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Abstract

Constraint answer set programming or CASP, for short, is a hybrid approach in automated rea-
soning putting together the advances of distinct research areas such as answer set programming,
constraint processing, and satisfiability modulo theories. CASP demonstrates promising results,
including the development of a multitude of solvers: acsolver, clingcon, ezcsp, idp, inca,
dingo, mingo, aspmt2smt, clingo[l,dl], and ezsmt. It opens new horizons for declarative
programming applications such as solving complex train scheduling problems. Systems designed
to find solutions to constraint answer set programs can be grouped according to their construc-
tion into, what we call, integrational or translational approaches. The focus of this paper is an
overview of the key ingredients of the design of constraint answer set solvers drawing distinc-
tions and parallels between integrational and translational approaches. The paper also provides
a glimpse at the kind of programs its users develop by utilizing a CASP encoding of Travel-
ing Salesman problem for illustration. In addition, we place the CASP technology on the map
among its automated reasoning peers as well as discuss future possibilities for the development
of CASP.
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1 Introduction

Knowledge representation and automated reasoning are areas of Artificial Intelligence

that pay special attention to understanding and automating various aspects of reason-

ing. Such traditionally separate fields of AI as answer set programming (ASP) (Niemelä

1999; Marek and Truszczyński 1999; Brewka et al . 2011), propositional satisfiabil-

ity (SAT) (Gomes et al . 2008), constraint (logic) programming (CSP/CLP) (Rossi et al .

2008; Jaffar and Maher 1994) are representatives of model search in automated reasoning.
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These methods have been successfully used in a myriad of scientific and industrial appli-

cations including space shuttle control (Balduccini et al . 2001; Balduccini and Gelfond

2005), scheduling (Ricca et al . 2012), planning (Kautz and Selman 1992; Rintanen 2012),

hardware verification (Biere et al . 2003; Prasad et al . 2005), adaptive Linux package

configuration (Gebser et al . 2011), systems biology (Gebser et al . 2010), bioinformatics

(Pal et al . 2004; Palu et al . 2010), and software engineering (Cohen et al . 2008; Garvin

et al . 2011; Brain et al . 2012).

Often the combination of algorithmic techniques stemming from distinct subfields of

automated reasoning is necessary. For instance, problems in software verification re-

quire reasoning combining propositional logic with formalizations that include, among

others, theories of strings and arrays. These observations led to studies targeting the

development of hybrid (multilogic) computational methods that put together distinct

solving approaches suitable for different logics. This has led to the development of

hybrid approaches that combine algorithms and systems from different AI subfields.

Constraint logic programming (Jaffar and Maher 1994), satisfiability modulo theo-

ries (SMT) (Nieuwenhuis et al . 2006; Barrett et al . 2008; Barrett and Tinelli 2014),

HEX-programs (Eiter et al . 2005), VI-programs (Calimeri et al . 2007), constraint answer

set programming (CASP) (Elkabani et al . 2004; Mellarkod et al . 2008; Lierler 2014) are

all examples of this trend. CASP is the focus of this paper.

CASP allows one to combine the best of two different automated reasoning worlds:

(1) the nonmonotonic modeling capabilities and SAT-like solving technology of ASP

and (2) constraint processing techniques for effective reasoning over non-Boolean con-

structs. CASP demonstrates promising results. For instance, research by Balduccini on

the design of CASP language ezcsp and on the corresponding solver yields an elegant,

declarative solution to a complex industrial scheduling problem (Balduccini 2011). Simi-

larly, system clingo[dl] provides the basis for solving complex train scheduling problems

(Abels et al . 2019). It is also due to note the development of many CASP solvers in the

past decade: acsolver (Mellarkod et al . 2008), clingcon (Gebser et al . 2009), ezcsp

(Balduccini and Lierler 2017), idp (Wittocx et al . 2008), inca (Drescher andWalsh 2010),

dingo (Janhunen et al . 2011), mingo (Liu et al . 2012), aspmt2smt (Bartholomew and

Lee 2014), clingo[l,dl] (Janhunen et al . 2017), and ezsmt (Susman and Lierler 2016;

Shen and Lierler 2018b). It is fair to say that CASP formalism together with the multi-

tude of supporting tools opens new horizons for declarative programming applications.

There are two main approaches in developing CASP systems/solvers, that is, tools for

processing programs in CASP and enumerating their solutions. The first one goes af-

ter systems that, while processing CAS programs, rely on combining algorithms/solvers

employed in ASP and constraint processing (Mellarkod et al . 2008; Gebser et al . 2009;

Balduccini and Lierler 2017). We call this approach integrational. The second one trans-

forms a CAS program into an SMT formula, whose models are in prespecified relation

with answer sets of the original program (Janhunen et al . 2011; Lee and Meng 2013;

Susman and Lierler 2016; Lierler and Susman 2017; Shen and Lierler 2018b). As a result

a problem of finding solutions to CASP is transformed into a problem of finding models

of SMT formula. We call this approach translational. The translational approach also

includes two systems that translate CAS programs into other formalisms than SMT,

namely, mixed integer programming, system mingo (Liu et al . 2012), and ASP, system

aspartame (Banbara et al . 2015).
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Fig. 1. Paradigms’ content.

Fig. 2. Ingredients of paradigms.

The focus of this paper is an overview of the key ingredients of the integrational and

translational approaches towards construction of CASP systems. The paper starts with

the presentation of CASP in use to showcase the paradigm. In particular, we present

a CASP formulation of Traveling Salesman Problem benchmark alongside its ASP for-

mulation. We then proceed toward defining formal concepts of CASP. The main part

of the paper is devoted to describing details behind the integrational and translational

approaches utilizing examples of two representatives of these methods – systems ezcsp

and ezsmt, respectively. The paper also presents some experimental data together with

an overarching comparison between the existing CASP systems in uniform terminological

terms. We conclude with the discussion on future directions, opportunities, and challenges

of the CASP subfield of automated reasoning. Before proceeding to the main topic of this

paper ,we spend some time on placing CASP on the map of the automated reasoning

subfield of artificial intelligence.

1.1 CASP and its relatives

The question that comes to mind is what are the unique features of CASP in compari-

son to related formalisms, in particular, SMT, constraint logic programming, and ASP.

Before drawing parallels between the fields, let us recall principal ingredients of declar-

ative programming that CASP is a good representative of. In declarative approach to

programming no reference to an algorithm on how exactly to compute a solution is given.

Rather a program provides a description/specification of what constitutes a solution. Au-

tomated reasoning techniques are then used to find a solution to provided specification.

Thus, declarative programming paradigm provides a programmer with two ingredients:

1. Programming/modeling language to express requirements on a solution, and

2. Automated reasoning method to find a solution.

CASP vs SMT. Intuitive visualizations in Figures 1 and 2 are of use1 when we compare

CASP and SMT. Figure 1 makes it clear that the key lies in relation between ASP and

SAT. Lierler provides a detailed comparison of ASP and SAT (2017). Here we reiterate

the main thesis of that work:

ASP provides a declarative constraint programming language, while SAT does not.

1 In Figure 1 we understand word Constraints as in constraint satisfaction.
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The same claim is captured in Figure 2. Both ASP/CASP and SAT/SMT pairs provide a

solid platform for solving difficult combinatorial search problems. Automated reasoning

tools behind these paradigms, called solvers, share a lot in common. Yet, only ASP/CASP

pair supplies its users with programming/modeling language – language of logic programs

– meant to express requirements on a solution using logic programs. The DIMACS and

SMT-LIB standard formats of SAT and SMT solvers, respectively, provide a uniform

front end to these systems, but they are not meant for direct encoding of problems’

specifications.

CASP vs CLP As Figure 1 suggests, the key distinction between CASP and CLP

lies in the difference of underlying paradigms of ASP and logic programming (LP).

Marek and Truszczyński draw a parallel between these two declarative programming

paradigms (1999). To summarize, in original logic programming (Kowalski 1988),

called Prolog, a single intended model is assigned to a logic program. The SLD-

resolution (Kowalski 1974) is at the heart of control mechanism behind Prolog imple-

mentations. Together with a logic program, a Prolog system expects a query. This query

is then evaluated by means of SLD-resolution and a given program against an intended

model. In ASP, a family of intended models (possibly an empty one) is assigned to a

logic program. Each member of this family forms a solution to a problem encoded by

the program. Rules of a logic program formulate restrictions/constraints on solutions. A

program is typically evaluated by means of a grounder-solver pair. A grounder is respon-

sible for eliminating variables occurring in a logic program in favor of suitable object

constants resulting in a propositional program. A solver – a system in spirit of SAT

solvers (Lierler 2017) – is responsible for computing answer sets (solutions) of a pro-

gram. Thus, even though LP and ASP share the basic language of logic programs, their

programming methodologies and underlying solving/control technologies are different.

CASP vs ASP. The origin of CASP methods lies in attempts to tackle a challenge posed

by the grounding bottleneck of ASP. Sometimes when a considered problem contains

variables ranging over a large integer domain grounding required in pure ASP may result

in a propositional program of a prohibitive size. CASP provides means to handle these

variables within Constraints of the paradigm (see Figure 1). There is also an additional

benefit of the paradigm. For example, some CASP dialects provide means to express

constraints over real numbers whereas traditional ASP lacks this capacity. Thus, CASP

offers novel modeling capabilities in comparison to these of pure ASP.

2 Constraint answer set programming via traveling salesman problem

formalization

Before we dive into formal definitions, we present the formalization of a variant of the

Traveling Salesman Problem (Lawler et al . 1985; Gutin and Punnen 2007) in both ASP

and CASP (in the sequel, when we refer to this conjunction we write (constraint) answer

set programming or (C)ASP). (Constraint) answer set programming provides a general

purpose modeling language that supports elaboration tolerant solutions for search prob-

lems. We use the same notion of the search problem as Brewka et al . (2011). Quoting

from their work, a search problem P consists of a set of instances with each instance I
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Fig. 3. Sample TS instance and solutions.

assigned a finite set SP (I) of solutions. In (constraint) ASP to solve a search problem P ,

we construct a program ΠP that captures problem specifications so that when extended

with facts DI representing an instance I of the problem, the answer sets of ΠP ∪ DI

are in one to one correspondence with members in SP (I). In other words, answer sets

describe all solutions of problem P for the instance I. Thus, solving a search problem is

reduced to finding a uniform encoding of its specifications by means of a logic program.

Consider the following combinatorial search problem: given an undirected weighted

graph G (where weights are nonnegative integers), find a Hamiltonian cycle in G with

the sum of the weights of its edges at or below a given value. We can interpret this

problem as a variant of the Traveling Salesman Problem (TS):

We are given a graph with nodes as cities and edges as roads. Each road directly connects a
pair of cities, and costs a salesman some time to go through (time is expressed as a positive
integer value in this variant of the problem). The salesman is supposed to pass each city exactly
once. Find: a route traversing all the cities under certain maximum cost of total time.

In the classical formulation of the TS problem, a route with the minimum cost is of

interest. Here we consider a decision problem in place of a related optimization problem.

Also, in the classical formulation there are no restriction on weights over routes being

integer.

Figure 3 shows an instance of the TS problem (a weighted graph) as well as its rep-

resentation as a set of facts (logic rules without bodies). On the right-hand side of the

figure, we find two solutions to this problem.

Figure 4 presents an ASP formalization of the traveling salesman problem using the

syntax of the standard ASP-Core-2 Language (Calimeri et al . 2019). Given a program

composed of the rules in Figure 4 and the facts encoding the sample instance in Figure 3,

an answer set solver such as clingo, for example, will produce the following output

These answers correspond to the solutions of our sample instance.

Figure 5 presents a typical architecture of an ASP system. For example, aforementioned

tool clingo has this architecture. A grounder is a system that replaces nonground rules

(rules with variables) by their ground counterparts (rules without variables/propositional
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Fig. 4. TS: ASP encoding in the standard ASP-Core-2 language.
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Fig. 5. Answer set programming system architecture.

rules) (Gebser et al . 2007; Calimeri et al . 2008). A solver is then invoked to find answer

sets of a ground program. Procedures behind modern answer set solvers are close relatives

of those behind SAT solvers (Lierler 2017). The process of grounding in ASP is well

understood and highly optimized. For example, consider rule

:-W<#sum{C,X,Y:route(X,Y),cost(X,Y,C)}, maxCost(W). (1)

from the ASP formalization of the TS problem and the discussed instance. A grounder

of system clingo replaces rule (1) with the following rule:

:-4<#sum{1,a,b:route(a,b);1,b,c:route(b,c);1,c,d:route(c,d);
1,d,a:route(d,a);2,b,d:route(b,d);2,a,c:route(a,c);

1,b,a:route(b,a);1,c,b:route(c,b);1,d,c:route(d,c);

1,a,d:route(a,d);2,d,b:route(d,b);2,c,a:route(c,a)}.
In some cases, the time taken by grounding dominates the time taken by solving. Ad-

dressing this difficulty is one of the challenges of ASP.

We now present the formulation of the TS problem using CASP. In particular, we

obtain a CASP encoding in the language of EZCSP by taking an ASP program given

in Figure 4 and replacing its rule (1) with lines presented in Figure 6. In this encoding,

we introduce constraint variables c(·, ·) associated with each road so that when a road

becomes a part of a route selected by a salesman its value is assigned to the cost of the

road, while otherwise it is 0. We then pose a constraint on these variables, which ensures

that the total cost of a selected route is less than the maximal cost.
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Fig. 6. TS: Part of the CASP encoding in the EZ language of EZCSP.

The TS problem showcases some key features that CASP brings to the table in com-

parison to its parent – ASP:

• Consider a simple change in the statement of the TS problem, namely, time is

expressed as a real value. In fact, as mentioned earlier, the classical formulation

of the TS problem considers weights that are real numbers. The traditional ASP

framework may no longer be used to solve this problem. There is no support for

real number arithmetic within grounders. Yet, CASP tools, such as, for example,

ezcsp or ezsmt, can be used to find solutions to this new problem using the same

program as presented here.

• ASP solvers process rules with so called sum aggregates such as (1) by implement-

ing specialized procedures (Niemelä and Simons 2000; Gebser et al . 2009; Lierler

2010). By replacing (1) with its CASP counterpart, we allow utilization of search

techniques stemming from either

— CSP community if we use such CASP tool as, for example, ezcsp, or

— SMT community if we use such CASP tool as, for example, ezsmt.

These techniques will at times provide complementary performance. In other words,

CASP allows us to utilize modeling language of ASP together with solving capa-

bilities of SMT and CSP.

In addition,

• The grounding process of ASP may result in the production of propositional

programs that are of prohibitive size. This is especially the case when com-

plex constraints over large numeric values are in place. CASP often allows us

to bypass the grounding bottleneck via the reformulation of these numeric con-

straints using constraint atoms. Lierler et al . (2012) presents a case study on

Weighted-Sequence problem (a domain inspired by a query optimization problem in

relational databases), where the CASP solution is superior to its ASP counterpart

as it alleviates grounding issues exhibited by an ASP solution.

Just as a typical answer set solver, a common CASP system starts its computation by

performing grounding on a given program. For example, such CASP systems as ezcsp

and clingcon utilize grounder gringo to produce a program composed of ground, so

called, regular and irregular atoms. For instance, consider a rule

required(c(X,Y)==C):- cost(X,Y,C), route(X,Y). (2)
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from the CASP TS encoding. We can view symbols X, Y , and C as schematic vari-

ables that are placeholders for instances of passing constants. In the context of the CAS

program composed of the sample TS instance in Figure 3 and the CASP TS encoding,

rule (2) will be grounded by the ezsmt system into the rules of the kind:

required(c(a,b)==1):- cost(a,b,1), route(a,b).

required(c(b,a)==1):- cost(b,a,1), route(b,a).

· · ·
required(c(b,d)==2):- cost(b,d,2), route(b,d).

required(c(d,b)==2):- cost(d,b,2), route(d,b).

As a result, a program that a solver component of a typical CASP system processes

consists of

i. “regular” ground atoms such as cost(a, b, 1) and route(a, b), and

ii. “irregular” or constraint ground atoms such as c(a, b) == 1 and c(b, d) == 2, and

iii. ground constraint variables such as c(a, b) and c(b, d).

Grounding process of CASP systems mirrors that of ASP systems. Thus, we direct a

reader to papers by Gebser et al . (2007) and Calimeri et al . (2008) for the details on

grounding procedures. Here we focus on the unique features of CASP systems that pertain

to their solving techniques. For this reason formal definitions that we present are in terms

of ground/propositional CAS programs. We refer a reader, interested in the definition

of syntax and semantics for nonground CAS programs, to a paper by Bartholomew and

Lee (2013).

3 Preliminaries

We now proceed toward formal preliminaries required to state the key definitions of the

CASP paradigm.

Logic Programs. A vocabulary is a set of propositional symbols also called atoms. As

customary, a literal is an atom a or its negation, denoted ¬a. A (propositional) logic

program, denoted by Π, over vocabulary σ is a set of rules of the form

a← b1, . . . , b�, not b�+1, . . . , not bm, not not bm+1, . . . , not not bn, (3)

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ n, is an atom in σ. We sometimes

use the abbreviated form for rule (3)

a← B, (4)

where B stands for b1, . . . , b�, not b�+1, . . . , not bm, not not bm+1, . . . , not not bn and

is also called a body. Syntactically, we identify rule (3) with the propositional formula

b1 ∧ . . . ∧ b� ∧ ¬b�+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn → a (5)

and B with the propositional formula

b1 ∧ . . . ∧ b� ∧ ¬b�+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn. (6)
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Note (i) the order of terms in (6) is immaterial, (ii) not is replaced with classical negation

(¬), and (iii) comma is replaced with conjunction (∧). Expression
b1 ∧ . . . ∧ b�

in formula (6) is referred to as the positive part of the body and the remainder of (6) as

the negative part of the body. Sometimes, we interpret semantically rule (3) and its body

as propositional formulas, in these cases it is obvious that double negation ¬¬ in (5)

and (6) can be dropped.

The expression a is the head of the rule. When a is ⊥, we often omit it and say that

the head is empty. We call such rules denials. We write hd(Π) for the set of nonempty

heads of rules in Π. We call a rule whose body is empty a fact. In such cases, we drop the

arrow. We sometimes may identify a set X of atoms with the set of facts {a. | a ∈ X}.
For a logic program Π (a propositional formula F ), by At(Π) (by At(F )), we denote the

set of atoms occurring in Π (in F ).

It is customary for a given vocabulary σ, to identify a set X of atoms over σ with (i)

a complete and consistent set of literals over σ constructed as X ∪ {¬a | a ∈ σ \ X},
and, respectively, with (ii) an assignment function or interpretation that assigns truth

value true to every atom in X and false to every atom in σ \ X. We say a set X of

atoms satisfies rule (3), if X satisfies the propositional formula (5). We say X satisfies a

program Π, if X satisfies every rule in Π. In this case, we also say that X is a model of

Π. We denote the satisfaction relation with symbol |=.

The reduct ΠX of a program Π relative to a setX of atoms is obtained by first removing

all rules (3) such that X does not satisfy negative part of the body

¬b�+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn,
and replacing all remaining rules with a← b1, . . . , b� (note that a can be ⊥).
Definition 1 (Answer set)

A set X of atoms is an answer set, if it is the minimal set that satisfies all rules of

ΠX (Lifschitz et al . 1999).

Ferraris and Lifschitz (2005) showed that a choice rule {a} ← B can be seen as an

abbreviation for a rule a← not not a,B (choice rules were introduced by Niemelä and

Simons (2000) and are commonly used in ASP languages). We adopt this abbreviation

in the rest of the paper.

We now state the definition of an input answer set (Lierler and Truszczyński 2011) as

it is instrumental in defining semantics for constraint answer set programs.

Definition 2 (Input answer set)

For a logic program Π over vocabulary σ and (input/extensional) vocabulary ι ⊆ σ such

that none of ι’s elements occur in the heads of rules in Π, a set X of atoms over σ is an

input answer set of Π relative to ι, when X is an answer set of the program Π∪ (X ∩ ι).

Example 1

Consider a logic program inspired by a running example by Balduccini and Lierler (2017):

lightOn← switch, not am.

← not lightOn.
(7)
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Take set {switch, am} to form an input vocabulary. Intuitively, a program is evaluated

relative to truth values of these input atoms that are provided at the time of the evalu-

ation. Each rule in the program can be understood as follows:

• The light is on (lightOn) during the night (not am) when the action switch has oc-

curred.

• The light must be on.

Consider set {switch, lightOn} of atoms. This set associates values true and false with

input atoms switch and am, respectively. This set is an input answer set of program (7).

Indeed, let Π be program (7) extended with the fact switch. Reduct Π{switch, lightOn}

follows:

switch.

lightOn← switch.

Set {switch, lightOn} is an answer set of this reduct. This set is the only input answer

set of sample program (7). This input answer set suggests that the only situation that

satisfies the specifications of the problem is such that (i) it is currently night, (ii) the

light has been switched on, and (iii) the light is on.

Input Completion. Clark (1978) introduced the notion of program’s completion. The

process of completion turns a logic program into a classical logic formula. When a logic

program satisfies certain syntactic conditions, models of a completion formula coincide

with answer sets of a logic program. In all cases, models of a completion formula include

all answer sets of a logic program. Program’s completion is a fundamental concept that

plays an important role in the design of answer set solvers – see, for instance, the paper

by Lierler and Truszczyński (2011). It is also a major building block of the translational

approach to CASP solvers. We now review this concept together with the related notion

of an input completion (Lierler and Susman 2017).

Let Π be a program over vocabulary σ. By Bodies(Π, a) we denote the set of the bodies

of all rules of Π with head a. The completion of program Π, denoted by Comp(Π), is the

set of

• classical formulas that consist of the rules (3) in Π (recall that we identify rule (3)

with implication (5); when a rule (3) is a fact a, then we identify this rule with

the clause consisting of a single atom a) and

• the implications

a→
∨

a←B∈Π
B (8)

for all atoms a in σ. When the set Bodies(Π, a) is empty, the implication (8) has

the form a→ ⊥.
We now define an input completion that is relative to an (input) vocabulary.

Definition 3 (Input completion)

For a program Π over vocabulary σ, the input-completion of Π relative to vocabulary ι ⊆ σ

so that hd(Π) ∩ ι = ∅, denoted by IComp(Π, ι), is defined as the set of formulas in

propositional logic that consists of the rules (5) in Π and the implications (8) for all

atoms a occurring in σ \ ι.
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Level Ranking. Niemelä (2008) characterized answer sets of “normal” logic programs

in terms of program’s completion and “level ranking”. Normal programs consist of rules

of the form (3), where n = m and a is an atom. Lierler and Susman (2017) generalized

a concept of a level ranking to programs introduced here. These results are fundamen-

tal in realizations of many translational approaches to (constraint) ASP. For instance,

Niemelä developed a mapping from normal programs to the satisfiability modulo differ-

ence logic formalism (to be introduced in detail shortly). That translation paved the way

towards the implementation of answer set solvers lp2diff (Janhunen et al . 2009) and

cmodels-diff (Shen and Lierler 2018a). Similarly, translational constraint answer set

solvers mingo (Liu et al . 2012), dingo (Janhunen et al . 2011), aspartame (Banbara

et al. 2015), ezsmt (Shen and Lierler 2018b) rely on the concepts of completion and level

ranking (and its variants, i.e, strong level ranking and strongly connected component level

ranking proposed by Niemelä) in devising their translations.

We start by introducing some notation to formally define the concept of level ranking

that accommodates the notion of an input vocabulary. By N we denote the set of natural

numbers. For a rule (4), by B+ we denote its positive part and sometimes identify it

with the set of atoms that occur in it, i.e., {b1, . . . , bl} (recall that B in (4) stands for

the right-hand side of the arrow in rule (3)).

Definition 4 (Level ranking)

A function lr : X \ ι → N is a level ranking of X for Π relative to vocabulary ι ⊆ σ so

that hd(Π) ∩ ι = ∅, when for every atom a in X \ ι the following condition holds: there

is B in Bodies(Π, a) such that X satisfies B and for every b ∈ B+ \ ι it holds that

lr(a)− 1 ≥ lr(b).

We now restate Theorem 8 from Lierler and Susman (2017) that captures the relation

between input answer sets of a program and models of input completion by means of

level ranking.

Theorem 5

For a program Π over vocabulary σ, vocabulary ι ⊆ σ so that hd(Π)∩ ι = ∅, and a set X

of atoms over σ that is a model of input completion IComp(Π, ι), X is an input answer

set of Π relative to ι if and only if there is a level ranking of X for Π relative to ι.

This result is related to the characterization of answer sets of a logic program as models

of its completion (Fages 1994).

Constraints. Lierler and Susman (2017) illustrated that the notion of a “constraint” (as

understood in classical literature on constraint processing within the artificial intelligence

realm) coincides with the notion of a ground literal of satisfiability modulo theories. Fur-

thermore, a constraint satisfaction problem (CSP), which is usually defined by a set of

constraints, can be identified with the conjunction of ground literals. This conjunction

is evaluated by means of first-order logic interpretations/structures representative of a

particular “uniform” SMT-theory – a term introduced by Lierler and Susman (2017).

An SMT-theory (Barrett and Tinelli 2014) is a set of interpretations/structures. A uni-

form SMT-theory (Lierler and Susman 2017) is a set of interpretations whose domain,

interpretation of predicates and “interpreted” function symbols are fixed.
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In practice, special forms of constraints are commonly used. Integer linear constraints

are examples of these special cases. For instance,

2x+ 3y > 0 (9)

is a common abbreviation for an integer linear constraint. In line with Lierler and Susman,

we identify linear integer inequality (9) with a ground atom

> (+(×(2, x),×(3, y)), 0),
where we assume an SMT-theory called Integer Linear Arithmetic or Linear Integer

Arithmetic (ILA) (see, for instance, the paper by Bromberger et al . 2015). This theory is

defined by the set of all possible interpretations, whose domain is the set of integers, the

predicate > is interpreted as an arithmetic greater relation/predicate symbol; function

symbols + and × are interpreted as usual in arithmetic; 0-arity function symbols 2, 3,

and 0 are interpreted by mapping these into respective domain elements (identified with

the same symbol). The constraint (9) contains uninterpreted 0-arity function symbols x

and y that are frequently referred to as object constants (in logic literature) or variables

(in constraint processing literature).

We call an interpretation satisfying a CSP, which we understand as the conjunction

of ground literals, its solutions. We identify this interpretation with a function called

valuation that provides a mapping for uninterpreted function symbols to domain ele-

ments. For example, one of the solutions to the CSP composed of a single constraint (9)

within ILA-theory is a valuation that maps x to 0 and y to 1. Formulas composed of

integer linear constraints and interpreted using SMT-theory ILA are said to be within

ILA-logic (Barrett and Tinelli 2014).

Other commonly used SMT-theories are called difference logic (DL) (Nieuwenhuis and

Oliveras 2005) and linear arithmetic (LA) (Barrett and Tinelli 2014). In difference logic

the set of interpretation defining this theory is that of ILA. Yet, difference logic restricts

the syntactic form of constraints to the following x− y ≤ k, where x and y are variables

and k is 0-arity function symbol interpreted by a mapping to domain elements (integers).

Linear arithmetic logic differs from ILA-logic in its SMT-theory: the domain of linear

arithmetic logic is the set of real numbers.

4 Constraint answer set programs and SMT formulas, formally

Let σr, σe, and σi be three disjoint vocabularies. We refer to their elements as regular,

strict-irregular atoms, and nonstrict-irregular atoms, respectively. The terms strict and

nonstrict are due to Gebser et al . (2016), where the authors introduce the CASP language

that permits capturing two commonly used semantics in CASP dialects.

Definition 6 (Constraint answer set program and its answer sets)

Let σ = σr ∪ σe ∪ σi be a vocabulary so that regular atoms σr, strict-irregular atoms σe,

and nonstrict-irregular atoms σi are disjoint; B be a set of constraints; γ be an injective

function from the set of irregular literals over σe ∪ σi to B; and Π be a logic program

over σ such that hd(Π)∩(σe∪σi) = ∅. We call a triple P = 〈Π,B, γ〉 a constraint answer

set program (CAS program) over vocabulary σ.
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A set X ⊆ At(Π) of atoms is an answer set of P if

(a) X is an input answer set of Π relative to σe ∪ σi, and

(b) the following CSP has a solution:

{γ(a) | a ∈ X ∩ (σe ∪ σi)} ∪ {γ(¬a) | a ∈ σe \X}.
A pair 〈X, ν〉 is an extended answer set of P if X is an answer set of P and valuation ν

is a solution to the CSP constructed in (b).

It is now time to remark on the differences between regular, strict-irregular, and nonstrict-

irregular atoms. If vocabulary σ only consists of regular atoms σr (sets σe and σi of

irregular atoms are empty) then CAS program turns into a logic program under answer

set semantics. Per condition (a) all irregular atoms are part of the input/extensional

vocabulary. Intuitively, irregular atoms carry additional information that goes beyond

their truth value assignment. This fact culminates in the statement of the (b) condition

in the definition of an answer set. The (b) condition also points at the difference between

strict-irregular and nonstrict-irregular atoms. While the presence of irregular atoms in

set X of atoms requires a constraint of this atom to be satisfied, only the absence of a

strict-irregular atom requires a constraint of its complement to be satisfied. The nonstrict

irregular atoms do not pose the latter restriction.

In the sequel, we utilize vertical bars to mark irregular atoms that have intuitive map-

pings into respective constraints. For instance, given an integer variable x, the expression

|x < 0| corresponds to an irregular atom that is mapped into constraint/inequality x < 0;

similarly irregular literal ¬|x < 0| is mapped into constraint/inequality x ≥ 0.

Example 2

Let us consider CAS program P1 = 〈Π1,B1, γ1〉 from Example 3 by Lierler and Susman

(2017). Logic program Π1 – the first element of the tuple defining P1 – follows

{switch}.
lightOn← switch, not am.

← not lightOn.

{am}.
← not am, |x < 12|.
← am, |x ≥ 12|.
← |x < 0|.
← |x > 23|.

(10)

The set σr of regular atoms of P1 is

{switch, am, lightOn}.
The set σe of strict-irregular atoms of P1 is

{|x < 0|, |x < 12|, |x ≥ 12|, |x > 23|}, (11)

where x is an integer variable (representing hours of the day). The set σi of nonstrict-

irregular atoms of P1 is empty.

The first line of the program is understood as follows: The action switch is exogenous.

The second two lines are identical to these of logic program (7). The fourth line we can
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intuitively read as: It is night (not am) or morning (am). The last four lines of the

program state:

• It must be am when x < 12.

• It is impossible for it to be am when x ≥ 12.

• Variable x must be nonnegative.

• Variable x must be less than or equal to 23.

Set B1 consists of integer linear constraints including constraints

{x < 0, x ≥ 0, x < 12, x ≥ 12, x > 23, x ≤ 23},
Mapping γ1 is defined as follows:

γ1(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

constraint x < 0 if a = |x < 0|
constraint x ≥ 0 if a = ¬|x < 0|
constraint x < 12 if a = |x < 12| or a = ¬|x ≥ 12|
constraint x ≥ 12 if a = |x ≥ 12| or a = ¬|x < 12|
constraint x > 23 if a = |x > 23|
constraint x ≤ 23 if a = ¬|x > 23|.

Consider set

{switch, lightOn, |x ≥ 12|} (12)

over the vocabulary of P1. This set is the only input answer set of Π1 relative to irreg-

ular atoms of P1. Also, the integer linear constraint satisfaction problem formed by the

constraints in

{γ1(¬|x < 0|), γ1(¬|x < 12|), γ1(|x ≥ 12|), γ1(¬|x > 23|)}
=

{x ≥ 0, x ≥ 12, x ≤ 23}
has a solution. There are 12 valuations v1 . . . v12 for integer variable x, which satisfy this

CSP, namely, xv1 = 12, . . . , xv12 = 23. It follows that set (12) is an answer set of P1. Pair

〈{switch, lightOn, |x ≥ 12|}, ν1〉
is one of the twelve extended answer sets of P1.

To illustrate the difference between strict and nonstrict irregular atoms consider the

CAS program P ′1 that differs from P1 only in sets σe and σi. In particular, the set σe of

strict-irregular atoms of P ′1 is empty. The set σi of nonstrict-irregular atoms of P ′1 is (11).

Set (12) is the only input answer set of Π1 relative to irregular atoms of P ′1. Also, the
integer linear constraint satisfaction problem formed by the constraint in

{γ1(|x ≥ 12|)}
=

{x ≥ 12}
has a solution. There are indeed infinite number of valuations v1 . . . v12, v13, . . . for

integer variable x, which satisfy this CSP, namely, xv1 = 12, . . . , xv12 = 23, xv13 = 24, . . . .

We direct a reader to the paper by Gebser et al . (2016), where the authors discuss in

detail the rationale behind the two distinct kinds of irregular atoms.
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We note that if we consider a CAS program whose set σi of nonstrict-irregular atoms

is empty then it falls into a class of programs accepted by such CASP system as cling-

con (Gebser et al . 2009), given that constraints are in the realm of ILA. Similarly, if

we consider a CAS program whose set σe of strict-irregular atoms is empty and whose

atoms from σi only occur in denials, then it falls into a class of programs that such CASP

system as ezcsp accepts (given that constraints are in the realm of ILA or LA).

Janhunen et al . (2017) lift the restriction on irregular atoms not to occur in the heads

of program’s rules. Rather, they divide all atoms into “defined” and “external” (input/ex-

tensional, if to follow the terminology of this paper), where defined atoms may occur in

heads. In other words, defined irregular atoms do not longer need to be part of the input

vocabulary. This is an important and an interesting extension within CASP that is uti-

lized in the implementation of such CASP systems as clingo[dl] and clingo[lp]. To

the best of our knowledge these are the only two currently available CASP systems that

allow “defined” irregular atoms.

SMT Formulas. Here we state the definition of an SMT formula (Barrett and Tinelli

2014). This concept is fundamental for most translational approaches to CASP.

Definition 7 (SMT formulas and its models)

Let σ = σr ∪ σe ∪ σi be a vocabulary (so that σr, σe, and σi are disjoint); B be a set

of constraints; γ be an injective function from the set of irregular literals over σe ∪ σi to

B; F be a propositional formula over σ. We call a triple F = 〈F,B, γ〉 an SMT formula

over vocabulary σ. A set X ⊆ At(F ) is a model of SMT formula F if

(a.1) X is a model of F , and

(b.1) the CSP constructed in (b) of Definition 6 has a solution.

A pair 〈X, ν〉 is an extended model of F if X a model of F and ν is a solution to the

CSP in (b.1).

We are now ready to provide the translation from logic programs to SMT formulas

(this translation is inspired by level ranking results). We then present a translation by

Lierler and Susman (2017) that maps CAS programs into SMT formulas.

As before, we utilize vertical bars to mark irregular atoms (introduced within the

translation) that have intuitive mappings into respective constraints. For instance, the

expression |lrb−1 ≥ lra| corresponds to an irregular atom that is mapped into constrain-

t/inequality lrb − 1 ≥ lra, where lra and lrb are variables over integers. To refer to the

constraints corresponding to irregular literals we use superscript ↓. For example,

|lrb − 1 ≥ lra|↓ = lrb − 1 ≥ lra
¬|lrb − 1 ≥ lra|↓ = lrb − 1 < lra.

Definition 8 (Translation from a logic program to an SMT formula)

Let Π be a logic program over vocabulary σΠ and vocabulary ι ⊆ σΠ such that none of

ι’s elements occur in the heads of rules in Π. For every atom a in σ\ι that occurs in Π, we

introduce an integer variable lra. The SMT formula FΠ = 〈FΠ,BΠ, γΠ〉 is constructed
as follows:
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• formula FΠ is a conjunction of the following

1. rules (3) in Π;

2. for each atom a ∈ σΠ \ ι the implication a→
∨

a←B∈Π

(
B ∧

∧
b∈B+\ι

|lra− 1 ≥ lrb|
)

• set σr of FΠ is formed by the atoms in σΠ; set σe of FΠ is formed by the irregular

atoms of the form |lra − 1 ≥ lrb| introduced in 2; and set σi of FΠ is empty;

• constraints in BΠ are composed of inequalities |lra − 1 ≥ lrb|↓ and ¬|lra − 1 ≥ lrb|↓
for all irregular atoms of the form |lra − 1 ≥ lrb| introduced in 2;

• function γΠ maps irregular literals formed from atoms of the form |lra − 1 ≥ lrb|
introduced in 2 to constraints in BΠ in a natural way captured by ↓ function.

An SMT formula FΠ has two properties: (i) it has models if and only if respective answer

set program Π has answer sets and (ii) any model I of this formula is such that I ∩ σ

forms an answer set of Π. This is a consequence of Theorem 9 by Lierler and Susman

(2017), which follows from Theorem 5 restated here.

Definition 9 (Translation from a CAS program to an SMT formula)

Let P = 〈Π,B, γ〉 be a CAS program over σP = σP
r ∪σP

i ∪σP
e . For every atom a in σP

r that

occurs in Π we introduce an integer variable lra. The SMT formula FP = 〈FP ,BP , γP 〉
over σ = σr ∪ σi ∪ σe is constructed as follows:

• the formula FP is a conjunction consisting of formulas in 1 and 2 of Definition 8,

where we understand σΠ as σP and ι as σP
i ∪ σP

e ;

• set σr of FP is formed by the atoms in σP
r ; set σe of FP is formed as the union of

σP
e and the irregular atoms of the form |lra− 1 ≥ lrb| described in Definition 8; set σi

of FP is formed by the atoms in σP
i ;

• constraints BP are composed of the elements in B and the elements in BΠ described

in Definition 8;

• mappings of γP are composed of the elements in γ and the elements in γΠ described

in Definition 8.

An SMT formula FP has two properties: (i) it has models if and only if respective CAS

program has answer sets and (ii) any model I of this formula is such that I ∩ σP forms

an answer set of P . This is a consequence of Theorem 10 by Lierler and Susman (2017)

that follows from Theorem 5 restated here.

5 Integrational approach via system EZCSP

As stated in the introduction, this paper presents the details behind two CASP systems,

namely, ezcsp2 and ezsmt.3 The former is a representative of the integrational approach.

The latter is a representative of a translational SMT-based approach.

Both systems, ezcsp and ezsmt, accept programs written in the language that is best

documented by Balduccini and Lierler (2017). We call this language EZ. The TS problem

2 Solver ezcsp is available at http://mbal.tk/ezcsp/.
3 Solver ezsmt is available at
https://www.unomaha.edu/college-of-information-science-and-technology/
natural-language-processing-and-knowledge-representation-lab/software/ezsmt.php.
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Fig. 7. Architecture of the ezcsp system.

formulation of this paper is in that language. This paragraph uses system ezcsp in its

claims. The same claims are applicable for the system ezsmt. As discussed earlier, CASP

systems typically start their computation by grounding a given program. System ezcsp

uses grounder gringo (Gebser et al . 2011) for this purpose. Following our example from

the end of the introduction, ground rule

required(c(a,b)==1):- cost(a,b,1), route(a,b). (13)

exemplifies the kinds of ground rules produced by the ezcsp system at the time of

grounding. Atoms of the form required(β) instruct the ezcsp system that β introduces

a nonstrict-irregular atom. Even though “required atoms” occur in the head of rules,

semantically these rules are denials with the irregular atom “complementary” to β oc-

curring in the body.4 For instance, rule (13) stands for the following denial, written in

style used in Section 4:

← cost(a, b, 1), route(a, b), |c(a, b) �= 1|.
Atoms such as |c(a, b) �= 1| belong to nonstrict-irregular atoms of the CAS program

produced by grounding of ezcsp. These CAS programs (i) contain no strict-irregular

atoms and (ii) contain irregular atoms only in denials.

Figure 7 depicts the architecture of the ezcsp system. The graphic is reproduced from

the paper by Balduccini and Lierler (2017).

We follow the presentation by Balduccini and Lierler to state the most essential details

behind the ezcsp system. The first step of the execution of ezcsp (corresponding to the

Preprocessor component in the figure) consists in running a preprocessor, which trans-

lates an input EZ program into a syntactically legal ASP program. This is accomplished

by replacing the occurrences of arithmetic functions and operators in expressions of the

form required(β) by auxiliary function symbols. For example, an expression v > 2 in

required(v > 2) is replaced by gt(v, 2). The Grounder component of the architecture

4 It is due to note that β may be a more complex expression than an irregular atom. For example, it
may contain a disjunction of irregular atoms. Semantically, a rule with such β expression in its head
corresponds to the denial that extends the body of this rule with the conjunction of the complementary
atoms formed from β.
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transforms the resulting program into its propositional equivalent, a regular program,

using an off-the-shelf grounder such as gringo (Gebser et al . 2007, 2011). This regular

program is then passed to the ezcsp Solver component.

The ezcsp Solver component iterates between ASP and constraint programming com-

putations by invoking the corresponding components of the architecture. Specifically, the

ASP Solver component computes an answer set of a given regular program using an off-

the-shelf ASP solver, such as cmodels or clasp. If an answer set is found, the ezcsp

solver runs the CLP Translator component, which maps the CSP problem corresponding

to the computed answer set to a Prolog program. The program is then passed to the CP

Solver component, which uses the CLP tools such as SICStus (Carlsson and Fruehwirth

2014), SWI Prolog (Wielemaker et al . 2012) or bprolog (Zhou 2012), to solve the CSP

instance. Recent version of ezcsp augment the CLP Translator component with the pos-

sibility of producing MiniZinc (Nethercote et al . 2007) formulations of CSP problems. As

a result, MiniZinc solvers5 can be used in place of CLP tools. Finally, the ezcsp Solver

component gathers the solutions to the respective CSP problem and combines them with

the answer set obtained earlier to form extended answer sets. Additional extended an-

swer sets are computed iteratively by finding other answer sets and the solutions to the

corresponding CSP problems.

It is essential to note that in integrational approaches, the communication schemas

between the two participating solving mechanisms are important. The presented archi-

tecture of ezcsp showcases the so called blackbox integration approach. The beauty of

the blackbox approach is its flexibility in utilizing the existing technology as both an-

swer set solver and CSP solver can be taken as they are. Yet, it is obvious that such

an integration does not provide any means to rely on advances in search of an answer

set solver in earlier iterations or prune the computation of an answer set solver based

on information from a CSP. The ezcsp system also implements so called grey-box and

clear-box integration, where it accommodates continuation in search and early pruning,

respectively. In this capacity, the ezcsp is confined to utilizing a particular answer set

solver cmodels via its internal API.

Briefing: Integrational Systems. This is a good place to speak of some other integrational

systems. We first consider solver clingcon (Gebser et al . 2009). From the original design

of the system to its latest version, its authors were proponents of a clear-box integration.

Its original implementation established the clear-box communication between answer set

solver clasp (a solver of answer set system clingo) and constraint processing system

gecode. The second, recent, implementation of clingcon (Banbara et al . 2017) uses

sophisticated “in house CSP” propagators to replace the gecode system. It is also a close

relative to the newest representatives of the integrational approach systems clingo[dl]

and clingo[lp] (Janhunen et al . 2017). Latest version of clingcon and these two sys-

tems are a product of a systematic effort by University of Potsdam to create an extensible

infrastructure to support ASP-based solutions. Framework clingo 5 (Gebser et al . 2016)

provides comprehensive interfaces to assist the development of

5 https://www.minizinc.org/.
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• extensions for the language accepted by grounder gringo (the functionality of

makes the Preprocessor component required in the architecture of ezcsp obsolete)

to accommodate, for example, the irregular atoms as discussed here;

• extensions for implementing specialized propagators to accommodate, for example,

the processing of irregular atoms as discussed here natively and efficiently utilizing

the fact that these propagators are defined within clingo itself.

It is interesting to note that one can view/name CASP as ASP modulo constraints/the-

ories (following the tradition of SMT). An interesting related paradigm to CASP is called

ASP modulo acyclicity (Bomanson et al . 2016). In this paradigm, specialized propagator

is used to capture constraints specific to graph/tree problems. Bomanson et al . (2016)

describe an integrational solver for ASP modulo acyclicity based on answer set solver

clasp and use Hamiltonian cycle problem as one of the benchmarks to showcase the

system.

Briefing: Input Languages of CASP systems. In this paper, we speak in some detail

about the EZ language that is used for problem encodings to interface CASP systems

ezcsp and ezsmt. The other CASP tools such as clingcon, clingo[dl], or clingo[lp]

introduce their own ASP-like dialects to state CAS programs with schematic variables.

At the moment, the task of transferring an encoding designed for one CASP system into

an encoding meant for another CASP system requires a programmer experienced with

dialects of these systems. An effort in spirit of the design of the standard ASP-Core-2

Language (Calimeri et al . 2019) (to interface ASP solvers) is now due for the case of

CASP languages.

6 Translational approach via system EZSMT

The concluding part of Section 4 describes how given a constraint answer set program one

can construct an SMT formula whose models capture its answer sets. This construction

relies on the concepts of completion and level ranking. It is worth noting that Janhunen

(2006) introduced refined “strong” and “strongly connected component (SCC)” level

rankings for normal logic programs (under a name of level numberings). These refined

versions of level ranking can be used to reduce the size of translation from a program to

an SMT formula. Shen and Lierler (2018a) generalized these results to logic programs

whose rules are of the form (3). These ideas are also applicable within CAS programs and

are utilized in the implementation of the CASP solver ezsmt (Shen and Lierler 2018b).

We now review the key features of the ezsmt system and its building blocks to showcase

a translational approach.

In a nutshell system, ezsmt translates a given CAS program into an SMT formula

and then utilizes an SMT solver as its search back-end to find models of the formula.

Then, each model found in this way is mapped to an answer set of the given program. In

addition to difference logic, ILA, and LA logics, system ezsmt can use such SMT-logics

as AUFLIRA and AUFNIRA (Tinelli and Barrett 2015). Logic AUFLIRA enables us to

state linear constraints that may simultaneously contain integer and real variables. Logic

AUFNIRA permits nonlinear constraints, too. As mentioned earlier, the ezsmt system

accepts programs in the EZ language. This language is extended by several directives

that allow users to specify a domain for a constraint variable.
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1. Grounding (GRINGO), computing completion (CMODELS(DIFF))

2. Computing four variantsof level rankings (CMODELS(DIFF))

3. EZSMT transformer

4. SMT solver

Preprocessed EZ program

if non-tight

Classified completion and level ranking
formulas in semi-dimacs format

SMT-LIB file

Answer sets

Computing
multiple
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Fig. 8. System ezsmt architecture.

Figure 8 illustrates the architecture of system ezsmt. The graphic is reproduced from

the paper by Shen and Lierler (2018b). The system takes an EZ program as an input. It

starts by applying the preprocessor component of system ezcsp (see Figure 7); the ratio-

nale behind the application of this component is the same as in case of the ezcsp system

discussed in previous section. It then utilizes grounder gringo (Gebser et al . 2011) for

eliminating ASP variables. Routines of system cmodels(diff) (Shen and Lierler 2018a)

are used to compute input completion and level rankings of the program (Steps 1 and

2). During Step 1, ezsmt also determines whether the program is “tight” or not. The

tightness (Fages 1994) is a syntactic condition on a program. Intuitively, a program is

tight if it has no circular dependencies between its head and positive body atoms across a

program. A simple example of a nontight program is a program with a single rule p← p.

In case when a program is tight, it is sufficient to replace a formula in 2 of Definition 8 by

a simpler formula (8) stemming from the completion to achieve a one-to-one correspon-

dence between the answer sets of a given program and the models of the corresponding

SMT formula. If the program is not tight, the corresponding level ranking formula is

added. A procedure used by ezsmt to perform this task is identical to that of cmod-

els(diff) (Shen and Lierler 2018a). System ezsmt may construct different kinds of level

ranking formulas including strong level ranking formulas, SCC level ranking formulas,

and strong SCC level ranking formulas, respectively. The resulting formulas are classified

to produce an output in semi-Dimacs format (Susman and Lierler 2016) (Step 3), which

is transformed into smt-lib syntax – a standard input language for SMT solvers (Barrett

et al. 2015) – using the procedure described by Susman and Lierler (2016) and Shen and

Lierler (2018b). Finally, one of the SMT solvers cvc4 (Barrett et al . 2011), z3 (Winter-

steiger et al . 2016), or yices (Dutertre 2017) is called to compute models (Step 4.). In

fact, any other SMT solver supporting SMT-LIB can be utilized easily, too. The ezsmt
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Fig. 9. Solvers and their features.

system allows one to compute multiple (extended) answer sets. It utilizes ideas exploited

in the implementation of cmodels(diff) (Shen and Lierler 2018a, Section 5). In sum-

mary, after computing an (extended) answer set X of a program ezsmt invokes an SMT

solver again by adding formulas encoding the fact that a newly computed model should

be different from X. This process is repeated until the prespecified number of solutions

is enumerated or it has been established that no more solutions exist. The described

process of enumerating multiple solutions is naive and begs for an improvement. Gebser

et al. (2007) describe sophisticated methods for enumerating answer sets implemented

within answer set solver clasp.

Briefing: Translational Systems. We mentioned such translational constraint answer set

solvers as mingo (Liu et al . 2012), dingo (Janhunen et al . 2011), and aspartame

(Banbara et al . 2015). To process CAS programs with LA and ILA logics, the mingo

system computes program’s input completion extended with level ranking formulas and

then translates these formulas into mixed integer programming expressions. After that

it uses the cplex solver (IBM 2009) to solve these formulas. To process CAS programs

with difference logic, system dingo translates these programs into SMT(DL) formulas

using translations in spirit of those in ezsmt and applies the SMT solver z3 (De Moura

and Bjørner 2008) to find their models. The last translational system that we mention

is aspmt2smt (Bartholomew and Lee 2014). The aspmt2smt system is a close relative

of ezsmt in the sense that it utilizes SMT solver z3 for search. Solver aspmt2smt is

nevertheless restricted to tight programs. It computes the completion of a given program

and then invokes z3 solver to enumerate the solutions. System aspartame differs from

all of the above as it translates the CAS programs with IL arithmetic into answer set

programs.

7 Big picture and experimental data

We start this section by summarizing the modern landscape of CASP technology. We

then proceed toward presenting some experimental data to showcase the current compu-

tational capabilities of the field.

Figure 9 reproduces part of the table stemming from Janhunen et al . (2017) that

provides a great overview of the key features and capabilities of the CASP systems (the

only difference between the original table and the one present is that system ezsmt

is now marked as the one capable of processing nontight programs; that was not the

case prior). In the first row of the table, integrational is taken to be the complement of

translational. The row real numbers refer to the ability of a solver to support constraints

over real numbers. Every solver supports constraints over integers. The row optimization
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refers to the ability of a solver to support optimization statements that are valuable

in designing solutions to real world problems (Andres et al . 2012). The row nontight

points to systems that do not require input programs to satisfy a syntactic condition of

tightness. The table introduces two more systems inca (Drescher and Walsh 2010, 2011)

and dlvhex[cp] (Rosis et al . 2015), which have not surfaced in our discussion. System

inca implements a lazy propagation-translation approach that, along processing time,

translates integer constraints of the program into logic program rules. System dlvhex[cp]

is a clingo-based system that utilizes CSP solver gecode.

The experimental data presented here is reproduced from the paper by Shen and

Lierler (2018b). It focuses on the performance of three systems ezsmt, ezcsp, and cling-

con (Banbara et al . 2017; Ostrowski 2018). The benchmarks are posted at the ezsmt

website (see Footnote 3). In conclusion of this section, we remark on how these systems

compare to other CASP solvers.

We now point to the origins of the considered benchmarks. Three benchmarks, namely,

reverse folding (RF), incremental scheduling (IS), and weighted sequence (WS), come

from the third answer set programming competition (Calimeri et al . 2011). We obtain

clingcon and ezsmt encodings of IS from the work by Banbara et al . (2017). We include

a benchmark problem called Blending (BL) (Biavaschi 2017) and extend it to BL*, which

contains variables over both integers and reals. Also, we use the Bouncing Ball (BB) do-

main (Bartholomew 2016). It is important to remark that the encoding for BB domain

results in a tight program. This domain uses nonlinear constraints over real numbers.

Three more benchmarks, namely, RoutingMin (RMin), RoutingMax (RMax), and Trav-

eling Salesperson (TS), are obtained from the paper by Liu et al . (2012). The obtained

TS benchmark is an optimization problem that we turn into a TS variant considered in

the introduction. The Labyrinth (LB) benchmark is extended from the domain presented

in the Fifth Answer Set Programming Competition (Calimeri et al . 2016). This extension

allows us to add integer linear constraints into the problem encoding. The next bench-

mark, Robotics (RB), comes from the work by Young et al . (2017). Also, we present

results on two benchmarks from the work by Balduccini et al . (2017), namely, Car and

Generator (GN).

All benchmarks are run on an Ubuntu 16.04.1 LTS (64-bit) system with an Intel core

i5-4250U processor. The resource allocated for each benchmark is limited to one CPU

core and 4GB RAM. We set a timeout of 1800 s. No problems are solved simultaneously.

The systems that we use to compare the performance of variants of ezsmt (invoking

SMT solver z3 v. 4.5.1; yices v. 2.5.4) are clingcon v. 3.3.0 and the variants of ezcsp

v. 2.0.0 (invoking ASP solvers clasp v. 3.2.0; and constraint solver swiprolog v. 7.4.1

or minizinc v. 2.0.2). The gringo system v. 4.5.3 is used as grounder for ezsmt and

ezcsp with one exception: gringo v. 3.0.5 is utilized for ezcsp for the Reverse Folding

benchmark (due to some incompatibility issues).

Figure 10 summarizes the main results. In this figure, we use ezsmt(z3)

and ezsmt(yices) to denote two variants of ezsmt. Acronym ezcsp-clasp-swi

(ezcsp-clasp-mzn) stands for a variant of ezcsp, where clasp is utilized as the an-

swer set solver and swiprolog (minizinc, respectively) is utilized as a constraint solver.

In Figure 10, we present cumulative time in seconds of all instances for each benchmark

with numbers of unsolved instances due to timeout or insufficient memory inside paren-

theses. The “/” sign indicates that this solver or its variant does not support the kinds
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Fig. 10. Experimental data.

Fig. 11. Meaning of the category column letters.

of constraints occurring in the encoding. For example, clingcon does not support con-

straints over real numbers or nonlinear constraints. The total number of used instances is

shown in parentheses after a benchmark name. All the steps involved, including ground-

ing and transformation, are reported as parts of the solving time. The benchmarks are

divided into categories by double separations. Figure 11 presents the readings of the let-

ters in the category column, where the first two letters refer to the syntactic condition

on a logic program; the middle three letters refer to the domains of constraint variables

of the program; and the last two letters refer to the kinds of constraints.

Systems clingcon, ezcsp-clasp-swi, and ezcsp-clasp-mzn are run in their default

settings. For nontight programs, system ezsmt with strongly connected components

level rankings (flags -SCClevelRanking and -SCClevelRankingStrong) show best per-

formance.

In summary, we observe that clingcon achieves first positions in three benchmarks.

ezcsp-clasp-swi and ezsmt(z3) win in two benchmarks, respectively. ezsmt(yices)
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ranks first in six benchmarks. The ezsmt(yices) system displays the best overall results.

Utilizing different SMT solvers may improve the performance of ezsmt in the future.

On anticipated performance of related systems. CASP solver clingo[lp] (Janhunen et al .

2017) handles linear constraints over integers or reals. The experimental analysis pre-

sented by Janhunen et al . (2017) only considers programs with constraints over integers.

On these benchmarks, clingcon outperforms clingo[lp]. Susman and Lierler (2016)

compare the performance of mingo (Liu et al . 2012) and ezsmt on tight programs.

The latter consistently has better performance. The aspmt2smt (Bartholomew and Lee

2014) system is a close relative of ezsmt in the sense that it utilizes SMT solver z3 for

search. We expect that ezsmt(z3) times mimic these of aspmt2smt on tight programs.

8 Discussion and future directions

This article was meant to construct a compelling tale of constraint answer set program-

ming developments of the past decade supplying the interested reader with birds-eye view

of the area and enough literature links to acquire details when needs be. This concluding

section lists open questions and possible directions of the field.

Gebser et al . (2016) point out how an ASP-based problem solving frequently requires

capabilities going beyond classical ASP language and systems. They observe that ASP

system clingo and/or its grounder gringo and/or its solver clasp often serve as im-

portant building blocks of more complex systems (including such systems as constraint

answer set solvers). The fundamental contribution by Gebser et al . (2016) was to con-

ceive clingo 5 framework that provides a general purpose interface which helps to make

extensions of gringo/clasp systems a routine and systematic process. This interface

also targets facilitation of streamlining communication between theory/constraint prop-

agation and answer set solving propagation as well as other advanced techniques such as

conflict-driven learning implemented in clasp. As such clingo 5 can be seen as one of

the key contributions to the CASP community. It provides a general purpose platform

for bootstrapping unique constraint answer set programming solutions.

Automated reasoning spans areas such as satisfiability solving, answer set program-

ming, satisfiability modulo theories solving, integer (mixed) programming, constraint

answer set programming, and constraint processing. The relation between answer set

solvers and satisfiability solvers is well understood, see, for example, the paper by Lierler

(2017). Also, the relation between different instances of answer set solvers has been stud-

ied: see the paper by Lierler and Truszczyński (2011). Several representatives of the

integration approach to constraint answer programming have been contrasted and com-

pared, see, for instance, the paper by Lierler (2014). Yet, a deeper understanding of

how various solving techniques in theory solving of SMT compare to these of constraint

processing CSP/CLP is missing. Similarly, the following is an open question: how do

techniques in mixed (integer) programming compare to these in SMT, CSP, and/or inte-

ger linear programming. At the moment, the best we can do is to use constraint answer

set programming and its various implementations that include translational approaches

to conduct experimental analysis that spans a variety of automated reasoning communi-

ties (Lierler and Susman 2017; Janhunen et al . 2017). Dovier et al . (2009) provide us with

insights on how CLP solutions to combinatorial search problems compare to these with
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ASP solutions. Deeper understanding of differences and similarities between algorithms

used in these traditionally different areas of AI is due.

Papers by Erdoğan and Lifschitz (2004), Lifschitz (2017), Fandinno et al . (2020),

Cabalar et al . (2020), Bomanson et al . (2020), to name a few, provide the techniques for

analysing and arguing program correctness in traditional answer set programming. To

the best of our knowledge, there were no attempts to lift these methods to the scope of

constraint answer set programming. As hybrid answer set programming approaches are

making their pronounced way into practice the methodologies for arguing the correctness

of such solutions are due. Alternative definitions of CAS programs and their semantics as

studied by Lin and Wang (2008), Balduccini (2013), and Bartholomew and Lee (2013)

may suit the purpose of the formal arguments of correctness better than the definition

presented here.

One way to view translational methods in constraint answer set programming is as

an attempt to utilize existing technology from distinct automated reasoning subfields for

solving CASP formulations of solutions to problems. Another way to view these is as an

attempt to provide a programming front end of logic programming under answer set se-

mantics to the variety of tools that otherwise possess only limited modeling capabilities.

For example, despite the existence of the common standard SMT-LIB language for formu-

lating SMT problems, one may not call that a full-fledged programming language. Just as

the DIMACS format – standard for communicating with the satisfiability solvers – does

not constitute a suitable language for modeling solutions to problems in it directly. As

mentioned earlier, clingo 5 framework provides infrastructure for bootstrapping novel

hybrid answer set programming solutions. It remains to be seen if this framework is suffi-

cient for establishing a full-fledged front end for the translational approach targeting the

utilization of SMT solvers that goes beyond traditional (integer) linear arithmetic. For

example, particular SMT fragments provide vector and array arithmetics. It is still to

be established whether expressions of these logics may prove to be convenient modeling

tools (backed up by specialized efficient search techniques of SMT).

MiniZinc6 is a free and open-source constraint modeling language. In the past decade, it

became a standard front end for accessing a conglomerate of CSP tools. The translational

approaches of constraint answer set solvers looked into utilizing SMT solvers via SMT-

LIB so far. In a similar manner, the language of MiniZinc can be utilized for accessing

CSP tools that support the MiniZinc language. MiniZinc-based translational approach

to constraint answer set solving is still to see the light.

At the closing of Section 5, we mention that no efforts by the research community have

been taken to produce a standard input language for CASP solvers. The maturity of the

field suggests it is time for such an effort. Possibly, an even more ambitious effort is due.

This paper makes it clear that many automated reasoning paradigms – SMT, ASP, CASP,

CSP, CLP – are geared toward solving difficult combinatorial search problems. We named

several case studies, where researchers attempt to experimentally compare these methods

by designing solutions to problems in distinct paradigms and then studying behaviors

of respective solvers on these solutions. Providing a standard language to interface tools

from distinct communities will allow us to benefit from portfolio approaches (Nudelman

et al. 2004) originated in SAT by tapping into a broad spectrum of solving techniques. We

6 https://www.minizinc.org/.
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trust that the standard language for CASP together with translational techniques that are

able to transform CAS programs into the specifications in languages of related paradigms

is a promising directions of research. To this end the question of a mature programming

methodology for utilizing CASP is in need. At the moment, typical users of ASP are the

ones that practice CASP. They borrow so called generate define and test methodology of

ASP (Lifschitz 2002; Denecker et al . 2019) that accounts for logic programming aspect

of CASP. Yet, the methodology that naturally accounts for constraints is still to come.

Optimization statements are important in (constraint) answer set programming. As

one can see in Figure 9, no translational approach supports these statements. Utilizing

MiniZinc/CSP solvers would allow to elevate this restriction as CSP solvers typically

provide support for optimization problems. Also, MaxSMT (Robinson et al . 2010) con-

cerns SMT solving that provides means to formulate optimization statements. It is yet

another direction of work on connecting MaxSMT together with optimization statements

of constraint answer set programming.
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Erdoğan, S. and Lifschitz, V. 2004. Definitions in answer set programming. In Proceedings
of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR).
114–126.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science 1, 51–60.

Fandinno, J., Lifschitz, V., Lühne, P. and Schaub, T. 2020. Verifying tight logic programs
with Anthem and Vampire. Theory and Practice of Logic Programming 20, 5, 735–750.

Ferraris, P. and Lifschitz, V. 2005. Weight constraints as nested expressions. Theory and
Practice of Logic Programming 5, 45–74.

Garvin, B. J., Cohen, M. B. and Dwyer, M. B. 2011. Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empirical Software Engineering 16, 1,
61–102.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Wanko, P.

2016. Theory solving made easy with Clingo 5. In Technical Communications of the 32nd In-
ternational Conference on Logic Programming (ICLP 2016), M. Carro, A. King, N. Saeedloei
and M. D. Vos, Eds. OpenAccess Series in Informatics (OASIcs), vol. 52. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2:1–2:15.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2009. On the Implementation
of Weight Constraint Rules in Conflict-Driven ASP Solvers. Springer, Berlin, Heidelberg,
250–264.

Gebser, M., Kaminski, R., König, A. and Schaub, T. 2011. Advances in gringo series 3. In
Proceedings of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR). Springer, 345–351.

https://doi.org/10.1017/S1471068421000478 Published online by Cambridge University Press

https://arxiv.org/abs/1901.09125
http://yices.csl.sri.com/
https://doi.org/10.1017/S1471068421000478


Constraint answer set programming 223

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. Conflict-driven answer set
enumeration. In Proceedings of the 9th International Conference on Logic Programming and
Nonmonotonic Reasoning. LPNMR’07. Springer-Verlag, Berlin, Heidelberg, 136–148.

Gebser, M., König, A., Schaub, T., Thiele, S. and Veber, P. 2010. The bioASP library:
ASP solutions for systems biology. In 22nd IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2010. IEEE Computer Society, 383–389.

Gebser, M., Lee, J. and Lierler, Y. 2011. On elementary loops of logic programs. Theory
and Practice of Logic Programming 11, 6, 953–988.

Gebser, M., Ostrowski, M. and Schaub, T. 2009. Constraint answer set solving. In Pro-
ceedings of 25th International Conference on Logic Programming (ICLP). Springer-Verlag,
235–249.

Gebser, M., Schaub, T. and Thiele, S. 2007. Gringo: a new grounder for answer set pro-
gramming. In Proceedings of the Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning, 266–271.

Gomes, C. P., Kautz, H., Sabharwal, A. and Selman, B. 2008. Satisfiability solvers. In
Handbook of Knowledge Representation, F. van Harmelen, V. Lifschitz and B. Porter, Eds.
Elsevier, 89–134.

Gutin, G. and Punnen, A., Eds. 2007. The Traveling Salesman Problem and Its Variations.
Springer-Verlag.

IBM 2009. IBM ILOG AMPL Version 12.1 User’s Guide. IBM. URL: http://www.ibm.com/
software/commerce/optimization/cplex-optimizer/.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: a survey. Journal of Logic
Programming 19, 20, 503–581.

Janhunen, T. 2006. Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16, 1–2, 35–86. DOI: 10.3166/jancl.16.35-86.

Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P. and Schaub,

T. 2017. Clingo goes linear constraints over reals and integers. Theory and Practice of Logic
Programming 17, 5–6, 872–888.
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