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ON THE LIOUVILLE PROPERTY
FOR DIVERGENCE FORM OPERATORS

MARTIN T. BARLOW

ABsTRACT.  Inthis paper we construct a bounded strictly positive function o such
that the Liouville property fails for the divergence form operator L = V(52V). Since
in addition As /o is bounded, this example also gives a negative answer to a problem
of Berestycki, Caffarelli and Nirenberg concerning linear Schrodinger operators.

1. Introduction. Inapaper onthe qualitative properties of solutions of non-linear
PDE of theform Au+F(u) = 0, Berestycki, Caffarelli and Nirenberg posed the following
problem. (See [BCN, Theorem 1.7]).

PROBLEM 1. Let V be asmooth bounded function on RY, and let K = K[V] be the
(Schrodinger) operator
K=-A-V.

Suppose that a bounded and sign-changing solution u existsto Ku = 0. Set

Ma(K) = inf{ [ [V =VIuP 1 v € G vl = 1),

Thenis A\1(K) < 0?

[BCN, Theorem 1.7] proved that if d = 1 or 2 then the answer to Problem 1 is“yes’.
In [GG] Ghoussoub and Gui proved that the answer is “no” if d > 7, and made explicit
the connection (implicit in the proof of [BCN, Theorem 1.7]) between Problem 1 and the
following question on the Liouville property for divergence form operators.

PROBLEM 2. Let o beastrictly positive C? function on RY, and let L = L[o] be the
divergence form operator L = V(02 V). Let 1) beasolutionto Ly = 0. If oy is bounded,
then is ¢ constant? (If thisisthe case we will say that L has the Liouville property).

It is well-known that if ¢ is uniformly bounded away from O (so that ¢ > ¢ > Q)
then L[o] hasthe Liouville property. The proof of [BCN, Theorem 1.7] implies that the
answer to Problem 2 is “yes’ if d = 1,2, while [GG] give an example which proves
that the answer to Problem 2 is“no” if d > 7. In those spaces to which the answer to
Problem 1 is“yes’ this result provides a powerful technique for the study of non-linear
PDE—see [GG].
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To see the connection between the two problems note first that if ¢ > 0is C? then
(1.1) Llo]y = —oK[—o A0 (o).

THEOREM 1 ([GG, PROPOSITION 2.3, LEMMA 2.1]). Let V be smooth and bounded.
(@) If abounded non-zero C? solution u to K[V]u = 0 exists, then A1 (K[V]) < 0.
(b) A(K[V]) < 0ifand onlyif K[V]u = 0 has no positive solutions.

THEOREM 2. (See[GG, Proposition 2.8], [BCN, Theorem1.7]).

(a) LetV be bounded and smooth, and suppose a bounded sign-changing solution u
toK[V]u = Oexists. If \1(K[V]) = OthentheequationK[V]o = 0 haspositive solutions,
and for any positive solution ¢ the Liouville property fails for L[o].

(b) Let o > 0 be smooth, and such that V = —¢~*Ac is bounded. Suppose there
exists a sign-changing function ¢ such that oy isbounded, and L[o]¢ = 0. Then there
exists a sign-changing solution u to K[V]u = 0, but A1 (K[V]) = 0.

ProoF. (a) If K, u, o areasabove, set ¢ = u/o. By (1.1) L[o] = O, while ¢ is
sign-changing, and therefore non-constant.

(b) Setu = o¢: by (1.1) u is a bounded sign-changing solution to K[V]u = 0. So,
by Theorem 1(a) K[V] < 0. On the other hand since o > 0 aso satisfiesK[V]o = 0, by
Theorem 1(b) A\1(K[V]) = 0. n

REMARKS. 1. The proof aboveisgivenin [GG], but isincluded here for complete-
ness.

In this paper we give an example which shows that the answer to Problems 1 and 2
is“no” for d > 3. In view of Theorem 2 we can concentrate on the Liouville property,
and seek a bounded function o > 0 such that Ao /o is bounded, but L[o] has non-trivial
bounded harmonic functions. Our intuition and proofs are probabilistic. Associated with
1L[o] isadiffusion processX = (X;,t > 0,P*,x € RY), suchthat iL[o]¢ = Oif and only
if o (X;) isaP*-martingalefor all x € RY. (For accountsof the connection betweenelliptic
operatorsand diffusions seefor examplethe books[Bas]|, [RW]). Supposethat there exist
open dijoint regions D1, D, in RY such that if G; = {X, € D; for all sufficiently larget}
then

1.2 0 < i (x) = PX(X, € D for al sufficiently larget) <1, i=1,2,

for some (and so all) x € RY. Then since v; are bounded and harmonic (with respect to
L), by the martingale convergence theorem

Ui(X) —lg ast— oo, P*—as.

Thus; are non-constant, and it is easy to construct from them a bounded sign-changing
L-harmonic function: ¢ = 1 — 1, for example.

For the regions D; we will take Dy = {x € R% : x; > 0}, D2 = {X: x; < O}. If we
take o small in aneighbourhood of {x; = 0} this createsa (partial) barrier to the process
X crossing between the regions D; and D,: note that X satisfies the SDE

(1.3) dX; = o(X)2dB; + o(X) V(X dt,
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where B is a d-dimensional Brownian motion. If o(x) — O sufficiently fast as |x| — oo
ontheset {x: x; = 0}, then this barrier is strong enough so that X only crosses between
the regions D; afinite number of times, a.s. (More precisely, with probability 1 there are
only finitely many n such that X;, crosses between the regions D; between times n and
n+ 1). Thefact that X is transient is of course crucial here. So P(Gy U G,) = 1, while
G1 N G, = ), and this, (with symmetry) proves (1.2) for x = 0.

THEOREM 3. (a) Letd > 3. Thereexists a smooth strictly positive bounded function
o on RY such that V = —o1Ac is bounded, and the equation V(6?Vy) = 0 has a
bounded sign-changing solution .

(b) If K = —A —V, then Ku = 0 has a bounded sign changing solution u, and
M1(K) = 0.

In Section 2 we collect together some (mainly standard) properties of Bessel processes
and related diffusions, and in Section 3 we give the construction of the function o.

We use ¢; to denote fixed positive real constants, whose value only depends on the
dimension d, and c, ¢’ etc. to denote positive constants (depending only on d) whose
value may change from line to line. We write x € R4 as x = (x;,x®), where x® =
(X2, ..., %) € R4 All the functions on RY in this paper will depend on x only through
u=xg,y= |x?|. \q denotes d-dimensional Lebesgue measure, and a A b = min(a, b).

2. Somepreliminary estimates. We begin by collecting some estimates on Bessel
processes and related potentials.

LEMMA 2.1. Letd > 3 and X be a Beg(d) process. Then

(2.1) PX(Xs <y for somes > t) < tY/?y.

PROOF. Using a comparison theorem for SDES (see [IW, p. 353]) we can assume
that x = O and d = 3. By Pitman’s decomposition [P] we can write X; = 2M; — By,
where By is aone-dimensiona Brownian motion with By = 0, and M; = sups.; Bs. Then
infs>t Xs = M. By the reflection principle P(Bf > y) = 2P(B; > y) = P(|B| > V), s0

P*(Xs <y forsomes >1t) = P(|B| <y) < 2yt Y/?(2n) Y2 < t=1/2y, .

LEMmMA 2.2. Let U; be a 1-dimensional diffusion with generator Lf(u) =
1(o3(u)f'(u))’, whereo(u) > ¢ > 0.1f 0 < x < y then

(2.2 P*(U hits 0 beforey) = %

where ®(x) = ¥ 0?(u) du.

PrOOF.  Writing ¢ (x) = P*(U hits 0 beforey), we havethat Ly = 0, sothat ¢’ (X) =
—co?(X). Since ¢(0) = 1, p(y) = 0, (2.2) follows. .
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Let G be the usual Green operator on RY, given by
Gu() = [ x— x> (),
where ;1 is ameasure on RY. Set
Jar) = {x= (XY : x| <ar—a<|XP| <r+a}.

LEMMA 2.3. Let v be Lebesgue measurerestricted to J(a, r). Then Gv is symmetric
in X, and x;(dGr /dx;1) < 0. Also Gv depends on x only throughy = [x®|. If r >
max(4a, a%) then there exist constants ¢y, ¢, such that

(2.3) cia® < Gr(x) < g’ if x| < %r,
(2.4) cia’logr < Gr(X) < ca’logr ifx e J@ar),
(2.5) Gr(x) < ca®(|x|/r)>9 if x| > 2r.

PrROCOF. Thefirst two propertiesof Gi are clear from the definition and the symmetry
of J.

We have ca?r®=? < v(J(a,r)) < car®2 and 3r < [x| < 3r forx € J(ar). Soif
X| < 3r, ca? < Gu(x) < c'a? proving (2.3).

Letx € J(a,r). Then

Gr(x) = /J|x—x’|2*d dx' > /J [x — x|~ dx.

NB(x,28)°MB(x,r)

If a <'s<rthenAg_1(0B(x,5) NJ) > ca’s™3, so that
Gr(x) > /r ca’stds = ca?log(r/a).
Ja

Also, if r > a2 thenlog(r /a) > logrt/2 = % logr. A similar calculation provesthe other
boundin (2.4).

For (2.5), since|x — X'| > 3|x| for X' € J, and [x| > 2r, we have
1. \2-d
Gr(x) > cazrd*2<§|x|) > c/a?(|x| /r)* . .

Now set n, = €%, a = 2¢*1, and let J, = J(a, n) for k > 0. Set A = 25 Jy

PROPOSITION 2.4. Thereexists ¢ > 0 on RY with the following properties.
(@) ¢ issuperharmonic,and Ay = 0 on A°.

(b) p >10nA

(€) x10¢/0x1 > 0.

(d)  dependson x only throughu = x;,y = [xY|.
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(e) 1f(t) isany pathin RY such that limsup, . |Y(t)] = oo then
liminf_. o(Y(t)) = 0.

PROOF. Let vy be Lebesgue measurerestricted to Ji, and
ok = ¢ g *(logn) "G

By Lemma 2.3 we have ¢, > 1 onJ,, and ¢ (X) < c(logn)~t = c27K, provided
x| < Zny. Set

200 =3 pu.
k=3

Clearly 0 < p(x) < oo for al x. Since each ¢y is superharmonic, and harmonic on J, ¢
clearly satisfies (a) and (b). (c) and (d) follow from the corresponding property for Guy.
To prove (€), let xc € R be such that |x(| = In. Thenby Lemma2.3,if i <Kk,

i) < clogm) (% /m)*® < c(@n/Nes) = c'e 7,
while ¢i(x) < c27¥ifi > k+ 1. So,
(%) < cke 2 + 27K,
Since [Y(t)| = 3Nk for infinitely many t, it follows that
|imiogf<p(v(t)) < liminf ¢(x) = 0. .

Let X, t > 0 beaprocessin RY. We define the event

{X ultimately avoidsA} = | J{X: ¢ Aforalt> n}.
n=0
COROLLARY 2.5. Let B be a Brownian motion in RY. Then PX(B ultimately avoids
A) =1

PROOF. (B is a positive supermartingale, and so converges a.s. Using Proposi-
tion 2.4(e) we see that lim_, ¢(B)) = 0as. Since p(X) > 1 on A, it follows that B
ultimately avoids A, a.s. ]

3. Thecounterexample. Leto > 0, f befunctions on RY which depend on x only
through u andy. Thenif L[¢] = V(62V),

3.1) %L[(r]f - %UZ(fuu +1,) + ooy + (aay + 28 2_y 2) f,.

Wewill restrict our attention to operators on RY of this form. Recall the definitions of ny,
J, Afrom Section 2. For k > 1 let

oe(u) = 1A ntel.
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Let o(u,y) be given by

(3.2) a(uy) = o), {a+ 26t <y<n, k>4
(33) a(uy) = LAexp(—2T + U — (Y= k1)), na Sy < g +20 k>4,
(3.4 ou,y) =o3(U), 0<y<ns.

Let ¢ beasymmetric C* function supported on (—3, 1), and set

o) = [v(u— s du, o(uy) = [[vu— W)y —y)oW,y)dd dy.
It is straightforward to verify

LEMMA 3.1. oy and o arebounded smooth strictly positivefunctionson R and R x R

which satisfy:

(3.5) ok(u) = o(=u), o(u,y) = a(-uy),

(3.6 |Ac| < cao,

(3.7) Uoy Z O, Oy = Oon AC'

(3.8) o(uy) = ow(u) ifney+2¢ <y<n—2¢71
2K 1

(39) o pot@du<cs  [Coi?()du > osnf.

Now let L; be the operator given by

1 d-2
(3.10) Lif = Eaz(fuu +fyy) + ooufy + (on + 02 2 )fy,

andsetl, = 0 2L;.LetZ = ((Ut,Yt),t > 0,P% z € R x R,) bethediffusion associated
with L. Then Z is (the unique) solution to the SDE

dU, = dB, + ( ‘2“((22:))) dt,

_ / Uy(zt) d— 2)
(3.12) dY; =dB/ + ( @) + o, dt,

where B, B’ are independent one-dimensional Brownian motions. Write g(u,y) =
ou(u,y)/a(u,y): by (3.7) g > 0. Set V; = UZ: then by 1td's formula

dV; = 2% sgn(Uy) dB, + (1 +2v¢/%g(vi?)) dt

(3.12) ~
= 2v}/2dB, + (1+2V{g(v{"?)) ct.
Here
n(x) = 0 ifx<o0
=11 ifx>0,
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and By, given by I
B = | sgn(Uy) dBy,

is another one-dimensional Brownian motion—see [RW, p. 63]. Let V bethe solution to
(3.13) dVi = 2V/%dB, + dt, Vo = Vo.

By a comparison theorem for SDEs (see [IW, p. 353]) it follows that Vi <V = U2 for
al t > 0. However, (3.13) implies that V1/2 is a Bes(1) process, and so equal in law to
the absolute value of a Brownian motion. (See [RW, p. 69]).

Set

Ta= |nf{t >0: (Ut,Yt) S A},
Ta=inf{t>0: (V% Y) € AL
We have Ta < Ta. From (3.7) and (3.11) we deducethat if Y is the solution to
d—2

3.14 dY,; = dB/ +
( ) t t 2Yt

dt, Yo=Yo,

then Y is aBes(d — 1) process, and Y; = Y; for 0 < t < Ta. Letalso Z; = (U, Y;), and
R=(Vi+ \73)1/2: then Risa Bes(d) process, and |Z;| > R.
Now set

He®) = {(uy) ineg+ 2 <y <n =21 ju =t}, k=>4,
I = [—22 x [y + 25 e — 241, k>4,
Hs(t) = {(u,y) : 0 <y < ng,|u|l =t}
Fix k > 4 and define stopping times §, T; by

To=0,
Sy =inf{t > To_1: Z € He(2— 1)},
Toh=inf{t > S, : Z € He(0) U H(2) UA}.

Notethat Z; € Iy for §, <t < Ty, andthat if Z hits H,(0) and Ta = oo then Zr, € Hi(0)
for somen.

LEMMA 3.2. On{S, < oo},

(3.15) PX(Z1, € Hk(0), Ta < Ta| Fs,) < onc

ProOOF. Using the Markov property of Z, wecanassumen = 1and S = 0, Zp =
(Uo, Yo) € Hk(2¥ —1). On 0 < t < T; we therefore have that U satisfies the SDE

(3.16) Ui=to+ B+ [ (U ds,
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where gy = o—;laak/au. If U’ isthe solution to (3.16) for 0 <t < oo, thenU = U’ on
[0, Ta]. Set T = inf{t: Uf € {0,2"}}. So
P(Ur, = 0,T1 < Ta) =P(U7, = 0,T1 < Tp)
<PUp =0)

2K 2K
< [ odu / /0 o 2(u) du < ceni 2.

Here we used Lemma 2.2 and the estimate (3.9) in the last line. ]
Now set

te = 42, m = kty/? = k2.
LEMMA 3.3. On{Th_1 < 0o} N{Th1 < Ta}N{|Ut,_,| > 2}

IPZ(S'] — Thor >t | FTn—l) > C7'[k_1/2.

PROOF.  Asin the previous proof, it is enough to obtain the estimate for S, — To in
the case when Zy = (Up, Yo) € Hi(2X). Using the comparison between U; and th/ % we
have

P(SL— To > t) > P(T-1(8) > t),

where 3 is aone-dimensional Brownian motion started at 0, and T_1(3) = inf{s: 3s =
—1}. However using the reflection principle asin Lemma 2.1,

P(T_1(8) > t) =P(|B| <1) ~ct™V/? ast— oo. .

Ny = max{n: S, < oo},
G = {Uy, = 0for somen < mg A N¢},

n = m — T —
r] 1§n§liali(/\m<(31 n 1)1

Thenif z¢ I, andk > 4,
P?(Z hits Hy(0), Ta = o0)

= P*(Z hits H(0), G, Ta = 00) +P*(Z hits Hi(0), G°, Ta = o0).
(3.17) < PYG, Ta = 00) + PA(Ni > my, G, Ta = 00)

By Lemmag3.2 thefirst termin (3.17) is bounded by comyn 2. 1f Ta = oo, thenZ = Z
and so |Z;| > R; for al t. We have

P(Nk > my, G5, Ta = 00) = P(Nk > m, |Ut,| = 2¢for 1 < n < my,n < ty, Ta = 00)
(3.18) +P(N¢ > my, G, 1 > ty,, Ta = 00).
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Thefirst termin (3.18) is bounded by

(3.19) P(N¢ > M Sy — Toot <t for 1 <n < mq, G, Ta = 00) < (1 — et 3™
K

by Lemma3.3. If Ny > m and i > t, then Z, € Hy(2X — 1) for somety > t. Since
1Z,|? < (2% — 1)° +nZ < 4nZ, we deduce from (2.1) that

P*(Nk > my, G5, n > t, Ta = 00) < PA(R < 2n for somet > t) < 2t|21/2nk.
Collecting these estimates together, we have
(3.20)  P*Z hitsHy(0), Ta = 00) < cmn 2 + (1 — C7t|:1/2)w + 2tk_1/2nk
< ck2nt+e R+ 2K =
where 302, e < 00.

LEMMA 3.4. (a) Z ultimately avoids A, a.s.
(b) Zistransient.
(c) Foranyze R x R4,

P*(Z hits H,(0) for infinitely many k, Ta = c0) = 0.

PROOF. (@) From the properties of the function ¢ in Proposition 2.4, we see that
if $(u,y) is the function such that ¢(x) = ¢ (u(x),y(¥)), then ug, > 0. Since on A°
satisfies
d—2_ 0

Py =Y,
zy y

1_ _
E(‘Puu + pyy) +
we have on A®
Lop = o toypy < 0.

So 1 A ¢(Z;) is asupermartingale, and so convergesa.s. to some limit. But since |Z;| >

U > V2, and limsup,_, VY2 = oo, by Proposition 2.4(€) we have that the limit

must be 0. Thus, asin Corollary 2.5, Z ultimately avoids A.

(b) Thisisimmediate from (a).

(c) Sincezisin at most one of the sets Iy, thisisimmediate from the estimate (3.20)
and the Borel-Cantelli lemma. ]

THEOREM 3.5.  Z ultimately avoids {u = O}, P%a.s.

PROCF.  Since P#(Z ultimately avoids A) = 1, we have
(3.21) 0= lim P*(Z € A, forsomet > n) = lim E*(P*(Ta < 00)).
n—oo N—oo

Notethat {u = 0} C I = AU UL3Hk(0). Set Fn = {Z € T for somet > n},
F = mzo:o Fn. Then

P%(F) = PA(F N {Ta < 00}) +PA(F N {Ta = 00}).
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If F occursthen either Z hitsinfinitely many of the H,(0), or Z hits one of the components
of " after time n for infinitely many n. But as Z is transient the second possibility has
probability 0. So

PA(F N {Ta = 00}) = P*(Z hits H(0) for infinitely many k, Ta = 00) = 0

by Lemma 3.4(c).
SO!
PF) = P(FN{Ta < 00}) forze R x R..

But
P*(F) = E*(P*(F)) = E*(P*(FN{Ta < 00})) < EP*(Ta < ),

which convergesto 0 asn — oo by (3.21). So P*(F) = 0. ]

By Theorem 3.5 we seethat if D1 = {u > 0}, D, = {u < 0} and G; = {Z € D;
for all sufficiently large t}, then G; N G, = 0, while P¥(G; U Gp) = 1. By symmetry
PO(G) = 3. Set ¥i(2) = PXGi). We have; + ¢, = 1,0 < ¢ < landsince;(Z) isa
martingale, by the martingale convergence theorem ¢i(Z;) — g, as., which shows that
i are non-constant. So ¥ = 1 — 1y, isasign-changing function which is harmonic with
respect to the operator L,. Hence L1y = 0?Lyy = 0. We have proved:

COROLLARY 3.5. Theequation L;y = 0 has a bounded sign-changing solution.

PROOF OF THEOREM 3. Recall the notation x = (x1, xY), u = x;, y = |XP|. Let o,
Y beasabove, and define(x) = a(u(x), y(x)), (X) = Y(u(x), y(x)). Then and 5 A5
are bounded, and
L[5] = 2L1y =0,

so that ¢ is a bounded sign-changing solution of V(&ZV&) = 0. Thefinal assertion in
Theorem 3 is now immediate from Theorem 2. ]
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