special
words which are not suffixes of B, | with length less than 2a’h,, + d. Then by Lemma 4.6
(which we will henceforth use implicitly),

pQd’'h, +d)>2d'h, +d+ f +d'hy +d —c= %(20//1,, +d)+ %d —c+ fo.
O]

From here on, assume o = 8.

LEMMA 4.15. IJ‘/I\B{I\ is a subword of By for some t # B andt # 28, then there exists
qn > hy such that p(q,) > 1.5q, + fn — c.

Proof. As B+ has B,’f’f as a prefix, there is some ¢’ # B, 28 such that B,’,STBZ/T is a
subword of B,,41.

Suppose first that there is such at’ < . As B,’f 13,’13 is a subword of B, 11B,+1, then
Ble,’l, € LS, Since B! ! is a suffix of B,y (ast’ < f), this gives at least Bk, +d — ¢
right-special suffixes that are not suffixes of B, 1, all of length less than (8 + ')k, + d.
Then, as t’ < B,

p(B+tHh,+d) > B+tHh,+d+ f +Bh,+d —c¢
=3B+ +d)+ 3B —hy+3d+ fr —c
> 3((B+1Dhn+d) + fr—c.

So we may assume that for all ¢ such that /I\B,’;l\ is a subword of B, 11, we have t > .
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Suppose now that 8 < t' < 2. As B, 11 has B,f ,l\B,ﬁS as a suffix (since we have ruled out
t < ), the word By11B,+1 has BE1BZ? as a subword. Then, B,'?/I\B,Z/ e LRS ast’ < 2.
This gives at least (8 + t' — B)hy, + d — c right-special suffixes which are not suffixes of
B, 11 (which ends in TB,’?) all of length less than (8 + t')h, +d. Then ast’ > B,

p((B+ )y +d) > (B+1hy+d+ fu+t'hy+d—c
=3B+ +d) + 5" = Bhy + 3d —c + [,
> 3((B+1hy +d) + 3d — c+ fo.

If ¢/ > 28, then B,%ﬂHT e L, so B,fﬂ € LRS which gives at least Bh, — c right-special
suffixes which are not suffixes of B, 1, all of length less than 28A,,. Then,

PQBha) = 2Bhu + fu + Bha — ¢ = 5Q2Bhy) + fu —c. O
We are left with the case when every TB,’lT in B,41 hast = B ort = 28.

LEMMA 4.16. I]”TB,%ﬁT is a subword of B,1, then there exists q, > h, such that
p(qn) = 1.5gn + fn — 2c.

Proof. First observe that B,%ﬁ e RS , which gives at least (8 — 1)h,, — c right-special
suffixes of length less than (28 — 1)k, which are not suffixes of B, 1.

Choose x, y > 1 so that B,,4+1 has (B,fT)x B,%ﬂ as a prefix and B,%ﬁ (/I\B,’f)y as a suffix.

Then, By111B,1 has the subword (BPT)*+1B2% \which means that (B2 1)**YBY ¢
LRS . This gives at least x(8h, + d) — ¢ right-special suffixes which are not suffixes of
B, 4+1 of length less than (x + y + 1)Bh, 4+ (x 4+ y)d. As there is no overlap between
these and the suffixes of B,%ﬁ_l, this gives a total of at least ((x + 1) — 1)h,, +xd — 2c
right-special suffixes of length less than (x + y + 1)Bh, + (x + y)d which are not
suffixes of B, +1. Then,

p((x+y+DBhy + (x +y)d) = (x +y+ DBh, + (x + y)d
+ fn+((x+ 1B —Dh, +xd —2c
=3+ y+DBhy + (x +y)d) + A (x + 1= Y)Bhy — hy + $(x — y)d —2¢ + f,

and, as B > 2, this means that if x > y, then

p((x+y+ DBy + (x+)d) = 3((x +y + DBy + (x +)d) + 3 Bhy —hy —2c+ f,
> 3((x 4y + DBy + (x + y)d) = 2¢ + f.

So we may assume from here on that x < y.

Write Byi1 = ([T=,(BSD)¥ BYP1)(BL 1)’ B) for some s > 1 and x; > 1 with
x1 = x. Choose i’ such that x;s is minimal and i’ is the minimal such i.

First we consider the case when i’ > 1. Then, x;; < x since otherwise, we would
have chosen i’ = 1. Since Bn+1T has B,%ﬁll\(ijl\)xSB,%ﬂ’l\(B,'?/l\)y_lB,’?/l\ as a suffix,
it also has (BfT)xi’+1B,%ﬂ(TBf)yT as a suffix since xy > x;7. As y > x;, then
B BBy v+ T e L.
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Since i’ > 1, B,y has (BfT)xf’—lB,%ﬂ(TB,‘?)xi’TB,%ﬂ as a subword. Then, (Bf/l\)xi”rl
B,%ﬁ (TB,’?)XI"TB,%'B € L as x;/_1 > x; + 1 by the choice of i’, so (B,’,g/l\))‘i/+1 B,%ﬁ (/I&B,’,g)xi’/l\B,’,3
is right-special.

Since x;7 < x <y implies x;; <y — 1 and B,y has /I\(B,’?’l\)y’le as a suffix, this
gives at least (x;7 + 2)Bh, + (x; + 1)d — c right-special words which are not suffixes of
By 11, all of length less than (2x;; + 4)Bh, + (2x;» + 2)d. Therefore,

p(Qxip +4)Bhy + 2xir +2)d)
> (2xir + 4)Bhn + Qxir +2d + fo + (xir + 2)Bhn + (xp + Dd — ¢
= 3(Qx; + 4 Bhy + Qxir +2)d) — ¢ + fo.

Now consider when i = 1, i.e. x; > x for all i. Here, B, 1B, has B,%’gll\(B,’?/l\)y_1
B2PT1(B1)*~1 B2P as asubword and B,111 has (B2 1)® B2 T(BP 1)~ BT as a subword.
Asx < yand x < x,, this means (B2 1)* B T(Bf1)*—1Bf € RS,

This gives at least (x + 1)8h, + xd — c right-special words which are not suffixes of
B, 41, all of length less than (2x + 2)B8h, + 2xd. Therefore,

p(2x +2)Bhy, + 2xd) > (2x 4+ 2)Bhy + 2xd + fn + (x + 1)Bhy + xd — ¢
= 3(Q@x +2)Bhy +2xd) + f, —c. O

4.4.1. Proof of Proposition 4.13

Proof of Proposition 4.13. By Lemmas 4.14, 4.15 and 4.16, we are left with the situation
when B,+1 = (BﬂT)LBﬂ for some L > 1.

Since By has B,,HB,,H as a suffix, and since Proposition 4.7 then covers the case
when B, has B,411 as a prefix, we may assume that B> = :f‘:]l] ij’j' for some
Qn+1, Bn+1 > 2, where u is either empty or ends with 1. Lemmas 4.14 and 4.15 applied to
n + 1 mean we may assume o, = Sn+1-

As B, 42B, 12 € L, the word B, ﬂ”“l € L. Then, Bsf_”l“ U'e £RS As B> hasll\Bf”Jrl
as a suffix, this gives at least (ﬂn+1 — 1)h,,+1 — c right-special words of length less than
2Bn+1 — l)hnH which are not suffixes of B,5.

As B,H_zl B2 € Land B, 43 has By, B, as a prefix, Bn+2 1B;,42 has By, 41 1 Bn+1 B'3
as a subword. Then, By 11Bn11BE = (BE1)2L+1B2P € L. Therefore, (BET)2L B e £RS.
As B, 47 has B,4+1B,+1 as a suffix and that word has B,%ﬂ (TB,’? )L as a suffix, this gives
at least (LB — 1)h,, + Ld — c right-special words of length less than (2L + 1)(B8h, + d)
which are not suffixes of B, 45.

As B,%ﬁ T is a subword of By+1Bpn+1, this means B,%ﬂ ~! ¢ £RS which gives at least
(B — 1)h,, — c right-special words of length less than (28 — 1)h, which are not suffixes
of By+1, and hence not of B,,4> as B, has TBf as a suffix.

As none of these right-special words overlap with one another, the three cases above pro-
vide at least (B,+1 — Dhpt1 + (LB — Dby + (B — 1)k, + Ld — 3c right-special words
which are not suffixes of B, all of length less than (28,41 — 1)h;41.

Since hy4+1=(L+1)Bh, + Ld, we then have (B,+1 — Dhyp1+LB—14+8—Dh,+
Ld —3c= ﬂn+1hi1+l —2h, —3c= /3}1+1hn+1 - (2/((L + l)ﬁ))(hn+l - Ld) — 3c extra
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right-special words of length at most (28,+1 — 1)h,+1. Therefore, since L > 1 and g > 2
so 2/((L + 1)B)) < 2/4, we have

2
2 —Dh > (2 — Dhpp1 + fu + hpyt — ————hu41 — 3¢
P(( ﬁn-i-l ) n+1) > ( ,Bn-i-l ) n+1 fn ,Bn-i-l n+1 (L + 1)ﬁ n+1

3 1 2

E(Zﬁnﬂ = Dhpp1 + fu + PRy hny1 — 3c

3

= E(Z,Bn-i-l = Dhyt1 + fr — 3c. O

4.5. Words of the form B,,T TB,%T TBn with B,f never appearing. This

section handles the most difficult case, when a1 = a,,, = 1 and a, ; < 2 for all j. This
difficulty is likely unavoidable as this case contains the examples we exhibit which are near
1.5¢ in complexity.

PROPOSITION 4.17. If, for infinitely many n > N, it holds that a,; = a,z, =
nilz, = landa,j <2 forall jand ayj = 2 for at least one j, then for all sufficiently
large n, there exists q, > h, such that p(g,) > 1.5¢q, + fn — 2c.

Letn > N such that a,,1 = anz, = anz,,, = 1 and a, ; < 2 for all j, and a,, ; = 2 for
at least one j. Then we may write

Bui1 = (B, D*(BIDPu(BI1)* (B, 1) ' B,

for some word u, which has prefix B,,l and suffix 1Bn l, and where «, B, v, k > 1, or else
uisempty and k = 0 and «, 8, y > 1. Then,

Bui1Buy1 = BI1(B,1)Y ' BI1(B, )" (B B, T
But11Bys1 = BXL(B, )" (B2’ B,1

The proof of Proposition 4.17 is a series of lemmas.

LEMMA 4.18. There are at least a(h,, + d) — c right-special words which are not suffixes
of Bn+1 and with length less than (« + y + 1)(h, + d), all of which do not contain B,% as
a subword.

Proof. B,1(B,1)? B2 is a subword of B, 1B, so (B, 1)’ T B, € LXS. Since B,
has suffix B,%l(Bn DY~1B,, every suffix of (B,1)YT*B, at least ¢ longer than (B, 1)” B,
is not a suffix of B 41. O]

LEMMA 4.19. If @« = 1 and y = 1, then there exists q, > hy such that p(g,) > 1.5¢, +
fn — 2c.

Pmof First consider the case when « = 0 and u is empty. Here, B,+1 = (B, ’1\)0‘(32/1\)/3
(B, l)V an = B, l(B l)ﬂB Smce Antl g = =1 and ant1,j > 2 for some j, we have
Bui1Buyi1 € L. Since B,y1Byyi1 = B,1(BX1)2*'B,1, we then have B,1(BX1)%f
B, € LRS.
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Since B,42 has B,y 1B,y as a suffix, it has 1B,1B,1(BX1)# B, as a suffix. This
means our right-special word gives at least (48 + 2)h, + 28 + 1)d — 28 + 2)h, —
(B+ 1)d — ¢ =2Bh, + Bd — c right-special words which are not suffixes of B, 7, all of
length less than (28 + 1)(2h, + d). As Lemma 4.18 gives at least h;, + d — ¢ additional
right-special words which are not suffixes of B,, and do not contain B,%, we conclude
that

P(RB+ DAy +d)) = 2B+ 1DQ2hy +d) + fu + 2B + Dhy + (B + 1)d — 2¢
=3QB+ D)@y +d) + 3d + fu —2c

We now consider when « > 1 and u is non-empty.

Here, B,y 1Byi1 = Bnll\(B,%’l\)" +1+8p T meaning that B,ﬁ(B,%T)ﬁH
B, € LRS. As B, has suffix 1B, 1(B21)* B,, every suffix of our word of length at least
2k 4+ 2)hy,, + (k 4+ 1)d + ¢ is not a suffix of B, 4. So there are at least 28h, + fd —
¢ right-special words of length less than 2(« + 8 4+ 1)h, + (v + 8 + 1)d which are not
suffixes of Bj+1.

Lemma 4.18 in this case also gives h, + d — c right-special words of length less than
3(h, + d) which are not suffixes of B, and do not contain B,%. So,

pRk + B+ Dh, + (B+ K+ 1d)
>2(k 4+ B+ Dhy+ B+ +1Dd+ fu + Q2B+ Dhy+ (B+1)d —2c
=3Qk + B+ Dhy+ (B +k + Dd) + fu + (B —)hy + (B —« + 1d — 2c,

soif 8 > «, then
PRk + B+ Dhy+ (B+k +Dd) > 32« + B+ Dhy + (B +i + Dd) + f — 2c.

So from here on, assume 8 < «.

Observe that if (BnT)4Bn € L, then necessarily (B,;f)“B,% el as y=1, so
(B,1)*B, € LRS. As B, has B21B, as a suffix, every suffix of our word of length
at least 2h,, + d + c is not a suffix of B,. This gives at least 2h,, + 2d — c right-special
words of length less than 44, + 3d which are not suffixes of B, 1. Then,

p(4h, +3d) > 4h, +3d + f +2h, +2d — ¢ = 3(4h, +3d) + f + 1d —c.

So, from here on, we assume that TB,;I\B TB 1 ¢ L.

Suppose that BZIB lB2 is a subword of B,,_H Then, B, ’l\Bz’l\B 1B,0 e L as the
initial le is preceded by B, 1. Also, Bn+lan+1 has the subword B, lB lB lB 1
where the next-to- last 1 is the 1 appearing between the B,4 in Bn+1an+1 Then,
B, 1BX1B,1B, € LS.

As By, +1 has B,%TBn as a suffix, our word gives at least 34, + 2d — c right-special
words which are not suffixes of B, 1, all of length less than 5k, 4+ 3d. Therefore,

p(Shy +3d) > 5hy +3d + f, +3hy +2d —c = $(5h, +3d) + td + fu — ¢
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So, from here on, assume also that B,%T Bn’l\B,% is not a subword of Bj,1. Therefore, we
can write
y
Byy1 = Bﬁ( [ [T )ﬂ%BnT)z)(BZT)”Bn
i=1
for some y > 1 (since u is non-empty) and 8; > 1l and 81 = 8 < «.

Suppose first that B, < 8. Set m = min{B;}. Take i such that B; = m, then
Bi<By<pB so i>1 Then, B, l(B2 YAi-1(B, 1) (BZA)ﬂ'B 1 € L. This means
B 1(BX1)"(B,D2(BX1)"B,1 € Lasm < B;_,.

B, 1(BX1)Ps (B, 1)2(B21)* B, is a suffix of B, 1, so B,1(B21)"(B,1)2(BX1)"B2 ¢ L
since m < By and m < B < «. Therefore, BnT(B,%T)m (BnT)z(B,%T)m B, € LRS,

This gives at least (2m + 2)h, + (m + 2)d — c right-special words which are not
suffixes of B,41, all of length less than (4m + 4)h,, + (2m + 3)d. Therefore,

p(dm+4)h, + 2m+3)d) = dm+4)h,+(2m+3)d+ f, + Cm+2)h, +(m+2)d —c
= 3((4m + Dhy + Cm +3)d) + fu + 1d —c.

So, we may assume that 8, > B.

Bn+1TBn+1 has the subword (B,%T)K BnTBnT(B,%T)ﬁ BnT. As B <k, B,,T(B,%ll\)/3 BnTBnT
(B21)PB,1 € L.

By 1B,y has the subword B,1(BX1)#(B,1)2(BX1)* B, B, which has B,1(B1)f»
(B,1)2(B21)# B, B, as a subword.

As By > B, then B,1(BX1)P (B, 1)2(B21)P B, € LRS. Since B < «, this gives at least
2(B + Dh, + (B + 2)d — c right-special words which are not suffixes of B+, all of
length less than (48 + 4)h,, + (28 + 3)d. Therefore,

p(@AB +DHhy + 2B +3)d) = AB+DHh,+ 2B +3)d + fu+2(B+ Dhy +(B+2)d —c

= (@B + Dy + QP +3)d) + fu + 1d —c. =

LEMMA 4.20. Ifa =1 and y > 1, then there exists q, > h, such that p(q,) > 1.5, +
fan—c

Pmof In this case, Bj,y1B,+1 contains the subword BZT(B T)V 1(BzA)/gHB and

Byt an+1 contains BZI(B l)V(le)ﬁB 1. Therefore, (B, 1)”(321)/332 appears in
Bui1Buy1 and (B, 1)? (BX1)PB,1 in Byy11Bui1. As B,y has 1B, 1B, as a suffix (as
y > 1), every suffix of (B, 1)7(831)53 longer than 01¢~ 1B lB is not a suffix of B4
and is right-special. This gives at least (y + 28 — )h,, + (y + B — 1)d — c right-special
words which are not suffixes of B4 of length less than (y +28 + A, + (y + B)d.
Therefore,as y +28 —3>2+2—3,

p((y+28 + Dhy + (v + B)d)
> +28+Dhn++Bd+ fut+ (v +28 = Dhy+(y +—1d —c
=3((y +2B+ Dhy+ (v + B + 5y +2B=Dhy+5(y +B—d + fu —c
> 3((y +2B + Dhy + (v + Bd) + fo —c. O
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LEMMA 4.21. Ifa > y > 1, then there exists q, > hy such that p(q,) > 1.5g, + fn — c.

Proof. Lemma 4.18 states there are at least «(h, 4+ d) — c right-special words which are
not suffixes of B, all of length less than (o« + y 4+ 1)(h, +d). Since o > y + 1,

\Y

plla+y+ D, +d) = (@+y+ Dy +d) + fu+alh, +d) —c
=3a+y+ Dl +d)+ 30—y =D +d) + fr—c
>3a+y+ Dy +d) + fu —c. O

LEMMA 422, If « > 1 and y > 1 and B > 1, then there exists g, > hy, such that
p(gqn) = 1.5g, + fu — 2c.

Proof. The word (B,1)” B,%TBHT is a subword of B,y 1B, since a > 1. The word
(B,,T)“*V B,%TB,% is a subword of Bn+1TBn+1 since B > 1. Therefore
(B,1)Y BX1B, € LRS.

Since y > 1, B,y has suffix TB,,TBn so there are at least (y + 1)h, + yd — ¢
right-special words which are not suffixes of B, with length less than (y 4 3)h, +
(y 4+ 1)d. By Lemma 4.18, there are at least a(h, + d) — ¢ right-special words which
are not suffixes of B, 4 and with length less than (o + y + 1)(h, 4+ d) and all with suffix
1B, 1B, and which do not contain B,% so there is no overlap with the right-special words
already identified.

Therefore there are at least (y + 1 + a)h, + (y + @)d — 2c right-special words which
are not suffixes of B,y all of length less than (y + 1+ &)k, + (y +@)d (as o > 2
implies y + 14+« > y + 3). Then

p(y +a+Dh,+(y+a)d) >y +a+ Dh, + (y +a)d

+h+@+1+)h, + (@ +a)d—2c
=2((y +a+ Dh, + (y +a)d) + f, — 2c. O

LEMMA 4.23. Ifa > 1 and y > 1 and B,%TB,%T € L then there exists q, > hy such that
p(qn) = 1.5g, + fn —c.

Proof. If the word (B21)2 € £ then necessarily B, 1(B21)2B, 1 € L since somewhere to
the right of (B21)? in B, mustbe B, 1asy > 1. Then B,1B21B, € LRS which gives at
least 2h,, + d — c right-special words of length less than 44,, + 2d which are not suffixes
of B,+1. Then

p(&hy +2d) = 4hy +2d + fo +2h, +d — ¢ = 3(4h, +2d) + f, —c. O

451. The 1 <a <y and B,%TB,% ¢ L case. From here on, we assume B,%/I\B,% ¢ L.
Therefore we can write

L
Byi1 = ( [ T« Bﬁ)) (B, 1)’ "' B,

=1

for some oy > 1 and L > 1 where «; = o and we write oy 1 =y — 1.
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LEMMA 4.24. Ifl <o <yando; <y — 1 forsomet > 2 then there exists q, > h, such
that p(q,) > 1.5, + f —c.

Proof. Observe that B,,T(B,,T)"‘k B,%T(BnT)“k+l B,% € Lforall 1 <k < L since, in the case
when k > 1, it is a subword of B,y and, in the case when k = 1, it is a subword of
Bnll\B,,_H which is a subword of Bn+1TBn+1.

If or41 < og41 for some 1 <t,k <L then the word BnT(BnT)“k B,%T(Bnll\)“k“B,%
has the subword B, 1(B, 1)% BZ1(B, 1)%+1 B, 1. As B, 1(B,1)% BX1(B,1)%+ B2 ¢ L, this
implies that the word B, T(B T)mi“("‘f O‘k)BzT(B T)"‘f+1 B, € LS.

Since B, 41 ends in B (lB )V if A <Y = 1 then suffixes of our right-special word
which are longer than 01¢~ 1B 1(B, 1)""+l B,, are not suffixes of B,1. This gives at least
(min(oy, o) + 2)(hy, + d) — d — ¢ right-special words which are not suffixes of B4
which have length less than (min(at, o) o1 + 4 (hy +4d) —

By hypothesis min{a; : # > 2} < y — 1. Let ¢ such that o;41 = min{o; : ¢ > 2}. Then
there exists k such that o;4+1 < a1 since the last oy is followed by y — 1 > «;41. Write
m = min(a;, ax). Then a;+1 < m since it is chosen to be minimal. We then have, as m —
a1 =0,

p((@r1 +m+4)(hy +d) —2d)
> (1 +m+H(hy +d) =2d+ fp + (m+2)(hy +d) —d —c

= 31 +m + D (hy+d) —2d) + S(m — 1) (hy +d) + fr — ¢
> 31 +m+ D hy +d) —2d) + f —c. O

LEMMA 4.25. If l <a <y andoa; >y — 1 for all t > 2 then there exists q, > h, such
that p(gn) = 1.5g, + fn —c.

Proof. The word B, 11 B, contains B, (TBn)V’lTB,%T(BnT)“’lBE as a subword, so, as
o < y, the word (B,,T)“B,%T(Bn’f)“_anO eL.

In the case L =1, the word B,y 1 = (B,1)*B2(1B,)"1, so (B,1)*BX1(B,1)*"!
B,;f € L since o < y. In the case when L > 1, since oy > y — 1 > «, the word Bn+1T
ends in (B, 1) B2(1B,)"T which has (B,1)* B21(B,1)*~' B, as a subword.

So, (BnT)“B,%T(BnT)“’l B, € LRS. As B, 11 has (/l\Bn)V as a suffix, our word gives at
least (o + 1)(h,, +d) — d — c right-special words which are not suffixes of B, all of
length less than (2« + 1)(h, + d) — d. Then,

\

p(Qa+1Dh,+d)—d)> Qo+ 1D)(hy +d) —d+ fu+(@+ 1D, +d)—d —c

=3(Qa+ Dy +d) —d) + $hn + fu —c. O

LEMMA 4.26. Ifao =y > lando; > y — 1 forallt > 2 and for somet > 2, oy > y with
o # 2y, then there exists g, > hy,, such that p(q,) > 1.5¢g, + f, — 2c.

Proof. First consider the case when o; > 2y. As B,%T(B,;f)“f B,% is a subword of B
and o > 2y + 1, this means (B,1)%t2B2 € L. Then, (B,1)2**1B, € LS. Since B, 1,
has B,%’I\(Bn’f)y_1 B, as a suffix, there are at least (y + 1)h, + (y + 1)d — c right-special
suffixes of our word all of length less than (2y + 2)h,, + (2y + 1)d. Then,
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= 3@y +Dha + @y + Dd) + fu + 3d —c.

Next consider when o, < 2y. Then, B,1(B, 1) ~! B21(B,1)% B2 is a subword of B, |
since a;—1 > y — 1. As the word (B,,T)V B,%T(BHT)ZV is a subword of Bn+1TBn+1, this
means (B,,T)” B,%T(B,,T)"‘f B, € LRS Sincea; > y — 1 and By 41 has B,%/I\(Bnll\)V_an as
a suffix, our word gives at least (y +24+o; +1—y — Dh, + (y + o, — y)d — c right-
special suffixes which are not suffixes of B, 1, all of length less than (y + o + 3)h,, +
(y +a; + 1)d. Then as oy > ¥,

p((y +ay +3hy + (v +a; + 1)d)
>y +ar+3)hy + (¥ +ar + Dd + fr + (@ +2)hy + (@ + 1)d — 2¢

=3+ +Dhy+ @+ + DA + e —y + Doy + L —y + Dd + f —2¢
>3((y + o + 3Dy + (v + o + Dd) + fr —2c. O

LEMMA 4.27. Ifa =y > land o; € {y — 1,2y} for all t and o; = 2y for some t, then
there exists q, > hy such that p(q,) > 1.5g, + f, — 2c.

Proof. Here, we can write

s
Byy1 = Bﬁ( [ T«B. DY B (B, B,%T)((Bﬁ)V—‘BiT)Z(BnT)V—‘ B,

i=1

for some s > 1 and y;, z > 0 and y; > 1 (as « = y > 1). Rearranging the grouping and
writing D,, = (B,1)" By,

N
Bui1 = B,ﬁ( [ [«B. DY~ B, B, 1) (B, 1) B, BHT)((BnT)V_an B, 1)*(B, 1)’ !B,
i=1

S
= (H((BnT)VBn)y" (BnT)ZV“Bn)((Bﬁ)VBn)Z“
i=1
s N
— ( 1_[ Drylz DnlDYl>DrZL+1 — Dr)l’i‘l'll( 1_[ D%i+21>DZ+2.

i=1 i=2

Write k,, = Len(Dy,).

First consider when y; > z. Since By41By+1 has the subword D3*2D;, 1T and D, has
0 as a prefix (as B, does), then D' ™2 € £RS_ Since D, has B, as a suffix, this word
disagrees with B, 1 on suffixes longer than IC_ID,Z["Z. We then have at least y1k, — ¢
right-special words of length less than (y; + z + 2)k,, which are not suffixes of B, 4.

Lemma 4.18 states there are at least y h,, + yd = k, — h;, right-special words of length
less than (2y + 1)h, + 2y d which are not suffixes of B, and which do not contain B,%
as a subword, and hence do not overlap with the words above.
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Then as y; > z+ 1 (and &k, > 2h,, since y > 1),

p((y1 +Z+2)kn) > (y1 +Z+2)kn +fn +ylkn —c+k,—h,—c
= %(yl +z+ 2k, + %(yl —2kn —hn + fu — 2
> 301 +2+Dkn + Sk —hn+ fu — 20> 301 + 24+ Dk + fu — 2.

Now consider the case when y; < z for some 1 <i <s.Setm =min{y; : 1 <i < s}
so that m < z and take i minimal such that y; is minimal.

Since B,y has D) TDi*? as a suffix, then D™21Di*2 € £. When i > 1, as
D,“:i’1+1TD;Yi+2T is a subword of By, then D,T+2TD,T+2T elLasyi_1>yi+1asi
was taken minimal. Then, D;"+2TD,T+2 € LRS as m < z. As this word disagrees with
suffixes of B, on words longer than 1°=!D™+2 this gives at least (m + 2)k, +d — ¢
right-special words of length less than 2(m + 2)k, + d which are not suffixes of B,yi.
Then,

pRm+ 2k, +d) =2(m+2k, +d+ f, + (im+ 2k, +d — ¢
=3Qm +ky +d) + 3d + fn —c.

Wheni =1, as B, has D,{‘Y—’_Z’I\Dfl'+2 as a suffix (or D;,"'—’_I’I\Dﬁ“'2 in the case s = 1),
we have D;l"“‘rl\Dﬁ+2 € L. The word By, 11B, has the subword Dﬁ*'fl\Dle/l\ which
has D" 11D 17 as a subword. As m < z, this means D"+ 1D+ e £RS. This word
disagrees with suffixes of B, on words longer than 1°~! D" +1 5o there at least (m +
)k, + d — cright-special words of length less than 2(m + 1)k, + d which are not suffixes
of B,+1. Then,

pRm+ Dk, +d) =>2m+ Dk, +d + fu+m+ Dk, +d — ¢
=3Qm+ Dky +d) + 3d + fo —c.
From here on, assume that y; > z for all i. We are left with the case when y; = z.
Since B,111B,1 has the subword Df,”lD,y,’Hl = D2IDZH!T (as y; = z) and
B, y1 has suffix D,)[S+2/1\D,§+2 which has the subword Dfl+2TDfl+1Dn (as ys > z), this
gives Dfi+2 1DZH! € £RS. This word disagrees with suffixes of B, on words longer than

1“‘1D,ZLJrl meaning there are at least (z + 2)k,, + d — c right-special words of length less
than (2z + 3)k, + d which are not suffixes of B,,1 1. Then,

p(QRz+3)ky +d) = Rz +3)kyn+d+ fu+ @+ 2k, +d —c

O
= 3(Qz+3kn +d) + tky + 3d + fr — ¢ = 3(2z + Dk +d) + fr —c.

LEMMA 428, Ifa =y > landa, =y — 1 forallt > 2 and B, has Bn+1TBn+1 asa
suffix, then there exists q,, > h, such that p(qn) > 1.5¢g, + fn — 2c.

Proof. We are left with B,y = (B,1)Y B21((B,1)Y ' BX)L-1(B,1)* !B, =
((Ba1)Y Byt 1.

Slnce By+1Bp4+1 must oceur somewhere in Bn+2 and not as a suffix, Bj41
B,411 € £, and since Byy1Bpi11 = ((By1)” By)2LT2T, we have ((B,1)” B,)2L+! e £RS.
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Since hy41 = (L + D)((y + Dhy, + yd), our right-special word has length
2L+ D((y + Dhp + yd) = 2hp+1 — (¥ + Dhy + yd).

Since B,,+> has Bn+1TB,,+1 as a suffix, this word disagrees with B,,1> on suffixes of length
at least ;41 + c. Therefore, there are at least 1,11 — ((y + 1)h,, + yd) — c right-special
suffixes of our word which are not suffixes of B, 4.

Lemma 4.18 states there are also at least y (h, + d) — c right-special words which do
not have B,% as a subword, and hence do not overlap with those above nor with suffixes of
B, 42, all of length at most (2y + 1)(h;, + d). Thenas y > 1,

pQhpy1 — ((y + Dhy + vd))
> 2Ryt — ((y + Dby +yd) + fu+hysr — (v + Dhy+yd) —c+y (hy, +d) —c
=3 Qhpp1 — (v + Dhy + yd) + 3(v = Dhy + yd + f — 2¢
> 3(2hus1 — (v + Dhy + yd)) + f — 2c.

4.5.2. Proof of Proposition 4.17

O

Proof of Proposition 4.17. Lemma 4.19 gives q,, > h,, such that p(q,) > 1.5¢g, + f, — 2c
when @ = y = 1. Lemma 4.20 takes care of « = 1 and ¥ > 1. When« > y > 1, Lemma
4.21 gives such a g,,.

We are left with the case when y > « > 1. Lemma 4.22 covers @, ¥y > 1 and 8 > 1,
so we proceed with f = 1. Lemma 4.23 covers the situation when B,%TB,%T € L, so we
can assume that word does not appear from here on, so By is of the form written above
Lemma 4.24. Lemma 4.24 handles when o; < y — 1, so we may assume «; > y — 1 for
all z.

Lemma 4.25 then covers the case when @ < y, so we may proceed with « = y. Then
Lemma 4.26 shows that if o, > y with «; 7% 2y for some ¢, then we have such a g,,, so we
may assume o; € {y — 1, 2y} for all 7. Lemma 4.27 handles the case when «; = 2y for
some t, so we can assume oy = y — 1 for all .

By hypothesis, ayt1,z,,, = 1, meaning that B, ends with B, 11B,,|. Lemma 4.28
then guarantees the existence of such a g,,.

There are then g, > h, with p(q,) > 1.5, + f, — 2c for infinitely many, and hence
all sufficiently large n. O

4.6. Proof of Theorem 4.2

Proof of Theorem 4.2. Set C =3c. Every n > N satisfies one of: (1) a1 =1 and
Qnz, > 2; (2) ayy =2 and ayz, = 1; 3) ap,1 = any, =1 and a,,; > 3 for some j; (4)
Qn1s Qng, > 2; 01 (5) ap) =anz, =1, ayj <2 and a, ; =2 for some j. At least one of
those cases happens infinitely often. For cases (1)—(3), Proposition 4.7 gives the result.

For case (4), by Proposition 3.10, there exists a rank-one subshift generating the
same language such that a1 > 2 and a,z, > 2, and a,+1,,,, > 2 for infinitely many n.
Proposition 4.13 applied to that subshift gives the claim.

If cases (1)—(4) all do not happen infinitely often, then for all sufficiently large n, we are
in case (5) in which case Proposition 4.17 gives the claim. O
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5. Low complexity weakly mixing rank-one subshifts
Consider the following class of rank-one subshifts.

Definition 5.1. Let L, > 1 and y,, > 1 for all n. Define the rank-one subshift with B =0
and

Buy1 = (B, 1) By)"".
Observe that hy, 1 = L,((yy + Dhy, + yu) and By4+1By+1 = (B, 1) B,,)ZL" and

But11Byt1 = (B, 1) B) =1 (B, 1)L B, (B, 1) By)En L.
5.1. Right-special words

LEMMA 5.2. Let w € LRS with 1B, as a suffix. Then w is a suffix of (B, 1) B, or w is
a suffix of By4+1 or w has B, +1 as a proper suffix.

Proof. Observe that 1B, is always preceded by B,,, so w shares a suffix with B, 1B,,.

First consider when w has 0B,,1B,, as a suffix. As B, 1 is always preceded by B, or 1,
in this case, w shares a suffix with B,%IB,,. Since 1B,0 only appears as a prefix of IB,%,
having w0 € £ would then mean B21B2 € £, but that word is not in £ since y, > 1.

So w has 1B, 1B, as a suffix (or else is a suffix of B, 1B, which is a suffix of B, +1)
and therefore shares a suffix with B, 1B, 1B,,. Following the same logic, if w shares a
suffix with 0(B,, 1)’ B,,, then w0 shares a suffix with 0(B, 1)’ B,,0 which can only occur as
a subword of B,%I(Bn 1)’_133, requiring that t > y,.

So, w shares a suffix with B,1(B,1)""!B, = (B,1)""B,,. As B,1 is always preceded
by 1 or B,, we have two cases to consider (if w is a suffix of (B, 1)"" B,, then it is a suffix
of Bpt1).

First consider when w has 1(B,,1)¥" B, as a suffix. The only occurrence of that word is
in B,+11B,4+1 and it is always preceded by (B, 1)"" B,, so w must share a suffix with
(B, 1)?"»*1B,. Since 1(B,1)*"B,1 ¢ L as (B,1)>»*! is always preceded by B, (as
L, > 1) and since wl € £, either w is a suffix of (B,1)2"" B, or w has 0(B,1)?" B,, as
a suffix. Since 0(B, 1)%» B,0 ¢ L because B, (B,1)*"" B, B, = B,f’i\(BnT)zyﬂ_1 B2 ¢ Las
Y» > 1, it must be that w is a suffix of (B, 1)%" B,,.

Now consider when w has 0(B,1)"B,, as a suffix. Then w shares a suffix with
B, (B, 1) B,,. Since (B,1)"* B, is always preceded by (B,1)" B, or 1, then w shares
a suffix with ((B,1)” B,)%. Then w1 shares a suffix with ((B,1)” B,)?1 and since
((B,1)” B,)?1 is always a suffix of B, 11, this shows that w shares a suffix with B, 1.
Then either w is a suffix of By, or w has B, 11 as a proper suffix. [

LEMMA 5.3. Let w € LRS with OB, as a suffix. Then w is a suffix of ((B,_11)""!
B,_1)E—171B, andn > 1.

Proof. Since 0B; = 00 and 000 = 313 ¢ L,wehaven > 1.
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Every occurrence of B, appears either as 1B,1 or 1B,B,1. The word 0B, is not
a subword of 1B,1 and occurs as a subword of 1B,B,1 at L,_; + 1 distinct starting
locations.

The word 0B,1 only appears as a suffix of 1B,B,1 since it must appear some-
where in 1B,B,l and the only appearance of B,1 in that word is as a suffix as
Byl = ((By—1 1)1 By_)En1=1(B,_; )¥»-1*1 and (B,_;1)"-1*! is not a subword of
By By = ((By—11)""=' By_1)*!r-1.

So, w1 shares a suffix with B,, B,;1 so w shares a suffix with B, B,,. Since B,,0 must be a
prefix of B,% and B; ¢ L, then B, B,0 ¢ L. As w0 € L, w is then a proper suffix of B, B,,.

Suppose w has O((B,_11)"1B,_)En-1=1 B, as a suffix. As that word only appears as
a subword of B, B, when the leading 0 is the tail O of the first (B,,—11)¥"~1 B,_1 in the first
B, of B2, the word O((B,—11)""~! B,_1)t=171B,0 ¢ L as 0((B,—1 )"~ B,_1)L»-1~1B,
must be a suffix of B, B, and hence be followed by a 1. However, then w0 ¢ L.

Suppose that w has 1((B,,_11)V"*1B,,_l)L'H’lBn as a suffix. As 1B,_1 is always
preceded by B,_1, then w would share a suffix with B,_11((B,—11)"~! Bn_l)L"*I’an
but that contains (B, _ l)”"*""1 as a subword which is not a subword of B,B, =
(Bp—11)7-1 Bn—l)ZL"_H_-

Therefore, w must be a suffix of ((B,_11)""-!B,_)-1—1B,. O]

PROPOSITION 5.4. Let w € LRS with Len(w) > 1. Then there exists a unique n such that

exactly one of the following holds (and for m # n, none of them hold):

o wis asuffix of Byy1 and hy, < Len(w) < hyy1;

o wis a suffix of(Bnl)ZV” By and (v, + Dhy + vy < Len(w) < 2y, + Dhy + 2y,

o wisasuffixof (Bu—11)"'B,_)1~1B, and h, < ten(w) < h,(2 —1/L,_1) and
n> 1.

In all three cases, hy, < Len(w) < hyy1.

Proof. As 11 ¢ £, w must end in 0. Let n be the largest integer such that w has B, as a
proper suffix (such n exists since B; = 0). Then w has either 0B, or 1B,, as a suffix.

Lemma 5.2 states that if w has 1B,, as a suffix, then either w is a suffix of (B, 1)2V" B,
or is a suffix of By, which are the second and first cases of the proposition, respectively,
or else w has B, 1 as a proper suffix which would contradict the choice of n.

Lemma 5.3 states that if w has 0B, as a suffix, then n > 1 and w is a suffix of
((Bn_ll)V"*B”)L"*l_an. This puts us in the third case as (y,—1 + Dhy—1 + yu—1 =
(1/Ln—1)hn.

Suffixes of (B,1)2"" B, of length less than or equal to (y, + 1)h, + y, are suffixes of
(B, 1)"" B, which is a suffix of B,4, but all suffixes longer than that are not suffixes
of B,41 as B,41 has 0(B, 1) B, as a suffix. Suffixes of ((B,_11)"»~1B,_1)t-1=1B, of
length at least i, + 1 have 0B,, as a suffix, so are not suffixes of B, as B, 41 has 1B, as
a suffix. Clearly there is no overlap between the second and third cases as the second has
1B, as a suffix and the third has 0B,, as a suffix. Therefore, the length restrictions make
the cases a partition of £&S.

Since (2—1/Ly—1)hy < Qyu+ Dhy + 2yn < 2((n + Dhy + vu) < Lp((yn +
1)hy,, 4+ v») = hpy1, in all three cases, h, < Len(w) < hpy1. O]
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5.2. The complexity function

PROPOSITION 5.5. The complexity function satisfies p(hy + 1) = hy(1 4+ (1/L1)) + 1
and for q > hj, choosing n to be the unique integer such that h, < q < hy41,

2 whenh, <q < @2—1/Lp-1)hy,
when 2 — (1/L,—1)h, < g < + Dh,, + v,
plg+1) — plg) = ( (I/Lp-1)hn < q < (Vn Yy + v

2 when (Yn + Dhy + v < ¢ < Qyu + Dhy + 24,
1 when 2yy + Dhy + 2y, < q < hpy1.

Proof. In Proposition 5.4, there is no overlap among » since h, < £en(w) < h,4 for all
three cases.

Recall that p(g + 1) — p(q) = [{w € LES : ten(w) = g}|.

Let ¢ and n such that h, < g < h,4+1. There is exactly one suffix of B,y of
length g. There is a suffix of the second form in Proposition 5.4 of length g precisely
when (v, + Dh, + vn < q < 2y, + Dhy + 2y,. There is a suffix of the third form in
Proposition 5.4 of length g precisely when h,, < g < (2 — (1/L,—1))h, andn > 1.

For 1 < g < hy, Proposition 5.4 applies with n =1 and the third case is vacu-
ous. Then, p(g +1) —p(g) =1forl <qg < (y1+ Dh1+y1 =2y1 + 1. For2y; +1 <
q <Q2y1+Dh1+2y1 =4y1+ 1, we have p(g+1)— p(g) =2 and for 4y +1 <
q < ha, p(q+1) — p(g) = 1. Therefore, as p(2) =3 and hp = L1((y1 + Dh1 +y1) =
LiCy+ 1),

plha +1)
=pQ)+(@Cy+D)—p2Q)+(@@An+1D)—pCy+ D)+ (ptha+1)—p@y1+1))

1
=3+(2V1—1)+2(2V1)+(h2—4)/1)=h2+2V1+2=hz+L—hz+1. -
1

THEOREM 5.6. The transformations in Definition 5.1 satisfy p(hp+1) = (1 + 1/Ly)hp41.
If v/ hy — O, then they also satisfy

1
timinf 29 — 1 4 lim inf ,
q max(Ly—1, ¥n + 1)
3 1
lim sup M = — + lim sup - .
g 2 Amin(Ly 1, yn+ 1) -2

Proof. Forn > 2, by Proposition 5.5,

1 1
2— h 1) —phh 1H)=2{1-— h
p(( Ln—l) n+ > pthy, +1) < Ln_1> ns

1 1
P((Vn+1)hn+3/n+1)—p<(2— )hn+1>:<yn_1+ >hn+yn,
L, Ly

p(Qyu +Dhy + 2y + 1) — p((Vn + Dhy + v + 1) = 2(nhn + i),
phy1 + 1) — p(Qyn + Dhy + 2y, + 1) = hy1 — Qyn + Dhy — 2y,
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and therefore

phyt1 +1) — p(hy +1)

D. Creutz

1
=<2_ +yn— 1+ +2Vn_2Vn_1)hn+3’n+2yn_2)/n+hn+l
Ln—l Ln—l
1 1
=hpp1+ v — hn + Vo =hns1 + Yo+ Dhy + ¥ — hy — ——hy
Ly Ly

1

1

= hn+1 + L_hn—H - hn - L_hns

n n—1

which implies that

plhnst +1) = pla+ D+ Y (plhpir + 1) = plhm + 1)

m=2
! h 14 !
Lm e Lm—l

1 n
—1+(1+—\n
+< +L1)2+2_:

1
=1 14+ — ).
+< +Ln> n+1

Since p(hys1 + 1) = plharr) = 1 then p(hpsr) = (1 + 1/L)hns 1.
Combining this with our initial observations,

)

1 1 1 1
2— h HD—-1=[(1 h 21— h,=13— hy,
P(( Ln—1> D < " Ln—l) n < Ln—1> ! ( Ln—1> !
(t)
1 1
P+ Dhy+yn+1)—1=|3- hp+ v —1+ hn + Vn
Lnfl Lnfl

=V +2hy + Vo,
P(Qyu +Dhy + 2y + 1) — 1 = (v +2)hy + v + 2700y + 27 = Gyu +2)hy + 3y,

()
and so
1
pn) _ n ’
hn Ln—l
p(@2—1/Lp-Dhy+ 1) -1 3—-1/L,—y 3 1/21/Lp—1 3 1
2—1/L,_1)h, 2—1/L,y 2 2—1/L,y 2 4L, -2

P(Yn+Dhn+y+1) =1  (ya+2)hn+ v _
Y +Dhy + v Y + Dhy + v
P2y +Dhy +2y+D =1 GBya+2Dhn+3y. 3
Qyn + Dhy + 2y
Now observe that, since | < p(qg + 1) — p(q) < 2 for all g, the function p(q) is increasing

when p(q + 1) — p(g) = 2 and decreasing when p(g + 1) — p(q) = 1. Therefore, the
lim inf and lim sup are attained along sequences of the four above-mentioned values.

Yo+ 1 +Vn/hn’
1/2

2y + 1+ zyn/hn.

C Qyat Dhy 2y, 2
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Provided y,,/ h,, — 0, then

1 1
tim inf 29 — lim inf min (1 + 14 )
q q n L, Yn +1

and

: rlg) _ . 3 1 3 1
lim sup = lim sup max | - + , =+ . 0
q q n 2 4L, —2 2 Ay, +2

5.3. Complexity nearing 1.5q

THEOREM 5.7. Let € > 0 and f(q) — oo. Then there exists y, =y > 1 and L, — 00
such that the transformation in Definition 5.1 satisfies

3
lim sup 24 - Se and plh) <h+ f ).
q

Proof. Choose y > 1suchthat1/(4y +2) <e.
Given h,,, choose g, such that for all ¢ > ¢;,, we have f(q) > (y + 1)h, + y. Then
choose L, such that L,,((y 4+ 1)k, + v) > g5. Then by Theorem 5.6,

1
phpy1)= (1 + L_)hn-H =hpp1++Dhp+y <hup1+ f(qn) <hppr + f(huy).
n

Since L,, — oo, limsup p(q)/q =3/2+1/(4y +2) <3/2 + €. O

6. Weak mixing for rank-one transformations

THEOREM 6.1. Let T be a rank-one transformation with bounded spacers (there exists
k such that s,,; <k for all 0 <i < r, and all n) and « > 0 such that for all sufficiently
large n,

Hsni =0:0<i<r}|=>k(rp+1) and |{sp;i=1:0<i<nr}|>«@n+1).
Then T is weakly mixing on a finite measure space.

We adapt the proof that Chacon’s transformation is weakly mixing from [Sil08].

LEMMA 6.2. [Sil08, Lemma 2.7.3] For any measurable set A and € > 0, there
exists N such that for all n> N, there exists Q C{0,...,h, — 1} such that

(AL Uyeg Ing) < e

LEMMA 6.3. [Sil08, Lemma 3.7.3] For any positive measure set A and € > 0, there exists
N such that for alln > N, there exists 0 < a < hy, suchthat W(A NI, 4) > (1 —€)pulnq)-

LEMMA 6.4. Let I a level and A a measurable set such that w(ANI1) > (3/4)u(l). For
any 0 < § < 1, there exists N such that for alln > N, if I = |—|qu 1,4 s the partition of
Linto sublevels in Cy, then |{g € Q : n(AN I, 4) > dully )}l = (1/2)|0].

Proof. Choose o > 0 such that o < (1/4)(1 + (1/8))_1, sothat ¢/6 + o+ 1/4 < 1/2.
Let Ay =ANI. By Lemma 6.2, there exists N such that for any n > N, there is
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Q' C QO such that if we set I’ = UaEQ/ Iy g, then (A1 AI') < ap(l). Now observe that
n('AT) < p(I"AAY) + p(A1AD) < ap(l) + (1 /Hud).

Set Q” ={a € Q/ s Tng VA < ‘SH«(In,u)} and " = LlaeQ” L. Since 8M(In,cz) =
(o \ Ar) fora € 0"\ 0",

Su(l' A"y = sp(I'\ 1)

= Y Sulha) < Y plea\A) < pd'\ AD) < apdl),
aEQl\QlI aEQl\QlI

so w(I" A1) < p(I" Ay + p(I' A1) < @/ + (@ + (1/4)pd) < (1/2)u(D),
Then (1" N 1) > (1/2)p(I), which means | Q"] > (1/2)|0Q. O

LEMMA 6.5. If T is on a finite measure space and there exists k > 0 and {t, ¢} such that
for any two levels I and J in C,,, with J being € levels below I, (T¢I N I) > «‘u(I) and
w(Tne I N J) > kb u(J), then T is weakly mixing.

Proof. Let A and B be any positive measure sets. By Lemma 6.3, there exist levels /1 and
J1 in some column Cy such that u(AN 1) > 3/4)u(ly) and w(B N J1) > B/Hu(Jy).
Let 0 < £ < hy such that [ is £ levels above J; (interchanging the roles of A and B if
necessary).

Set § = K[/3. By Lemma 6.4, there exists n > N such that if I} = Uq€Q1 I 4 and
J1 = UQEQZ In,qathen {g € Q1:n(AN In,q) >(1- S)M(In,q)” > (1/2)| Q1] and |{g €
Q2 :u(BNIg) =1 —=8)ullyg)} = (1/2)|Q2]. Since I is £ levels above Ji, g € Q1
ifandonly if ¢ — € € Q7 and |Q1| = |Q>|. Therefore,

Hg € O1: n(AN In,q) < (- S)M(In,q) or u(B N In,q—(f)
< (A =8ulu}l < 51011 + 5102 = [Q1l,
meaning there exists ¢ € Q1 such that I =1,, and J = I, 4, satisfy u(ANI) >
(1 =38)p)and u(BNJ) = (1 =8u(J).
By hypothesis, w(T™¢INT)>ktu(I)=238u(l) and w(T™INJ)>«ktpn(J) =
36u(l). Set Ay =ANIand By =BNJ,sothat u(I\ A1) < éu(l) and u(J \ By) <
Su(I). Then

(T AN B = w(T™ I N J) — I\ A1) — w(J \ B)
> 35u(l) —du(l) — ) =dul) >0

and similarly

w(T™ Ay N A = p(T™INT) —p(\ A — pn\ Ap)
>35ud) —du() —du(l) =u(l) > 0.

Hence, for all positive measure sets A and B, there exists ¢ such that u(T'A N
A) > u(T'A1NAp) >0 and w(T'AN B) > 0, which is equivalent to weak mixing
[Fur81]. O
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LEMMA 6.6. Letk > 0andn € N, and set t, 4 = Zf;é hy4i. Assume
|{Sn,i =0:0<i<r}l=2k@+1) and |{sn,i =1:0<i<r}l=k@,+1).
Let I and J be levels in C,, with J being € levels below I. Then

w(T™ 1N >«ud) and pT™INJT) > un(J).

Proof. Write I = I, for some 0 < a < h,. As T" I, , D L <, 5, =0 Irgl;;l], applying
this twice,
T+ Ina D |_| Th"HIrEl,jl] S |_| I_l IrEngrl][ilJrl]’
iOZSn,iO =0 iO:Sn,iO =0 i Snlig =0

where I,ﬂ[j I has the obvious meaning: it is the jth sublevel of the ith sublevel of I, ,

meaning ']/ is a level in C,,1». Continuing this process:

TXZ0 g, o | | T | gl i+l +1]
i0:5n,ig=0  11:8p41,i; =0 o—1Snte—1,ip_ =0
Therefore,
SO0 B Lio+11-++[ie—1+1]
(T &1=0 LiaN1yg) > Z s Z wlyg )
i0:8n,i =0 ig—1:Spte—1,ip_ =0
-1
> ( []xCu+ 1))u(1n+z,a>
t=0
-1 -1 |
= ( []xtnr + 1))( I1 —)u(ln,a> = k" tI.a)-
=0 rmo Tt F !
Similarly, 7" I, o > ||, _,, S IYE’:H, S0
T g, | 1| - || oIl 41,
i0:n,ig=1 i1, =1 o1 Snte—ijip_ =1

As J = I, 4, since J is £ levels below [ in Cy,,

=1 io+11+[ip—1+1
(T Xi=0 Mt LiaNJ)> Z o Z M(I,El,gt[] lie-1+ ]) > it (Tpa—e).

i0:8n,i =1 i—1Spe—1,ip_ =1 O

PROPOSITION 6.7. Let T be a rank-one transformation. If there exists a constant k such
that s,; <k for all 0 < i <r, for all sufficiently large n, then T is on a finite measure
space.

Proof. Writing S, for the spacers added above the nth column C,, we have
1(Sn) = 2 Snitt(nt1) < k(rn + Dpllnt1) = k(L) = (k/ hy)i(Cy). Since hy >
H;Zi(rj +1) = 2"71 then u(Cpyr) < (14 (k/2"")p(Cy) so lim u(Cy) < u(Co)
[0+ (k/2") < oo. O

https://doi.org/10.1017/etds.2023.47 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.47

1362 D. Creutz

Proof of Theorem 6.1. Lemmas 6.5 and 6.6 and Proposition 6.7. O

6.1. Weak mixing for low complexity transformations

COROLLARY 6.8. The subshifts in Definition 5.1 are weakly mixing (on finite measure
spaces) provided that lim sup y, < o0.

Proof. Since B4 = (B, )Y B,)En, we have |{0<i < ry :8p; =0} =L, —1 and
HO0 <i <rp:sp; =1} =Lpyn-Asrp+ 1= L,(yn + 1), this means

0<i<raisni=O _ Li—1 _ 1 1
a4 1 Lyt ) T o+ 12

Likewise, [{i : sp; = 1}|/(rn + 1) = yu/(¥n + 1). As y, is bounded, Theorem 6.1 gives
weak mixing. O

THEOREM 6.9. Forevery € > 0, there exists a weakly mixing rank-one transformation (on
a probability space) such that the associated subshift has complexity lim sup p(q)/q <

1.5+e.

For any f(q) — oo, the subshifts can be made to satisfy p(q) < q + f(q) infinitely
often.
Proof. Corollary 6.8 and Theorem 5.7. O

THEOREM 6.10. For every € > 0, there exists a subshift with complexity satisfying
lim sup p(q)/q < 1.5+ € and lim inf p(q)/q < 1 + € such that the associated rank-one
transformation is weakly mixing (on a probability space) and has minimal self-joinings
(hence also has trivial centralizer and is mildly mixing).

Proof. For € >0, let y > 1 such that 1/(y +1) < €. Then the transformation in
Definition 5.1 with y,, = y and L, = y + 1 satisfies, by Theorem 5.6,

pl@) 3 1 3
= < = +te¢,
2 4y -2 2

1
r@) =1+ <l+e and lim sup
q y+1

lim inf

and Corollary 6.8 gives weak mixing. As {r,} is bounded, Ryzhikov’s theorem [Ryz13]
gives minimal self-joinings (the transformations are non-rigid since the s,; are not
constant over 0 < i < r,, and hence are not ‘flat’ in the sense of [Ryz13, Theorem 2]). [

Remark 6.11. The examples with p(q) < g + f(q) such that L, — oo are most likely
not mildly mixing, and hence do not have minimal self-joinings. In essence, any alter-
native construction of those examples (where f(g)/q — 0 so L, — oco) which has
bounded spacers necessarily involves constructing Bl’1 = ((B,1)Y B,)t with £, uni-
formly bounded followed by B, 11 = (B, +1)L"/ tn . As the second step involves adding no
spacers, the construction is ‘flat” and therefore should admit a rigid factor.
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6.2. Totally ergodic subshifts with lim sup p(q)/q = 1.5

THEOREM 6.12. Forany f(q) — oo, there exists a totally ergodic rank-one subshift (on a
probability space) satisfying p(q) < 1.5q + f(q) for all sufficiently large q and p(h,) <
hy + f(hy) foralln > 2.

Proof. Let f*(qg) = inf{ f(q") : ¢’ > q}. Then f*(q) is non-decreasing and f*(g) — oo.
Set y1 = L1 =2. Given y,—1 and L,_; (and therefore h,), choose y, such that
(1/2)h, < f*(yu). Then choose L, = m,! for some m, > n suchthat (y, + )h, + y, <
f*(Ln).
As hpt1 = Ly((Vn + Dhy + vn), we then have (1/Lp)hy41 < f*(Ly) < f*(hpt1).
Theorem 5.6 gives that

1
plhy) = (1 o

n—1

The count () in the proof of Theorem 5.6 gives that

2 1h—i—l—3 1h—i—l—32 1h-l-llh—l—l
P Ly—1 " B Ly—1 " _2 Ly—1 ! 2Ly "

3o L), +1f*(h)+1
) Lo i n ) n

3 2 ] h 1 112 ! h 1
<§<( _Ln1> Tt >+f <( _Ln1> T )

and the count (%) in the proof of Theorem 5.6 gives

3 1
P(QRyn + Dhy+2y,+1) = Gyu + 20y +3yn +1= 5((2%1 + Dhy+2y,) + Ehn +1
3
=< 5((2)/11 + Dhy + 2p,) + f*(yn) +1

3
< 5((2)/)1 + Dhy + 2y, + 1) + f*((zyn + Dhy + 2y + 1.

As p(g) — 1.5¢ is maximized at one of these two lengths in each range 7, < g < h+1,
forall ¢ > ho,

(@) < 1.5+ f*(q) < 1.5g + f(q).

It remains to show total ergodicity (as Proposition 6.7 puts it on a finite measure space).
Let A be a positive measure set and 1 € N such that 7/A = A. Fore > Oandn > ¢ such
that 2¢/(y,, + 1) < €, define the sets

On(€) ={0=j <hp:puly;NA)>A—-e)uly)}

If for some fixed € > 0, it holds that Q, = @ for infinitely many n, then u(A) =0
(Lemma 6.3), so we can also define j,(¢) = min{j € Q,(¢)} for sufficiently large n.
Observe that for j > ¢,

iy jot O A) = (T Ly N A) = Ly N T A) = (I O A)
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and so if j € O, (¢) with j > ¢, then j —t € O, (¢). Therefore, j,(€¢) < t. Now observe
that, for j > 0,

HO <i <ry:sp; =1}
rm+1

w0y = Y pdli ) =

i<rpisyi=I

1

since s,; = 1 for L,y, values of i and r, +1 = L,(y, + 1). Then, for 1 <s <t and
J=s,

M(In,j)

s—1

W Ly ALy o) < Y (TS g, ATO D, oy
u=0
s—1

= w(T" e S jmumt) <

u=0 n

S
n [HUn.j)

and, therefore,

. 2 2t
(T, 0= (1 ——Vutn=(1- 1l j)> (1=l j)-
5] >J yn+1 sJ yn+1 5] i

Since L,—1 = m,—1!and L, divides h,, = L,—1((Yn—1 + Dhy—1 + yn—1) and m,, >
n > t, we have that ¢ divides %,, so T5"mA = A. Thenfor] <s <tand 0 < j<hy,—s
1Ty js N A) = u(T (L jiog N A)) = (T, 4 0 A)
> W(T Dy s N L N A) = (T Ly g N 1y ) — (I j \ A)
> (1 =aully,;) —enlly;),
meaning that if j € Q,(e) with j < h,, — s, then j + s € Q0,(2¢).
Since j € Q,(¢) implies j € Q,(2¢), this means that j,(¢) + kt + s € Q,(2¢) for all

k> 0and 0 < s < ¢ such that j,(e)+kt+s <h,. So Q,(2¢) contains all j,(¢) <j <h,.
Then |Q,,(2¢)| = h, — t, so

n(A) = Z w(A NIy j) > [Qn(2)[(1 = 2€) (1, ;)
J€Qn(2¢)

> (1 - hl)(l —26)u(Cy) — 1 —2e.

n

As € > 0 was arbitrary, we conclude that u(A) = 1. [

Remark 6.13. Our proof of weak mixing does not apply when y,, is unbounded and we
strongly suspect our transformations with y,, — oo are not weakly mixing.

7. Attaining specific complexities
We conclude with a brief discussion of the main open question.

https://doi.org/10.1017/etds.2023.47 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.47

Word complexity of weakly mixing rank-one subshifts 1365

Question 7.1. For what pairs of values 1 < o < 8 < 2 does there exist a weakly mixing
(rank-one or not) subshift with lim inf p(q)/g = o and lim sup p(q)/q = B?

Obviously, the most interesting question is whether there exists a weakly mixing
subshift, necessarily not rank-one, with 8 < 1.5. We tentatively conjecture that our
examples are the best possible.

Conjecture 7.2. Every subshift admitting a weakly mixing (probability) measure has
complexity such that lim sup p(¢q)/q > 1.5.

Heinis [Hei02] showed that § > 3 — 2/« for every subshift with lim sup p(g)/q < 2.
Our work shows that 8 > 1.5 is necessary for total ergodicity in the rank-one setting.

The values « =1 and 8 =1/(4y +2) for y € N, y > 2, are attained by our exam-
ples as they have complexity satisfying lim inf p(q)/g = 1 provided L, — oo, and
limsup p(q)/q = 1.5+ 1/(4y +2).

Ferenczi [Fer95] showed that the weakly mixing rank-one subshift given by
B, = B,%IB,% has o = 1.5 and B = 5/3 (this is the example that was the previously
known lowest complexity).

Our examples can be adapted to attain more pairs: for all 2 <m < M, by setting
y =M — 1 and L = m, Theorem 5.6 gives a weakly mixing subshift such that

1 3 1
M=1+— and limsupwz—_p—_
q M q 2 4m -2

Since M > 3 and m > 2, all of these examples satisfy « < 4/3 and g < 5/3.

lim inf

Acknowledgements. The author would like to thank the referee for suggesting several
welcome improvements to the exposition and to thank R. Pavlov for a discussion that
prompted the realization that the results hold for all non-odometer rank-ones (rather than
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