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Abstract

Groundwater is a vital resource for various water users in the Netherlands. However, due to a
changing climate, increasing water demand and changes in the water system, the country is
increasingly exposed to groundwater droughts. Water managers use various indicators and
statistics to identify groundwater droughts. These indicators characterise the drought for
example in terms of intensity, duration and probability of occurrence. Often, these indicators
require information on long-term average groundwater conditions and extreme situations that
can occur over long periods. However, the availability of long-term groundwater observations
of more than ten years in length is limited. Particularly, extreme groundwater drought events
are ill-described and subject to large uncertainty in their characterisation. This study explores a
novel method for obtaining long-term phreatic groundwater levels by combining a data-driven
time series model using transfer function-noise modelling with detrended historical
meteorological time series representing the current climate. The method is applied to an
area in the Netherlands to generate groundwater levels for the period 1910–2022. Our results
reveal differences in the characterisation of groundwater droughts when the extended
groundwater time series are compared with observations of a limited duration (eight years).
Using the 2018 summer drought event as an example, we find that the probability of this
groundwater drought occurring is approximately once every twelve years, based on the eight-
year observation period. However, this probability reduces to a once every 24-year event when
using historically generated groundwater time series to characterise the groundwater drought.
We conclude that characterising droughts with the extended groundwater time series based on
historical meteorological data can provide a more comprehensive insight into the intensity and
frequency of groundwater droughts, as well as the probability of occurrence of current
groundwater levels. Hence, the proposed method supports water managers in establishing
return period-based criteria for measures, such as deciding when to implement irrigation bans.

Introduction

The availability of groundwater is important for many purposes in the Netherlands, such as
agriculture, industry, drinking water, prevention of land subsidence and mitigation of
salinisation problems. However, during periods of precipitation deficit (meteorological
drought), groundwater levels can drop significantly, resulting in groundwater droughts and
reduced water availability for many of these user functions (van Loon, 2015). Recent droughts
have received much attention due to the severe damage they have caused to a wide range of
sectors (Brakkee et al., 2021). For example, the drought of 2018 caused significant damage to the
agricultural sector, hampered navigation, drinking water supplies and disrupted industry, with
estimated economic losses ranging from €450 to €2080 million (van Hussen et al., 2019).

Several factors, including a changing climate, increased groundwater abstractions and
changes in the water system, are putting pressure on the groundwater availability. The increase
in climate variability is expected to lead to even drier summers in the future (Philip et al., 2020).
The recently published KNMI’23 climate projections confirm this trend, predicting drier
summers in the Netherlands under all expected future climate scenarios (van Dorland et al.,
2024). Population growth, economic growth and changes in land use increase the demand for
groundwater and the corresponding increase in groundwater abstractions in dry years (CBS
et al., 2024). Moreover, the current design and use of the Dutch water system have left areas
susceptible to droughts. The accelerated discharge of precipitation in wet winter periods through
drainage pipes, ditches and (channelised) streams plays a major role in this (de Lenne &
Worm, 2020).

Monitoring groundwater dynamics is essential to gain insight into groundwater droughts.
Groundwater observations can serve as the basis for calculating drought indicators, and various
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statistical methods are used to characterise current groundwater
conditions using these observations. Characterisation of groundwater
droughts involves providing insight into their characteristics such as
intensity, duration and frequency (Petersen-Perlman et al., 2022).
Ideally, at least 30 years of observations are required to capture long-
term groundwater trends (van den Eertwegh et al., 2021). Detection of
extreme droughts requires an even longer period.However, the length
of groundwater observations useful for analysis is often limited to 5–
10 years. Reliable long-term groundwater measurements (over a
period of more than 50 years) are hardly available in the Netherlands
(Verhagen & Avis, 2021). In addition, these historical groundwater
observations are often not applicable for long-term analyses due to
changes in climate, abstractions and water systems (Ritzema et al.,
2012; van den Eertwegh et al., 2021). Therefore, it is challenging to
accurately characterise groundwater droughts due to this lack of long-
term groundwater observations. Extended time series are essential to
improve the characterisation of groundwater droughts.

Groundwater modelling can be used in combination with
meteorological data to extend groundwater time series. Numerical
models, such as MODFLOW, can be used for this purpose.
However, these models are computationally expensive, which
limits their use for long-termmodelling. An alternative approach is
time series modelling, which is commonly used to simulate
groundwater levels (Bakker & Schaars, 2019).

This study applies a transfer function-noise (TFN) model,
which uses regression analysis to establish relationships between
observed groundwater levels and various stress factors, such as
precipitation, evaporation, surface water levels and groundwater
abstractions. This relationship can be used to extend or interpolate
observed time series of groundwater levels. This data-driven approach
is often simpler and much faster than applying a numerical
groundwater model (Bakker & Schaars, 2019). Furthermore, the
response of a water system to input stresses is included, which
improves our understanding of the effects of an input stress (Pezij
et al., 2020). Finally, the stochastic system dynamics are modelled
using a noise model (von Asmuth et al., 2002). Many studies have
shown the effectiveness of using TFN modelling in groundwater
studies (Collenteur et al., 2021, 2023; Jemeljanova et al., 2023; Pezij
et al., 2020; Rudolph et al., 2023; Zaadnoordijk et al., 2019).

The extension of observed groundwater data using precipita-
tion and evaporation is constrained by the availability of long-term
meteorological measurements reflective of the current climate.
Due to climate variability, only 30 years of meteorological data can
be used to extend groundwater time series, as this period defines
the current climate (World Meteorological Organization, 2017).
Therefore, the approach needs to move towards climate models or
artificially generated meteorological data for further extension.
Furthermore, the use of syntheticmeteorological data in time series
modelling shows potential for extending groundwater level time
series (El Mezouary et al., 2020; Vonk, 2021). This study uses
detrended historical meteorological time series (STOWA, 2023).

Therefore, we propose a methodology to generate long-term
groundwater level time series by combining groundwater
modelling and historical detrended meteorological time series
for the period 1910–2022. The aim of this methodology is to
improve the understanding of the intensity and occurrence of
groundwater droughts.

Methods

Figure 1 outlines the used methodology. First, a TFN model is
developed using both observed groundwater levels and observed

meteorological data. The trained model is then used to generate
long-term groundwater levels for the period 1910–2022 using the
detrended historical meteorological data. The intensity and
frequency of groundwater droughts are then characterised using
annual minimum groundwater levels for both the generated long-
term groundwater simulations and short-term groundwater
measurements. Finally, a comparison is made between ground-
water droughts occurring in the simulated long-term groundwater
levels and the observations. Each of these stages is described in
detail in the following sections of this chapter.

Study area and data

As an example to illustrate the methodology, this study focuses on
four locations with a groundwater monitoring well in the northern
part of the Dutch province Limburg, see Fig 2. The wells are located
in the management area of regional water authority Waterschap
Limburg. These wells have limited external influences, such as
limited interaction with surface water or major abstractions. The
northern part of Limburg has sandy soils which are susceptible to
groundwater droughts due to their reliance on precipitation for
groundwater recharge (Brakkee et al., 2021; van den Eertwegh
et al., 2021).

Three data types are used in this study:

• Observed phreatic groundwater level time series. These time
series are used as the goal function to train the TFN model.
The four monitoring wells provide phreatic groundwater
observations for the period 2012–2020;

• Observed meteorological time series (precipitation and
reference crop evapotranspiration). This time series is used
as input to train the TFNmodel (von Asmuth et al., 2021). The
observed daily precipitation sum is obtained fromnearbyKNMI
weather stations Ell, Heibloem and Sevenum. KNMI station Ell
provides daily observed reference crop evapotranspiration data.
In the remainder of this article, we refer to the reference crop
evapotranspiration as evapotranspiration data;

• Detrended long-term meteorological time series (precipita-
tion and evapotranspiration). These time series are provided
for the period 1910–2022 and are detrended for climatologi-
cal trends based on the last 30 years. They represent the
meteorological conditions over a long time period in the
current climate. These time series are generated by perform-
ing a seasonal detrending approach using a LOESS-fit on
long-term homogeneous observations from various KNMI
meteorological stations in the Netherlands. This approach
accounts for the average seasonal trend change. The
detrended series are then gridded by performing a spatial
interpolation: ordinary kriging for the precipitation data and
thin plate spline for the evapotranspiration data. More details
can be found in (STOWA, 2023). The climatological
properties of historical meteorological data are validated.
The Kolmogorov–Smirnov test revealed that the historical
precipitation at locations Heibloem and Sevenum revealed
deviations from the current climate. Therefore, the cumu-
lative density functions of these precipitation series were bias
corrected using quantile mapping. As a result, the historical
meteorological data does match the current climate and can
be used to simulate groundwater levels in the current climate.

Table 1 shows an overview of the data and their characteristics.
The locations of the point observations are visualised in Fig 2.
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Transfer function-noise modelling

We set up a TFN-model using the open-source Python package
Pastas (Collenteur et al., 2019). Pastas utilises the Predefined
Impulse Response Functions in Continuous Time (PIRFICT)
methodology (von Asmuth et al., 2002). Effectively, the change in
groundwater levels is described by

h tð Þ ¼
XM
m¼1

hm tð Þ þ d þ r tð Þ (1)

In which h(t) is the observed groundwater level [m] at time t [day],
hm (t) is the contribution of input stress to the groundwater level

Figure 1. Flowchart of methodology.

Figure 2. The four monitoring wells
and the KNMI meteorological stations
in northern Limburg (KNMI, 2023b,
2023a). The monitoring wells are
located near Ell, Heibloem, Sevenum
and Mariapeel.
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[m] at time t, d is the base level of the model [m], and r(t) is the
model residual [m] at time t (Collenteur et al., 2019).

The selected locations have limited external influences,
according to Waterschap Limburg. Hence, it is assumed that the
main explanatory variables for groundwater dynamics are
precipitation and evapotranspiration, ignoring external factors
such as surface water level dynamics and groundwater abstrac-
tions. We define daily groundwater recharge as input stress, which
consists of the daily precipitation minus daily evapotranspiration.
The contribution of the recharge input stress to the groundwater
level can be determined using the following impulse response
function:

hrecharge tð Þ ¼
Z

t

�1
Srecharge τð Þ#recharge t � τð Þdτ (2)

In which Srecharge is the time series of the recharge input stress at
preceding time τ [m] and ϑm is the impulse response function of
the recharge input stress [−] (von Asmuth et al., 2002). The
impulse response function describes the behaviour of groundwater
levels following an impulse of the input stress. A commonly used
impulse response function is a function based on the gamma
distribution (Besbes &DeMarsily, 1984), which has parameters for
the shape (a [day], n [−]) and scaling factor (A [day−n]):

# tð Þ ¼ Atn�1e�t
a

anG nð Þ (3)

Another important aspect of time series modelling is the noise
model, which is used to reduce autocorrelation in the model
residuals and simulate stochastic system behaviour. The residual
difference between observed and simulated groundwater levels
reflects system behaviour that cannot be described by the input
stress(es). Model residuals often show a correlation that makes them
dependent on the previous day’s residual.When this correlation effect
persists for several days, it potentially leads to exaggerated simulated
groundwater levels. To address this issue, correlated noise is
introduced using an exponential decay (Collenteur et al., 2019):

nc tð Þ ¼ e�Dt
α � nc t � 1ð Þ þ n tð Þ (4)

In which nc is correlated noise [−], α is the noise decay parameter
[day] and n is uncorrelated (white) noise result of a random
process [−]. The created noise series, with a time step Δt [day] of
one day, is by definition the difference between the observations
and the deterministic part (Eq. 1).

Pastas uses both observed groundwater time series and the
observed meteorological series to calibrate the parameters of the

transfer function, using the non-linear least squares method for the
optimisation. The model is trained for an eight year-period. This
time period is chosen such that the model represents the current
response of the groundwater system (Zaadnoordijk et al., 2019),
assuming that no significant alterations have taken place in the
water system. The calibration period is six years (2014−2020) and
the validation period is two years (2012−2014). The calibration
period consists of both dry andmoderate wet years to include these
dynamics in the calibration procedure. The validation describes
model performance for a different period than the calibration
period.

The model performance is evaluated using two goodness of fit
metrics: the explained variance percentage (EVP) and the root
mean square error (RMSE). These metrics are commonly used for
groundwater level TFNmodels (von Asmuth et al., 2012). The EVP
[%] describes the percentage of variation in the groundwater levels
that is explained by precipitation and potential evapotranspiration:

EVP ¼ σh
2 � σr

2

σh
2 � 100% (5)

where σh2 [m2] is the variance of the groundwater observations and
σr2 [m2] is the variance of the residuals. The returned value is
bounded between 0 and 100%, higher percentages indicate more
explained variance and therefore a better fit. The RMSE [m]
measures the average difference between simulated and observed
values and is calculated by the square root of the mean of the
residuals:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiP

r2

Nr

s
(6)

where Nr [−] is the amount of residuals r [m]. A lower root mean
square error implies smaller residuals and therefore a better fit. The
goodness of fit criteria for the model performance are set to a
minimum EVP of 70% and RMSE below 0.5, which often serve as a
rule of thumb for TFN models (Pezij et al., 2020; van Engelenburg
et al., 2020; Ritter et al, 2013).

Characterising groundwater droughts

Many methods to describe groundwater droughts exist, most notably
using percentiles (Zaadnoordijk et al., 2019) or the Standardised
Groundwater Index (Bloomfield&Marchant, 2013). In this paper, we
use annual minimum groundwater levels to characterise the intensity
and frequency of groundwater droughts. This indicator is chosen for
its simplicity to illustrate the approach, it is not necessarily the most
appropriate indicator to describe groundwater droughts. Therefore,

Table 1. The type, temporal resolution, and time period of the data

Name Type Temporal resolution Time period Reference

Groundwater observations Point Bimonthly (Ell B58C0749) and daily
(Heibloem B58B0154, Sevenum B52G1304
and Mariapeel B52D0490)

2012–2020 (DINOloket, 2020)

Historical daily precipitation Point Daily 2012–2020 (KNMI, 2023a, 2023b)

Historical reference crop evapotranspiration Point Daily 2012–2020 (KNMI, 2023b)

Detrended long-term precipitation and
reference crop evapotranspiration

Raster (1 × 1 km) Daily 1910–2022 (STOWA, 2023)
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the duration of drought is not considered. The drought intensity is
represented by the absolute value of the annual minimum ground-
water level [m þNAP], while the frequency of droughts is assessed
using return periods for the annual minima [years], estimated using
their plotting position (Benard & Bos-Levenbach, 1954):

Fi ¼
i� 0:3
N þ 0:4

(7)

In which Fi is the plotting position for a specific drought intensity
on a frequency curve [year−1], i denotes the rank number of the
drought intensity [−], sorted from high to low annual minimum
water levels [mþNAP], where the lowest value has a rank of 1.N is
the total number of data values [−]. The return period T [year] is
the inverse of the survival function of Fi. The return period
indicates how often a drought event of a specific intensity can be
expected to occur:

T ¼ 1
1� Fi

(8)

The intensity and frequency of groundwater droughts are derived
from the long-term generated groundwater levels (1910−2022)
and compared to the intensity and frequency of groundwater
droughts derived from observations of the last eight years.

Results

Calibration and validation of the groundwater simulations

First, we present the results of the model calibrations and
validations to ensure that the long-term generated groundwater
levels are representative of the current climate and groundwater
system. Figure 3 shows the calibration and validation results for the
four locations. The TFN model is able to capture seasonal
groundwater dynamics. In addition, the model is able to capture
extreme events, as visible during the dry summer period of 2018.
The goodness of fit metrics are shown in the figures. These metrics
meet the criteria for the calibration period as well as the validation
period. The calibrated model parameters can be found in the
Appendix.

Long-term groundwater simulation (1910–2022)

We then used the trained TFN-models in combination with the
long-term detrended historical meteorological time series to
generate long-term groundwater simulations. Figure 4 shows the
resulting groundwater levels for the period 1910−2022. It must be
emphasised that these results represent an estimate of what
groundwater levels would have been under the current climate and
water system, rather than reflecting actual observed historical
groundwater levels. The results are historical projections based on
current conditions, so they are useful for describing current
groundwater conditions.

As can be seen, groundwater levels in 1976 are very low, even
lower than in 2018. In fact, there are several years that were drier
than 2018, a trend that is consistent across all locations.

A validation process was carried out to ensure the accuracy of
the long-term groundwater level simulations. First, long-term
generated groundwater simulations were compared with actual
groundwater observations within the analysis period (2012−2020).
Similar performance on goodness-of-fit metrics confirmed the

model’s ability to reproduce observed groundwater levels for the
calibration period, as shown in Fig 5.

Comparing groundwater droughts

We then used annual minimum groundwater levels to characterise
groundwater droughts for the long-term generated groundwater
simulations (1910−2022) and groundwater observations of the last
eight years. Figure 6 shows the intensity of groundwater levels,
characterised by annual minimum levels, and the frequency,
represented by the return periods of these annual minimum levels.

The use of long-term groundwater simulations allows the
characterisation of historical droughts, such as the one of 1976. In
particular, the long-term simulations show that several years,
namely 1921 and 1976, experienced a greater drought intensity
than 2018, when the groundwater levels are adjusted to the current
climate. Thus, based on the generated long-term groundwater
levels, the minimum value in 2018 appears comparatively less
severe than based on observations from the last eight years.

Analysing the intensity and frequency of groundwater droughts
using both the long-term generated groundwater levels and the
observations from the last eight years reveals substantial
differences. Figure 6 shows a significant contrast in the frequency
of groundwater droughts between long-term simulations and
observations. This difference is evident in the different distribution
functions of groundwater droughts shown in the figure, implying
that long-term simulations yield different return periods compared
to groundwater observations.

Table 2 shows the results using annual minimum groundwater
levels to characterise the 2018 drought. While the intensity is
consistent across observations and simulations, the results for
frequency differ for the groundwater observations and the long-
term groundwater simulations. Specifically, the frequency derived
from the simulations indicates a return period that is larger than
the return period derived using observations.

Discussion

The characterisation of groundwater droughts reveals substantial
differences in return periods derived from groundwater observa-
tions and long-term simulations. The methodology presented in
this study allows a direct conversion of groundwater levels into
return periods and vice versa. Consequently, the use of long-term
generated groundwater levels for the current climate provides
more statistically accurate estimates of drought frequency (Fig 7a).
Case in point is the 2018 drought, which occurs less frequently than
expected based on observations (once in 12 years) compared to the
simulations (once in 24 years). The change in the frequency
distribution also affects the groundwater level corresponding to a
given return period (Fig 7b). For example, the groundwater levels
corresponding to a drought that occurs once every 10 years (T10) is
much lower when derived from observations (26.48 mþNAP)
compared to derived from the simulations (26.78 m þNAP).
Arguably, the method thus facilitates a more accurate quantifi-
cation of past drought intensity under current climate and
groundwater system.

The results reveal a significant change in the frequency patterns
of long-term simulated groundwater levels near the T10 return
period. Prior to this change, groundwater levels generally decline
gradually with increasing return periods, followed by a sudden
drop before stabilising. This trend is observed at all locations,
although for some locations this effect is more pronounced.
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Possible reasons for this include physical processes that are
noticeable at very low groundwater levels, or inaccuracies in the
estimation of return times. Estimation of return periods assumes
independence between events, affecting the statistical analysis. As a
result, the estimation of return periods is influenced by the
selection of drought events, which can lead to bias. In addition,
longer return periods are less accurate because they have occurred
less in the simulations. Therefore, with 112 years of generated data,
reliable return periods can be estimated up to about T30, which
occur on average more than four times in the long-term generated
groundwater levels. Additionally, some groundwater levels are
briefly simulated above the surface level. This anomaly is likely due
to the model being calibrated during a relatively dry period (2014
−2020), resulting in less accurate modelling of periods with high
precipitation. Lastly, the serial correlation of the residuals in the
model should be considered. If the model’s residuals are not

randomly distributed, it can lead to systematic deviations over long
periods, affecting the model’s reliability over extended timescales
(Zaadnoordijk, 2022).

There are also practical ramifications of using our proposed
approach. Water management in the Netherlands often follows a
risk-based approach, taking into account the frequency of extreme
events. The differences in the results of this study have significant
implications, suggesting that reliance on observation-based criteria
alone may lead to underestimation of drought intensity and
consequently delay necessary action. In addition, other indicators
or statistics can be used to assess the intensity and frequency of low
groundwater levels, which can help to define criteria for the
implementation of measures such as irrigation restrictions.

A limitation of the study is that characterising groundwater levels
using annual minimum groundwater levels and estimating return
periods using plotting positions is a shallow approach and not always

Figure 3. Calibration (orange) and validation (blue) of the time series model, together with goodness of fit metrics EVP and RMSE with respect to measurements (dots).

Figure 4. Long-term groundwater levels based on simulations with the calibrated model and detrended historical meteorological data. The solid red line is the recent dry year
2018, which can be compared to observed groundwater levels. The dashed red line is the record-year 1976, which is the year with the largest observed precipitation deficit.
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Figure 5. Validation of long-term generated groundwater levels (green) usingmeasurements in the period 2012–2020. The figure also includes the results of themodel calibration
(orange) and validation (blue).

Figure 6. Differences in return periods for annual minimum groundwater levels.

Table 2. Difference in the characterisation of the annual minimum water level for reference year 2018 between groundwater observations and simulations

2018 Intensity Frequency (return period)

Location Observations [m þ NAP] Simulations [m þ NAP] Observations [year] Simulations [year]

Ell 26.45 26.49 12 24

Heibloem 28.78 28.53 5 15

Sevenum 24.60 24.43 12 31

Mariapeel 30.15 30.02 12 13
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indicative of drought conditions. However, the purpose of this
procedure is to simplify the analysis and facilitate comparison of
results.

Conclusion

This study aimed to explore a novel method for obtaining long-
term phreatic groundwater levels, by combining a data-driven time
series model using transfer function-noise modelling with
detrended historical meteorological time series that represent
the current climate. In applying the method to an area in the
Netherlands, we showed that groundwater observations can
provide only a limited characterisation of drought events,
especially in terms of extreme groundwater levels, due to their
limited length. We conclude that additional insight into low
groundwater levels can be provided by using a long-term
detrended meteorological series and time series modelling.

A profound practical implication of our study is that proposed
interventions to mitigate (the consequences of) groundwater
droughts may differ significantly depending on the character-
isation method chosen. Insights from our study can therefore help
water managers to consider more comprehensive return period-
based criteria for interventions such as irrigation bans or the
placement of more structural measures including water system
adaptations.
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Ritter, Axel & Muñoz-Carpena, R., 2013. Performance evaluation of
hydrological models: statistical significance for reducing subjectivity in
goodness-of-fit assessments. Journal of Hydrology 480: 33–45. DOI: 10.
1016/j.jhydrol.2012.12.004.

Ritzema, H., Heuvelink, G., Heinen, M., Bogaart, P., van der Bolt, F.,
Hack-ten Broeke, M., Hoogland, T., Knotters, M., Massop, H. & Vroon, H.,
2012. Meten en interpreteren van grondwaterstanden. In: Alterra-rapport
2345.

Rudolph,M.G., Collenteur, R.A., Kavousi, A., Giese,M.,Wöhling, T., Birk, S.,
Hartmann, A. & Reimann, T., 2023. A data-driven approach for modelling
Karst spring discharge using transfer function noise models. Environmental
Earth Sciences 82(13): 82–339. DOI: 10.1007/s12665-023-11012-z.

STOWA. Droogtestatistiek: meteo-onderzoek ten behoeve van het waterbeheer:
Deelrapport 3. STOWA 2023-36. 2023. https://www.stowa.nl/publicaties/
droogtestatistiek-meteo-onderzoek-ten-behoeve-van-het-waterbeheer-dee
lrapport-3.

van den Eertwegh, G., de Louw, P., Witte, J.-P., van Huijgevoort, M.,
Bartholomeus, R., van Deijl, D., van Dam, J., Hunink, J., America, I.,
Pouwels, J., Hoefsloot, P. & de Wit, J., 2021. Droogte in zandgebieden van
Zuid-, Midden- en Oost-Nederland : het verhaal - analyse van droogte 2018
en 2019 en bevindingen : eindrapport. KnowH2O. https://edepot.wur.nl/
555352.

van Dorland, R., Beersma, J., Bessembinder, J., Bloemendaal, N., van Den
Brink, H., Brotons Blanes, M., Drijfhout, S., Groenland, R., Haarsma, R.,
Homan, C., Keizer, I., Krikken, F., Le Bars, D., Lenderink, G., van
Meijgaard, E., Meirink, J.F., Overbeek, B., Reerink, T., Selten, F., : : : van
Der Wiel, K., 2024. KNMI National Climate Scenarios 2023 for the
Netherlands. Scientific Report 2023(2).

van Engelenburg, J., de Jonge, M., Rijpkema, S., van Slobbe, E. & Bense, V.,
2020. Hydrogeological evaluation of managed aquifer recharge in a glacial
moraine complex using long-term groundwater data analysis. Hydrogeology
Journal 28(5): 1787–1807. DOI: 10.1007/s10040-020-02145-7.

van Hussen, K., van De Velde, I., Läkamp, R. & van Der Kooij, S.
Economische schade door droogte in 2018.

van Loon, A.F., 2015. Hydrological drought explained. Wiley Interdisciplinary
Reviews: Water 2(4): 359–392. DOI: 10.1002/WAT2.1085.

Verhagen, F. & Avis, L., 2021. Lessen uit lange grondwaterreeksen. Stromingen
27(2): 3–18.

von Asmuth, J., Baggelaar, P., Bakker, M., Brakenhoff, D., Collenteur, R.A.,
Ebbens, O., Mondeel, H., Klop, S. & Schaars, F. 2021. Handleiding
Tijdreeksanalyse. STOWA. www.stowa.nl.

von Asmuth, J., Bierkens, M. & Maas, K., 2002. Transfer function-noise
modeling in continuous time using predefined impulse response
functions. Water Resources Research 38(12): 23–1–23–12. DOI: 10.1029/
2001wr001136.

von Asmuth, J., Maas, K., Knotters, M., Bierkens, M.F.P., Bakker, M.,
Olsthoorn, T.N., Cirkel, D.G., Leunk, I., Schaars, F. & von Asmuth, D.C.,
2012. Software for hydrogeologic time series analysis, interfacing data
with physical insight. Environmental Modelling and Software 38: 178–190.
DOI: 10.1016/j.envsoft.2012.06.003.

Vonk, M. Performance of nonlinear time series models to simulate synthetic
ground-water table time series from an unsaturated zone model, TU Delft
Repository, 2021. https://resolver.tudelft.nl/uuid:36191e86-d81e-464f-94ab-
b573d95c99ab.

World Meteorological Organization. WMO guidelines on the calculation of
climate normals 2017. https://library.wmo.int/idurl/4/55797.

Zaadnoordijk, W.J., Bus, S.A.R., Lourens, A. & Berendrecht, W.L., 2019.
Automated time series modeling for piezometers in the national database of
the Netherlands. Groundwater 57(6): 834–843. DOI: 10.1111/GWAT.12819.

Zaadnoordijk, WJ, 2022. Comment on how good is your model fit? Weighted
goodness-of-fit metrics for irregular time series. Ground Water 60(2):
162–164. DOI: 10.1111/gwat.13175.

Appendix

The transfer function-noise model parameters that were used in
this study are shown in Table A1.

Table A1. Model parameters

Parameter Ell Heibloem Sevenum Mariapeel

A [day−n] 761.62 843.12 466.67 862.48

n [–] 0.94 0.94 1.20 1.20

α [day] 150.63 192.41 57.23 133.40

d [m] 27.62 29.47 25.61 30.85

a [day] 37.47 30.70 41.17 79.04
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