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LOCALLY O-MINIMAL STRUCTURES WITH TAME
TOPOLOGICAL PROPERTIES

MASATO FUJITA

Abstract. We consider locally o-minimal structures possessing tame topological properties shared by
models of DCTC and uniformly locally o-minimal expansions of the second kind of densely linearly ordered
abelian groups. We derive basic properties of dimension of a set definable in the structures including the
addition property, which is the dimension equality for definable maps whose fibers are equi-dimensional.
A decomposition theorem into quasi-special submanifolds is also demonstrated.

§1. Introduction. An o-minimal structure enjoys many tame topological proper-
ties such as monotonicity and definable cell decomposition [1]. A locally o-minimal
structure was first introduced in [12] as a local counterpart of an o-minimal
structure. In spite of its similarity to an o-minimal structure in its definition, a
locally o-minimal structure does not enjoy the localized tame properties enjoyed by
o-minimal structures such as the local monotonicity theorem and the local definable
cell decomposition theorem. Lack of tame topological properties prevents us to
establish a tame dimension theory for sets definable in the structures. We expect that
discrete definable set is of dimension zero. We also hope that the projection image
of a definable set is of dimension not greater than the dimension of the original set.
However, the projection image of a discrete definable set is not necessarily discrete
in some locally o-minimal structure as in [7, Example 12].

We can recover tame topological properties if we employ additional assumptions
on locally o-minimal structures. We can also establish a tame dimension theory
using such tame topological properties.

For instance, the author proposed uniformly locally o-minimal structures of the
second kind in [5]. Local definable cell decomposition theorem [5, Theorem 4.2]
holds true when they are definably complete. We obtained several natural dimension
formulae [5, Section 5] and [4, Theorem 1.1 and Corollary 1.2] for a definably
complete uniformly locally o-minimal expansion of the second kind of a densely
linearly ordered abelian group using the tame topological properties. A definably
complete uniformly locally o-minimal expansion of the second kind of a densely
linearly ordered abelian group is called a DCULOAS structure in this paper.

Another example is a model of DCTC. Schoutens tried to figure out the common
features of the models of the theory of all o-minimal structures in his challenging
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220 MASATO FUJITA

work [10]. A model of DCTC was introduced in it. It enjoys tame topological and
dimensional properties as partially given in [10] and also demonstrated in this paper.

The purpose of this paper is to develop dimension formulae when locally
o-minimal structures are definably complete and enjoy the tame topological property
given in the following definition. The previous two examples possess this property.

Definition 1.1. Consider a locally o-minimal structure. We consider the
following property on it.

(a) The image of a nonempty definable discrete set under a coordinate projection
is again discrete.

The following formulae on dimensions are demonstrated in this paper under the
assumption that definably complete locally o-minimal structures enjoy the property
(a) in Definition 1.1.

(1) The inequality on the dimensions of the domain of definition and the image
of a definable map (Theorem 3.8(5));

(2) The inequality on the dimension of the set of points at which a definable
function is discontinuous (Theorem 3.8(6));

(3) The inequality on the dimensions of a definable set and its frontier (Theorem
3.8(7)); and

(4) Addition property. The dimension equality for definable maps whose fibers
are equi-dimensional (Theorem 3.14).

In o-minimal structures, definable sets are partitioned into finite number of nicely
shaped definable subsets called cells [1, Chapter 3, Theorem 2.11]. Partitions into
finite cells are unavailable in locally o-minimal structures. We provide alternative
partitions into finite number of another nicely shaped definable subsets called
quasi-special submanifolds. The definition of quasi-special submanifolds is found
in Definition 4.1. Partitions into quasi-special submanifolds are available in locally
o-minimal structures enjoying the property (a) in Definition 1.1 (Theorems 4.4
and 4.5). Quasi-special submanifolds only satisfy looser conditions than special
manifolds defined in [9, 11]. Decomposition theorems into special submanifolds
hold true for locally o-minimal expansions of fields [2] and d-minimal expansions of
the real field [9, 11]. Unlike special submanifolds, our partitions into quasi-special
submanifolds are available without assuming that the structure is an expansion of
an ordered field. It is an advantage of our decomposition theorem.

A DCULOAS structure and a model of DCTC possess the property (a) in
Definition 1.1. Therefore, the above dimension formulae and the decomposition
theorem into quasi-special submanifolds also hold true for them. Some of the
assertions were presented in the previous studies. In the case of a DCULOAS
structure, the dimension inequalities (1)–(3) were demonstrated in [4, 5]. The
addition property (4) and the decomposition theorem first appear in this paper.
As to a model of DCTC, the inequalities in the planar case were proved in [10]. The
author could not find the dimension formulae for higher dimensions in the previous
studies.

This paper is organized as follows. We first derive basic topological properties of
the structure in Section 2. Section 3 is devoted for the derivation of the dimension
formulae (1)–(4). We also prove the decomposition theorem into quasi-special
submanifolds in Section 4.
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We introduce the terms and notations used in this paper. The term ‘definable’
means ‘definable in the given structure with parameters’ in this paper. For any set
X ⊂Mm+n definable in a structure M = (M, ...) and for any x ∈Mm, the notation
Xx denotes the fiber defined as {y ∈Mn | (x, y) ∈ X} unless another definition is
explicitly given. For a linearly ordered structure M = (M,<, ...), an open interval is
a definable set of the form {x ∈ R | a < x < b} for some a, b ∈M . It is denoted by
(a, b) in this paper. An open box inMn is the direct product of n open intervals. Let
A be a subset of a topological space. The notations int(A) and A denote the interior
and the closure of the set A, respectively.

§2. Tame topological properties.

2.1. Basic lemmas. We first review the definitions of local o-minimality and
definably completeness.

Definition 2.1 [12]. A densely linearly ordered structure without endpointsM =
(M,<, ...) is locally o-minimal if, for every definable subset X of M and for every
point a ∈M , there exists an open interval I containing the point a such that X ∩ I
is a finite union of points and open intervals.

Definition 2.2 [8]. An expansion of a densely linearly ordered set without
endpoints M = (M,<, ...) is definably complete if any definable subset X of M
has the supremum and infimum inM ∪ {±∞}.

We give an equivalence condition for a definably complete structure being locally
o-minimal.

Lemma 2.3. Consider a definably complete structure M = (M,<, ...). The follow-
ing are equivalent:

(1) The structure M is a locally o-minimal structure.
(2) Any definable set in M has a nonempty interior or it is closed and discrete.

Proof. The implication (1) ⇒ (2) is obvious by the definition of local
o-minimality. We demonstrate the opposite implication. Let X be a definable subset
in M. Consider the boundary Y = X \ int(X ). Let J be an arbitrary open interval
in M. We have Y ∩ J = ∅ if and only if J ⊂ int(X ) or J ⊂M \ X by [8, Corollary
1.5]. For any arbitrary point a ∈M , there exists an open interval I containing the
point a such that I ∩ Y is an empty set or a singleton {a} because Y is closed and
discrete by the assumption. The open intervals {x ∈ I | x > a} and {x ∈ I | x < a}
are contained in int(X ) orM \ X . Hence, I ∩ X is a finite union of points and open
intervals. We have demonstrated that the structure M is locally o-minimal. 	

We introduce two consequences of the property (a) in Definition 1.1.

Lemma 2.4. Consider a definably complete locally o-minimal structure with the
property (a) in Definition 1.1. A definable discrete set is closed.

Proof. Let M = (M,<, ...) be the structure in consideration. Let X be a
nonempty discrete definable subset of Mn. Let �k :Mn →M be the coordinate
projection onto the k-th coordinate for all 1 ≤ k ≤ n. The images �k(X ) are discrete
by the property (a). They are closed by Lemma 2.3. Let x be an accumulation point of
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222 MASATO FUJITA

X. We have �k(x) ∈ �k(X ) for all 1 ≤ k ≤ n because �k(x) are accumulation points
of �k(X ) and �k(X ) are closed. We can take open intervals Ik so that �k(X ) ∩ Ik =
{�k(x)} because �k(X ) are discrete. It implies that X ∩ (I1 × ··· × In) consists of at
most one point x because X ∩ (I1 × ··· × In) ⊆

∏n
k=1 �k(X ) ∩ Ik = {x}. It means

that x ∈ X because x is an accumulation point of X. 	
Lemma 2.5. Consider a definably complete locally o-minimal structure

M = (M,<, ...) with the property (a) in Definition 1.1. Letf : X →M be a definable
map. If the image f(X ) and all fibers of f are discrete, then so is X.

Proof. We first reduce to the case in which f is the restriction of a coordinate
projection. Let X be a definable subset ofMn and � :Mn+1 →M be the coordinate
projection onto the last coordinate. Consider the graph Γ(f) of the definable
map f. The image �(Γ(f)) = f(X ) and all the fibers Γ(f) ∩ �–1(x) are discrete
by the assumption. If the graph Γ(f) is discrete, the definable set X is also discrete
by the property (a) because X is the projection image of the discrete set Γ(f). We
have reduced to the case in which f is the restriction of the coordinate projection
onto the last coordinate � :Mn+1 →M to a definable subset Y ofMn+1.

Take an arbitrary point x ∈ Y . Since �(Y ) is discrete by the assumption, we can
take an open interval I containing the point �(x) such that �(Y ) ∩ I is a singleton.
Since the fiber �–1(�(x)) ∩ Y is discrete, there exists an open box B containing the
point x such thatY ∩ (B × {�(x)}) is a singleton. The open boxB × I contains the
point x and the intersection of Y with B ∩ I is a singleton. We have demonstrated
that Y is discrete. 	

2.2. Tame topological properties. We defined the property (a) in Definition 1.1.
We also consider the following topological properties in this paper.

Definition 2.6. Consider a locally o-minimal structure M = (M,<, ...). We
consider the following properties on M.

(b) Let X1 and X2 be definable subsets ofMm. Set X = X1 ∪ X2. Assume that X
has a nonempty interior. At least one of X1 and X2 has a nonempty interior.

(c) Let A be a definable subset ofMm with a nonempty interior andf : A→Mn
be a definable map. There exists a definable open subset U ofMm contained
in A such that the restriction of f to U is continuous.

(d) Let X be a definable subset of Mn and � :Mn →Md be a coordinate
projection such that the fibersX ∩ �–1(x) are discrete for all x ∈ �(X ). Then,
there exists a definable map � : �(X ) → X such that �(�(x)) = x for all
x ∈ �(X ).

These properties and the property (a) in Definition 1.1 are not independent. For
definably complete locally o-minimal structures, the property (a) is equivalent to
the properties (c) and (d). The property (c) implies the property (b). They are
demonstrated in Theorem 2.11.

We introduce the following notations for simplicity.

Notation 2.7. Consider a locally o-minimal structure M = (M,<, ...). A defin-
able functionf : X →M ∪ {∞} denotes a pair of disjoint definable subsetsXo and
X∞ with X = Xo ∪ X∞ and a definable function defined on Xo. We consider that

https://doi.org/10.1017/jsl.2021.80 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.80


LOCALLY O-MINIMAL STRUCTURES WITH TAME TOPOLOGICAL PROPERTIES 223

the function f is constantly ∞ on X∞. The function f : X →M ∪ {∞} is called
continuous if X = X∞ or X = Xo and the function f is continuous. If the structure
M enjoys the properties (b) and (c) in Definition 2.6, the restriction of f to some
definable open set is continuous when the domain of definition X has a nonempty
interior. We define g : X →M ∪ {– ∞} similarly.

The following lemma is a consequence of the properties (b) and (c).

Lemma 2.8. Consider a definably complete locally o-minimal structure
M = (M,<, ...) enjoying the properties (b) and (c) in Definition 2.6. Let X be a
definable subset ofMm+n. Set

S = {x ∈Mm | the fiber Xx has a nonempty interior}.

If S has a nonempty interior, X also has a nonempty interior.

Proof. We first consider the case in which n = 1. Take c ∈M . Consider the
definable sets

X>c = {(x, y) ∈Mm ×M | (x, y) ∈ X, y > c} and

X<c = {(x, y) ∈Mm ×M | (x, y) ∈ X, y < c}.

For any x ∈ S, at least one of the fibers (X>c)x and (X<c)x of X>c and X<c at x has
a nonempty interior by the property (b). Set

S>c = {x ∈Mm | the fiber (X>c)x has a nonempty interior}.

We define S<c in the same manner. We get S = S>c ∪ S<c . Assume that S has a
nonempty interior. At least one of S>c and S<c has a nonempty interior by the
property (b) again. We consider the case in which S>c has a nonempty interior.
We can prove the lemma similarly in the other case. If X>c has a nonempty interior,
the definable set X obviously has a nonempty interior. It implies that the lemma
holds true for X if it holds true for X>c . Therefore, we may assume that there is
c ∈M satisfying y > c for all (x, y) ∈ X .

Consider the definable function f : S →M given by

f(x) = inf{y ∈M | y is contained in the interior of the fiber Xx}.

It is well-defined by the above assumption. Define the definable function g : S →
M ∪ {∞} by

g(x) = sup{y ∈M | Xx contains an interval (f(x), y)}.

There exists an open box V contained in S such that the restrictions of f and g to V
are continuous by the properties (b) and (c) in Definition 2.6. The set X contains an
open set {(x, y) ∈ V ×M | f(x) < y < g(x)}. We have demonstrated the lemma
for n = 1.

We next consider the case in which n > 1. Consider the projection �1 :Mm+n →
Mm+n–1 forgetting the last coordinate and the projection �2 :Mm+n–1 →Mm onto
the first m coordinates. Set � = �2 ◦ �1,

T = {t ∈ �1(X ) | the fiber Xt contains a nonempty open interval}, and

U = {u ∈ �(X ) | the fiber Tu has a nonempty interior}.
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The definable set S is contained in U. In particular, U has a nonempty interior.
Applying the lemma to the pair of T and the restriction of�2 to T, we have int(T ) �= ∅
by the induction hypothesis. We get int(X ) �= ∅ by the lemma for n = 1. 	

We do not use the following proposition in this paper, but it is worth to be
mentioned. It is a stronger version of definable Baire property discussed in [3, 6].

Proposition 2.9 (Strong definable Baire property). Consider a definably complete
locally o-minimal structureM = (M,<, ...) enjoying the property (a) in Definition 1.1.
Take c ∈M . Let {X 〈r〉}r>c be a parameterized increasing family of definable sets of
Mn; that is, there exists a definable subset X ofMn+1 such that X 〈r〉 coincides with
the fiber Xr for any r > c and we have X 〈r〉 ⊂ X 〈s〉 if r < s . Set X =

⋃
r>c X 〈r〉.

The definable set X 〈r〉 has a nonempty interior for some r > c if X has a nonempty
interior.

Proof. The properties (b) and (c) in Definition 2.6 follow from the property (a)
by Theorem 2.11. We use this fact.

We prove the proposition by induction on n. We first consider the case in which
n = 1. Assume that X 〈r〉 have empty interiors for all r > c. They are closed and
discrete by Lemma 2.3. Set Y = {(r, x) ∈M 2 | r = inf{s ∈M | x ∈ X 〈s〉}}. The
set Y is discrete. In fact, consider the fiberYr of Y at r. Take r′ ∈M with r′ > r. We
have Yr ⊂ X 〈r′〉 because {X 〈r〉}r>c is a parameterized increasing family. For any
x ∈M , there exists an open interval I containing the point x such that X 〈r′〉 ∩ I
consists of at most one point because X 〈r′〉 is discrete and closed. Since Yr ⊂ X 〈r′〉
whenever r < r′, the intersection Y ∩ ((c, r′) × I ) consists of at most one point. We
have shown that Y is discrete. Since X is the projection image of Y, X is also discrete
by the property (a). We have demonstrated that X has an empty interior.

We next consider the case in which n > 1. Assume that X has a nonempty interior.
An open box B is contained in X. We may assume thatX = B consideringX 〈r〉 ∩ B
instead ofX 〈r〉. We lead to a contradiction assuming thatX 〈r〉 have empty interiors
for all r > c. Take an open box B1 in Mn–1 and an open interval I1 with B =
B1 × I1. Set Y 〈r〉 = {x ∈ B1 | (X 〈r〉)x contains an open interval}. The set Y 〈r〉
has an empty interior by Lemma 2.8. We have B1 �=

⋃
r>c Y 〈r〉 by the induction

hypothesis. Take x ∈ B1 \
(⋃
r>c Y 〈r〉

)
. The union

⋃
r>c(X 〈r〉)x has an empty

interior because the fibers (X 〈r〉)x have empty interiors. It contradicts the equality⋃
r>c(X 〈r〉)x = I1. 	

2.3. Dependence between the properties and local monotonicity property. The
satisfaction of the property (c) in Definition 2.6 is related to local monotonicity
property. Two local monotonicity properties are known. Let M = (M, ...) be a
locally o-minimal structure. The first one is the weak local monotonicity property
given below.

Let I be an interval andf : I →M be a definable function. For any
(a, b) ∈M 2, there exist an open interval J1 containing the point a,
an open interval J2 containing the point b, and a mutually disjoint
definable partition f–1(J2) ∩ J1 = Xd ∪ Xc ∪ X+ ∪ X– satisfying
the following conditions:
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(1) the definable set Xd is discrete and closed;
(2) the definable set Xc is open and f is locally constant on Xc ;
(3) the definable setX+ is open and f is locally strictly increasing and continuous

on X+; and
(4) the definable setX– is open and f is locally strictly decreasing and continuous

on X–.

The strong local monotonicity property is the same as the weak one except that we
can take J1 = I and J2 =M .

The weak local monotonicity property is possessed by strongly locally o-minimal
structures [7, Proposition 11] and by uniformly locally o-minimal structures of
the second kind [5, Corollary 3.1]. A model of DCTC enjoys the strong local
monotonicity property [10, Theorem 3.2]. On the other hand, the strongly locally
o-minimal structure given in [7, Example 12] is not definably complete, and has
neither the property (a) in Definition 1.1, the property (c) in Definition 2.6, nor
strong local monotonicity property.

We discuss on the dependence between the properties in Definitions 1.1 and 2.6.
We use the following technical definition in the proof.

Definition 2.10. Consider an expansion of densely linearly ordered structure
without endpoints M = (M,<, ...). Let A be a definable subset ofMm andf : A→
M be a definable function. Let 1 ≤ i ≤ m. The function f is i-constant if, for any
a1, ... , ai–1, ai+1, ... , an ∈M , the univariate functionf(a1, ... , ai–1, x, ai+1, ... , an) is
constant. We define that the function is i-strictly increasing and i-strictly decreasing
in the same way. The function is i-strictly monotone if it is i-constant, i-strictly
increasing, or i-strictly decreasing. The function f is i-continuous if, for any
a1, ... , ai–1, ai+1, ... , an ∈M , the univariate function f(a1, ... , ai–1, x, ai+1, ... , an)
is continuous.

In the proof of the theorem, the claim that the structure in consideration possesses
the property (a) is simply called the property (a).

Theorem 2.11. Consider a definably complete locally o-minimal structure M =
(M,<, ...).

(i) The property (c) in Definition 2.6 implies the property (b).
(ii) The property (a) in Definition 1.1 implies the strong local monotonicity property

and the property (d).
(iii) The strong local monotonicity property implies the properties (b) and (c).
(iv) The properties (c) and (d) imply the property (a).

Proof. (i) We can prove it in the same manner as the proof of [5, Theorem 3.3]
using definable completeness instead of uniform local o-minimality of the second
kind. We omit the proof.

(ii) We can prove that the property (a) implies the strong local monotonicity
property in the same manner as the proof of [10, Theorem 3.2] using the property
(a) instead of [10, Lemma 3.1i]. We omit the proof.

We next demonstrate the property (d). We first demonstrate that the property (d)
holds true when n = d + 1. We may assume that � is the projection forgetting the
first coordinate without loss of generality. Take an arbitrary element c ∈M . The
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function � : �(X ) →M is given by �(x) = inf{x ∈ Xx | x ≥ c} if the definable set
{x ∈ Xx | x ≥ c} is not empty and given by �(x) = sup{x ∈ Xx | x ≤ c} otherwise.
It is a well-defined definable function. The definable function � : �(X ) →Mn is given
by �(x) = (�(x), x). By Lemma 2.4, the fiber Xx is closed for any x ∈ �(X ) by the
assumption. Therefore, we have �(�(X )) ⊂ X . We have constructed the desired map.

We next show that the property (d) holds true by induction onm = n – d . We may
assume that � is the projection onto the last d coordinates without loss of generality.
We have proven the case in which m = 1. Consider the case in which m > 1. Let
p :Mn →Mn–1 and q :Mn–1 →Md be the projection forgetting the first coordinate
and the projection onto the last d coordinates, respectively. We get � = q ◦ p. The
definable set p(X ) ∩ q–1(x) = p(�–1(x) ∩ X ) is discrete by the property (a) for any
x ∈ �(X ). Applying the induction hypothesis to p and q, we can find definable maps
�1 : �(X ) → p(X ) and �2 : p(X ) → X such that the compositions q ◦ �1 and p ◦ �2
are identity maps. The composition � = �2 ◦ �1 is the desired map.

(iii) We demonstrate the properties (b) and (c) by induction on m simultaneously.
When m = 1, the former is obvious because the structure M is locally o-minimal.
The property (c) follows from the strong local monotonicity property.

We consider the case in which m > 1. We first prove the property (b). Assume
that X has a nonempty interior. Take a bounded open box B contained in X. We
may assume that X = B considering X1 ∩ B and X2 ∩ B instead of X1 and X2,
respectively. We have B = B1 × I1 for some open interval I1 and an open box B1

inMm–1. Set Yi = {x ∈ B1 | the fiber (Xi)x contains an open interval} for i = 1, 2.
Applying the property (b) in the case of m = 1, we obtain B1 = Y1 ∪ Y2. Applying
the property (b) for m – 1 to B1 = Y1 ∪ Y2, Y1 or Y2 has a nonempty interior. We
may assume that int(Y1) �= ∅ without loss of generality. We may further assume that
Y1 = B1 shrinking B if necessary.

Consider the function f : B1 → I1 given by

f(x) = inf{y ∈ I1 | ∃α ∈ (X1)x, ∃� ∈ (X1)x such that α < y < �

and ∀y′ with α < y′ < � , we have y′ ∈ (X1)x}.

Since (X1)x contains an open interval and M is definably complete, the function f
is well-defined. We next define the function g : B1 → I1 by

g(x) = sup{y ∈ I1 | y > f(x) and ∀y′ with f(x) < y′ < y, we have y′ ∈ (X1)x}.

The function g is also well-defined for the same reason. We have f(x) < g(x) for
all x ∈ B1. Apply the property (c) for m – 1 to f and g. There exists an open box
V such that the restrictions of f and g to V are continuous. The definable set X1

contains the open set {(x, y) ∈ V ×M | f(x) < y < g(x)}. We have proven the
property (b).

We next demonstrate the property (c). We can prove the property (c) for arbitrary
n by an easy induction on n when the property (c) holds true for n = 1. We may
assume that n = 1. We may further assume that the domain of definition of f is a
bounded open box B without loss of generality. We define I1 and B1 in the same way
as above. Set

X+ = {(x, x′) ∈ I1 × B1 | the univariate function f(·, x′) is

strictly increasing and continuous on a neighborhood of x},
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X– = {(x, x′) ∈ I1 × B1 | the univariate function f(·, x′) is

strictly decreasing and continuous on a neighborhood of x},

Xc = {(x, x′) ∈ I1 × B1 | the univariate function f(·, x′) is

constant on a neighborhood of x}, and

Xp = B \ (X+ ∪ X– ∪ Xc).

The fibers (Xp)x are discrete for allx ∈ B1 by the strong local monotonicity property.
In particular, Xp has an empty interior. At least one of X+, X–, and Xc has a
nonempty interior by the property (b) we have just proven. Therefore, we may
assume that f is 1-strictly monotone and 1-continuous by considering an open box
contained in one of them instead of B. Applying the same argument (m – 1)-times,
we may assume that f is i-strictly monotone and i-continuous for all 1 ≤ i ≤ m. The
function f is continuous on B by [1, Chapter 3, Lemma 2.16]. We have proven the
property (c).

(iv) Let X be a discrete definable subset ofMn. Let � :Mn →Md be a coordinate
projection. We prove that �(X ) is discrete. We first reduce to the case in which
d = 1. Assume that the claim is true for d = 1. Take an arbitrary point x ∈ �(X ).
Let pi :Md →M be the projection onto the i-th coordinate for 1 ≤ i ≤ d . Since
the composition pi ◦ � is a coordinate projection, pi(�(X )) is discrete. We can take
an open interval Ii such that Ii ∩ pi(�(X )) = {pi(x)}. It is obvious that �(X ) ∩
(I1 × ··· × Id ) = {x}. It means that �(X ) is discrete. We have reduced to the case in
which d = 1.

When d = 1, there exists a definable map � : �(X ) → X such that the composition
� ◦ � is an identity map by the property (d). If �(X ) is not discrete, it contains an
open interval I because of local o-minimality. Shrinking the interval I if necessary,
the restriction of � to I is continuous by the property (c). It means that X contains
the graph of a continuous map defined on an open interval. It contradicts the
assumption that X is discrete. 	

2.4. Uniformly locally o-minimal structure of the second kind. We consider
DCULOAS structures. They were first introduced in [5] and their properties
were also investigated in [4]. Their significant feature is that local definable cell
decomposition for them is available. We first review the definition of a uniformly
locally o-minimal structure of the second kind.

Definition 2.12 [5]. A locally o-minimal structureM = (M,<, ...) is a uniformly
locally o-minimal structure of the second kind if, for any positive integer n, any
definable set X ⊂Mn+1, a ∈M , and b ∈Mn, there exist an open interval I
containing the point a and an open box B containing b such that the definable
sets Xy ∩ I are finite unions of points and open intervals for all y ∈ B .

We want to demonstrate that a DCULOAS structure enjoys the properties (a)–(d)
in Definitions 1.1 and 2.6.

Proposition 2.13. A DCULOAS structure enjoys the properties (a)–(d) in
Definitions 1.1 and 2.6.

Proof. We have only to demonstrate the property (a) by Theorem 2.11. We
temporarily employ a definition of dimension different from Definition 3.1. The
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dimension considered here is that given in [5, Definition 5.1]. The above two
definitions coincide by Theorem 3.11 once we obtain this proposition.

A discrete definable set is of dimension zero by [5, Lemma 5.2]. The projection
image of the set of dimension zero is again of dimension zero by [4, Theorem 1.1].
It is discrete by [5, Corollary 5.3]. We have demonstrated the property (a). 	

2.5. Model of DCTC. Schoutens tried to figure out the common features of the
models of the theory of all o-minimal structures [10]. A model of DCTC was
introduced in his study. He demonstrated tame topological properties enjoyed by it
in [10]. The following is the definition of a model of DCTC.

Definition 2.14 [10]. A structure M = (M,<, ...) is a model of DCTC if it is
a definably complete expansion of a densely linearly ordered structure without
endpoints with type completeness property. A structure enjoys type completeness
property by definition if the types a+ and a– are complete for any a ∈M ∪ {±∞}.
Here, a definable set Y ⊂M belongs to a+ if there exists b ∈M with b > a and
(a, b) ⊂ Y . We define a– similarly. For instance, any definably complete locally
o-minimal expansion of an ordered field, which is investigated in [2], is a model of
DCTC.

We demonstrate that a model of DCTC enjoys the properties in Definitions 1.1
and 2.6.

Proposition 2.15. A model of DCTC is a definably complete locally o-minimal
structure enjoying the properties (a)–(d) in Definitions 1.1 and 2.6.

Proof. A model of DCTC is definably complete by the definition. It is also a
locally o-minimal structure by Lemma 2.3 and [10, Proposition 2.6]. The property
(a) is [10, Corollary 4.3]. The properties (b)–(d) follow from Theorem 2.11. 	

Corollary 2.16. A definably complete locally o-minimal expansion of a field
possesses the properties (a)–(d) in Definitions 1.1 and 2.6.

Proof. The corollary follows from Proposition 2.15 because a definably complete
locally o-minimal expansion of a field is a model of DCTC. 	

§3. Dimension theory. We develop a dimension theory for locally o-minimal
structures possessing the property (a) in Definition 1.1. The properties (b)–(d)
in Definition 2.6 follow from the property (a) in Definition 1.1 by Theorem 2.11.
We use this fact without notification in the rest of this paper.

Definition 3.1 (Dimension). Consider an expansion of a densely linearly order
without endpoints M = (M,<, ...). Let X be a nonempty definable subset of
Mn. The dimension of X is the maximal nonnegative integer d such that �(X )
has a nonempty interior for some coordinate projection � :Mn →Md . We set
dim(X ) =– ∞ when X is an empty set.

A definable set of dimension zero is always closed and discrete.

Proposition 3.2. Consider a locally o-minimal structure satisfying the property
(a) in Definition 1.1. A definable set is of dimension zero if and only if it is discrete.
When it is of dimension zero, it is also closed.
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Proof. Let X be a definable subset of Mn. The definable set X is discrete if
and only if the projection image �(X ) has an empty interior for all the coordinate
projections � :Mn →M by the property (a). Therefore, X is discrete if and only if
dimX = 0. A discrete definable set is always closed by Lemma 2.4. 	

The following two lemmas are key lemmas of this paper.

Lemma 3.3. Consider a definably complete locally o-minimal structure
M = (M,<, ...) enjoying the properties (b) and (c) in Definition 2.6. Let X be a
definable subset ofMn of dimension d and � :Mn →Md be a coordinate projection
such that the projection image �(X ) has a nonempty interior. There exists a definable
open subset U ofMd contained in �(X ) such that the fibers X ∩ �–1(x) are discrete
for all x ∈ U .

Proof. Permuting the coordinates if necessary, we may assume that � is the
projection onto the first d coordinates. Set

S = {x ∈ �(X ) | the fiber X ∩ �–1(x) is not discrete}.

We have S = {x ∈ �(X ) | dim(X ∩ �–1(x)) > 0} by Proposition 3.2. We want to
show that S has an empty interior. Assume the contrary. Let �j :Mn →M be the
coordinate projections onto the j-th coordinate for all d < j ≤ n. Set

Sj = {x ∈ �(X ) | �j(X ∩ �–1(x)) contains an open interval}.

We have S =
⋃
d<j≤n Sj by the definition of dimension. The definable set Sj has a

nonempty interior by the property (b) for some d < j ≤ n. Fix such j. Let Π :Mn →
Md+1 be the coordinate projection given by Π(x) = (�(x), �j(x)). The definable
set T = {x ∈Md | the fiber (Π(X ))x contains an open interval} contains Sj and it
has a nonempty interior. Therefore, the projection image Π(X ) has a nonempty
interior by Lemma 2.8. It contradicts the assumption that dim(X ) = d . We have
shown that S has an empty interior. Since �(X ) has a nonempty interior, there exists
a definable open subset U of �(X ) with U ∩ S = ∅ by the property (b). 	

Lemma 3.4. Consider a definably complete locally o-minimal structure
M = (M,<, ...) enjoying the property (a) in Definition 1.1. Let X ⊂ Y be definable
subsets ofMn. Assume that there exist a coordinate projection � :Mn →Md and a
definable open subset U ofMd contained in �(X ) such that the fibers Yx are discrete
for all x ∈ U . Then, there exist

• a definable open subset V of U,
• a definable open subset W ofMn, and
• a definable continuous map f : V → X

such that

• �(W ) = V ,
• Y ∩W = f(V ), and
• the composition � ◦ f is the identity map on V.

Proof. Permuting the coordinates if necessary, we may assume that � is the
projection onto the first d coordinates. Let �j :Mn →M be the coordinate
projections onto the j-th coordinate for all d < j ≤ n. The fiber Yx is discrete
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for any x ∈ U by the assumption. Since Xx is a definable subset of Yx , Xx is also
a discrete set. There exists a definable map g : U → X such that the composition
� ◦ g is the identity map on U by the property (d). Note that �j(Yx) is discrete
and closed by the property (a) and Lemma 2.4. Consider the definable functions
κ+
j : U →M ∪ {+∞} defined by

κ+
j (x) =

{
inf{t ∈ �j(Yx) | t > �j(g(x))} if {t ∈ �j(Yx) | t > �j(g(x))} �= ∅,
+∞ otherwise,

for all d < j ≤ n. We define κ–
j : U →M ∪ {–∞} similarly. Then, we have

�–1(x) ∩ Y ∩ ({x} × (κ–
d+1(x), κ+

d+1(x)) × ··· × (κ–
n(x), κ+

n (x))) = {g(x)},

for allx ∈ U . There exists a definable open subset V of U such that the restriction f of
g to V and the restrictions of κ–

j and κ+
j to V are all continuous by the properties (b)

and (c). Set W = {(x, yd+1, ... , yn) ∈ V ×Mn–d | κ–
j(x) < yj < κ+

j (x) for all d <
j ≤ n}. The definable sets V and W and a definable continuous map f satisfy the
requirements. 	

Summarizing the above two lemmas, we get the following lemma.

Lemma 3.5. Consider a definably complete locally o-minimal structure
M = (M,<, ...) enjoying the property (a) in Definition 1.1. Let X ⊂ Y be definable
subsets ofMn of dimension d. There exist

• a coordinate projection � :Mn →Md ,
• a definable open subset V of �(X ),
• a definable open subset W ofMn, and
• a definable continuous map f : V → X

such that

• �(W ) = V ,
• Y ∩W = f(V ), and
• the composition � ◦ f is the identity map on V.

Proof. Immediate from the definition of dimension and Lemmas 3.3 and 3.4. 	

We also need the following lemma and its corollary.

Lemma 3.6. Let M = (M,<, ...) be as in Lemma 3.5. Let C ⊂Mn be a definable
open subset and f : C →Mn be a definable injective continuous map. The image
f(C ) has a nonempty interior.

Proof. We may assume that C is an open box without loss of generality. The
lemma is obvious when n = 0. We assume that n > 0. We lead to a contradiction
assuming that f(C ) has an empty interior. Set d = dimf(C ). We have 0 ≤ d < n.
When d = 0, the set f(C ) is discrete by Proposition 3.2. The image f(C ) is a
singleton by [8, Proposition 1.6] because the open box C is definably connected.
Contradiction to the assumption that f is injective.

We next consider the case in which d �= 0. Applying Lemma 3.5, we can take a
coordinate projection � :Mn →Md and a definable open set W of Mn such that
the restriction of � to f(C ) ∩W is injective and its image is a definable open set.
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We may assume that the restriction of � to f(C ) is injective by considering f–1(W )
instead of C. Since f is injective and continuous by the assumption, the composition
� ◦ f is also injective and continuous.

Take an open box B contained in C. Let B1 and B2 be the open boxes in Md

andMn–d with B = B1 × B2, respectively. Take c ∈ B2. Consider the definable map
g : B1 →Md given by g(x) = �(f(x, c)). It is injective and continuous. There exists
an open box D in Md with D ⊂ g(B1) by the induction hypothesis. Take a point
x0 ∈ B1 with g(x0) ∈ D and a point c′ ∈ B2 sufficiently close to c with c′ �= c. We
have �(f(x0, c

′)) ∈ D because � ◦ f is continuous. There exists a point x1 ∈ B1

with �(f(x0, c
′)) = g(x1) = �(f(x1, c)) becauseD ⊂ g(B1). It contradicts the fact

that � ◦ f is injective. 	

Corollary 3.7. Let M = (M,<, ...) be as in Lemma 3.5. Let B and C be open
boxes inMm andMn, respectively. If there exists a definable continuous injective map
from B to C, we have m ≤ n.

Proof. We lead to a contradiction assuming that m > n. Take a definable
continuous injective map f : B → C and c ∈Mm–n. Consider the definable map
g : B → C ×Mm–n given by g(x) = (f(x), c). It is obviously continuous and
injective. The image g(B) has a nonempty interior by Lemma 3.6. Contradiction.	

The following theorem is one of the main theorems of this paper.

Theorem 3.8. Consider a definably complete locally o-minimal structure M =
(M,<, ...) enjoying the property (a) in Definition 1.1. The following assertions hold
true:

(1) Let X ⊂ Y be definable sets. Then, the inequality dim(X ) ≤ dim(Y ) holds
true.

(2) Let 	 be a permutation of the set {1, ... , n}. The definable map 	 :Mn →
Mn is defined by 	(x1, ... , xn) = (x	(1), ... , x	(n)). Then, we have dim(X ) =
dim(	(X )) for any definable subset X ofMn.

(3) Let X and Y be definable sets. We have dim(X × Y ) = dim(X ) + dim(Y ).
(4) Let X and Y be definable subsets ofMn. We have

dim(X ∪ Y ) = max{dim(X ), dim(Y )}.

(5) Let f : X →Mn be a definable map. We have dim(f(X )) ≤ dimX .
(6) Let f : X →Mn be a definable map. The notation D(f) denotes the set of

points at which the map f is discontinuous. The inequality dim(D(f)) < dimX
holds true.

(7) Let X be a definable set. The notation ∂X denotes the frontier of X defined by
∂X = X \ X . We have dim(∂X ) < dimX .

Proof. The assertions (1) and (2) are obvious. We omit the proofs.
We demonstrate the assertion (3). Assume that X and Y are definable subsets

ofMm andMn, respectively. Set d = dim(X ), e = dim(Y ), and f = dim(X × Y ).
We first show that d + e ≤ f. In fact, let � :Mm →Md and � :Mn →Me be
coordinate projections such that both �(X ) and �(Y ) have nonempty interiors.
The definable set (� × �)(X × Y ) has a nonempty interior. Therefore, we have
d + e ≤ f. We show the opposite inequality. Let Π :Mm+n →Mf be a coordinate
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projection with int(Π(X × Y )) �= ∅. There exist coordinate projections �1 :Mm →
Mf1 and �2 :Mn →Mf2 with Π = �1 × �2. In particular, we get f = f1 + f2.
Since Π(X × Y ) has a nonempty interior, there exist open boxes C ⊂Mf1 and
D ⊂Mf2 with C ×D ⊂ Π(X × Y ). We get C ⊂ �1(X ) and D ⊂ �2(Y ). Hence,
we have d ≥ f1 and e ≥ f2. We finally obtain d + e ≥ f1 + f2 = f.

We next show the assertion (4). The inequality dim(X ∪ Y ) ≥ max{dim(X ),
dim(Y )} is obvious by the assertion (1). We show the opposite inequality. Set
d = dim(X ∪ Y ). There exists a coordinate projection � :Mn →Md such that
�(X ∪ Y ) has a nonempty interior by the definition of dimension. At least one
of �(X ) and �(Y ) has a nonempty interior by the property (b) because �(X ∪
Y ) = �(X ) ∪ �(Y ). We may assume that �(X ) has a nonempty interior without
loss of generality. We have d ≤ dim(X ) by the definition of dimension. We have
demonstrated that dim(X ∪ Y ) ≤ max{dim(X ), dim(Y )}.

The next target is the assertion (5). Let X be a definable subset of Mm.
The notation Γ(f) denotes the graph of the map f. We first demonstrate that
dim(Γ(f)) = dim(X ). In fact, the inequality dim(X ) ≤ dim(Γ(f)) is obvious
because X is the projection image of Γ(f). Set d = dim(Γ(f)) and e = dim(X ).

Applying Lemma 3.5 to the graph Γ(f), we can take a coordinate projection
� :Mm+n →Md , an open box V contained in �(Γ(f)), and a definable continuous
map � : V → Γ(f) such that the composition � ◦ � is the identity map on V. In
particular, the map � is injective.

Let Π :Mm+n →Mm be the projection onto the first m-coordinate. The
restriction of Π to the graph Γ(f) is obviously injective. Applying Lemma 3.5 to
the set X, we can take a coordinate projection � :Mm →Me and a definable open
subset W of Mm such that the restriction of � to W ∩ X is injective. The inverse
image (Π ◦ �)–1(W ) contains an open box because Π ◦ � is continuous. Replacing V
with the open box, we may assume that the restriction of � to Π(�(V )) is injective.
We finally get the definable continuous injective map � ◦ Π ◦ � : V →Me . We have
d ≤ e by Corollary 3.7. We have shown that dimX = dim Γ(f).

It is now obvious that dimf(X ) ≤ dim Γ(f) = dimX because f(X ) is the
projection image of Γ(f).

We demonstrate the assertion (6). Let X be a definable subset ofMm. We lead to
a contradiction assuming that d = dimX = dimD(f). By Lemma 3.5, there exist
a coordinate projection � :Mm →Md , definable open subsets V ⊂ �(D(f)) and
W ⊂Mm, and a definable continuous function g : V → D(f) such that�(W ) = V ,
X ∩W = g(V ), and � ◦ g is the identity map on V. Shrinking V and replacing W
with W ∩ �–1(V ) if necessary, we may assume that f ◦ g is continuous by the
property (c). Since g is a definable homeomorphism onto its image, the function f is
continuous on g(V ) = X ∩W . On the other hand, f is discontinuous everywhere
on X ∩W because X ∩W is open in X and X ∩W = g(V ) is contained in D(f).
Contradiction. We have demonstrated the assertion (6).

The remaining task is to demonstrate the assertion (7). Take distinct elements
c, d ∈M . Consider the definable function f : X →M given by

f(x) =
{
c if x ∈ X, and
d otherwise.
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It is obvious that D(f) contains ∂X . The assertion (7) follows from the assertions
(1) and (6). 	

Remark 3.9. Theorem 3.8(1–3) holds true for any expansion of a densely linearly
order without endpoints. Theorem 3.8(4) is valid for any locally o-minimal structure
with the property (b).

A constructible set is a finite Boolean combination of open sets. We get the
following corollary:

Corollary 3.10. Consider a definably complete locally o-minimal structure
enjoying the property (a) in Definition 1.1. Any definable set is constructible.

Proof. Let X be a definable set of dimension d. We prove that X is constructible
by induction on d. When d = 0, the definable set X is discrete and closed by
Proposition 3.2. In particular, it is constructible. When d > 0, the frontier ∂X is
of dimension smaller than d by Theorem 3.8(7). It is constructible by the induction
hypothesis. Therefore, X = X \ ∂X is also constructible. 	

The following theorem gives an alternative definition of dimension. The
alternative definition is the same as the definition of dimension given in
[5, Definition 5.1].

Theorem 3.11. Consider a definably complete locally o-minimal structure M =
(M,<, ...) enjoying the property (a) in Definition 1.1. A definable set X is of dimension
d if and only if the nonnegative integer d is the maximum of nonnegative integers e
such that there exist an open box B in Me and a definable injective continuous map
ϕ : B → X homeomorphic onto its image.

Proof. Let d ′ be the maximum of nonnegative integers e satisfying the condition
given in the theorem. We first demonstrate d ′ ≤ d . In fact, let B be an open
box contained in Md

′
and ϕ : B → X be a definable injective continuous map

homeomorphic onto its image. We have dimϕ(B) = dimB = d ′ by Theorem 3.8(5).
We get d = dimX ≥ dim(ϕ(B)) = d ′ by Theorem 3.8(1).

We next demonstrate d ≤ d ′. Applying Lemma 3.5 to the definable set X, we can
get a coordinate projection � :Mn →Md , a definable open box U in �(X ), and a
definable continuous map � : U → X such that � ◦ � is the identity map on U. In
particular, � is a definable continuous injective map homeomorphic onto its image.
Therefore, we have d ≤ d ′ by the definition of d ′. 	

We get the following corollary:

Corollary 3.12. Let M = (M,<, ...) be as in Theorem 3.11. Let X be a definable
subset of Rn. There exists a point x ∈Mn such that we have dim(X ∩ B) = dim(X )
for any open box B containing the point x.

Proof. Set d = dim(X ). There exists an open box U in Md and a definable
continuous injective map ϕ : U → X homeomorphic onto its image by Theorem
3.11. Take an arbitrary point t ∈ U and setx = ϕ(t). For any open box B containing
the point x, the inverse imageϕ–1(B) is a definable open set. Take an open box V with
t ∈ V ⊂ ϕ–1(B). The restriction ϕ|VV → X ∩ B is a definable continuous injective
map homeomorphic onto its image. Hence, we have dim(X ∩ B) ≥ d by Theorem
3.11. The opposite inequality follows from Theorem 3.8(1). 	
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We begin to demonstrate the addition property of dimension for definably
complete locally o-minimal structures enjoying the property (a) in Definition 1.1.
It is a counterpart of [1, Chapter 4, Proposition 1.5] in the o-minimal case, that of
[13, Theorem 4.2] in the weakly o-minimal case, and that of [5, Lemma 5.4] in the
case of local o-minimal structure admitting local definable cell decomposition. We
first treat a special case.

Lemma 3.13. Consider a definably complete locally o-minimal structure M =
(M,<, ...) enjoying the property (a) in Definition 1.1. Let ϕ : X → Y be a definable
surjective map whose fibersϕ–1(y) are discrete for ally ∈ Y . We have dimX = dimY .

Proof. Let X and Y be definable subsets of Mm and Mn, respectively. Set
d = dim(X ) and e = dim(Y ).

We first assume that ϕ is continuous. We have d ≥ e by Theorem 3.8(5). We
demonstrate the opposite inequality. We first reduce to the case in which X is a
definable open subset of Mm. There exist a definable open subset U of Rd and
a definable continuous injective map 	 : U → X homeomorphic onto its image
by Theorem 3.11. If the lemma holds true for the composition ϕ ◦ 	, we have
dimX = d = dimU = dimϕ ◦ 	(U ) ≤ dimY = e by Theorem 3.8(1). The lemma
is also true for the original ϕ. Hence, we may assume that X is open in Mm. In
particular, we have m = d .

Let Π :Mm+n →Mn be the projection onto the last n coordinates. Consider
the graph Γ(ϕ) of ϕ. Note that Π–1(y) ∩ Γ(ϕ) are discrete for all y ∈ Y . Take a
coordinate projection � :Mn →Me such that �(Y ) has a nonempty interior. The
definable set (� ◦ Π)–1(z) ∩ Γ(ϕ) is discrete and closed if �–1(z) ∩ Y is discrete for
z ∈Me by Lemma 2.5. By Lemmas 3.3 and 3.4, there exist definable open subsets
V ⊂ �(Y ) and W ⊂Mm+n and a definable continuous map � : V → Γ(ϕ) such
that � ◦ Π(W ) = V ,W ∩ Γ(ϕ) = �(V ), and � ◦ Π ◦ � is the identity map on V. In
particular, the restriction of � ◦ Π toW ∩ Γ(ϕ) is injective.

Let � : X → Γ(ϕ) be the natural injection. The map � is continuous because ϕ
is continuous. We may assume that � ◦ Π ◦ � is injective replacing X with an open
box contained in the definable open set �–1(W ). We finally obtain the definable
continuous injective map from an open box in Md to Me . We get d ≤ e by
Corollary 3.7.

We next demonstrate the lemma whenϕ is not necessarily continuous by induction
on d. When d = 0, the definable set X is discrete and closed by Proposition
3.2. In particular, the definable map ϕ is continuous. Therefore, the lemma
holds true in this case. We next consider the case in which d > 0. Let D(ϕ) be
the set of points at which ϕ is discontinuous. We have dimD(ϕ) < dimX by
Theorem 3.8(6). We get dimϕ(D(ϕ)) = dimD(ϕ) by the induction hypothesis. We
obtain dim(X \ D(ϕ)) = dimϕ(X \ D(ϕ)) because ϕ is continuous on X \ D(ϕ).
We finally get dimϕ(X ) = max{dimϕ(X \ D(ϕ)), dimϕ(D(ϕ))} = max{dim(X \
D(ϕ)), dim(D(ϕ))} = dim(X ) by Theorem 3.8(4). 	

The following theorem is the second main theorem of this paper.

Theorem 3.14. Consider a definably complete locally o-minimal structure M =
(M,<, ...) enjoying the property (a) in Definition 1.1. Let ϕ : X → Y be a definable
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surjective map whose fibers are equi-dimensional; that is, the dimensions of the fibers
ϕ–1(y) are constant. We have dimX = dimY + dimϕ–1(y) for all y ∈ Y .

Proof. Let X and Y be definable subsets of Mm and Mn, respectively.
Set d = dim(ϕ–1(y)), e = dim(Y ), and f = dim(X ). We first reduce to
the case in which there exists a coordinate projection � :Mm →Md such
that �(ϕ–1(y)) have nonempty interiors for all y ∈ Y . In fact, consider
the set Πm,d of all the coordinate projections of Mm onto Md . Set Y� =
{y ∈ Y | �(ϕ–1(y)) has a nonempty interior}. We get Y =

⋃
�∈Πm,d

Y� by the

assumption. Assume that the theorem is true for the restrictions of ϕ to ϕ–1(Y�) for
all � ∈ Πm,d . We have

dimX = max
�∈Πm,d

dimϕ–1(Y�) = d + max
�∈Πm,d

dimY� = d + dim(Y )

by Theorem 3.8(4). The theorem holds true for the original ϕ. We may assume
that there exists a coordinate projection � :Mm →Md such that �(ϕ–1(y)) have
nonempty interiors for all y ∈ Y . We fix such a � through the proof.

We next show that d + e ≤ f. By Lemma 3.5, we can get a coordinate projection
p :Mn →Me , a definable open subset W ofMe contained in p(Y ), and a definable
continuous injective map � :W → Y which is homeomorphic onto its image such
that p ◦ � is the identity map and p–1(w) ∩ Y is discrete for any w ∈W . Consider
the definable set

T = {(w, v) ∈W ×Md | v ∈ �(ϕ–1(�(w))) and �–1(v) ∩ ϕ–1(�(w)) is discrete}.

The fiber Tw has a nonempty interior for any w ∈W by Lemma 3.3. Therefore, the
set T has a nonempty interior by Lemma 2.8. In particular, we have dim(T ) = d + e.

Consider the definable subset S = (p × �)–1(T ) ∩ Γ′(ϕ) ∩ (�(W ) ×Mm) of
Mm ×Mn, where Γ′(ϕ) denotes the reversed graph of the definable map ϕ given
by Γ′(ϕ) = {(y, x) ∈ Y × X | y = ϕ(x)}. It is obvious that (p × �)(S) = T and
S ∩ (p × �)–1(w, v) are discrete for all (w, v) ∈ T . Apply the property (d) to S and
the projection p × �. We can get a definable map ′ : T → S such that (p × �) ◦ ′

is the identity map on T. Set  = � ◦ ′ : T → X . It is obviously injective. We have
d + e = dim(T ) = dim(T ) ≤ f by Lemma 3.13 and Theorem 3.8(1).

We next demonstrate the opposite inequality d + e ≥ f. There exist a coordinate
projection q :Mm →Mf , a definable open subset U ofMf contained in q(X ), and
a definable continuous injective map 	 : U → X by Lemma 3.5. The notation D(ϕ)
denotes the set of points at which ϕ is discontinuous. Since dimD(ϕ) < dimX =
f by Theorem 3.8(6), the projection image q(D(ϕ)) has an empty interior. The
difference U \ q(D(ϕ)) has a nonempty interior by the property (b). Shrinking
U if necessary, we may assume that ϕ is continuous on 	(U ). Take a coordinate
projection p :Mn →Me and a definable set W as in the proof of the inequality
d + e ≤ f. Set

Z = {(v,w) ∈Md ×W | �–1(v) ∩ (p ◦ ϕ)–1(w) is discrete}.

We demonstrate that the set Z has a nonempty interior. Fix a pointw ∈W . We have
only to demonstrate that Zw = {v ∈Md | �–1(v) ∩ (p ◦ ϕ)–1(w) is discrete} has a
nonempty interior for any w ∈W by Lemma 2.8.
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For any z ∈ p–1(w) ∩ Y , set B(z) = {v ∈Md | �–1(v) ∩ ϕ–1(z) is not discrete}.
We have dimB(z) < d for any z ∈ p–1(w) by Lemma 2.8. Consider the
set D = {(v, z) ∈Md ×Mn | v ∈ B(z) and z ∈ p–1(w) ∩ Y}. We get dimD =
supz∈p–1(w)∩Y dimB(z) < d by Theorem 3.11 because p–1(w) ∩ Y is discrete.
The definable set

⋃
z∈p–1(w)∩Y B(z) is the projection image of D, and it is of

dimension smaller than d by Theorem 3.8(5). In particular, it has an empty interior.

Consider the definable set Z ′
w =

⋃
z∈p–1(w)∩Y �(ϕ–1(z)) \

(⋃
z∈p–1(w)∩Y B(z)

)
. The

set Z ′
w has a nonempty interior by the property (b) because

⋃
z∈p–1(w)∩Y �(ϕ–1(z))

has a nonempty interior by the definition of �. On the other hand, the set Zw
contains the set Z ′

w . In fact, take a point v ∈ Z ′
w . Consider the restriction of ϕ to

�–1(v) ∩ (p ◦ ϕ)–1(w). The image is contained in p–1(w) ∩ Y , and it is discrete. The
fiber at z ∈ p–1(w) ∩ Y is �–1(v) ∩ ϕ–1(z) and it is also discrete by the definition of
B(z) andZ ′

w . Finally, the definable set �–1(v) ∩ (p ◦ ϕ)–1(w) is discrete by applying
Lemma 2.5 to the restriction of ϕ. We have demonstrated that Zw has a nonempty
interior. Therefore, the definable set Z has a nonempty interior.

Take an open box V contained in Z. Consider the definable continuous map
Φ : U →Md ×Me given by Φ(x) = (� ◦ 	(x), p ◦ ϕ ◦ 	(x)). Replacing the open
definable set U with the definable open set Φ–1(V ) if necessary, we may assume that
Φ(U ) ⊂ Z. By the definition of Z, the fiber Φ–1(v,w) is discrete for any (v,w) ∈ Z.
Therefore, we havef = dimU = dim(Φ(U )) ≤ d + e by Lemma 3.13 and Theorem
3.8(1). We have finished the proof of the theorem. 	

The following corollary is the addition property theorem for definably complete
locally o-minimal structures enjoying the property (a) in Definition 1.1.

Corollary 3.15 (Addition property). LetM = (M,<, ...) be as in Theorem 3.14.
Let X be a definable subset ofMm ×Mn. Set X (d ) = {x ∈Mm | dimXx = d} for
any nonnegative integer d. The set X (d ) is definable and we have

dim

⎛
⎝ ⋃
x∈X (d )

{x} × Xx

⎞
⎠ = dimX (d ) + d .

Proof. It is easy to prove that X (d ) is definable. We omit the proof. Apply
Theorem 3.14 to the restriction of the projection Π :Mm+n →Mm to the set⋃
x∈X (d ){x} × Xx , then we get the corollary. 	
The following corollary also holds true:

Corollary 3.16. Let M = (M,<, ...) be as in Theorem 3.14. Let X be a definable
subset ofMm+n and � :Mm+n →Mm be a coordinate projection. Fix a nonnegative
integer d. Assume that, for any x ∈Mm+n, there exists an open box U containing the
point x satisfying the inequality dim(�(X ∩U )) ≤ d . Then, we have dim(�(X )) ≤ d .

Proof. We first reduce to the case in which the fibers X ∩ �–1(x) are equi-
dimensional for all x ∈ �(X ). In fact, setYk = {x ∈ �(X ) | dim(X ∩ �–1(x)) = k}
andXk = X ∩ �–1(Yk) for all 1 ≤ k ≤ n. They are definable because of the definition
of dimension. Since we have dim(�(Xk ∩U )) ≤ dim(�(X ∩U )) for any open box
U by Theorem 3.8(1), the conditions in the corollary are satisfied for Xk . Assume
that the corollary holds true for Xk . We have dim(Yk) = dim �(Xk) ≤ d . We obtain
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dim(�(X )) = max1≤k≤n dim(Yk) ≤ d by Theorem 3.8(4). The corollary is also true
for X. We have succeeded in reducing to the case in which the fibers are equi-
dimensional.

Set e = dim(�(X )) and f = dim(X ∩ �–1(x)) for x ∈ �(X ). We have dim(X ) =
e + f by Theorem 3.14. We can take a point b in Rm+n such that dim(X ∩ V ) =
e + f for any open box V containing the point b by Corollary 3.12. Choose an
open box U containing the point b so that dim(�(X ∩U )) ≤ d , which exists by
the assumption. Set X ′ = X ∩U . It is obvious that the fibers X ′ ∩ �–1(x) are
of dimension not greater than f for all x ∈ �(X ∩U ) = �(X ′). Set Y ′

k = {x ∈
�(X ′) | dim(X ′ ∩ �–1(x)) = k} and X ′

k = X ′ ∩ �–1(Y ′
k) for 1 ≤ k ≤ f. Since we

have X ′ =
⋃f
k=1X

′
k , we get dim(X ′

l ) = dim(X ′) = e + f for some 1 ≤ l ≤ f by
Theorem 3.8(4). Again by Theorems 3.14 and 3.8(1), we get e + f = dim �(X ′

l ) +
l ≤ dim(�(X ∩U )) + l ≤ d + l . We finally obtain e ≤ d because 0 ≤ l ≤ f. 	

§4. Decomposition into quasi-special submanifolds. A decomposition theorem
into quasi-special submanifolds is discussed in this section. We first define quasi-
special submanifolds.

Definition 4.1. Consider an expansion of a densely linearly order without
endpoints M = (M,<, ...). Let X be a definable subset of Mn and � :Mn →Md
be a coordinate projection. A point x ∈ X is (X, �)-normal if there exists an open
box B inMn containing the point x such that B ∩ X is the graph of a continuous
map defined on �(B) after permuting the coordinates so that � is the projection
onto the first d coordinates.

A definable subset is a �-quasi-special submanifold or simply a quasi-special
submanifold if �(X ) is a definable open set and, for every point x ∈ �(X ), there exists
an open box U inMd containing the point x satisfying the following condition: For
any y ∈ X ∩ �–1(x), there exist an open box V in Mn and a definable continuous
map � : U →Mn such that �(V ) = U , �(U ) = X ∩ V and the composition � ◦ �
is the identity map on U.

Let {Xi}mi=1 be a finite family of definable subsets of Mn. A decomposition of
Mn into quasi-special submanifolds partitioning {Xi}mi=1 is a finite family of quasi-
special submanifolds {Ci}Ni=1 such that

⋃N
i=1 Ci =Mn, Ci ∩ Cj = ∅ when i �= j,

and Ci has an empty intersection with Xj or is contained in Xj for any 1 ≤ i ≤ m
and 1 ≤ j ≤ N . A decomposition {Ci}Ni=1 of Mn into quasi-special submanifolds
satisfies the frontier condition if the closure of any quasi-special manifold Ci is the
union of a subfamily of the decomposition.

The following lemma guarantees that a definable set X in which all the points
are (X, �)-normal is always a �-quasi-special submanifold. This property makes the
proof of the decomposition theorem easy.

Lemma 4.2. Consider a definably complete locally o-minimal structure
M = (M,<, ...) enjoying the property (a) in Definition 1.1. Let X be a definable
subset of Mn and � :Mn →Md be a coordinate projection. Assume that all the
points x ∈ X are (X, �)-normal. Then, X is a �-quasi-special submanifold.

https://doi.org/10.1017/jsl.2021.80 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.80


238 MASATO FUJITA

Proof. We may assume that � is the projection onto the first d coordinates
without loss of generality. It is obvious that �(X ) is open because X is locally the
graph of a continuous map. We fix a point c ∈ �(X ). Note that the fiber Xc =
X ∩ �–1(c) is discrete by the assumption. The fiber Xc is also closed by Lemma 2.4.
Let pe :Md →Me be the projection onto the first e coordinates for all 0 ≤ e ≤ d .
We demonstrate the following claim. The lemma is obvious from the claim for e = d .

Claim. Let e be a nonnegative integer with 0 ≤ e ≤ d . There exists an open boxUe
inMe containing the point pe(c) such that, for any y ∈ Xc , there exist an open box
Ve,y inMd–e and an open boxWe,y inMn such that y ∈We,y , �(We,y) = Ue × Ve,y ,
and the intersection of X with We,y is the graph of a continuous map defined on
Ue × Ve,y .

We prove the claim by induction on e. The claim follows from the assumption
that all the points x ∈ X are (X, �)-normal when e = 0. Consider the case in which
e > 0. Let ce be the e-th coordinate of the point c. Take an element d+,e ∈M with
ce < d+,e . For any y ∈ Xc , letϕ+(y) be the supremum of the point x′ ∈M satisfying

(i) ce < x′ < d+,e , and
(ii) that there exist a ∈M with a < ce , an open box V ′

e,y inMd–e , and an open
boxW ′

e,y inMn such that
• y ∈W ′

e,y ,
• �(W ′

e,y) = Ue–1 × (a, x′) × V ′
e,y , and

• the intersection of X with W ′
e,y is the graph of a continuous map defined

on �(W ′
e,y).

Such x′ exists and the value ϕ+(y) is larger than ce by the induction hypothesis. We
get a definable function ϕ+ : Xc →M . The image ϕ+(Xc) is discrete by the property
(a) because the fiber Xc is discrete. It is closed by Lemma 2.4. Set b′e,+ = inf{z ∈
ϕ+(Xc)}. We have b′e,+ > ce becauseϕ+(Xc) > ce . Take be,+ so that ce < be,+ < b′e,+.

Take an element d–,e ∈M with ce > d–,e . For any y ∈ Xc , we define ϕ–(y) as the
infimum of the point x ∈M satisfying

(i’) ce > x > d–,e , and
(ii’) that there exist an open box Ve,y inMd–e and an open boxWe,y inMn such

that
• y ∈We,y ,
• �(We,y) = Ue–1 × (x, be,+) × Ve,y , and
• the intersection of X withWe,y is the graph of a continuous map defined

on �(We,y).

We can take a point x satisfying the above conditions (i’) and (ii’). In fact, we can
take a, V ′

e,y , andW ′
e,y satisfying the condition (ii) by putting x′ = be,+. Let x be an

element satisfying the inequality x ≥ a and the condition (i’), then Ve,y = V ′
e,y and

We,y =W ′
e,y ∩ �–1(Ue–1 × (x, be,+) × Ve,y) satisfy the condition (ii’).

In the same way as above, the supremum b′e,– = sup{z ∈ ϕ–(Xc)} satisfies the
inequality b′e,– < ce . We take be,– so that b′e,– < be,– < ce . SetUe = Ue–1 × (be,–, be,+).
It is now obvious thatUe satisfies the claim. We have finished the proofs of both the
claim and the lemma. 	

We next construct a decomposition of a single definable set.
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Lemma 4.3. Consider a definably complete locally o-minimal structureM = (M,<
, ...) enjoying the property (a) in Definition 1.1. Let X be a definable subset of Mn.
There exists a family {Ci}Ni=1 of mutually disjoint quasi-special submanifolds with
X =

⋃N
i=1 Ci and N ≤ 2n.

Proof. We first define the full dimension of a definable subset X of Mn. Set
d = dimX . The notation Πn,d denotes the set of all the coordinate projections of
Mn onto Md . The set Πn,d is a finite set. The full dimension fdim(X ) is (d, e) by
definition if d = dim(X ) and e is the number of elements in Πn,d under which the
projection image of X has a nonempty interior. The pairs (d, e) are ordered by the
lexicographic order.

We prove the theorem by induction on fdim(X ). When dim(X ) = 0, X is closed
and discrete by Proposition 3.2. The definable set X is obviously a quasi-special
submanifold in this case.

We consider the case in which dim(X ) > 0. Set (d, e) = fdim(X ). Take a
coordinate projection � :Mn →Md such that �(X ) has a nonempty interior. Set
G = {x ∈ X | x is (X, �)-normal} and B = X \G . It is obvious that any point
x ∈ G is (G, �)-normal. The definable set G is �-quasi-special submanifold by
Lemma 4.2.

We demonstrate that �(B) has an empty interior. Assume the contrary. There
exists an open box U such that the fibers Bx = �–1(x) ∩ B are discrete for all x ∈ U
by Lemma 3.3. We can take a definable map � : U → B with �(�(x)) = x for all
x ∈ U because the structure M possesses the property (d) in Definition 2.6. The
dimension of points at which the map � is discontinuous is of dimension smaller than
d by Theorem 3.8(6). We may assume that the restriction of � to U is continuous
shrinking U if necessary.

Set Z = ∂(X \ �(U )). We get dimZ = dim ∂(X \ �(U )) < dim(X \ �(U )) ≤
dimX = d by Theorem 3.8(1,7). We have dimZ = dimZ < d again by Theorem
3.8(4,7). On the other hand, we have d = dimU = dim �(�(U )) ≤ dim �(U ) ≤
dimX = d by Theorem 3.8(1,5). We get dim(�(U )) = d . It means that �(U ) �⊂ Z
by Theorem 3.8(1).

Take a point p in �(U ) \ Z. Take a sufficiently small open box V containing
the point p. We have X ∩ V = �(U ) ∩ V by the definition of Z and p. Since the
restriction of � to U is continuous, there exists an open box U ′ contained in U ∩
�–1(V ). Consider the open box V ′ = V ∩ �–1(U ′). It is obvious that X ∩ V ′ =
�(U ) ∩ V ′ is the graph of the restriction of � to U ′ by the definition. Any point
�(U ) ∩ V ′ is (X, �)-normal, but it contradicts to the definition of B and the inclusion
�(U ) ⊂ B . We have shown that �(B) has an empty interior. In particular, we get
fdim(B) < fdim(X ).

There exists a decomposition B = C1 ∪ ··· ∪ Ck of B satisfying the conditions in
the lemma by the induction hypothesis. The decomposition X = G ∪ C1 ∪ ··· ∪ Ck
is the desired decomposition of X.

It is obvious that the number of quasi-special submanifolds N is not greater than
n∑
d=0

(the cardinality of Πn,d ) =
n∑
d=0

(
n
d

)
= 2n.
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We finally get the following two decomposition theorems:

Theorem 4.4. Consider a definably complete locally o-minimal structure M =
(M,<, ...) enjoying the property (a) in Definition 1.1. Let {Xi}mi=1 be a finite family of
definable subsets ofMn. There exists a decomposition {Ci}Ni=1 ofMn into quasi-special
submanifolds partitioning {Xi}mi=1 with N ≤ 2m+n.

Proof. Set X 0
i = Xi and X 1

i =Mn \ Xi for all 1 ≤ i ≤ m. For any 	 ∈ {0, 1}m,
the notation 	(i) denotes the i-th component of 	. Set X	 =

⋂m
i=1X

	(i)
i for any

	 ∈ {0, 1}m. The family {X	}	∈{0,1}m is mutually disjoint and satisfies the equality
Mn =

⋃
	∈{0,1}m X	 . For all 	 ∈ {0, 1}m, there exist families {C	,j}N	j=1 of mutually

disjoint quasi-special submanifolds with X	 =
⋃N	
j=1 C	,j and N	 ≤ 2n by Lemma

4.3. The family
⋃
	∈{0,1}m{C	,j}

N	
j=1 gives the decomposition we are looking for. 	

Theorem 4.5. Consider a definably complete locally o-minimal structure M =
(M,<, ...) enjoying the property (a) in Definition 1.1. Let {Xi}mi=1 be a finite family of
definable subsets ofMn. There exists a decomposition {Ci}Ni=1 ofMn into quasi-special
submanifolds partitioning {Xi}mi=1 and satisfying the frontier condition. Furthermore,
the number N of quasi-special submanifolds is not greater than the number uniquely
determined only by m and n.

Proof. By reverse induction on d, we construct a decomposition {C�}�∈Λd of
Mn into quasi-special submanifolds partitioning {Xi}mi=1 such that the closures of
all the quasi-special submanifolds of dimension not smaller than d are the unions
of subfamilies of the decomposition.

When d = n, take a decomposition {D�}�∈Λ ofMn into quasi-special submani-
folds partitioning {Xi}mi=1 by Theorem 4.4. Set Λ′

n = {� ∈ Λ | dim(D�) = n}. Get
a decomposition {E�}�∈Λ̃n ofMn into quasi-special submanifolds partitioning the
family {D�}�∈Λ ∪ {D� \D�}�∈Λ′

n
. Consider the set

Λ̃n
′

= {� ∈ Λ̃n | E� is not contained in any D�′ with �′ ∈ Λ′
n}.

We always have dim(E�) < n for all � ∈ Λ̃n
′

by Theorem 3.8(7). Hence, the
family {D�}�∈Λ′

n
∪ {E�}�∈Λ̃n

′ is trivially a decomposition ofMn into quasi-special
submanifolds partitioning {Xi}mi=1 we are looking for.

We next consider the case in which d < n. Let {D�}�∈Λd+1
be a decom-

position of Mn into quasi-special submanifolds partitioning {Xi}mi=1 such that
the closures of all the quasi-special submanifolds of dimension not smaller
than d + 1 are the unions of subfamilies of the decomposition. It exists by
the induction hypothesis. Set Λ′

d = {� ∈ Λd+1 | dim(D�) = d} and Λ′′
d = {� ∈

Λd+1 | dim(D�) ≥ d}. Get a decomposition {Ed� }�∈Λ̃d
of Mn into quasi-special

submanifolds partitioning the family {D�}�∈Λd+1
∪ {D� \D�}�∈Λ′

d
. Set Λ̃d

′
=

{� ∈ Λ̃d | E� is not contained in any D�′ with �′ ∈ Λ′′
d}. The family {D�}�∈Λ′′

d
∪

{E�}�∈Λ̃d
′ is a decomposition of Mn into quasi-special submanifolds partitioning

{Xi}mi=1 we want to construct.
The ‘furthermore’ part of the theorem is obvious from the proof. 	
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