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Abstract. We discuss the kernel of the localization map from étale motivic

cohomology of a variety over a number field to étale motivic cohomology of

the base change to its completions. This generalizes the Hasse principle for the

Brauer group, and is related to Tate–Shafarevich groups of abelian varieties.

§1. Introduction

Let K be a global field, and X a smooth, proper and geometrically

connected variety over K. Many classical invariants of X, like the Brauer

group or the group of principal homogeneous spaces H1(K, A) of an abelian

variety A over K, are large, but the subgroups of those elements which

become trivial over every completion Kv of K are finite. In case of the

Brauer group and X = SpecK, this is the classical Hasse principle, and in

case of H1(K, A) it is the conjectural finiteness of the Tate–Shafarevich

group. We propose a generalization of these statements and conjectures in

terms of étale motivic cohomology. We consider the groups

Xi,n(X) = ker

(
τ in :H i

et(X, Z(n))→
∏
v

H i
et(Xv, Z(n))

)
,

where Z(n) is the motivic complex, and Xv is the base extension to the

henselization of K at v.

Some of our results are that Xi,n(X) is a torsion group, that Xi,n(K)

is finite for all i and n, and that Xi,0(X) and Xi,1(X) are finite for i6 2.

We show that a conjecture of Lichtenbaum on the structure of motivic

cohomology implies the finiteness of Xi,n(X) for i 6= 2n+ 2 in the function

field case, and for i6 2n+ 1 in the number field case.
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The groups X2n+1,n(X) appear to be the most interesting ones. For

example,

X3,1(X) = ker
(

Br(X)→
∏
v

Br(Xv)
)
,

so that the vanishing of X3,1(K) is equivalent to the Hasse principle for

the Brauer group. For a curve X, X3,1(X) is isomorphic to the Brauer

group Br(X ) of a regular and proper model of X, hence finiteness of

X3,1(X) is equivalent to the finiteness of the classical Tate–Shafarevich

group X(Pic0
X) and to the Tate conjecture for divisors on X . For X of

arbitrary dimension, finiteness of X3,1(X) implies finiteness of X(Pic0
X),

and for almost all l, finiteness of the l-primary part of X(Pic0
X){l} implies

finiteness of X3,1(X){l}.
Our work is related to Schneider’s [27] examination of the kernels of the

maps

H i(K,Ql/Zl(n))→
∏

H i(Kv,Ql/Zl(n))

in the number field case. These kernels are easy to understand if i 6= 1, and

Schneider conjectured that they are finite and related to the value of ζK(s) at

s= n for i= 1. This conjecture is still open if n > 1. Jannsen [15] extended

Schneider’s work by considering the groups H i(K, Hj
et(X̄,Q/Z(n))). Our

expectation is that the kernel of the localization map has better properties

if one considers integral coefficients and the abutment instead of the E2-

terms in the spectral sequence

(1) Ei,j2 =H i(K, Hj
et(X̄, Z(n)))⇒H i+j

et (X, Z(n)).

Notation: Let K be a global field of characteristic p> 0, and C the regular

proper curve over the prime field with function field K and the ring of

integers in the function field and number field case, respectively. For a finite

place of K, we let Ov be the henselization of C at v with field of quotients

Kv and residue field kv. For an infinite place we let Kv be the completion of

K at v. We fix a separable closure K̄ of K with Galois group GK . Then, for

a finite place, K̄ is a separable closure of Kv with Galois group Gv ⊆GK the

decomposition group of v. We let X be a smooth, proper, and geometrically

connected scheme over K, Xv =X ×K Kv, and X̄ =X ×K K̄.

For an abelian group A we denote by Ator its torsion group, by A{l}
its subgroup of l-power torsion elements, by A∧l = limr A/l

r its l-adic

completion, and by TlA= limr lrA its l-adic Tate-module.
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§2. Motivic Tate–Shafarevich groups

We denote the étale hypercohomology of Bloch’s cycle complex Z(n) :

V 7→ zn(V, ∗ − 2n) by H i
et(X, Z(n)). We frequently use that H i

et(X,Q(n))

is isomorphic to the higher Chow group CHn(X, 2n− i)Q and that this

vanishes if i > 2n.

Etale motivic cohomology is contravariant for flat maps and covariant for

finite maps. Indeed, given a finite map f :X ′→X, covariant functoriality of

the cycle complex induces a map f∗Z(n)X′ → Z(n)X . Finiteness of f implies

f∗ ∼=Rf∗, hence we obtain the push-forward by applying hypercohomology

on X.

In the function field case, we can spread out X to a smooth scheme X
over an open set of C and see that Z/pr(n) is isomorphic to the logarithmic

de Rham–Witt sheaf νnr [−n] [9]. The same holds for Xv because it is the

limit of étale schemes over X (at this point it is more convenient to work

with the henselization instead of the completion). In particular, Z/pr(n) = 0

for n > dimX + 1. For l 6= p, Z/lr(n) is the usual twisted root of unity sheaf

µ⊗nlr [10]. This suggests our definition Z(n) = colimp 6|m µ⊗nm [−1] for n < 0.

Definition 2.1. We define

Xi,n(X) = ker τ in :H i
et(X, Z(n))→

∏
v

H i
et(Xv, Z(n))

and

Si,n(X) = ker σin :H i
et(X,Q/Z(n))→

∏
v

H i
et(Xv,Q/Z(n)),

where v runs through all places of K.

By our convention, Xi,n(X) = Si−1,n(X) for n < 0 and for i > 2n+ 1.

We do not discuss the motivic cohomology version, that is, the kernel of

H i
M(X, Z(n))→

∏
v

H i
M(Xv, Z(n)),

because the étale version has more interesting arithmetic properties and is

more accessible to calculations due to the finite coefficient calculations in

[25] and [11].

Conjecture 2.2. The groups Xi,n(X) are finite for all i and n.
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We expect a “Weil-etale” version of motivic cohomology, and hence of

Xi,n(X), with better properties for i > 2n+ 1, and finiteness might only

hold for the Weil-etale version. The groups Si,n(X) are not finite as the

following example shows.

Example 2.3. Let E be an elliptic curve over Q, and consider the

commutative diagram

Pic0(E)⊗Ql/Zl
⊂−−−−→ H2

et(E,Ql/Zl(1))y y∏
v Pic0(Ev)⊗Ql/Zl

⊂−−−−→
∏
v H

2
et(Ev,Ql/Zl(1))

The kernel of the left vertical map injects into the kernel of the right vertical

map. The group Pic0(Ev)⊗Ql/Zl is isomorphic to Ql/Zl for v the l-adic

place and vanishes otherwise, so that the kernel of the left hand map contains

a copy of Ql/Zl if E has rank larger than one. Hence S2,1(E) is not finite

in general.

Remark 2.4. (Completion versus henselization) Let K̂v be the com-

pletion of Kv. We expect that the canonical map H i
et(Xv, Z(n))→

H i(X
K̂v
, Z(n)) is injective with a Z(p)-module as cokernel. In particular, the

injection Xi,n(X)→ ker
(
H i

et(X, Z(n))→
∏
v H

i(X
K̂v
, Z(n))

)
would be an

isomorphism.

We next show that Xi,n(X) is a torsion group.

Lemma 2.5. Let F be a covariant functor from the category of extension

fields of a fixed field k to the category of Q-vector spaces. Assume that F
commutes with filtered colimits, that F has trace maps F(L′)→F(L) for

finite field extensions L′/L such that the composition F(L)→F(L′)→F(L)

is multiplication by the degree [L′ : L], and that F(L)→F(L(t)) is injective

for any extension L of k. Then F(L)→F(L′) is injective for any field

extension k ⊆ L⊆ L′.

Proof. Since F commutes with filtered colimits, we can assume that

either L′/L is finite or purely transcendental of transcendence degree 1.

In the first case, the map F(L)→F(L′) is injective because its kernel is

torsion, and in the second case by hypothesis.

Proposition 2.6. Let X be separated and of finite type over K.

Then H i
et(X ×K L,Q(n))→H i

et(X ×K L′,Q(n)) is injective for any field

extension K ⊆ L⊆ L′.
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Proof. We show that the assignment L 7→H i
et(X ×K L,Q(n))∼=

CHn(X ×K L, 2n− i)Q satisfies the hypothesis of the lemma. Functoriality

is due to contravariance of higher Chow groups for flat maps, and the

existence of the trace map follows from covariant functoriality for proper

maps. Injectivity for transcendental extensions L(t)/L follows by writing

L(t) as the filtered colimit of finitely generated localizations R of L[t]. Such

an R admits a map to a finite extension L′ of L, so that the composition,

hence first map, in

H i
et(X ×K L,Q(n))→H i

et(X ×K R,Q(n))→H i
et(X ×K L′,Q(n))

is injective. Here the second map is given by contravariant functoriality for

maps between smooth schemes over L.

Corollary 2.7. The groups Xi,n(X) agree with

ker lin :H i
et(X, Z(n))tor→

∏
v

H i
et(Xv, Z(n))tor.

In particular, they are torsion groups.

Proof. By the Proposition, H i
et(X,Q(n))→H i

et(Xv,Q(n)) is injective

for every v, and the Corollary follows by considering the diagram

0 // Hi
et(X, Z(n))tor

//

��

Hi
et(X, Z(n)) //

��

Hi
et(X,Q(n))

��
0 // ∏

v H
i
et(Xv, Z(n))tor

// ∏
v H

i
et(Xv, Z(n)) // ∏

v H
i
et(Xv,Q(n))

§3. Some Examples

The case X = SpecK

Let X = SpecK. Then the maps τ1
0 and τ2

1 are maps between zero groups,

and
τ0

0 : Z →
∏
v Z

τ2
0 : Gal(K)∗ →

∏
v Gal(Kv)

∗

τ1
1 : K× →

∏
v K

×
v

τ3
1 : Br(K) →

∏
v Br(Kv)

are injective. For τ2
0 this follows from Chebotarev’s density theorem, and

for τ3
1 it is the Hasse principle for Brauer groups. More generally, we have
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Proposition 3.1. The groups Xi,n(K) are finite. They vanish for i 6= 2

or n= 1, and in the function field case X2,n(K)∼=H2
et(C, Z(n)) for n 6= 1.

Proof. Recall that from the calculation of higher K-theory of global fields

due to Borel, Harder and Soulé we know that H i(K,Q(n)) vanishes unless

(i, n) = (0, 0), (1, 1), or K is a number field and i= 1. With p-coefficients

we have Z/pr(n) = 0 hence H i(K,Qp/Zp(n)) = 0 for n> 2. If i> 4, then

H i(K, Z(n)) ∼= H i−1(K,Q/Z(n))

∼=
∏

v real

H i−1(Kv,Q/Z(n))∼=
∏

v real

H i(Kv, Z(n))

by Tate–Poitou (the p-part in characteristic p for n6 1 follows because

the cohomological p-dimension of K is one). If i= 3 and n 6= 1, then

H i(K, Z(n))∼=H i−1(K,Q/Z(n)) = 0 by the argument of [27, Section 4

Satz 1]. The cases i6 2 and n= 0, 1 are covered in the example above,

and it remains to consider the cases i6 2 and n> 2. If i6 1, we obtain the

result from the injectivity of

H i(K, Z(n)){l} ∼= H i−1(K,Ql/Zl(n))

⊆ H i−1(Kv,Ql/Zl(n))∼=H i(Kv, Z(n)){l}

for any v not dividing l (both sides are zero if l = p= charK).

Using the Rost–Voevodsky theorem [28] and the localization sequence for

higher Chow groups [1] we obtain a sequence

0→H2
et(C, Z(n))→H2(K, Z(n))→⊕vH1(kv, Z(n− 1))→ 0.

Comparing to the local situation we see that

X2,n(K) = kerH2
et(C, Z(n))→

∏
v

H2
et(Ov, Z(n)).

The groups H2
et(C, Z(n)) are finite, which shows the remaining statements

in view of the following lemma.

Lemma 3.2. If Ov has positive characteristic p, then H2
et(Ov, Z(n)) is

uniquely divisible for n> 2.

Proof. It suffices to show thatH1
et(Ov,Ql/Zl(n)) =H2

et(Ov,Ql/Zl(n)) = 0

for all l. If l 6= p, then H i
et(Ov,Ql/Zl(n))∼=H i

et(kv,Ql/Zl(n)) by the proper

base-change theorem, and this vanishes for i > 0. On the other hand

Z/p(n) = 0 on Ov for n > 1 implies that H i
et(Ov,Qp/Zp(n)) = 0 for all i.
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In contrast, if Ov has mixed characteristic (0, p), then

TorH2
et(Ov, Z(n))∼=H1

et(Ov,Qp/Zp(n))∼=H1(Kv,Qp/Zp(n))

because H i(kv,Qp/Zp(n)) = 0 for all i. But H1(Kv,Qp/Zp(n)) is the sum of

the dual of Qp/Zp(1− n)Gv and of (Qp/Zp)[Kv :Qp] by [27, Section 3 Satz 4].

The groups Si,n(K) have been studied by Schneider [27] in the number

field case. They vanish for i 6= 1; this is clear for i= 0 and i > 2, and

follows from [27, Satz 2] for i= 2. We also have S1,0(K) = 0 by the

Chebotarev density theorem. Schneider conjectures that the groups S1,n(K)

are finite and that their order is related to the value of ζK(s) at s= n. For

example, finiteness of S1,1(K) is equivalent to Leopoldt’s conjecture for K

[27, Section 5 Lemma 3, Section 7 Lemma 1]. Considering the coefficient

sequence

0→H1(K, Z(n))⊗Q/Z→H1(K,Q/Z(n))→H2(K, Z(n))→ 0,

we see that in addition to X2,n(K) the group S1,n(K) involves the term

H1(K, Z(n))⊗Q/Z.

The same argument shows that in the function field case Si,n(K)

vanishes for i 6= 1 and for (i, n) = (1, 0). The coefficient sequence shows

that H1(K,Q/Z(n))∼=H2(K, Z(n)), hence S1,n(K)∼=H2
et(C, Z(n)) which

is related to the value of ζK(s) at s= n, see [5].

Other examples

Proposition 3.3. For i6 2 the groups Xi,0(X) and Xi,1(X) are finite.

Proof. We have H0
et(X, Z)∼= Z and H1

et(X, Z) = 0, so that X0,0(X) =

X1,0(X) = 0. By [16, Theorem 1] the pull back along the structure map

H1(K,Q/Z)→H2
et(X, Z)∼=H1

et(X,Q/Z)∼= Hom(πab1 (X),Q/Z),

has finite cokernel, hence X2,0(X) is finite by Chebotarev’s density theorem.

Clearly Xi,1(X) = 0 for i6 0, and X1,1(X) = ker
(
K×→

∏
v K

×
v

)
and

X2,1(X) = ker
(
Pic(X)→

∏
v Pic(Xv)

)
vanish as well.

The case n= d has been considered in [8], where it is shown that in the

function field case X2d+2,d(X) is a p-group, and X2d+1,d(X) is related to

the Tate–Shafarevich group X(AlbX) of the Albanese variety of X and

other invariants which are expected to be finite.
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Proposition 3.4. Up to p-groups we have

H2d+3
et (X, Z(d+ 1))∼= Br(K), H2d+3

et (Xv, Z(d+ 1))∼= Br(Kv),

and H i
et(X, Z(d+ 1)) =H i

et(Xv, Z(d+ 1)) = 0 for i > 2d+ 3. In particular,

Xi,d+1(X) is a p-group for i> 2(d+ 1) + 1.

Proof. From the coefficient sequence and H i
et(X,Q(d+ 1)) = 0 for i>

2d+ 2 we obtain H i
et(X, Z(d+ 1))∼=H i−1

et (X,Q/Z(d+ 1)) for i> 2d+ 3.

By [22, VI Theorem 11.1] we have H2d
et (X̄,Q/Z(d+ 1))∼= Q/Z(1) up to p-

groups. The Hochschild–Serre spectral sequence now shows that

H2d+2
et (X,Q/Z(d+ 1))∼=H2(K, H2d

et (X̄,Q/Z(d+ 1)))∼= Br(K).

The final vanishing follows because H i
et(X̄,Q/Z(d+ 1)) = 0 for i > 2d.

§4. Connections to motivic cohomology of a model

Let X → C be a flat and proper map, with regular, connected X of

dimension d+ 1 such that X is the generic fiber. If we disregard the p-

torsion in characteristic p, we can assume that such a model exists in order

to prove finiteness of Xi,n(X). Indeed, by de Jong’s theorem there is a finite

extension K ′ of K of some degree e and a regular model of X ′ =X ×K K ′

which is projective and flat over the normalization C ′ of C in K ′. It is easy to

check that the composition H i
et(X, Z(n))→H i

et(X
′, Z(n))→H i

et(X, Z(n))

is multiplication by e, hence ker Xi,n(X)→Xi,n(X ′) is killed by e. Now

applying Gabber’s refinement of de Jong’s theorem, we can find for every

prime l 6= p dividing e another X ′ such that ker Xi,n(X)→Xi,n(X ′) is

injective on l-torsion.

For finite places v of C, we let Xv = X ×C Ov be the base change to

the henselization Ov of C at v, with generic fiber Xv and closed fiber Yv.

For infinite places v we set Xv =Xv =X ×K Kv. Then for any open subset

U ⊆ C and set I of infinite places we have a map of long exact sequences
(2)

// Hi
et(XU , Z(n)) //

��

Hi
et(X, Z(n))

∂ //

τin(U,I)

��

⊕
v∈U

Hi+1
Yv

(X , Z(n)) //

��
// ∏
v∈U∪I

Hi
et(Xv , Z(n)) // ∏

v∈U∪I
Hi

et(Xv , Z(n))
(∂v)

// ∏
v∈U

Hi+1
Yv

(X , Z(n)) //

and similarly with finite coefficients.
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HASSE PRINCIPLES FOR ÉTALE MOTIVIC COHOMOLOGY 71

Proposition 4.1. The groups Xi,n(X){l} are of cofinite type if i > 2n

and l 6= p. In particular, mXi,n(X) is finite for any integer m not divisible

by p and i > 2n.

Proof. It follows from diagram (2) that for any U and I, the image

of H i
et(XU , Z(n)) in H i

et(X, Z(n)) contains ker τ in(U, I), which contains

Xi,n(X). But H i−1
et (XU ,Q/Z(n)) surjects onto H i

et(XU , Z(n)), because

H i
et(XU , Z(n)) is torsion for i > 2n. Hence it suffices to show that the groups

H i−1
et (XU ,Ql/Zl(n)) are of cofinite type, which is implied by the finiteness

of H i−1
et (XU , Z/l(n)). For a fixed l choose U to be C without the places

above l and the places where X has bad reduction. Then Z/l(n)∼= µ⊗nl
is locally constant [4], hence its cohomology groups are finite by [21, II

Proposition 7.1].

Lemma 4.2. The map τ in has image in the restricted direct product with

respect to the subgroups im(H i
et(Xv, Z(n))).

Proof. If we set U = C in (2), we see that the image of any element under

τ in is contained in the direct sum on the lower right because ∂ has image in

the direct sum.

Conjecture 4.3. (Lichtenbaum [18]) Let X be regular, and proper over

Z. Then the groups H i
et(X , Z(n)) are finitely generated for i6 2n, finite for

i= 2n+ 1, and of cofinite type for i> 2n+ 2. If X is regular and proper

over a finite field, they are finite for i 6= 2n, 2n+ 2, finitely generated for

i= 2n, and of cofinite type for i= 2n+ 2.

The conjecture includes the finiteness of the Brauer group of X conjec-

tured by Artin. If charK = p, finiteness of H2n+1
et (X , Z(n)) implies Tate’s

conjecture for X in weight n [6, Proposition 4.4].

The sequence (2) for U = C together with Corollary 2.7 imply:

Proposition 4.4. Under Lichtenbaum’s conjecture, Xi,n(X) is finite

for i6 2n+ 1 and for i 6= 2n+ 2 in the number field and function field case,

respectively.

Our next goal is to prove an unconditional result:

Proposition 4.5. Assume K is a function field. If n 6∈ [0, d+ 1] or

if i 6= 2n, 2n+ 1, 2n+ 2, then H i
et(X , Z(n)) is an extension of a uniquely

divisible group by a finite group, and if i > 2n+ 2 it is a finite group.
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Proof. By a weight argument and Gabber’s theorem [3], we

know that H i
et(X ,Q/Z(n)) is finite if n 6∈ [0, d+ 1] or i 6= 2n, 2n+ 1.

Hence H i
et(X , Z(n))⊗Q/Z = 0 for n 6∈ [0, d+ 1] or i 6= 2n, 2n+ 1, and

H i
et(X , Z(n))tor is finite for n 6∈ [0, d+ 1] or i 6= 2n+ 1, 2n+ 2. Now the first

statement follows from the sequence

0 → H i
et(X , Z(n))tor→H i

et(X , Z(n))

→ H i
et(X ,Q(n))→H i

et(X , Z(n))⊗Q/Z,

and the second statement follows because H i
et(X ,Q(n)) = 0 for i > 2n.

Applying this to the diagram (2) for U = C and using the argument in

the beginning of the section we obtain:

Corollary 4.6. Let K be a function field and i > 2n+ 2. Then

Xi,n(X) is finite if X has a regular proper model over C, and it is the

sum of a finite group and a p-group in general.

There should be a Weil-etale version of motivic cohomology such that all

groups H i
W (X , Z(n)) are finitely generated, and the above argument would

imply that the Weil-etale version Xi,n
W (X) is finite.

§5. The Brauer group

In this section we consider the group

X3,1(X) = ker
(

Br(X)→
∏
v

Br(Xv)
)
.

If X has a regular proper model X , the localization sequence (2) gives a

diagram

0 −−−−→ Br(X ) −−−−→ Br(X)
∂−−−−→

⊕
v finite

H3
Yv

(X ,Gm)y y y
0 −−−−→

∏
v

Br(Xv) −−−−→
∏
v

Br(Xv)
(∂v)−−−−→

∏
v finite

H3
Yv

(X ,Gm)

and we obtain a short exact sequence

0→X3,1(X)→ Br(X )→
∏
v

Br(Xv).

In particular, finiteness of Br(X ) implies finiteness of X3,1(X). We now

consider the case that X is a curve.
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Proposition 5.1. Let X be a curve with regular proper model X . Then

X3,1(X)→ Br(X ) is an isomorphism if K has no real places, and an

injection with cokernel a finite 2-group in general.

Proof. This follows from the vanishing of the groups Br(Xv) for finite or

complex places. Indeed, by Artin’s theorem [13, Theorem 3.1], the Brauer

group of a regular relative curve, proper and flat over a henselian discrete

valuation ring agrees with the Brauer group of the special fiber, and the

Brauer group of the special fiber vanishes by [13, Remark 2.5(b)]. If v is

complex, then Xv is a curve over an algebraically closed field, hence its

Brauer group vanishes by loc.cit. Corollary 1.2. If v is real, then Br(Xv) is

a finite 2-group by the Hochschild–Serre spectral sequence.

Artin and Grothendieck showed in [13, Section 4] that Br(X ) is finite if

and only if the Tate–Shafarevich group of the Albanese X(AlbX) is finite.

We proved in [7] that if K has not real embeddings then (assuming finiteness

of the groups) the orders are related by

|Br(X )|α2δ2 = |X(AlbX)|
∏
v∈V

αvδv,

where δ and δv are the indices of X and Xv, and α and αv are the orders

of the cokernel of the inclusions Pic0(XK)→H0(K, Pic0
X) and Pic0(Xv)→

H0(Kv, Pic0
X), respectively. The argument of [19] then implies that the order

of Br(X ), hence of X3,1(X) is a square if it is finite.

Returning to X of arbitrary dimension, we relate X3,1(X) to the Tate–

Shafarevich group X(Pic0
X) of the Picard variety of X by comparing both

terms to

X(PicX) = ker
(
H1(K, PicX)→

∏
v

H1(Kv, PicX)
)

and using the Hochschild–Serre spectral sequence (1) for Z(1)∼= Gm[−1].

The following Proposition was explained to us by Colliot-Thélène:

Proposition 5.2. There exists an integer N such that the cokernel of

NS(Xv)→NS(X̄)Gv is killed by N for all v.

Proof. For any field K we have the following diagram

0 −−−−−→ Pic0(X) −−−−−→ Pic(X)
surj−−−−−→ NS(X) −−−−−→ 0y u

y s

y y
0 −−−−−→ Pic0(X̄)GK −−−−−→ Pic(X̄)GK

v−−−−−→ NS(X̄)GK
∂−−−−−→ H1(K, Pic0

X)
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where the lower row is the long exact sequence for Galois cohomology of

group schemes. This gives an exact sequence coker u→ coker s→ coker v→ 0

and it suffices to bound the outer terms. Let M be a finite Galois extension

of K such that X has an M -rational point. Then the map of exact sequences

Pic(X)
u−−−−→ Pic(X̄)GK −−−−→ Br(K)

inj

y inj

y y
Pic(XM ) Pic(X̄)GM

0−−−−→ Br(M)

coming from (1) shows that the cokernel of u injects into the kernel of

Br(K)→ Br(M) and hence is [M :K]-torsion by a trace argument.

We can write NS(X̄)∼=R⊕ T , with T a torsion group of some exponent

t, and R free. Since Pic(X̄) = colimF/Kfinite, separable Pic(XF ), we can find a

finite Galois extension L/K such that R lifts to Pic(XL). After increasing

L we can assume that GL acts trivially on R. Then coker Pic(X̄)GL →
NS(X̄)GL is t-torsion and hence the cokernel of v is t[L :K]-torsion.

If K is a global field, then the above discussion applies to all Kv, hence

the cokernel of NS(Xv)→NS(X̄)Gv is N torsion for N = t[L :K][M :K].

Lemma 5.3. Consider the following commutative diagram of abelian

groups with exact rows:

A −−−−→ B −−−−→ C −−−−→ D −−−−→ E

a

y b

y c

y d

y e

y
A′

s−−−−→ B′ −−−−→ C ′ −−−−→ D′ −−−−→ E′

If coker s is zero, finite, or of exponent n, then so is the cohomology of

ker c→ ker d→ ker e.

Proof. A diagram chase shows that the cohomology of ker c→ ker d→
ker e is isomorphic to the cohomology of coker a→ coker b→ coker c,

which is a subgroup of coker b/ im coker a=B′/ im b+ im s. But coker s=

B′/ im s surjects onto the latter group.

Proposition 5.4. The canonical map X(Pic0
X)→X(PicX) has finite

kernel, and its cokernel is of finite exponent.
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Proof. Consider the commutative diagram with exact rows

NS(X̄)GK

∂ //

��

H1(K, Pic0
X) //

σ

��

H1(K, PicX) //

γ

��

H1(K,NSX)

ρ

��∏
v NS(X̄)Gv

(∂v)

// ∏
v H

1(Kv , Pic0
X) // ∏

v H
1(Kv , PicX) // ∏

v H
1(Kv ,NSX)

The kernel of X(Pic0
X)→X(PicX) is contained in the image of ∂, which

is the finite cokernel of NS(X)→NS(X̄)GK . On the other hand, by

Lemma 5.3, the cohomology of X(Pic0)→X(Pic)→ ker ρ is killed by N

of Proposition 5.2, and ker ρ is finite because NSX is a finitely generated

Galois module [21, Theorem I 4.20].

Lemma 5.5. For almost all v, Br(Kv)→ Br(Xv) has a section and

PicXv→ PicX(K̄)Gv is an isomorphism.

Proof. This follows because for any geometrically integral K-variety, Xv

has a Kv-rational point for all almost all places v [23, Theorem 7.7.2]. For

the statement on Pic we use the low terms of (1)

0→ Pic(Xv)→ PicX(K̄)Gv → Br(Kv)→ Br(Xv).

Proposition 5.6. There is a canonical map X3,1(X)→X(PicX) with

finite kernel, and cyclic cokernel of order dividing the index of X. If X has

a rational point, then the map is an isomorphism.

Proof. Let f : X → C be a normal, flat and proper model. By our

hypothesis on X we have f∗Gm
∼= Gm. Compare the spectral sequence (1)

with its local analogue:
(3)

Pic(X̄)GK
d2−−−−→ E2,0 = Br(K)

f∗

−−−−→ Br(X)
ξ−−−−→ Br0(X)→ 0y α

y β

y γ

y∏
v Pic(X̄v)

Gv
(dv2)−−−−→

⊕
v Br(Kv)

(f∗
v )−−−−→

∏′
v Br(Xv)

(ξv)−−−−→
∏
v Br0(Xv)

Here Br0(X) and Br0(Xv) are the cokernels of f∗ and f∗v , respectively. By

Lemma 4.2, the image of β lies in the restricted direct product with respect

to the subgroups Br(Xv) and the lower row is exact because Br(Ov) = 0,

and dv2 is zero for almost all v by Lemma 5.5.
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Since α is injective, Lemma 5.3 implies that the kernel of Υ : X3,1(X)→
ker γ is finite because coker

∏
v Pic(Xv)→

∏
v Pic(X̄)Gv is. On the other

hand, the kernel of u : Q/Z∼= coker α→ coker β surjects onto coker Υ. But

a zero-cycle of degree δ on X induces a compatible quasisplitting of (3),

hence a map v : coker β→ coker α such that vu is multiplication by δ. Hence

ker u⊆ Z/δ surjects onto coker Υ. Finally the diagram

0 −−−−→ H1(K, PicX) −−−−→ Br0(X) −−−−→ Br(X̄)GKy γ

y y
0 −−−−→

∏
v H

1(Kv, PicX) −−−−→
∏
v Br0(Xv) −−−−→

∏
Br(X̄)Gv

coming from (1) shows that X(PicX)∼= ker γ.

If X has a rational point, then the sequences in (3) are compatibly split

short exact.

Corollary 5.7. Finiteness of X3,1(X) implies finiteness of X(Pic0
X).

Conversely, for almost all l, finiteness of X(Pic0
X){l} implies finiteness of

X3,1(X){l}.

Remark 5.8. We expect the existence of perfect pairings (for n+ u=

d+ 1)

X2n+1,n(X)×X2u+1,u(X)→Q/Z,

compatible with the finite coefficient versions arising from the Tate–Poitou

sequences in [25] and [11]:

X2n+1,n(X) ×X2u+1,u(X) −−−−→ Q/Zy ∂

x ∥∥∥
X2n+1(X, µ⊗nm )×X2u(X, µ⊗um ) −−−−→ Q/Z.

If X is a curve with model X , then under the identification Br(X )∼=
X3,1(X) the pairing should agree with the Artin–Tate pairing (which is

alternating [2])

Br(X )× Br(X )→Q/Z.

It is an interesting question if the order of X2n+1,n(X) is always a square

for 2n= d+ 1.
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If X has a rational point, and n= 1, u= d, the pairing should be

compatible with the classical pairing

X3,1(X)×X2d+1,d(X) −−−−→ Q/Zx y ∥∥∥
X(Pic0

X)× X(AlbX) −−−−→ Q/Z

where the map X2d+1,d(X)→X(AlbX) is induced by the map

H2d+1
et (X, Z(d))→H1(K, H2d

et (X̄, Z(d)))

∼=H1(K, CH0(X̄)0)→H1(K,AlbX)

arising from the Hochschild–Serre sequence and the albanese map.

IfX is an abelian variety with principal polarization, the classical Cassels–

Tate pairing is not alternating [24]. However, the proof of Proposition 5.4

shows that this obstruction is contained in the kernel of X(Pic0
X)→

X3,1(X).

§6. Equivalence of conjectures

In this section, K is a function field and X → C a flat and regular model.

In [8] we proved the following theorem:

Theorem 6.1. Tate’s conjecture for divisors on X is equivalent to

Tate’s conjecture for divisors on X and the finiteness of the Tate–

Shafarevich group X(AlbX).

This was proven by considering weight d motivic cohomology. We give a

shorter proof of a weaker result using weight 1 motivic cohomology. We have

already seen that finiteness of Br(X ) implies finiteness of X3,1(X) which

implies finiteness of X(Pic0
X).

Theorem 6.2. Finiteness of X(Pic0
X) and Tate’s conjecture for divi-

sors on X imply the finiteness of Br(X ).

Proof. Fix l 6= p. Since the groups are finitely generated, completing the

short exact sequence 0→ Pic0(X)→ Pic(X)→NS(X)→ 0 at l gives the

exact upper row in the following commutative diagram:

0 −−−−→ Pic0(X)∧l −−−−→ Pic(X)∧l −−−−→ NS(X)∧l → 0

a

y b

y c

y
0 −−−−→ H1(K, Tl Pic0

X) −−−−→ H2
et(X, Zl(1))0 −−−−→ H2

et(X̄, Zl(1))GK
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The lower row comes from the Hochschild–Serre spectral sequence for

continuous l-adic cohomology [14, Remark 3.5 b].

Hs(K, Ht
et(X̄, Zl(1)))⇒Ht

et(X, Zl(1)),

where we set H2
et(X, Zl(1))0 = cokerH2(K, Zl(1))→H2

et(X, Zl(1)). For the

left term we use that the injection

lr Pic0(X̄)→ lr Pic(X̄)∼=H1
et(X̄, Z/lr(1))

induces isomorphisms H i(K, Tl Pic0)∼=H i(K, H1(X̄, Zl(1))) in the limit as

limr H
i(K, lr NSX) = 0 for all i.

The map a is the composition of the inclusion Pic0(X)∧l→
H0(K, Pic0

X)∧l with finite cokernel with the left map in the short exact

coefficient sequence

0→H0(K, Pic0
X)∧l→H1(K, Tl Pic0

X)→ TlH
1(K, Pic0

X)→ 0.

The map b is the canonical map in the coefficient sequence with cokernel

Tl Br0(X). Finally, c is the cycle map, whose cokernel is finite if and only if

Tate’s conjecture for divisors holds on X. It is easy to see that the diagram

commutes. Combining this with the following Proposition, we obtain that

Tate’s conjecture for divisors on X together with finiteness of X(Pic0
X){l}

implies that Tl Br0(X) vanishes. But the inclusion Br(X )→ Br0(X) induces

an inclusion Tl Br(X )→ Tl Br0(X), hence Tl Br(X ) vanishes as well. Since

Br(X ){l} is of cofinite type, we conclude that Br(X ){l} is finite, which in

turn implies that Br(X ) is finite [20].

Proposition 6.3. Let A be an abelian variety over a global function

field K. Then X(A) is finite if and only if TlH
1(K, A) vanishes for some

(all) l 6= p.

Proof. Since A(Kv) has a subgroup of finite index which is uniquely

divisible by all integers prime to p, duality of H1(Kv, A) and A(Kv) [26,

Theorem 9.3] shows that H1(Kv, A)[1/p] is finite for all v. Hence taking

Tate-modules in the short exact sequence

0→X(A)→H1(K, A)→
∏
v

H1(Kv, A)

shows that TlX(A)∼= TlH
1(K, A). Finally, X(A) is finite if and only if

X(A){l} is finite for some l, or equivalently if TlX(A) vanishes [21, I

Remark 6.7].
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More generally, let A be an abelian variety over any global field, and

consider the exact sequence dual to the main theorem of [12]

0→X(A)→H1(K, A)→
⊕
v

H1(Kv, A)→ (T Sel(A))∗→ 0.

Let l be different from the characteristic of K and τ be the corank of

X(A){l}. Then Sel(A){l} is of cofinite type of corank τ + rankA(K), hence

Tl(Sel(A))∼= Zτ+rankA(K)
l and Tl(Sel(A))∗ ∼= (Ql/Zl)τ+rankA(K). Moreover,

TlH
1(Kv, A)∼= Z[Kv :Ql] dimA

l if charKv = 0 and v|l, and zero otherwise.

Since X(A)∧l is finite, we obtain up to finite groups an exact sequence

of Tate-modules

(4) 0→ Zτl → TlH
1(K, A)→ Z[K:Q] dimA

l → Zτ+rankA(K)
l ,

where we set [K : Q] = 0 if K is a function field.

Proposition 6.4. The vanishing of TlH
1(K, A) implies that X(A){l}

is finite and rankA(K) > [K : Q] dimA. The converse holds if K = Q and

A is an elliptic curve.

Proof. From the sequence (4) we see that the vanishing of TlH
1(K, A)

implies finiteness of X(A){l}, hence τ = 0 and A(K) has rank at least

[K : Q] dimA. Conversely, if X(A){l} is finite, then the first terms of (4)

become

0→ TlH
1(K, A)→ Z[K:Q] dimA

l → ZrankA(K)
l .

The last map is the map on Tate-modules induced by∏
v|l

H1(Kv, A)∼=
∏
v|l

(A(Kv)
∧l)∗→ (A(K)∧l)∗ ∼= Tl(Sel(A))∗,

and if dimA= [K : Q] = 1, then this is a nontrivial map from a Zl-module

of rank one, hence injective.

The Proposition generalizes a result of Kriz [17], who considers the

question when Tl Br0(E) = coker Tl Br(K)→ Tl Br(E) vanishes for elliptic

curves over Q. Since E has a rational point and Br(Ē) = 0, the Hochschild–

Serre spectral sequence (1) gives a split short exact sequence

0→ Br(K)→ Br(E)→H1(Q, E)→ 0,

hence this is equivalent to the vanishing of TlH
1(Q, E).
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§7. Connections to Galois cohomology

We relate the work of Jannsen [15] to the groups Si,n(X). Let m be prime

to the characteristic of K.

Proposition 7.1. There is a map of spectral sequences

(5)

Hs(K, Ht
et(X̄, Z/m(n))) ⇒ Hs+t

et (X, Z/m(n))y y∏
v

′Hs(Kv, H
t
et(X̄, Z/m(n)))⇒

∏
v

′Hs+t
et (Xv, Z/m(n))

where
∏′
v on the left denotes the product, restricted product with respect to

unramified cohomology, and sum for s= 0, 1, 2, respectively, and on the right

the restricted product with respect to the cohomology Hs+t
et (Xv, Z/m(n)) of

a model (which are subgroups for almost all v). The same statement holds

with Ql/Zl(n)-coefficients.

Note that the right vertical map is defined by the argument of Lemma 4.2.

Proof. Assume that v does not divide m and that X has good reduction

at v, that is, there is a smooth Xv over Ov with generic fiber Xv and closed

fiber Yv. If g is the Galois group of the reside field, then we have short exact

sequences

H1(g, H i−1
et (Ȳv, Z/m(n)))→H i

et(Yv, Z/m(n))→H0(g, H i
et(Ȳv, Z/m(n))).

By the smooth and proper base-change theorem,

Ht
et(Ȳv, Z/m(n))∼=Ht

et(X̄, Z/m(n))Iv ∼=Ht
et(X̄, Z/m(n))

for all t, hence using the proper base-change theorem in the middle, we can

identify this with the short exact sequence in the upper row of the diagram
(6)

H1(g, Hi−1
et (X̄, Z/m(n))) // Hi

et(Xv, Z/m(n)) //

��

H0(g, Hi
et(X̄, Z/m(n)))

��
Hi

et(Xv, Z/m(n)) // H0(Kv, H
i
et(X̄, Z/m(n)))

The outer groups are unramified cohomology groups of Kv by definition.

The diagram implies that the lower (edge) map is surjective, hence the

https://doi.org/10.1017/nmj.2018.47 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.47
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differential

dv2 :H0(Kv, H
i
et(X̄, Z/m(n)))→H2(Kv, H

i−1
et (X̄, Z/m(n)))

vanishes for all v as above. It follows that the differential (dv2) maps the

product to the sum.

Finally, the upper row in the diagram (6) shows the spectral sequence

converges to the abutment.

Jannsen [15, Theorem 3(c,d)] shows that if i 6= 2n− 2 and K is a number

field, then

H2(K, H i
et(X̄,Ql/Zl(n)))→

⊕
v

H2(Kv, H
i
et(X̄,Ql/Zl(n)))

has finite kernel and cokernel.

Proposition 7.2. If i 6= 2n, then there is a homomorphism from

Si,n(X){l} to

kerH1(K, H i−1
et (X̄,Ql/Zl(n)))→

∏
v

H1(Kv, H
i−1
et (X̄,Ql/Zl(n)))

with finite kernel and cokernel.

Proof. Since the map

E0,i
2 (X) =H i

et(X̄,Ql/Zl(n))GK → E0,i
2 (Xv) =H i

et(X̄,Ql/Zl(n))Gv

is injective for any v 6 |l, Si,n(X){l} agrees with the kernel of

F 1H i
et(X,Ql/Zl(n))→ F 1

∏
v

′
H i

et(Xv,Ql/Zl(n)),

with respect to the filtration induced by the spectral sequence (5). Now the

diagram with exact sequences

H2(K, Hi−2
et (X̄, Ql/Zl(n))) −−−−−→ F 1 −−−−−→ H1(K, Hi−1

et (X̄, Ql/Zl(n)))→ 0y y y⊕
v
H2(Kv , H

i−2
et (X̄, Ql/Zl(n))) −−−−−→ F 1

∏
v

′ −−−−−→
∏
v

′H1(Kv , H
i−1
et (X̄, Ql/Zl(n)))→ 0

shows that the kernels of the two right vertical map differ by a finite group

in view of Jannsen result.
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The kernel of the map

Hs+t
et (X, Z/m(n))→

∏
v

′
Hs+t

et (Xv, Z/m(n))

was examined in [25] and [11], but it is not clear what happens in the colimit.

We hope that the groups with integral coefficients are better behaved.
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